1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/rtc.h>
22
23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
25
rtc_add_offset(struct rtc_device * rtc,struct rtc_time * tm)26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
27 {
28 time64_t secs;
29
30 if (!rtc->offset_secs)
31 return;
32
33 secs = rtc_tm_to_time64(tm);
34
35 /*
36 * Since the reading time values from RTC device are always in the RTC
37 * original valid range, but we need to skip the overlapped region
38 * between expanded range and original range, which is no need to add
39 * the offset.
40 */
41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
42 (rtc->start_secs < rtc->range_min &&
43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
44 return;
45
46 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
47 }
48
rtc_subtract_offset(struct rtc_device * rtc,struct rtc_time * tm)49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
50 {
51 time64_t secs;
52
53 if (!rtc->offset_secs)
54 return;
55
56 secs = rtc_tm_to_time64(tm);
57
58 /*
59 * If the setting time values are in the valid range of RTC hardware
60 * device, then no need to subtract the offset when setting time to RTC
61 * device. Otherwise we need to subtract the offset to make the time
62 * values are valid for RTC hardware device.
63 */
64 if (secs >= rtc->range_min && secs <= rtc->range_max)
65 return;
66
67 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
68 }
69
rtc_valid_range(struct rtc_device * rtc,struct rtc_time * tm)70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
71 {
72 if (rtc->range_min != rtc->range_max) {
73 time64_t time = rtc_tm_to_time64(tm);
74 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
75 rtc->range_min;
76 time64_t range_max = rtc->set_start_time ?
77 (rtc->start_secs + rtc->range_max - rtc->range_min) :
78 rtc->range_max;
79
80 if (time < range_min || time > range_max)
81 return -ERANGE;
82 }
83
84 return 0;
85 }
86
__rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
88 {
89 int err;
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (!rtc->ops->read_time)
93 err = -EINVAL;
94 else {
95 memset(tm, 0, sizeof(struct rtc_time));
96 err = rtc->ops->read_time(rtc->dev.parent, tm);
97 if (err < 0) {
98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
99 err);
100 return err;
101 }
102
103 rtc_add_offset(rtc, tm);
104
105 err = rtc_valid_tm(tm);
106 if (err < 0)
107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
108 }
109 return err;
110 }
111
rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
113 {
114 int err;
115
116 err = mutex_lock_interruptible(&rtc->ops_lock);
117 if (err)
118 return err;
119
120 err = __rtc_read_time(rtc, tm);
121 mutex_unlock(&rtc->ops_lock);
122
123 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
124 return err;
125 }
126 EXPORT_SYMBOL_GPL(rtc_read_time);
127
rtc_set_time(struct rtc_device * rtc,struct rtc_time * tm)128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
129 {
130 int err, uie;
131
132 err = rtc_valid_tm(tm);
133 if (err != 0)
134 return err;
135
136 err = rtc_valid_range(rtc, tm);
137 if (err)
138 return err;
139
140 rtc_subtract_offset(rtc, tm);
141
142 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
143 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
144 #else
145 uie = rtc->uie_rtctimer.enabled;
146 #endif
147 if (uie) {
148 err = rtc_update_irq_enable(rtc, 0);
149 if (err)
150 return err;
151 }
152
153 err = mutex_lock_interruptible(&rtc->ops_lock);
154 if (err)
155 return err;
156
157 if (!rtc->ops)
158 err = -ENODEV;
159 else if (rtc->ops->set_time)
160 err = rtc->ops->set_time(rtc->dev.parent, tm);
161 else if (rtc->ops->set_mmss64) {
162 time64_t secs64 = rtc_tm_to_time64(tm);
163
164 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
165 } else if (rtc->ops->set_mmss) {
166 time64_t secs64 = rtc_tm_to_time64(tm);
167 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
168 } else
169 err = -EINVAL;
170
171 pm_stay_awake(rtc->dev.parent);
172 mutex_unlock(&rtc->ops_lock);
173 /* A timer might have just expired */
174 schedule_work(&rtc->irqwork);
175
176 if (uie) {
177 err = rtc_update_irq_enable(rtc, 1);
178 if (err)
179 return err;
180 }
181
182 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
183 return err;
184 }
185 EXPORT_SYMBOL_GPL(rtc_set_time);
186
rtc_read_alarm_internal(struct rtc_device * rtc,struct rtc_wkalrm * alarm)187 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
188 {
189 int err;
190
191 err = mutex_lock_interruptible(&rtc->ops_lock);
192 if (err)
193 return err;
194
195 if (rtc->ops == NULL)
196 err = -ENODEV;
197 else if (!rtc->ops->read_alarm)
198 err = -EINVAL;
199 else {
200 alarm->enabled = 0;
201 alarm->pending = 0;
202 alarm->time.tm_sec = -1;
203 alarm->time.tm_min = -1;
204 alarm->time.tm_hour = -1;
205 alarm->time.tm_mday = -1;
206 alarm->time.tm_mon = -1;
207 alarm->time.tm_year = -1;
208 alarm->time.tm_wday = -1;
209 alarm->time.tm_yday = -1;
210 alarm->time.tm_isdst = -1;
211 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
212 }
213
214 mutex_unlock(&rtc->ops_lock);
215
216 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
217 return err;
218 }
219
__rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)220 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
221 {
222 int err;
223 struct rtc_time before, now;
224 int first_time = 1;
225 time64_t t_now, t_alm;
226 enum { none, day, month, year } missing = none;
227 unsigned days;
228
229 /* The lower level RTC driver may return -1 in some fields,
230 * creating invalid alarm->time values, for reasons like:
231 *
232 * - The hardware may not be capable of filling them in;
233 * many alarms match only on time-of-day fields, not
234 * day/month/year calendar data.
235 *
236 * - Some hardware uses illegal values as "wildcard" match
237 * values, which non-Linux firmware (like a BIOS) may try
238 * to set up as e.g. "alarm 15 minutes after each hour".
239 * Linux uses only oneshot alarms.
240 *
241 * When we see that here, we deal with it by using values from
242 * a current RTC timestamp for any missing (-1) values. The
243 * RTC driver prevents "periodic alarm" modes.
244 *
245 * But this can be racey, because some fields of the RTC timestamp
246 * may have wrapped in the interval since we read the RTC alarm,
247 * which would lead to us inserting inconsistent values in place
248 * of the -1 fields.
249 *
250 * Reading the alarm and timestamp in the reverse sequence
251 * would have the same race condition, and not solve the issue.
252 *
253 * So, we must first read the RTC timestamp,
254 * then read the RTC alarm value,
255 * and then read a second RTC timestamp.
256 *
257 * If any fields of the second timestamp have changed
258 * when compared with the first timestamp, then we know
259 * our timestamp may be inconsistent with that used by
260 * the low-level rtc_read_alarm_internal() function.
261 *
262 * So, when the two timestamps disagree, we just loop and do
263 * the process again to get a fully consistent set of values.
264 *
265 * This could all instead be done in the lower level driver,
266 * but since more than one lower level RTC implementation needs it,
267 * then it's probably best best to do it here instead of there..
268 */
269
270 /* Get the "before" timestamp */
271 err = rtc_read_time(rtc, &before);
272 if (err < 0)
273 return err;
274 do {
275 if (!first_time)
276 memcpy(&before, &now, sizeof(struct rtc_time));
277 first_time = 0;
278
279 /* get the RTC alarm values, which may be incomplete */
280 err = rtc_read_alarm_internal(rtc, alarm);
281 if (err)
282 return err;
283
284 /* full-function RTCs won't have such missing fields */
285 if (rtc_valid_tm(&alarm->time) == 0) {
286 rtc_add_offset(rtc, &alarm->time);
287 return 0;
288 }
289
290 /* get the "after" timestamp, to detect wrapped fields */
291 err = rtc_read_time(rtc, &now);
292 if (err < 0)
293 return err;
294
295 /* note that tm_sec is a "don't care" value here: */
296 } while ( before.tm_min != now.tm_min
297 || before.tm_hour != now.tm_hour
298 || before.tm_mon != now.tm_mon
299 || before.tm_year != now.tm_year);
300
301 /* Fill in the missing alarm fields using the timestamp; we
302 * know there's at least one since alarm->time is invalid.
303 */
304 if (alarm->time.tm_sec == -1)
305 alarm->time.tm_sec = now.tm_sec;
306 if (alarm->time.tm_min == -1)
307 alarm->time.tm_min = now.tm_min;
308 if (alarm->time.tm_hour == -1)
309 alarm->time.tm_hour = now.tm_hour;
310
311 /* For simplicity, only support date rollover for now */
312 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
313 alarm->time.tm_mday = now.tm_mday;
314 missing = day;
315 }
316 if ((unsigned)alarm->time.tm_mon >= 12) {
317 alarm->time.tm_mon = now.tm_mon;
318 if (missing == none)
319 missing = month;
320 }
321 if (alarm->time.tm_year == -1) {
322 alarm->time.tm_year = now.tm_year;
323 if (missing == none)
324 missing = year;
325 }
326
327 /* Can't proceed if alarm is still invalid after replacing
328 * missing fields.
329 */
330 err = rtc_valid_tm(&alarm->time);
331 if (err)
332 goto done;
333
334 /* with luck, no rollover is needed */
335 t_now = rtc_tm_to_time64(&now);
336 t_alm = rtc_tm_to_time64(&alarm->time);
337 if (t_now < t_alm)
338 goto done;
339
340 switch (missing) {
341
342 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
343 * that will trigger at 5am will do so at 5am Tuesday, which
344 * could also be in the next month or year. This is a common
345 * case, especially for PCs.
346 */
347 case day:
348 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
349 t_alm += 24 * 60 * 60;
350 rtc_time64_to_tm(t_alm, &alarm->time);
351 break;
352
353 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
354 * be next month. An alarm matching on the 30th, 29th, or 28th
355 * may end up in the month after that! Many newer PCs support
356 * this type of alarm.
357 */
358 case month:
359 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
360 do {
361 if (alarm->time.tm_mon < 11)
362 alarm->time.tm_mon++;
363 else {
364 alarm->time.tm_mon = 0;
365 alarm->time.tm_year++;
366 }
367 days = rtc_month_days(alarm->time.tm_mon,
368 alarm->time.tm_year);
369 } while (days < alarm->time.tm_mday);
370 break;
371
372 /* Year rollover ... easy except for leap years! */
373 case year:
374 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
375 do {
376 alarm->time.tm_year++;
377 } while (!is_leap_year(alarm->time.tm_year + 1900)
378 && rtc_valid_tm(&alarm->time) != 0);
379 break;
380
381 default:
382 dev_warn(&rtc->dev, "alarm rollover not handled\n");
383 }
384
385 err = rtc_valid_tm(&alarm->time);
386
387 done:
388 if (err) {
389 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
390 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
391 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
392 alarm->time.tm_sec);
393 }
394
395 return err;
396 }
397
rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)398 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
399 {
400 int err;
401
402 err = mutex_lock_interruptible(&rtc->ops_lock);
403 if (err)
404 return err;
405 if (rtc->ops == NULL)
406 err = -ENODEV;
407 else if (!rtc->ops->read_alarm)
408 err = -EINVAL;
409 else {
410 memset(alarm, 0, sizeof(struct rtc_wkalrm));
411 alarm->enabled = rtc->aie_timer.enabled;
412 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
413 }
414 mutex_unlock(&rtc->ops_lock);
415
416 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
417 return err;
418 }
419 EXPORT_SYMBOL_GPL(rtc_read_alarm);
420
__rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)421 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
422 {
423 struct rtc_time tm;
424 time64_t now, scheduled;
425 int err;
426
427 err = rtc_valid_tm(&alarm->time);
428 if (err)
429 return err;
430
431 scheduled = rtc_tm_to_time64(&alarm->time);
432
433 /* Make sure we're not setting alarms in the past */
434 err = __rtc_read_time(rtc, &tm);
435 if (err)
436 return err;
437 now = rtc_tm_to_time64(&tm);
438 if (scheduled <= now)
439 return -ETIME;
440 /*
441 * XXX - We just checked to make sure the alarm time is not
442 * in the past, but there is still a race window where if
443 * the is alarm set for the next second and the second ticks
444 * over right here, before we set the alarm.
445 */
446
447 rtc_subtract_offset(rtc, &alarm->time);
448
449 if (!rtc->ops)
450 err = -ENODEV;
451 else if (!rtc->ops->set_alarm)
452 err = -EINVAL;
453 else
454 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
455
456 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
457 return err;
458 }
459
rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)460 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
461 {
462 int err;
463
464 if (!rtc->ops)
465 return -ENODEV;
466 else if (!rtc->ops->set_alarm)
467 return -EINVAL;
468
469 err = rtc_valid_tm(&alarm->time);
470 if (err != 0)
471 return err;
472
473 err = rtc_valid_range(rtc, &alarm->time);
474 if (err)
475 return err;
476
477 err = mutex_lock_interruptible(&rtc->ops_lock);
478 if (err)
479 return err;
480 if (rtc->aie_timer.enabled)
481 rtc_timer_remove(rtc, &rtc->aie_timer);
482
483 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
484 rtc->aie_timer.period = 0;
485 if (alarm->enabled)
486 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
487
488 mutex_unlock(&rtc->ops_lock);
489
490 return err;
491 }
492 EXPORT_SYMBOL_GPL(rtc_set_alarm);
493
494 /* Called once per device from rtc_device_register */
rtc_initialize_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)495 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
496 {
497 int err;
498 struct rtc_time now;
499
500 err = rtc_valid_tm(&alarm->time);
501 if (err != 0)
502 return err;
503
504 err = rtc_read_time(rtc, &now);
505 if (err)
506 return err;
507
508 err = mutex_lock_interruptible(&rtc->ops_lock);
509 if (err)
510 return err;
511
512 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
513 rtc->aie_timer.period = 0;
514
515 /* Alarm has to be enabled & in the future for us to enqueue it */
516 if (alarm->enabled && (rtc_tm_to_ktime(now) <
517 rtc->aie_timer.node.expires)) {
518
519 rtc->aie_timer.enabled = 1;
520 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
521 trace_rtc_timer_enqueue(&rtc->aie_timer);
522 }
523 mutex_unlock(&rtc->ops_lock);
524 return err;
525 }
526 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
527
rtc_alarm_irq_enable(struct rtc_device * rtc,unsigned int enabled)528 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
529 {
530 int err = mutex_lock_interruptible(&rtc->ops_lock);
531 if (err)
532 return err;
533
534 if (rtc->aie_timer.enabled != enabled) {
535 if (enabled)
536 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 else
538 rtc_timer_remove(rtc, &rtc->aie_timer);
539 }
540
541 if (err)
542 /* nothing */;
543 else if (!rtc->ops)
544 err = -ENODEV;
545 else if (!rtc->ops->alarm_irq_enable)
546 err = -EINVAL;
547 else
548 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
549
550 mutex_unlock(&rtc->ops_lock);
551
552 trace_rtc_alarm_irq_enable(enabled, err);
553 return err;
554 }
555 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
556
rtc_update_irq_enable(struct rtc_device * rtc,unsigned int enabled)557 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
558 {
559 int err = mutex_lock_interruptible(&rtc->ops_lock);
560 if (err)
561 return err;
562
563 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
564 if (enabled == 0 && rtc->uie_irq_active) {
565 mutex_unlock(&rtc->ops_lock);
566 return rtc_dev_update_irq_enable_emul(rtc, 0);
567 }
568 #endif
569 /* make sure we're changing state */
570 if (rtc->uie_rtctimer.enabled == enabled)
571 goto out;
572
573 if (rtc->uie_unsupported) {
574 err = -EINVAL;
575 goto out;
576 }
577
578 if (enabled) {
579 struct rtc_time tm;
580 ktime_t now, onesec;
581
582 __rtc_read_time(rtc, &tm);
583 onesec = ktime_set(1, 0);
584 now = rtc_tm_to_ktime(tm);
585 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
586 rtc->uie_rtctimer.period = ktime_set(1, 0);
587 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
588 } else
589 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
590
591 out:
592 mutex_unlock(&rtc->ops_lock);
593 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
594 /*
595 * Enable emulation if the driver did not provide
596 * the update_irq_enable function pointer or if returned
597 * -EINVAL to signal that it has been configured without
598 * interrupts or that are not available at the moment.
599 */
600 if (err == -EINVAL)
601 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
602 #endif
603 return err;
604
605 }
606 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
607
608
609 /**
610 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
611 * @rtc: pointer to the rtc device
612 *
613 * This function is called when an AIE, UIE or PIE mode interrupt
614 * has occurred (or been emulated).
615 *
616 * Triggers the registered irq_task function callback.
617 */
rtc_handle_legacy_irq(struct rtc_device * rtc,int num,int mode)618 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
619 {
620 unsigned long flags;
621
622 /* mark one irq of the appropriate mode */
623 spin_lock_irqsave(&rtc->irq_lock, flags);
624 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
625 spin_unlock_irqrestore(&rtc->irq_lock, flags);
626
627 wake_up_interruptible(&rtc->irq_queue);
628 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
629 }
630
631
632 /**
633 * rtc_aie_update_irq - AIE mode rtctimer hook
634 * @private: pointer to the rtc_device
635 *
636 * This functions is called when the aie_timer expires.
637 */
rtc_aie_update_irq(void * private)638 void rtc_aie_update_irq(void *private)
639 {
640 struct rtc_device *rtc = (struct rtc_device *)private;
641 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
642 }
643
644
645 /**
646 * rtc_uie_update_irq - UIE mode rtctimer hook
647 * @private: pointer to the rtc_device
648 *
649 * This functions is called when the uie_timer expires.
650 */
rtc_uie_update_irq(void * private)651 void rtc_uie_update_irq(void *private)
652 {
653 struct rtc_device *rtc = (struct rtc_device *)private;
654 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
655 }
656
657
658 /**
659 * rtc_pie_update_irq - PIE mode hrtimer hook
660 * @timer: pointer to the pie mode hrtimer
661 *
662 * This function is used to emulate PIE mode interrupts
663 * using an hrtimer. This function is called when the periodic
664 * hrtimer expires.
665 */
rtc_pie_update_irq(struct hrtimer * timer)666 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
667 {
668 struct rtc_device *rtc;
669 ktime_t period;
670 int count;
671 rtc = container_of(timer, struct rtc_device, pie_timer);
672
673 period = NSEC_PER_SEC / rtc->irq_freq;
674 count = hrtimer_forward_now(timer, period);
675
676 rtc_handle_legacy_irq(rtc, count, RTC_PF);
677
678 return HRTIMER_RESTART;
679 }
680
681 /**
682 * rtc_update_irq - Triggered when a RTC interrupt occurs.
683 * @rtc: the rtc device
684 * @num: how many irqs are being reported (usually one)
685 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
686 * Context: any
687 */
rtc_update_irq(struct rtc_device * rtc,unsigned long num,unsigned long events)688 void rtc_update_irq(struct rtc_device *rtc,
689 unsigned long num, unsigned long events)
690 {
691 if (IS_ERR_OR_NULL(rtc))
692 return;
693
694 pm_stay_awake(rtc->dev.parent);
695 schedule_work(&rtc->irqwork);
696 }
697 EXPORT_SYMBOL_GPL(rtc_update_irq);
698
__rtc_match(struct device * dev,const void * data)699 static int __rtc_match(struct device *dev, const void *data)
700 {
701 const char *name = data;
702
703 if (strcmp(dev_name(dev), name) == 0)
704 return 1;
705 return 0;
706 }
707
rtc_class_open(const char * name)708 struct rtc_device *rtc_class_open(const char *name)
709 {
710 struct device *dev;
711 struct rtc_device *rtc = NULL;
712
713 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
714 if (dev)
715 rtc = to_rtc_device(dev);
716
717 if (rtc) {
718 if (!try_module_get(rtc->owner)) {
719 put_device(dev);
720 rtc = NULL;
721 }
722 }
723
724 return rtc;
725 }
726 EXPORT_SYMBOL_GPL(rtc_class_open);
727
rtc_class_close(struct rtc_device * rtc)728 void rtc_class_close(struct rtc_device *rtc)
729 {
730 module_put(rtc->owner);
731 put_device(&rtc->dev);
732 }
733 EXPORT_SYMBOL_GPL(rtc_class_close);
734
rtc_update_hrtimer(struct rtc_device * rtc,int enabled)735 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
736 {
737 /*
738 * We always cancel the timer here first, because otherwise
739 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
740 * when we manage to start the timer before the callback
741 * returns HRTIMER_RESTART.
742 *
743 * We cannot use hrtimer_cancel() here as a running callback
744 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
745 * would spin forever.
746 */
747 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
748 return -1;
749
750 if (enabled) {
751 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
752
753 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
754 }
755 return 0;
756 }
757
758 /**
759 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
760 * @rtc: the rtc device
761 * @task: currently registered with rtc_irq_register()
762 * @enabled: true to enable periodic IRQs
763 * Context: any
764 *
765 * Note that rtc_irq_set_freq() should previously have been used to
766 * specify the desired frequency of periodic IRQ.
767 */
rtc_irq_set_state(struct rtc_device * rtc,int enabled)768 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
769 {
770 int err = 0;
771
772 while (rtc_update_hrtimer(rtc, enabled) < 0)
773 cpu_relax();
774
775 rtc->pie_enabled = enabled;
776
777 trace_rtc_irq_set_state(enabled, err);
778 return err;
779 }
780
781 /**
782 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
783 * @rtc: the rtc device
784 * @task: currently registered with rtc_irq_register()
785 * @freq: positive frequency
786 * Context: any
787 *
788 * Note that rtc_irq_set_state() is used to enable or disable the
789 * periodic IRQs.
790 */
rtc_irq_set_freq(struct rtc_device * rtc,int freq)791 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
792 {
793 int err = 0;
794
795 if (freq <= 0 || freq > RTC_MAX_FREQ)
796 return -EINVAL;
797
798 rtc->irq_freq = freq;
799 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
800 cpu_relax();
801
802 trace_rtc_irq_set_freq(freq, err);
803 return err;
804 }
805
806 /**
807 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
808 * @rtc rtc device
809 * @timer timer being added.
810 *
811 * Enqueues a timer onto the rtc devices timerqueue and sets
812 * the next alarm event appropriately.
813 *
814 * Sets the enabled bit on the added timer.
815 *
816 * Must hold ops_lock for proper serialization of timerqueue
817 */
rtc_timer_enqueue(struct rtc_device * rtc,struct rtc_timer * timer)818 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
819 {
820 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
821 struct rtc_time tm;
822 ktime_t now;
823
824 timer->enabled = 1;
825 __rtc_read_time(rtc, &tm);
826 now = rtc_tm_to_ktime(tm);
827
828 /* Skip over expired timers */
829 while (next) {
830 if (next->expires >= now)
831 break;
832 next = timerqueue_iterate_next(next);
833 }
834
835 timerqueue_add(&rtc->timerqueue, &timer->node);
836 trace_rtc_timer_enqueue(timer);
837 if (!next || ktime_before(timer->node.expires, next->expires)) {
838 struct rtc_wkalrm alarm;
839 int err;
840 alarm.time = rtc_ktime_to_tm(timer->node.expires);
841 alarm.enabled = 1;
842 err = __rtc_set_alarm(rtc, &alarm);
843 if (err == -ETIME) {
844 pm_stay_awake(rtc->dev.parent);
845 schedule_work(&rtc->irqwork);
846 } else if (err) {
847 timerqueue_del(&rtc->timerqueue, &timer->node);
848 trace_rtc_timer_dequeue(timer);
849 timer->enabled = 0;
850 return err;
851 }
852 }
853 return 0;
854 }
855
rtc_alarm_disable(struct rtc_device * rtc)856 static void rtc_alarm_disable(struct rtc_device *rtc)
857 {
858 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
859 return;
860
861 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
862 trace_rtc_alarm_irq_enable(0, 0);
863 }
864
865 /**
866 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
867 * @rtc rtc device
868 * @timer timer being removed.
869 *
870 * Removes a timer onto the rtc devices timerqueue and sets
871 * the next alarm event appropriately.
872 *
873 * Clears the enabled bit on the removed timer.
874 *
875 * Must hold ops_lock for proper serialization of timerqueue
876 */
rtc_timer_remove(struct rtc_device * rtc,struct rtc_timer * timer)877 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
878 {
879 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
880 timerqueue_del(&rtc->timerqueue, &timer->node);
881 trace_rtc_timer_dequeue(timer);
882 timer->enabled = 0;
883 if (next == &timer->node) {
884 struct rtc_wkalrm alarm;
885 int err;
886 next = timerqueue_getnext(&rtc->timerqueue);
887 if (!next) {
888 rtc_alarm_disable(rtc);
889 return;
890 }
891 alarm.time = rtc_ktime_to_tm(next->expires);
892 alarm.enabled = 1;
893 err = __rtc_set_alarm(rtc, &alarm);
894 if (err == -ETIME) {
895 pm_stay_awake(rtc->dev.parent);
896 schedule_work(&rtc->irqwork);
897 }
898 }
899 }
900
901 /**
902 * rtc_timer_do_work - Expires rtc timers
903 * @rtc rtc device
904 * @timer timer being removed.
905 *
906 * Expires rtc timers. Reprograms next alarm event if needed.
907 * Called via worktask.
908 *
909 * Serializes access to timerqueue via ops_lock mutex
910 */
rtc_timer_do_work(struct work_struct * work)911 void rtc_timer_do_work(struct work_struct *work)
912 {
913 struct rtc_timer *timer;
914 struct timerqueue_node *next;
915 ktime_t now;
916 struct rtc_time tm;
917
918 struct rtc_device *rtc =
919 container_of(work, struct rtc_device, irqwork);
920
921 mutex_lock(&rtc->ops_lock);
922 again:
923 __rtc_read_time(rtc, &tm);
924 now = rtc_tm_to_ktime(tm);
925 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
926 if (next->expires > now)
927 break;
928
929 /* expire timer */
930 timer = container_of(next, struct rtc_timer, node);
931 timerqueue_del(&rtc->timerqueue, &timer->node);
932 trace_rtc_timer_dequeue(timer);
933 timer->enabled = 0;
934 if (timer->func)
935 timer->func(timer->private_data);
936
937 trace_rtc_timer_fired(timer);
938 /* Re-add/fwd periodic timers */
939 if (ktime_to_ns(timer->period)) {
940 timer->node.expires = ktime_add(timer->node.expires,
941 timer->period);
942 timer->enabled = 1;
943 timerqueue_add(&rtc->timerqueue, &timer->node);
944 trace_rtc_timer_enqueue(timer);
945 }
946 }
947
948 /* Set next alarm */
949 if (next) {
950 struct rtc_wkalrm alarm;
951 int err;
952 int retry = 3;
953
954 alarm.time = rtc_ktime_to_tm(next->expires);
955 alarm.enabled = 1;
956 reprogram:
957 err = __rtc_set_alarm(rtc, &alarm);
958 if (err == -ETIME)
959 goto again;
960 else if (err) {
961 if (retry-- > 0)
962 goto reprogram;
963
964 timer = container_of(next, struct rtc_timer, node);
965 timerqueue_del(&rtc->timerqueue, &timer->node);
966 trace_rtc_timer_dequeue(timer);
967 timer->enabled = 0;
968 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
969 goto again;
970 }
971 } else
972 rtc_alarm_disable(rtc);
973
974 pm_relax(rtc->dev.parent);
975 mutex_unlock(&rtc->ops_lock);
976 }
977
978
979 /* rtc_timer_init - Initializes an rtc_timer
980 * @timer: timer to be intiialized
981 * @f: function pointer to be called when timer fires
982 * @data: private data passed to function pointer
983 *
984 * Kernel interface to initializing an rtc_timer.
985 */
rtc_timer_init(struct rtc_timer * timer,void (* f)(void * p),void * data)986 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
987 {
988 timerqueue_init(&timer->node);
989 timer->enabled = 0;
990 timer->func = f;
991 timer->private_data = data;
992 }
993
994 /* rtc_timer_start - Sets an rtc_timer to fire in the future
995 * @ rtc: rtc device to be used
996 * @ timer: timer being set
997 * @ expires: time at which to expire the timer
998 * @ period: period that the timer will recur
999 *
1000 * Kernel interface to set an rtc_timer
1001 */
rtc_timer_start(struct rtc_device * rtc,struct rtc_timer * timer,ktime_t expires,ktime_t period)1002 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1003 ktime_t expires, ktime_t period)
1004 {
1005 int ret = 0;
1006 mutex_lock(&rtc->ops_lock);
1007 if (timer->enabled)
1008 rtc_timer_remove(rtc, timer);
1009
1010 timer->node.expires = expires;
1011 timer->period = period;
1012
1013 ret = rtc_timer_enqueue(rtc, timer);
1014
1015 mutex_unlock(&rtc->ops_lock);
1016 return ret;
1017 }
1018
1019 /* rtc_timer_cancel - Stops an rtc_timer
1020 * @ rtc: rtc device to be used
1021 * @ timer: timer being set
1022 *
1023 * Kernel interface to cancel an rtc_timer
1024 */
rtc_timer_cancel(struct rtc_device * rtc,struct rtc_timer * timer)1025 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1026 {
1027 mutex_lock(&rtc->ops_lock);
1028 if (timer->enabled)
1029 rtc_timer_remove(rtc, timer);
1030 mutex_unlock(&rtc->ops_lock);
1031 }
1032
1033 /**
1034 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1035 * @ rtc: rtc device to be used
1036 * @ offset: the offset in parts per billion
1037 *
1038 * see below for details.
1039 *
1040 * Kernel interface to read rtc clock offset
1041 * Returns 0 on success, or a negative number on error.
1042 * If read_offset() is not implemented for the rtc, return -EINVAL
1043 */
rtc_read_offset(struct rtc_device * rtc,long * offset)1044 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1045 {
1046 int ret;
1047
1048 if (!rtc->ops)
1049 return -ENODEV;
1050
1051 if (!rtc->ops->read_offset)
1052 return -EINVAL;
1053
1054 mutex_lock(&rtc->ops_lock);
1055 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1056 mutex_unlock(&rtc->ops_lock);
1057
1058 trace_rtc_read_offset(*offset, ret);
1059 return ret;
1060 }
1061
1062 /**
1063 * rtc_set_offset - Adjusts the duration of the average second
1064 * @ rtc: rtc device to be used
1065 * @ offset: the offset in parts per billion
1066 *
1067 * Some rtc's allow an adjustment to the average duration of a second
1068 * to compensate for differences in the actual clock rate due to temperature,
1069 * the crystal, capacitor, etc.
1070 *
1071 * The adjustment applied is as follows:
1072 * t = t0 * (1 + offset * 1e-9)
1073 * where t0 is the measured length of 1 RTC second with offset = 0
1074 *
1075 * Kernel interface to adjust an rtc clock offset.
1076 * Return 0 on success, or a negative number on error.
1077 * If the rtc offset is not setable (or not implemented), return -EINVAL
1078 */
rtc_set_offset(struct rtc_device * rtc,long offset)1079 int rtc_set_offset(struct rtc_device *rtc, long offset)
1080 {
1081 int ret;
1082
1083 if (!rtc->ops)
1084 return -ENODEV;
1085
1086 if (!rtc->ops->set_offset)
1087 return -EINVAL;
1088
1089 mutex_lock(&rtc->ops_lock);
1090 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1091 mutex_unlock(&rtc->ops_lock);
1092
1093 trace_rtc_set_offset(offset, ret);
1094 return ret;
1095 }
1096