1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <uapi/linux/sched/types.h>
32 
33 #include "ptp_private.h"
34 
35 #define PTP_MAX_ALARMS 4
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 
40 /* private globals */
41 
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44 
45 static DEFINE_IDA(ptp_clocks_map);
46 
47 /* time stamp event queue operations */
48 
queue_free(struct timestamp_event_queue * q)49 static inline int queue_free(struct timestamp_event_queue *q)
50 {
51 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
52 }
53 
enqueue_external_timestamp(struct timestamp_event_queue * queue,struct ptp_clock_event * src)54 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
55 				       struct ptp_clock_event *src)
56 {
57 	struct ptp_extts_event *dst;
58 	unsigned long flags;
59 	s64 seconds;
60 	u32 remainder;
61 
62 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
63 
64 	spin_lock_irqsave(&queue->lock, flags);
65 
66 	dst = &queue->buf[queue->tail];
67 	dst->index = src->index;
68 	dst->t.sec = seconds;
69 	dst->t.nsec = remainder;
70 
71 	if (!queue_free(queue))
72 		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
73 
74 	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
75 
76 	spin_unlock_irqrestore(&queue->lock, flags);
77 }
78 
scaled_ppm_to_ppb(long ppm)79 long scaled_ppm_to_ppb(long ppm)
80 {
81 	/*
82 	 * The 'freq' field in the 'struct timex' is in parts per
83 	 * million, but with a 16 bit binary fractional field.
84 	 *
85 	 * We want to calculate
86 	 *
87 	 *    ppb = scaled_ppm * 1000 / 2^16
88 	 *
89 	 * which simplifies to
90 	 *
91 	 *    ppb = scaled_ppm * 125 / 2^13
92 	 */
93 	s64 ppb = 1 + ppm;
94 	ppb *= 125;
95 	ppb >>= 13;
96 	return (long) ppb;
97 }
98 EXPORT_SYMBOL(scaled_ppm_to_ppb);
99 
100 /* posix clock implementation */
101 
ptp_clock_getres(struct posix_clock * pc,struct timespec64 * tp)102 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
103 {
104 	tp->tv_sec = 0;
105 	tp->tv_nsec = 1;
106 	return 0;
107 }
108 
ptp_clock_settime(struct posix_clock * pc,const struct timespec64 * tp)109 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
110 {
111 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
112 
113 	return  ptp->info->settime64(ptp->info, tp);
114 }
115 
ptp_clock_gettime(struct posix_clock * pc,struct timespec64 * tp)116 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
117 {
118 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
119 	int err;
120 
121 	err = ptp->info->gettime64(ptp->info, tp);
122 	return err;
123 }
124 
ptp_clock_adjtime(struct posix_clock * pc,struct timex * tx)125 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
126 {
127 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
128 	struct ptp_clock_info *ops;
129 	int err = -EOPNOTSUPP;
130 
131 	ops = ptp->info;
132 
133 	if (tx->modes & ADJ_SETOFFSET) {
134 		struct timespec64 ts;
135 		ktime_t kt;
136 		s64 delta;
137 
138 		ts.tv_sec  = tx->time.tv_sec;
139 		ts.tv_nsec = tx->time.tv_usec;
140 
141 		if (!(tx->modes & ADJ_NANO))
142 			ts.tv_nsec *= 1000;
143 
144 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
145 			return -EINVAL;
146 
147 		kt = timespec64_to_ktime(ts);
148 		delta = ktime_to_ns(kt);
149 		err = ops->adjtime(ops, delta);
150 	} else if (tx->modes & ADJ_FREQUENCY) {
151 		long ppb = scaled_ppm_to_ppb(tx->freq);
152 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
153 			return -ERANGE;
154 		if (ops->adjfine)
155 			err = ops->adjfine(ops, tx->freq);
156 		else
157 			err = ops->adjfreq(ops, ppb);
158 		ptp->dialed_frequency = tx->freq;
159 	} else if (tx->modes == 0) {
160 		tx->freq = ptp->dialed_frequency;
161 		err = 0;
162 	}
163 
164 	return err;
165 }
166 
167 static struct posix_clock_operations ptp_clock_ops = {
168 	.owner		= THIS_MODULE,
169 	.clock_adjtime	= ptp_clock_adjtime,
170 	.clock_gettime	= ptp_clock_gettime,
171 	.clock_getres	= ptp_clock_getres,
172 	.clock_settime	= ptp_clock_settime,
173 	.ioctl		= ptp_ioctl,
174 	.open		= ptp_open,
175 	.poll		= ptp_poll,
176 	.read		= ptp_read,
177 };
178 
ptp_clock_release(struct device * dev)179 static void ptp_clock_release(struct device *dev)
180 {
181 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
182 
183 	ptp_cleanup_pin_groups(ptp);
184 	mutex_destroy(&ptp->tsevq_mux);
185 	mutex_destroy(&ptp->pincfg_mux);
186 	ida_simple_remove(&ptp_clocks_map, ptp->index);
187 	kfree(ptp);
188 }
189 
ptp_aux_kworker(struct kthread_work * work)190 static void ptp_aux_kworker(struct kthread_work *work)
191 {
192 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
193 					     aux_work.work);
194 	struct ptp_clock_info *info = ptp->info;
195 	long delay;
196 
197 	delay = info->do_aux_work(info);
198 
199 	if (delay >= 0)
200 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
201 }
202 
203 /* public interface */
204 
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)205 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
206 				     struct device *parent)
207 {
208 	struct ptp_clock *ptp;
209 	int err = 0, index, major = MAJOR(ptp_devt);
210 
211 	if (info->n_alarm > PTP_MAX_ALARMS)
212 		return ERR_PTR(-EINVAL);
213 
214 	/* Initialize a clock structure. */
215 	err = -ENOMEM;
216 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
217 	if (ptp == NULL)
218 		goto no_memory;
219 
220 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
221 	if (index < 0) {
222 		err = index;
223 		goto no_slot;
224 	}
225 
226 	ptp->clock.ops = ptp_clock_ops;
227 	ptp->info = info;
228 	ptp->devid = MKDEV(major, index);
229 	ptp->index = index;
230 	spin_lock_init(&ptp->tsevq.lock);
231 	mutex_init(&ptp->tsevq_mux);
232 	mutex_init(&ptp->pincfg_mux);
233 	init_waitqueue_head(&ptp->tsev_wq);
234 
235 	if (ptp->info->do_aux_work) {
236 		char *worker_name = kasprintf(GFP_KERNEL, "ptp%d", ptp->index);
237 
238 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
239 		ptp->kworker = kthread_create_worker(0, worker_name ?
240 						     worker_name : info->name);
241 		kfree(worker_name);
242 		if (IS_ERR(ptp->kworker)) {
243 			err = PTR_ERR(ptp->kworker);
244 			pr_err("failed to create ptp aux_worker %d\n", err);
245 			goto kworker_err;
246 		}
247 	}
248 
249 	err = ptp_populate_pin_groups(ptp);
250 	if (err)
251 		goto no_pin_groups;
252 
253 	/* Register a new PPS source. */
254 	if (info->pps) {
255 		struct pps_source_info pps;
256 		memset(&pps, 0, sizeof(pps));
257 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
258 		pps.mode = PTP_PPS_MODE;
259 		pps.owner = info->owner;
260 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
261 		if (!ptp->pps_source) {
262 			err = -EINVAL;
263 			pr_err("failed to register pps source\n");
264 			goto no_pps;
265 		}
266 	}
267 
268 	/* Initialize a new device of our class in our clock structure. */
269 	device_initialize(&ptp->dev);
270 	ptp->dev.devt = ptp->devid;
271 	ptp->dev.class = ptp_class;
272 	ptp->dev.parent = parent;
273 	ptp->dev.groups = ptp->pin_attr_groups;
274 	ptp->dev.release = ptp_clock_release;
275 	dev_set_drvdata(&ptp->dev, ptp);
276 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
277 
278 	/* Create a posix clock and link it to the device. */
279 	err = posix_clock_register(&ptp->clock, &ptp->dev);
280 	if (err) {
281 		pr_err("failed to create posix clock\n");
282 		goto no_clock;
283 	}
284 
285 	return ptp;
286 
287 no_clock:
288 	if (ptp->pps_source)
289 		pps_unregister_source(ptp->pps_source);
290 no_pps:
291 	ptp_cleanup_pin_groups(ptp);
292 no_pin_groups:
293 	if (ptp->kworker)
294 		kthread_destroy_worker(ptp->kworker);
295 kworker_err:
296 	mutex_destroy(&ptp->tsevq_mux);
297 	mutex_destroy(&ptp->pincfg_mux);
298 	ida_simple_remove(&ptp_clocks_map, index);
299 no_slot:
300 	kfree(ptp);
301 no_memory:
302 	return ERR_PTR(err);
303 }
304 EXPORT_SYMBOL(ptp_clock_register);
305 
ptp_clock_unregister(struct ptp_clock * ptp)306 int ptp_clock_unregister(struct ptp_clock *ptp)
307 {
308 	ptp->defunct = 1;
309 	wake_up_interruptible(&ptp->tsev_wq);
310 
311 	if (ptp->kworker) {
312 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
313 		kthread_destroy_worker(ptp->kworker);
314 	}
315 
316 	/* Release the clock's resources. */
317 	if (ptp->pps_source)
318 		pps_unregister_source(ptp->pps_source);
319 
320 	posix_clock_unregister(&ptp->clock);
321 
322 	return 0;
323 }
324 EXPORT_SYMBOL(ptp_clock_unregister);
325 
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)326 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
327 {
328 	struct pps_event_time evt;
329 
330 	switch (event->type) {
331 
332 	case PTP_CLOCK_ALARM:
333 		break;
334 
335 	case PTP_CLOCK_EXTTS:
336 		enqueue_external_timestamp(&ptp->tsevq, event);
337 		wake_up_interruptible(&ptp->tsev_wq);
338 		break;
339 
340 	case PTP_CLOCK_PPS:
341 		pps_get_ts(&evt);
342 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
343 		break;
344 
345 	case PTP_CLOCK_PPSUSR:
346 		pps_event(ptp->pps_source, &event->pps_times,
347 			  PTP_PPS_EVENT, NULL);
348 		break;
349 	}
350 }
351 EXPORT_SYMBOL(ptp_clock_event);
352 
ptp_clock_index(struct ptp_clock * ptp)353 int ptp_clock_index(struct ptp_clock *ptp)
354 {
355 	return ptp->index;
356 }
357 EXPORT_SYMBOL(ptp_clock_index);
358 
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)359 int ptp_find_pin(struct ptp_clock *ptp,
360 		 enum ptp_pin_function func, unsigned int chan)
361 {
362 	struct ptp_pin_desc *pin = NULL;
363 	int i;
364 
365 	mutex_lock(&ptp->pincfg_mux);
366 	for (i = 0; i < ptp->info->n_pins; i++) {
367 		if (ptp->info->pin_config[i].func == func &&
368 		    ptp->info->pin_config[i].chan == chan) {
369 			pin = &ptp->info->pin_config[i];
370 			break;
371 		}
372 	}
373 	mutex_unlock(&ptp->pincfg_mux);
374 
375 	return pin ? i : -1;
376 }
377 EXPORT_SYMBOL(ptp_find_pin);
378 
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)379 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
380 {
381 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
382 }
383 EXPORT_SYMBOL(ptp_schedule_worker);
384 
385 /* module operations */
386 
ptp_exit(void)387 static void __exit ptp_exit(void)
388 {
389 	class_destroy(ptp_class);
390 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
391 	ida_destroy(&ptp_clocks_map);
392 }
393 
ptp_init(void)394 static int __init ptp_init(void)
395 {
396 	int err;
397 
398 	ptp_class = class_create(THIS_MODULE, "ptp");
399 	if (IS_ERR(ptp_class)) {
400 		pr_err("ptp: failed to allocate class\n");
401 		return PTR_ERR(ptp_class);
402 	}
403 
404 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
405 	if (err < 0) {
406 		pr_err("ptp: failed to allocate device region\n");
407 		goto no_region;
408 	}
409 
410 	ptp_class->dev_groups = ptp_groups;
411 	pr_info("PTP clock support registered\n");
412 	return 0;
413 
414 no_region:
415 	class_destroy(ptp_class);
416 	return err;
417 }
418 
419 subsys_initcall(ptp_init);
420 module_exit(ptp_exit);
421 
422 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
423 MODULE_DESCRIPTION("PTP clocks support");
424 MODULE_LICENSE("GPL");
425