1 /*
2 * RTC subsystem, base class
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * class skeleton from drivers/hwmon/hwmon.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/rtc.h>
19 #include <linux/kdev_t.h>
20 #include <linux/idr.h>
21 #include <linux/slab.h>
22 #include <linux/workqueue.h>
23
24 #include "rtc-core.h"
25
26
27 static DEFINE_IDA(rtc_ida);
28 struct class *rtc_class;
29
rtc_device_release(struct device * dev)30 static void rtc_device_release(struct device *dev)
31 {
32 struct rtc_device *rtc = to_rtc_device(dev);
33 ida_simple_remove(&rtc_ida, rtc->id);
34 kfree(rtc);
35 }
36
37 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
38 /* Result of the last RTC to system clock attempt. */
39 int rtc_hctosys_ret = -ENODEV;
40 #endif
41
42 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
43 /*
44 * On suspend(), measure the delta between one RTC and the
45 * system's wall clock; restore it on resume().
46 */
47
48 static struct timespec64 old_rtc, old_system, old_delta;
49
50
rtc_suspend(struct device * dev)51 static int rtc_suspend(struct device *dev)
52 {
53 struct rtc_device *rtc = to_rtc_device(dev);
54 struct rtc_time tm;
55 struct timespec64 delta, delta_delta;
56 int err;
57
58 if (timekeeping_rtc_skipsuspend())
59 return 0;
60
61 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
62 return 0;
63
64 /* snapshot the current RTC and system time at suspend*/
65 err = rtc_read_time(rtc, &tm);
66 if (err < 0) {
67 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
68 return 0;
69 }
70
71 ktime_get_real_ts64(&old_system);
72 old_rtc.tv_sec = rtc_tm_to_time64(&tm);
73
74
75 /*
76 * To avoid drift caused by repeated suspend/resumes,
77 * which each can add ~1 second drift error,
78 * try to compensate so the difference in system time
79 * and rtc time stays close to constant.
80 */
81 delta = timespec64_sub(old_system, old_rtc);
82 delta_delta = timespec64_sub(delta, old_delta);
83 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
84 /*
85 * if delta_delta is too large, assume time correction
86 * has occured and set old_delta to the current delta.
87 */
88 old_delta = delta;
89 } else {
90 /* Otherwise try to adjust old_system to compensate */
91 old_system = timespec64_sub(old_system, delta_delta);
92 }
93
94 return 0;
95 }
96
rtc_resume(struct device * dev)97 static int rtc_resume(struct device *dev)
98 {
99 struct rtc_device *rtc = to_rtc_device(dev);
100 struct rtc_time tm;
101 struct timespec64 new_system, new_rtc;
102 struct timespec64 sleep_time;
103 int err;
104
105 if (timekeeping_rtc_skipresume())
106 return 0;
107
108 rtc_hctosys_ret = -ENODEV;
109 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
110 return 0;
111
112 /* snapshot the current rtc and system time at resume */
113 ktime_get_real_ts64(&new_system);
114 err = rtc_read_time(rtc, &tm);
115 if (err < 0) {
116 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
117 return 0;
118 }
119
120 new_rtc.tv_sec = rtc_tm_to_time64(&tm);
121 new_rtc.tv_nsec = 0;
122
123 if (new_rtc.tv_sec < old_rtc.tv_sec) {
124 pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
125 return 0;
126 }
127
128 /* calculate the RTC time delta (sleep time)*/
129 sleep_time = timespec64_sub(new_rtc, old_rtc);
130
131 /*
132 * Since these RTC suspend/resume handlers are not called
133 * at the very end of suspend or the start of resume,
134 * some run-time may pass on either sides of the sleep time
135 * so subtract kernel run-time between rtc_suspend to rtc_resume
136 * to keep things accurate.
137 */
138 sleep_time = timespec64_sub(sleep_time,
139 timespec64_sub(new_system, old_system));
140
141 if (sleep_time.tv_sec >= 0)
142 timekeeping_inject_sleeptime64(&sleep_time);
143 rtc_hctosys_ret = 0;
144 return 0;
145 }
146
147 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
148 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
149 #else
150 #define RTC_CLASS_DEV_PM_OPS NULL
151 #endif
152
153 /* Ensure the caller will set the id before releasing the device */
rtc_allocate_device(void)154 static struct rtc_device *rtc_allocate_device(void)
155 {
156 struct rtc_device *rtc;
157
158 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
159 if (!rtc)
160 return NULL;
161
162 device_initialize(&rtc->dev);
163
164 /* Drivers can revise this default after allocating the device. */
165 rtc->set_offset_nsec = NSEC_PER_SEC / 2;
166
167 rtc->irq_freq = 1;
168 rtc->max_user_freq = 64;
169 rtc->dev.class = rtc_class;
170 rtc->dev.groups = rtc_get_dev_attribute_groups();
171 rtc->dev.release = rtc_device_release;
172
173 mutex_init(&rtc->ops_lock);
174 spin_lock_init(&rtc->irq_lock);
175 init_waitqueue_head(&rtc->irq_queue);
176
177 /* Init timerqueue */
178 timerqueue_init_head(&rtc->timerqueue);
179 INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
180 /* Init aie timer */
181 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
182 /* Init uie timer */
183 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
184 /* Init pie timer */
185 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rtc->pie_timer.function = rtc_pie_update_irq;
187 rtc->pie_enabled = 0;
188
189 return rtc;
190 }
191
rtc_device_get_id(struct device * dev)192 static int rtc_device_get_id(struct device *dev)
193 {
194 int of_id = -1, id = -1;
195
196 if (dev->of_node)
197 of_id = of_alias_get_id(dev->of_node, "rtc");
198 else if (dev->parent && dev->parent->of_node)
199 of_id = of_alias_get_id(dev->parent->of_node, "rtc");
200
201 if (of_id >= 0) {
202 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
203 if (id < 0)
204 dev_warn(dev, "/aliases ID %d not available\n", of_id);
205 }
206
207 if (id < 0)
208 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
209
210 return id;
211 }
212
rtc_device_get_offset(struct rtc_device * rtc)213 static void rtc_device_get_offset(struct rtc_device *rtc)
214 {
215 time64_t range_secs;
216 u32 start_year;
217 int ret;
218
219 /*
220 * If RTC driver did not implement the range of RTC hardware device,
221 * then we can not expand the RTC range by adding or subtracting one
222 * offset.
223 */
224 if (rtc->range_min == rtc->range_max)
225 return;
226
227 ret = device_property_read_u32(rtc->dev.parent, "start-year",
228 &start_year);
229 if (!ret) {
230 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
231 rtc->set_start_time = true;
232 }
233
234 /*
235 * If user did not implement the start time for RTC driver, then no
236 * need to expand the RTC range.
237 */
238 if (!rtc->set_start_time)
239 return;
240
241 range_secs = rtc->range_max - rtc->range_min + 1;
242
243 /*
244 * If the start_secs is larger than the maximum seconds (rtc->range_max)
245 * supported by RTC hardware or the maximum seconds of new expanded
246 * range (start_secs + rtc->range_max - rtc->range_min) is less than
247 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
248 * RTC hardware will be mapped to start_secs by adding one offset, so
249 * the offset seconds calculation formula should be:
250 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
251 *
252 * If the start_secs is larger than the minimum seconds (rtc->range_min)
253 * supported by RTC hardware, then there is one region is overlapped
254 * between the original RTC hardware range and the new expanded range,
255 * and this overlapped region do not need to be mapped into the new
256 * expanded range due to it is valid for RTC device. So the minimum
257 * seconds of RTC hardware (rtc->range_min) should be mapped to
258 * rtc->range_max + 1, then the offset seconds formula should be:
259 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
260 *
261 * If the start_secs is less than the minimum seconds (rtc->range_min),
262 * which is similar to case 2. So the start_secs should be mapped to
263 * start_secs + rtc->range_max - rtc->range_min + 1, then the
264 * offset seconds formula should be:
265 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
266 *
267 * Otherwise the offset seconds should be 0.
268 */
269 if (rtc->start_secs > rtc->range_max ||
270 rtc->start_secs + range_secs - 1 < rtc->range_min)
271 rtc->offset_secs = rtc->start_secs - rtc->range_min;
272 else if (rtc->start_secs > rtc->range_min)
273 rtc->offset_secs = range_secs;
274 else if (rtc->start_secs < rtc->range_min)
275 rtc->offset_secs = -range_secs;
276 else
277 rtc->offset_secs = 0;
278 }
279
280 /**
281 * rtc_device_register - register w/ RTC class
282 * @dev: the device to register
283 *
284 * rtc_device_unregister() must be called when the class device is no
285 * longer needed.
286 *
287 * Returns the pointer to the new struct class device.
288 */
rtc_device_register(const char * name,struct device * dev,const struct rtc_class_ops * ops,struct module * owner)289 struct rtc_device *rtc_device_register(const char *name, struct device *dev,
290 const struct rtc_class_ops *ops,
291 struct module *owner)
292 {
293 struct rtc_device *rtc;
294 struct rtc_wkalrm alrm;
295 int id, err;
296
297 id = rtc_device_get_id(dev);
298 if (id < 0) {
299 err = id;
300 goto exit;
301 }
302
303 rtc = rtc_allocate_device();
304 if (!rtc) {
305 err = -ENOMEM;
306 goto exit_ida;
307 }
308
309 rtc->id = id;
310 rtc->ops = ops;
311 rtc->owner = owner;
312 rtc->dev.parent = dev;
313
314 dev_set_name(&rtc->dev, "rtc%d", id);
315
316 rtc_device_get_offset(rtc);
317
318 /* Check to see if there is an ALARM already set in hw */
319 err = __rtc_read_alarm(rtc, &alrm);
320
321 if (!err && !rtc_valid_tm(&alrm.time))
322 rtc_initialize_alarm(rtc, &alrm);
323
324 rtc_dev_prepare(rtc);
325
326 err = cdev_device_add(&rtc->char_dev, &rtc->dev);
327 if (err) {
328 dev_warn(&rtc->dev, "%s: failed to add char device %d:%d\n",
329 name, MAJOR(rtc->dev.devt), rtc->id);
330
331 /* This will free both memory and the ID */
332 put_device(&rtc->dev);
333 goto exit;
334 } else {
335 dev_dbg(&rtc->dev, "%s: dev (%d:%d)\n", name,
336 MAJOR(rtc->dev.devt), rtc->id);
337 }
338
339 rtc_proc_add_device(rtc);
340
341 dev_info(dev, "rtc core: registered %s as %s\n",
342 name, dev_name(&rtc->dev));
343
344 return rtc;
345
346 exit_ida:
347 ida_simple_remove(&rtc_ida, id);
348
349 exit:
350 dev_err(dev, "rtc core: unable to register %s, err = %d\n",
351 name, err);
352 return ERR_PTR(err);
353 }
354 EXPORT_SYMBOL_GPL(rtc_device_register);
355
356
357 /**
358 * rtc_device_unregister - removes the previously registered RTC class device
359 *
360 * @rtc: the RTC class device to destroy
361 */
rtc_device_unregister(struct rtc_device * rtc)362 void rtc_device_unregister(struct rtc_device *rtc)
363 {
364 mutex_lock(&rtc->ops_lock);
365 /*
366 * Remove innards of this RTC, then disable it, before
367 * letting any rtc_class_open() users access it again
368 */
369 rtc_proc_del_device(rtc);
370 cdev_device_del(&rtc->char_dev, &rtc->dev);
371 rtc->ops = NULL;
372 mutex_unlock(&rtc->ops_lock);
373 put_device(&rtc->dev);
374 }
375 EXPORT_SYMBOL_GPL(rtc_device_unregister);
376
devm_rtc_device_release(struct device * dev,void * res)377 static void devm_rtc_device_release(struct device *dev, void *res)
378 {
379 struct rtc_device *rtc = *(struct rtc_device **)res;
380
381 rtc_nvmem_unregister(rtc);
382 rtc_device_unregister(rtc);
383 }
384
devm_rtc_device_match(struct device * dev,void * res,void * data)385 static int devm_rtc_device_match(struct device *dev, void *res, void *data)
386 {
387 struct rtc **r = res;
388
389 return *r == data;
390 }
391
392 /**
393 * devm_rtc_device_register - resource managed rtc_device_register()
394 * @dev: the device to register
395 * @name: the name of the device
396 * @ops: the rtc operations structure
397 * @owner: the module owner
398 *
399 * @return a struct rtc on success, or an ERR_PTR on error
400 *
401 * Managed rtc_device_register(). The rtc_device returned from this function
402 * are automatically freed on driver detach. See rtc_device_register()
403 * for more information.
404 */
405
devm_rtc_device_register(struct device * dev,const char * name,const struct rtc_class_ops * ops,struct module * owner)406 struct rtc_device *devm_rtc_device_register(struct device *dev,
407 const char *name,
408 const struct rtc_class_ops *ops,
409 struct module *owner)
410 {
411 struct rtc_device **ptr, *rtc;
412
413 ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
414 if (!ptr)
415 return ERR_PTR(-ENOMEM);
416
417 rtc = rtc_device_register(name, dev, ops, owner);
418 if (!IS_ERR(rtc)) {
419 *ptr = rtc;
420 devres_add(dev, ptr);
421 } else {
422 devres_free(ptr);
423 }
424
425 return rtc;
426 }
427 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
428
429 /**
430 * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister()
431 * @dev: the device to unregister
432 * @rtc: the RTC class device to unregister
433 *
434 * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this
435 * function will not need to be called and the resource management code will
436 * ensure that the resource is freed.
437 */
devm_rtc_device_unregister(struct device * dev,struct rtc_device * rtc)438 void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc)
439 {
440 int rc;
441
442 rc = devres_release(dev, devm_rtc_device_release,
443 devm_rtc_device_match, rtc);
444 WARN_ON(rc);
445 }
446 EXPORT_SYMBOL_GPL(devm_rtc_device_unregister);
447
devm_rtc_release_device(struct device * dev,void * res)448 static void devm_rtc_release_device(struct device *dev, void *res)
449 {
450 struct rtc_device *rtc = *(struct rtc_device **)res;
451
452 rtc_nvmem_unregister(rtc);
453
454 if (rtc->registered)
455 rtc_device_unregister(rtc);
456 else
457 put_device(&rtc->dev);
458 }
459
devm_rtc_allocate_device(struct device * dev)460 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
461 {
462 struct rtc_device **ptr, *rtc;
463 int id, err;
464
465 id = rtc_device_get_id(dev);
466 if (id < 0)
467 return ERR_PTR(id);
468
469 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
470 if (!ptr) {
471 err = -ENOMEM;
472 goto exit_ida;
473 }
474
475 rtc = rtc_allocate_device();
476 if (!rtc) {
477 err = -ENOMEM;
478 goto exit_devres;
479 }
480
481 *ptr = rtc;
482 devres_add(dev, ptr);
483
484 rtc->id = id;
485 rtc->dev.parent = dev;
486 dev_set_name(&rtc->dev, "rtc%d", id);
487
488 return rtc;
489
490 exit_devres:
491 devres_free(ptr);
492 exit_ida:
493 ida_simple_remove(&rtc_ida, id);
494 return ERR_PTR(err);
495 }
496 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
497
__rtc_register_device(struct module * owner,struct rtc_device * rtc)498 int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
499 {
500 struct rtc_wkalrm alrm;
501 int err;
502
503 if (!rtc->ops)
504 return -EINVAL;
505
506 rtc->owner = owner;
507 rtc_device_get_offset(rtc);
508
509 /* Check to see if there is an ALARM already set in hw */
510 err = __rtc_read_alarm(rtc, &alrm);
511 if (!err && !rtc_valid_tm(&alrm.time))
512 rtc_initialize_alarm(rtc, &alrm);
513
514 rtc_dev_prepare(rtc);
515
516 err = cdev_device_add(&rtc->char_dev, &rtc->dev);
517 if (err)
518 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
519 MAJOR(rtc->dev.devt), rtc->id);
520 else
521 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
522 MAJOR(rtc->dev.devt), rtc->id);
523
524 rtc_proc_add_device(rtc);
525
526 rtc->registered = true;
527 dev_info(rtc->dev.parent, "registered as %s\n",
528 dev_name(&rtc->dev));
529
530 return 0;
531 }
532 EXPORT_SYMBOL_GPL(__rtc_register_device);
533
rtc_init(void)534 static int __init rtc_init(void)
535 {
536 rtc_class = class_create(THIS_MODULE, "rtc");
537 if (IS_ERR(rtc_class)) {
538 pr_err("couldn't create class\n");
539 return PTR_ERR(rtc_class);
540 }
541 rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
542 rtc_dev_init();
543 return 0;
544 }
545 subsys_initcall(rtc_init);
546