1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/kernel.h>
5 #include <linux/workqueue.h>
6
7 #include <asm/mce.h>
8
9 #include "debugfs.h"
10
11 /*
12 * RAS Correctable Errors Collector
13 *
14 * This is a simple gadget which collects correctable errors and counts their
15 * occurrence per physical page address.
16 *
17 * We've opted for possibly the simplest data structure to collect those - an
18 * array of the size of a memory page. It stores 512 u64's with the following
19 * structure:
20 *
21 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
22 *
23 * The generation in the two highest order bits is two bits which are set to 11b
24 * on every insertion. During the course of each entry's existence, the
25 * generation field gets decremented during spring cleaning to 10b, then 01b and
26 * then 00b.
27 *
28 * This way we're employing the natural numeric ordering to make sure that newly
29 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
30 * and thus iterating over the array initially won't kick out those elements
31 * which were inserted last.
32 *
33 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
34 * elements entered into the array, during which, we're decaying all elements.
35 * If, after decay, an element gets inserted again, its generation is set to 11b
36 * to make sure it has higher numerical count than other, older elements and
37 * thus emulate an an LRU-like behavior when deleting elements to free up space
38 * in the page.
39 *
40 * When an element reaches it's max count of count_threshold, we try to poison
41 * it by assuming that errors triggered count_threshold times in a single page
42 * are excessive and that page shouldn't be used anymore. count_threshold is
43 * initialized to COUNT_MASK which is the maximum.
44 *
45 * That error event entry causes cec_add_elem() to return !0 value and thus
46 * signal to its callers to log the error.
47 *
48 * To the question why we've chosen a page and moving elements around with
49 * memmove(), it is because it is a very simple structure to handle and max data
50 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
51 * We wanted to avoid the pointer traversal of more complex structures like a
52 * linked list or some sort of a balancing search tree.
53 *
54 * Deleting an element takes O(n) but since it is only a single page, it should
55 * be fast enough and it shouldn't happen all too often depending on error
56 * patterns.
57 */
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) "RAS: " fmt
61
62 /*
63 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
64 * elements have stayed in the array without having been accessed again.
65 */
66 #define DECAY_BITS 2
67 #define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
68 #define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
69
70 /*
71 * Threshold amount of inserted elements after which we start spring
72 * cleaning.
73 */
74 #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
75
76 /* Bits which count the number of errors happened in this 4K page. */
77 #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
78 #define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
79 #define FULL_COUNT_MASK (PAGE_SIZE - 1)
80
81 /*
82 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
83 */
84
85 #define PFN(e) ((e) >> PAGE_SHIFT)
86 #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
87 #define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
88 #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
89
90 static struct ce_array {
91 u64 *array; /* container page */
92 unsigned int n; /* number of elements in the array */
93
94 unsigned int decay_count; /*
95 * number of element insertions/increments
96 * since the last spring cleaning.
97 */
98
99 u64 pfns_poisoned; /*
100 * number of PFNs which got poisoned.
101 */
102
103 u64 ces_entered; /*
104 * The number of correctable errors
105 * entered into the collector.
106 */
107
108 u64 decays_done; /*
109 * Times we did spring cleaning.
110 */
111
112 union {
113 struct {
114 __u32 disabled : 1, /* cmdline disabled */
115 __resv : 31;
116 };
117 __u32 flags;
118 };
119 } ce_arr;
120
121 static DEFINE_MUTEX(ce_mutex);
122 static u64 dfs_pfn;
123
124 /* Amount of errors after which we offline */
125 static unsigned int count_threshold = COUNT_MASK;
126
127 /* Each element "decays" each decay_interval which is 24hrs by default. */
128 #define CEC_DECAY_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
129 #define CEC_DECAY_MIN_INTERVAL 1 * 60 * 60 /* 1h */
130 #define CEC_DECAY_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
131 static struct delayed_work cec_work;
132 static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;
133
134 /*
135 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
136 * element in the array. On insertion and any access, it gets reset to max.
137 */
do_spring_cleaning(struct ce_array * ca)138 static void do_spring_cleaning(struct ce_array *ca)
139 {
140 int i;
141
142 for (i = 0; i < ca->n; i++) {
143 u8 decay = DECAY(ca->array[i]);
144
145 if (!decay)
146 continue;
147
148 decay--;
149
150 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
151 ca->array[i] |= (decay << COUNT_BITS);
152 }
153 ca->decay_count = 0;
154 ca->decays_done++;
155 }
156
157 /*
158 * @interval in seconds
159 */
cec_mod_work(unsigned long interval)160 static void cec_mod_work(unsigned long interval)
161 {
162 unsigned long iv;
163
164 iv = interval * HZ;
165 mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
166 }
167
cec_work_fn(struct work_struct * work)168 static void cec_work_fn(struct work_struct *work)
169 {
170 mutex_lock(&ce_mutex);
171 do_spring_cleaning(&ce_arr);
172 mutex_unlock(&ce_mutex);
173
174 cec_mod_work(decay_interval);
175 }
176
177 /*
178 * @to: index of the smallest element which is >= then @pfn.
179 *
180 * Return the index of the pfn if found, otherwise negative value.
181 */
__find_elem(struct ce_array * ca,u64 pfn,unsigned int * to)182 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
183 {
184 int min = 0, max = ca->n - 1;
185 u64 this_pfn;
186
187 while (min <= max) {
188 int i = (min + max) >> 1;
189
190 this_pfn = PFN(ca->array[i]);
191
192 if (this_pfn < pfn)
193 min = i + 1;
194 else if (this_pfn > pfn)
195 max = i - 1;
196 else if (this_pfn == pfn) {
197 if (to)
198 *to = i;
199
200 return i;
201 }
202 }
203
204 /*
205 * When the loop terminates without finding @pfn, min has the index of
206 * the element slot where the new @pfn should be inserted. The loop
207 * terminates when min > max, which means the min index points to the
208 * bigger element while the max index to the smaller element, in-between
209 * which the new @pfn belongs to.
210 *
211 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
212 */
213 if (to)
214 *to = min;
215
216 return -ENOKEY;
217 }
218
find_elem(struct ce_array * ca,u64 pfn,unsigned int * to)219 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
220 {
221 WARN_ON(!to);
222
223 if (!ca->n) {
224 *to = 0;
225 return -ENOKEY;
226 }
227 return __find_elem(ca, pfn, to);
228 }
229
del_elem(struct ce_array * ca,int idx)230 static void del_elem(struct ce_array *ca, int idx)
231 {
232 /* Save us a function call when deleting the last element. */
233 if (ca->n - (idx + 1))
234 memmove((void *)&ca->array[idx],
235 (void *)&ca->array[idx + 1],
236 (ca->n - (idx + 1)) * sizeof(u64));
237
238 ca->n--;
239 }
240
del_lru_elem_unlocked(struct ce_array * ca)241 static u64 del_lru_elem_unlocked(struct ce_array *ca)
242 {
243 unsigned int min = FULL_COUNT_MASK;
244 int i, min_idx = 0;
245
246 for (i = 0; i < ca->n; i++) {
247 unsigned int this = FULL_COUNT(ca->array[i]);
248
249 if (min > this) {
250 min = this;
251 min_idx = i;
252 }
253 }
254
255 del_elem(ca, min_idx);
256
257 return PFN(ca->array[min_idx]);
258 }
259
260 /*
261 * We return the 0th pfn in the error case under the assumption that it cannot
262 * be poisoned and excessive CEs in there are a serious deal anyway.
263 */
del_lru_elem(void)264 static u64 __maybe_unused del_lru_elem(void)
265 {
266 struct ce_array *ca = &ce_arr;
267 u64 pfn;
268
269 if (!ca->n)
270 return 0;
271
272 mutex_lock(&ce_mutex);
273 pfn = del_lru_elem_unlocked(ca);
274 mutex_unlock(&ce_mutex);
275
276 return pfn;
277 }
278
279
cec_add_elem(u64 pfn)280 int cec_add_elem(u64 pfn)
281 {
282 struct ce_array *ca = &ce_arr;
283 unsigned int to;
284 int count, ret = 0;
285
286 /*
287 * We can be called very early on the identify_cpu() path where we are
288 * not initialized yet. We ignore the error for simplicity.
289 */
290 if (!ce_arr.array || ce_arr.disabled)
291 return -ENODEV;
292
293 ca->ces_entered++;
294
295 mutex_lock(&ce_mutex);
296
297 if (ca->n == MAX_ELEMS)
298 WARN_ON(!del_lru_elem_unlocked(ca));
299
300 ret = find_elem(ca, pfn, &to);
301 if (ret < 0) {
302 /*
303 * Shift range [to-end] to make room for one more element.
304 */
305 memmove((void *)&ca->array[to + 1],
306 (void *)&ca->array[to],
307 (ca->n - to) * sizeof(u64));
308
309 ca->array[to] = (pfn << PAGE_SHIFT) |
310 (DECAY_MASK << COUNT_BITS) | 1;
311
312 ca->n++;
313
314 ret = 0;
315
316 goto decay;
317 }
318
319 count = COUNT(ca->array[to]);
320
321 if (count < count_threshold) {
322 ca->array[to] |= (DECAY_MASK << COUNT_BITS);
323 ca->array[to]++;
324
325 ret = 0;
326 } else {
327 u64 pfn = ca->array[to] >> PAGE_SHIFT;
328
329 if (!pfn_valid(pfn)) {
330 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
331 } else {
332 /* We have reached max count for this page, soft-offline it. */
333 pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
334 memory_failure_queue(pfn, MF_SOFT_OFFLINE);
335 ca->pfns_poisoned++;
336 }
337
338 del_elem(ca, to);
339
340 /*
341 * Return a >0 value to denote that we've reached the offlining
342 * threshold.
343 */
344 ret = 1;
345
346 goto unlock;
347 }
348
349 decay:
350 ca->decay_count++;
351
352 if (ca->decay_count >= CLEAN_ELEMS)
353 do_spring_cleaning(ca);
354
355 unlock:
356 mutex_unlock(&ce_mutex);
357
358 return ret;
359 }
360
u64_get(void * data,u64 * val)361 static int u64_get(void *data, u64 *val)
362 {
363 *val = *(u64 *)data;
364
365 return 0;
366 }
367
pfn_set(void * data,u64 val)368 static int pfn_set(void *data, u64 val)
369 {
370 *(u64 *)data = val;
371
372 cec_add_elem(val);
373
374 return 0;
375 }
376
377 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
378
decay_interval_set(void * data,u64 val)379 static int decay_interval_set(void *data, u64 val)
380 {
381 *(u64 *)data = val;
382
383 if (val < CEC_DECAY_MIN_INTERVAL)
384 return -EINVAL;
385
386 if (val > CEC_DECAY_MAX_INTERVAL)
387 return -EINVAL;
388
389 decay_interval = val;
390
391 cec_mod_work(decay_interval);
392 return 0;
393 }
394 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
395
count_threshold_set(void * data,u64 val)396 static int count_threshold_set(void *data, u64 val)
397 {
398 *(u64 *)data = val;
399
400 if (val > COUNT_MASK)
401 val = COUNT_MASK;
402
403 count_threshold = val;
404
405 return 0;
406 }
407 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
408
array_dump(struct seq_file * m,void * v)409 static int array_dump(struct seq_file *m, void *v)
410 {
411 struct ce_array *ca = &ce_arr;
412 u64 prev = 0;
413 int i;
414
415 mutex_lock(&ce_mutex);
416
417 seq_printf(m, "{ n: %d\n", ca->n);
418 for (i = 0; i < ca->n; i++) {
419 u64 this = PFN(ca->array[i]);
420
421 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
422
423 WARN_ON(prev > this);
424
425 prev = this;
426 }
427
428 seq_printf(m, "}\n");
429
430 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
431 ca->ces_entered, ca->pfns_poisoned);
432
433 seq_printf(m, "Flags: 0x%x\n", ca->flags);
434
435 seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
436 seq_printf(m, "Decays: %lld\n", ca->decays_done);
437
438 seq_printf(m, "Action threshold: %d\n", count_threshold);
439
440 mutex_unlock(&ce_mutex);
441
442 return 0;
443 }
444
array_open(struct inode * inode,struct file * filp)445 static int array_open(struct inode *inode, struct file *filp)
446 {
447 return single_open(filp, array_dump, NULL);
448 }
449
450 static const struct file_operations array_ops = {
451 .owner = THIS_MODULE,
452 .open = array_open,
453 .read = seq_read,
454 .llseek = seq_lseek,
455 .release = single_release,
456 };
457
create_debugfs_nodes(void)458 static int __init create_debugfs_nodes(void)
459 {
460 struct dentry *d, *pfn, *decay, *count, *array;
461
462 d = debugfs_create_dir("cec", ras_debugfs_dir);
463 if (!d) {
464 pr_warn("Error creating cec debugfs node!\n");
465 return -1;
466 }
467
468 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
469 if (!pfn) {
470 pr_warn("Error creating pfn debugfs node!\n");
471 goto err;
472 }
473
474 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
475 if (!array) {
476 pr_warn("Error creating array debugfs node!\n");
477 goto err;
478 }
479
480 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
481 &decay_interval, &decay_interval_ops);
482 if (!decay) {
483 pr_warn("Error creating decay_interval debugfs node!\n");
484 goto err;
485 }
486
487 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
488 &count_threshold, &count_threshold_ops);
489 if (!count) {
490 pr_warn("Error creating count_threshold debugfs node!\n");
491 goto err;
492 }
493
494
495 return 0;
496
497 err:
498 debugfs_remove_recursive(d);
499
500 return 1;
501 }
502
cec_init(void)503 void __init cec_init(void)
504 {
505 if (ce_arr.disabled)
506 return;
507
508 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
509 if (!ce_arr.array) {
510 pr_err("Error allocating CE array page!\n");
511 return;
512 }
513
514 if (create_debugfs_nodes())
515 return;
516
517 INIT_DELAYED_WORK(&cec_work, cec_work_fn);
518 schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);
519
520 pr_info("Correctable Errors collector initialized.\n");
521 }
522
parse_cec_param(char * str)523 int __init parse_cec_param(char *str)
524 {
525 if (!str)
526 return 0;
527
528 if (*str == '=')
529 str++;
530
531 if (!strcmp(str, "cec_disable"))
532 ce_arr.disabled = 1;
533 else
534 return 0;
535
536 return 1;
537 }
538