1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49 
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52 
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61 
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64 
cmos_use_acpi_alarm(void)65 static inline int cmos_use_acpi_alarm(void)
66 {
67 	return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70 
cmos_use_acpi_alarm(void)71 static inline int cmos_use_acpi_alarm(void)
72 {
73 	return 0;
74 }
75 #endif
76 
77 struct cmos_rtc {
78 	struct rtc_device	*rtc;
79 	struct device		*dev;
80 	int			irq;
81 	struct resource		*iomem;
82 	time64_t		alarm_expires;
83 
84 	void			(*wake_on)(struct device *);
85 	void			(*wake_off)(struct device *);
86 
87 	u8			enabled_wake;
88 	u8			suspend_ctrl;
89 
90 	/* newer hardware extends the original register set */
91 	u8			day_alrm;
92 	u8			mon_alrm;
93 	u8			century;
94 
95 	struct rtc_wkalrm	saved_wkalrm;
96 };
97 
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)		((n) > 0)
100 
101 static const char driver_name[] = "rtc_cmos";
102 
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
108 
is_intr(u8 rtc_intr)109 static inline int is_intr(u8 rtc_intr)
110 {
111 	if (!(rtc_intr & RTC_IRQF))
112 		return 0;
113 	return rtc_intr & RTC_IRQMASK;
114 }
115 
116 /*----------------------------------------------------------------*/
117 
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131 
is_hpet_enabled(void)132 static inline int is_hpet_enabled(void)
133 {
134 	return 0;
135 }
136 
hpet_mask_rtc_irq_bit(unsigned long mask)137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139 	return 0;
140 }
141 
hpet_set_rtc_irq_bit(unsigned long mask)142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144 	return 0;
145 }
146 
147 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150 	return 0;
151 }
152 
hpet_set_periodic_freq(unsigned long freq)153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155 	return 0;
156 }
157 
hpet_rtc_dropped_irq(void)158 static inline int hpet_rtc_dropped_irq(void)
159 {
160 	return 0;
161 }
162 
hpet_rtc_timer_init(void)163 static inline int hpet_rtc_timer_init(void)
164 {
165 	return 0;
166 }
167 
168 extern irq_handler_t hpet_rtc_interrupt;
169 
hpet_register_irq_handler(irq_handler_t handler)170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172 	return 0;
173 }
174 
hpet_unregister_irq_handler(irq_handler_t handler)175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177 	return 0;
178 }
179 
180 #endif
181 
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)183 static inline int use_hpet_alarm(void)
184 {
185 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 #ifdef RTC_PORT
191 
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2	true
197 
cmos_read_bank2(unsigned char addr)198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200 	outb(addr, RTC_PORT(2));
201 	return inb(RTC_PORT(3));
202 }
203 
cmos_write_bank2(unsigned char val,unsigned char addr)204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206 	outb(addr, RTC_PORT(2));
207 	outb(val, RTC_PORT(3));
208 }
209 
210 #else
211 
212 #define can_bank2	false
213 
cmos_read_bank2(unsigned char addr)214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216 	return 0;
217 }
218 
cmos_write_bank2(unsigned char val,unsigned char addr)219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222 
223 #endif
224 
225 /*----------------------------------------------------------------*/
226 
cmos_read_time(struct device * dev,struct rtc_time * t)227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229 	/*
230 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
231 	 * which tells the caller that this RTC value is unusable.
232 	 */
233 	if (!pm_trace_rtc_valid())
234 		return -EIO;
235 
236 	/* REVISIT:  if the clock has a "century" register, use
237 	 * that instead of the heuristic in mc146818_get_time().
238 	 * That'll make Y3K compatility (year > 2070) easy!
239 	 */
240 	mc146818_get_time(t);
241 	return 0;
242 }
243 
cmos_set_time(struct device * dev,struct rtc_time * t)244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246 	/* REVISIT:  set the "century" register if available
247 	 *
248 	 * NOTE: this ignores the issue whereby updating the seconds
249 	 * takes effect exactly 500ms after we write the register.
250 	 * (Also queueing and other delays before we get this far.)
251 	 */
252 	return mc146818_set_time(t);
253 }
254 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
258 	unsigned char	rtc_control;
259 
260 	/* This not only a rtc_op, but also called directly */
261 	if (!is_valid_irq(cmos->irq))
262 		return -EIO;
263 
264 	/* Basic alarms only support hour, minute, and seconds fields.
265 	 * Some also support day and month, for alarms up to a year in
266 	 * the future.
267 	 */
268 
269 	spin_lock_irq(&rtc_lock);
270 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
271 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
272 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
273 
274 	if (cmos->day_alrm) {
275 		/* ignore upper bits on readback per ACPI spec */
276 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
277 		if (!t->time.tm_mday)
278 			t->time.tm_mday = -1;
279 
280 		if (cmos->mon_alrm) {
281 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
282 			if (!t->time.tm_mon)
283 				t->time.tm_mon = -1;
284 		}
285 	}
286 
287 	rtc_control = CMOS_READ(RTC_CONTROL);
288 	spin_unlock_irq(&rtc_lock);
289 
290 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
291 		if (((unsigned)t->time.tm_sec) < 0x60)
292 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
293 		else
294 			t->time.tm_sec = -1;
295 		if (((unsigned)t->time.tm_min) < 0x60)
296 			t->time.tm_min = bcd2bin(t->time.tm_min);
297 		else
298 			t->time.tm_min = -1;
299 		if (((unsigned)t->time.tm_hour) < 0x24)
300 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
301 		else
302 			t->time.tm_hour = -1;
303 
304 		if (cmos->day_alrm) {
305 			if (((unsigned)t->time.tm_mday) <= 0x31)
306 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
307 			else
308 				t->time.tm_mday = -1;
309 
310 			if (cmos->mon_alrm) {
311 				if (((unsigned)t->time.tm_mon) <= 0x12)
312 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
313 				else
314 					t->time.tm_mon = -1;
315 			}
316 		}
317 	}
318 
319 	t->enabled = !!(rtc_control & RTC_AIE);
320 	t->pending = 0;
321 
322 	return 0;
323 }
324 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)325 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
326 {
327 	unsigned char	rtc_intr;
328 
329 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330 	 * allegedly some older rtcs need that to handle irqs properly
331 	 */
332 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
333 
334 	if (use_hpet_alarm())
335 		return;
336 
337 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338 	if (is_intr(rtc_intr))
339 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
340 }
341 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)342 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
343 {
344 	unsigned char	rtc_control;
345 
346 	/* flush any pending IRQ status, notably for update irqs,
347 	 * before we enable new IRQs
348 	 */
349 	rtc_control = CMOS_READ(RTC_CONTROL);
350 	cmos_checkintr(cmos, rtc_control);
351 
352 	rtc_control |= mask;
353 	CMOS_WRITE(rtc_control, RTC_CONTROL);
354 	if (use_hpet_alarm())
355 		hpet_set_rtc_irq_bit(mask);
356 
357 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
358 		if (cmos->wake_on)
359 			cmos->wake_on(cmos->dev);
360 	}
361 
362 	cmos_checkintr(cmos, rtc_control);
363 }
364 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)365 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 	unsigned char	rtc_control;
368 
369 	rtc_control = CMOS_READ(RTC_CONTROL);
370 	rtc_control &= ~mask;
371 	CMOS_WRITE(rtc_control, RTC_CONTROL);
372 	if (use_hpet_alarm())
373 		hpet_mask_rtc_irq_bit(mask);
374 
375 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 		if (cmos->wake_off)
377 			cmos->wake_off(cmos->dev);
378 	}
379 
380 	cmos_checkintr(cmos, rtc_control);
381 }
382 
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)383 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
384 {
385 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
386 	struct rtc_time now;
387 
388 	cmos_read_time(dev, &now);
389 
390 	if (!cmos->day_alrm) {
391 		time64_t t_max_date;
392 		time64_t t_alrm;
393 
394 		t_max_date = rtc_tm_to_time64(&now);
395 		t_max_date += 24 * 60 * 60 - 1;
396 		t_alrm = rtc_tm_to_time64(&t->time);
397 		if (t_alrm > t_max_date) {
398 			dev_err(dev,
399 				"Alarms can be up to one day in the future\n");
400 			return -EINVAL;
401 		}
402 	} else if (!cmos->mon_alrm) {
403 		struct rtc_time max_date = now;
404 		time64_t t_max_date;
405 		time64_t t_alrm;
406 		int max_mday;
407 
408 		if (max_date.tm_mon == 11) {
409 			max_date.tm_mon = 0;
410 			max_date.tm_year += 1;
411 		} else {
412 			max_date.tm_mon += 1;
413 		}
414 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
415 		if (max_date.tm_mday > max_mday)
416 			max_date.tm_mday = max_mday;
417 
418 		t_max_date = rtc_tm_to_time64(&max_date);
419 		t_max_date -= 1;
420 		t_alrm = rtc_tm_to_time64(&t->time);
421 		if (t_alrm > t_max_date) {
422 			dev_err(dev,
423 				"Alarms can be up to one month in the future\n");
424 			return -EINVAL;
425 		}
426 	} else {
427 		struct rtc_time max_date = now;
428 		time64_t t_max_date;
429 		time64_t t_alrm;
430 		int max_mday;
431 
432 		max_date.tm_year += 1;
433 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
434 		if (max_date.tm_mday > max_mday)
435 			max_date.tm_mday = max_mday;
436 
437 		t_max_date = rtc_tm_to_time64(&max_date);
438 		t_max_date -= 1;
439 		t_alrm = rtc_tm_to_time64(&t->time);
440 		if (t_alrm > t_max_date) {
441 			dev_err(dev,
442 				"Alarms can be up to one year in the future\n");
443 			return -EINVAL;
444 		}
445 	}
446 
447 	return 0;
448 }
449 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)450 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
451 {
452 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
453 	unsigned char mon, mday, hrs, min, sec, rtc_control;
454 	int ret;
455 
456 	/* This not only a rtc_op, but also called directly */
457 	if (!is_valid_irq(cmos->irq))
458 		return -EIO;
459 
460 	ret = cmos_validate_alarm(dev, t);
461 	if (ret < 0)
462 		return ret;
463 
464 	mon = t->time.tm_mon + 1;
465 	mday = t->time.tm_mday;
466 	hrs = t->time.tm_hour;
467 	min = t->time.tm_min;
468 	sec = t->time.tm_sec;
469 
470 	spin_lock_irq(&rtc_lock);
471 	rtc_control = CMOS_READ(RTC_CONTROL);
472 	spin_unlock_irq(&rtc_lock);
473 
474 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
475 		/* Writing 0xff means "don't care" or "match all".  */
476 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
477 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
478 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
479 		min = (min < 60) ? bin2bcd(min) : 0xff;
480 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
481 	}
482 
483 	spin_lock_irq(&rtc_lock);
484 
485 	/* next rtc irq must not be from previous alarm setting */
486 	cmos_irq_disable(cmos, RTC_AIE);
487 
488 	/* update alarm */
489 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
490 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
491 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
492 
493 	/* the system may support an "enhanced" alarm */
494 	if (cmos->day_alrm) {
495 		CMOS_WRITE(mday, cmos->day_alrm);
496 		if (cmos->mon_alrm)
497 			CMOS_WRITE(mon, cmos->mon_alrm);
498 	}
499 
500 	if (use_hpet_alarm()) {
501 		/*
502 		 * FIXME the HPET alarm glue currently ignores day_alrm
503 		 * and mon_alrm ...
504 		 */
505 		hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
506 				    t->time.tm_sec);
507 	}
508 
509 	if (t->enabled)
510 		cmos_irq_enable(cmos, RTC_AIE);
511 
512 	spin_unlock_irq(&rtc_lock);
513 
514 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
515 
516 	return 0;
517 }
518 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)519 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
520 {
521 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
522 	unsigned long	flags;
523 
524 	spin_lock_irqsave(&rtc_lock, flags);
525 
526 	if (enabled)
527 		cmos_irq_enable(cmos, RTC_AIE);
528 	else
529 		cmos_irq_disable(cmos, RTC_AIE);
530 
531 	spin_unlock_irqrestore(&rtc_lock, flags);
532 	return 0;
533 }
534 
535 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
536 
cmos_procfs(struct device * dev,struct seq_file * seq)537 static int cmos_procfs(struct device *dev, struct seq_file *seq)
538 {
539 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
540 	unsigned char	rtc_control, valid;
541 
542 	spin_lock_irq(&rtc_lock);
543 	rtc_control = CMOS_READ(RTC_CONTROL);
544 	valid = CMOS_READ(RTC_VALID);
545 	spin_unlock_irq(&rtc_lock);
546 
547 	/* NOTE:  at least ICH6 reports battery status using a different
548 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
549 	 */
550 	seq_printf(seq,
551 		   "periodic_IRQ\t: %s\n"
552 		   "update_IRQ\t: %s\n"
553 		   "HPET_emulated\t: %s\n"
554 		   // "square_wave\t: %s\n"
555 		   "BCD\t\t: %s\n"
556 		   "DST_enable\t: %s\n"
557 		   "periodic_freq\t: %d\n"
558 		   "batt_status\t: %s\n",
559 		   (rtc_control & RTC_PIE) ? "yes" : "no",
560 		   (rtc_control & RTC_UIE) ? "yes" : "no",
561 		   use_hpet_alarm() ? "yes" : "no",
562 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
563 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
564 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
565 		   cmos->rtc->irq_freq,
566 		   (valid & RTC_VRT) ? "okay" : "dead");
567 
568 	return 0;
569 }
570 
571 #else
572 #define	cmos_procfs	NULL
573 #endif
574 
575 static const struct rtc_class_ops cmos_rtc_ops = {
576 	.read_time		= cmos_read_time,
577 	.set_time		= cmos_set_time,
578 	.read_alarm		= cmos_read_alarm,
579 	.set_alarm		= cmos_set_alarm,
580 	.proc			= cmos_procfs,
581 	.alarm_irq_enable	= cmos_alarm_irq_enable,
582 };
583 
584 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
585 	.read_time		= cmos_read_time,
586 	.set_time		= cmos_set_time,
587 	.proc			= cmos_procfs,
588 };
589 
590 /*----------------------------------------------------------------*/
591 
592 /*
593  * All these chips have at least 64 bytes of address space, shared by
594  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
595  * by boot firmware.  Modern chips have 128 or 256 bytes.
596  */
597 
598 #define NVRAM_OFFSET	(RTC_REG_D + 1)
599 
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)600 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
601 			   size_t count)
602 {
603 	unsigned char *buf = val;
604 	int	retval;
605 
606 	off += NVRAM_OFFSET;
607 	spin_lock_irq(&rtc_lock);
608 	for (retval = 0; count; count--, off++, retval++) {
609 		if (off < 128)
610 			*buf++ = CMOS_READ(off);
611 		else if (can_bank2)
612 			*buf++ = cmos_read_bank2(off);
613 		else
614 			break;
615 	}
616 	spin_unlock_irq(&rtc_lock);
617 
618 	return retval;
619 }
620 
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)621 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
622 			    size_t count)
623 {
624 	struct cmos_rtc	*cmos = priv;
625 	unsigned char	*buf = val;
626 	int		retval;
627 
628 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
629 	 * checksum on part of the NVRAM data.  That's currently ignored
630 	 * here.  If userspace is smart enough to know what fields of
631 	 * NVRAM to update, updating checksums is also part of its job.
632 	 */
633 	off += NVRAM_OFFSET;
634 	spin_lock_irq(&rtc_lock);
635 	for (retval = 0; count; count--, off++, retval++) {
636 		/* don't trash RTC registers */
637 		if (off == cmos->day_alrm
638 				|| off == cmos->mon_alrm
639 				|| off == cmos->century)
640 			buf++;
641 		else if (off < 128)
642 			CMOS_WRITE(*buf++, off);
643 		else if (can_bank2)
644 			cmos_write_bank2(*buf++, off);
645 		else
646 			break;
647 	}
648 	spin_unlock_irq(&rtc_lock);
649 
650 	return retval;
651 }
652 
653 /*----------------------------------------------------------------*/
654 
655 static struct cmos_rtc	cmos_rtc;
656 
cmos_interrupt(int irq,void * p)657 static irqreturn_t cmos_interrupt(int irq, void *p)
658 {
659 	u8		irqstat;
660 	u8		rtc_control;
661 
662 	spin_lock(&rtc_lock);
663 
664 	/* When the HPET interrupt handler calls us, the interrupt
665 	 * status is passed as arg1 instead of the irq number.  But
666 	 * always clear irq status, even when HPET is in the way.
667 	 *
668 	 * Note that HPET and RTC are almost certainly out of phase,
669 	 * giving different IRQ status ...
670 	 */
671 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
672 	rtc_control = CMOS_READ(RTC_CONTROL);
673 	if (use_hpet_alarm())
674 		irqstat = (unsigned long)irq & 0xF0;
675 
676 	/* If we were suspended, RTC_CONTROL may not be accurate since the
677 	 * bios may have cleared it.
678 	 */
679 	if (!cmos_rtc.suspend_ctrl)
680 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
681 	else
682 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
683 
684 	/* All Linux RTC alarms should be treated as if they were oneshot.
685 	 * Similar code may be needed in system wakeup paths, in case the
686 	 * alarm woke the system.
687 	 */
688 	if (irqstat & RTC_AIE) {
689 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
690 		rtc_control &= ~RTC_AIE;
691 		CMOS_WRITE(rtc_control, RTC_CONTROL);
692 		if (use_hpet_alarm())
693 			hpet_mask_rtc_irq_bit(RTC_AIE);
694 		CMOS_READ(RTC_INTR_FLAGS);
695 	}
696 	spin_unlock(&rtc_lock);
697 
698 	if (is_intr(irqstat)) {
699 		rtc_update_irq(p, 1, irqstat);
700 		return IRQ_HANDLED;
701 	} else
702 		return IRQ_NONE;
703 }
704 
705 #ifdef	CONFIG_PNP
706 #define	INITSECTION
707 
708 #else
709 #define	INITSECTION	__init
710 #endif
711 
712 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)713 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
714 {
715 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
716 	int				retval = 0;
717 	unsigned char			rtc_control;
718 	unsigned			address_space;
719 	u32				flags = 0;
720 	struct nvmem_config nvmem_cfg = {
721 		.name = "cmos_nvram",
722 		.word_size = 1,
723 		.stride = 1,
724 		.reg_read = cmos_nvram_read,
725 		.reg_write = cmos_nvram_write,
726 		.priv = &cmos_rtc,
727 	};
728 
729 	/* there can be only one ... */
730 	if (cmos_rtc.dev)
731 		return -EBUSY;
732 
733 	if (!ports)
734 		return -ENODEV;
735 
736 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
737 	 *
738 	 * REVISIT non-x86 systems may instead use memory space resources
739 	 * (needing ioremap etc), not i/o space resources like this ...
740 	 */
741 	if (RTC_IOMAPPED)
742 		ports = request_region(ports->start, resource_size(ports),
743 				       driver_name);
744 	else
745 		ports = request_mem_region(ports->start, resource_size(ports),
746 					   driver_name);
747 	if (!ports) {
748 		dev_dbg(dev, "i/o registers already in use\n");
749 		return -EBUSY;
750 	}
751 
752 	cmos_rtc.irq = rtc_irq;
753 	cmos_rtc.iomem = ports;
754 
755 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
756 	 * driver did, but don't reject unknown configs.   Old hardware
757 	 * won't address 128 bytes.  Newer chips have multiple banks,
758 	 * though they may not be listed in one I/O resource.
759 	 */
760 #if	defined(CONFIG_ATARI)
761 	address_space = 64;
762 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
763 			|| defined(__sparc__) || defined(__mips__) \
764 			|| defined(__powerpc__)
765 	address_space = 128;
766 #else
767 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
768 	address_space = 128;
769 #endif
770 	if (can_bank2 && ports->end > (ports->start + 1))
771 		address_space = 256;
772 
773 	/* For ACPI systems extension info comes from the FADT.  On others,
774 	 * board specific setup provides it as appropriate.  Systems where
775 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
776 	 * some almost-clones) can provide hooks to make that behave.
777 	 *
778 	 * Note that ACPI doesn't preclude putting these registers into
779 	 * "extended" areas of the chip, including some that we won't yet
780 	 * expect CMOS_READ and friends to handle.
781 	 */
782 	if (info) {
783 		if (info->flags)
784 			flags = info->flags;
785 		if (info->address_space)
786 			address_space = info->address_space;
787 
788 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
789 			cmos_rtc.day_alrm = info->rtc_day_alarm;
790 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
791 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
792 		if (info->rtc_century && info->rtc_century < 128)
793 			cmos_rtc.century = info->rtc_century;
794 
795 		if (info->wake_on && info->wake_off) {
796 			cmos_rtc.wake_on = info->wake_on;
797 			cmos_rtc.wake_off = info->wake_off;
798 		}
799 	}
800 
801 	cmos_rtc.dev = dev;
802 	dev_set_drvdata(dev, &cmos_rtc);
803 
804 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
805 	if (IS_ERR(cmos_rtc.rtc)) {
806 		retval = PTR_ERR(cmos_rtc.rtc);
807 		goto cleanup0;
808 	}
809 
810 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
811 
812 	spin_lock_irq(&rtc_lock);
813 
814 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
815 		/* force periodic irq to CMOS reset default of 1024Hz;
816 		 *
817 		 * REVISIT it's been reported that at least one x86_64 ALI
818 		 * mobo doesn't use 32KHz here ... for portability we might
819 		 * need to do something about other clock frequencies.
820 		 */
821 		cmos_rtc.rtc->irq_freq = 1024;
822 		if (use_hpet_alarm())
823 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
824 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
825 	}
826 
827 	/* disable irqs */
828 	if (is_valid_irq(rtc_irq))
829 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
830 
831 	rtc_control = CMOS_READ(RTC_CONTROL);
832 
833 	spin_unlock_irq(&rtc_lock);
834 
835 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
836 		dev_warn(dev, "only 24-hr supported\n");
837 		retval = -ENXIO;
838 		goto cleanup1;
839 	}
840 
841 	if (use_hpet_alarm())
842 		hpet_rtc_timer_init();
843 
844 	if (is_valid_irq(rtc_irq)) {
845 		irq_handler_t rtc_cmos_int_handler;
846 
847 		if (use_hpet_alarm()) {
848 			rtc_cmos_int_handler = hpet_rtc_interrupt;
849 			retval = hpet_register_irq_handler(cmos_interrupt);
850 			if (retval) {
851 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
852 				dev_warn(dev, "hpet_register_irq_handler "
853 						" failed in rtc_init().");
854 				goto cleanup1;
855 			}
856 		} else
857 			rtc_cmos_int_handler = cmos_interrupt;
858 
859 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
860 				0, dev_name(&cmos_rtc.rtc->dev),
861 				cmos_rtc.rtc);
862 		if (retval < 0) {
863 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
864 			goto cleanup1;
865 		}
866 
867 		cmos_rtc.rtc->ops = &cmos_rtc_ops;
868 	} else {
869 		cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
870 	}
871 
872 	cmos_rtc.rtc->nvram_old_abi = true;
873 	retval = rtc_register_device(cmos_rtc.rtc);
874 	if (retval)
875 		goto cleanup2;
876 
877 	/* export at least the first block of NVRAM */
878 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
879 	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
880 		dev_err(dev, "nvmem registration failed\n");
881 
882 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
883 		 !is_valid_irq(rtc_irq) ? "no alarms" :
884 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
885 		 cmos_rtc.day_alrm ? "alarms up to one month" :
886 		 "alarms up to one day",
887 		 cmos_rtc.century ? ", y3k" : "",
888 		 nvmem_cfg.size,
889 		 use_hpet_alarm() ? ", hpet irqs" : "");
890 
891 	return 0;
892 
893 cleanup2:
894 	if (is_valid_irq(rtc_irq))
895 		free_irq(rtc_irq, cmos_rtc.rtc);
896 cleanup1:
897 	cmos_rtc.dev = NULL;
898 cleanup0:
899 	if (RTC_IOMAPPED)
900 		release_region(ports->start, resource_size(ports));
901 	else
902 		release_mem_region(ports->start, resource_size(ports));
903 	return retval;
904 }
905 
cmos_do_shutdown(int rtc_irq)906 static void cmos_do_shutdown(int rtc_irq)
907 {
908 	spin_lock_irq(&rtc_lock);
909 	if (is_valid_irq(rtc_irq))
910 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
911 	spin_unlock_irq(&rtc_lock);
912 }
913 
cmos_do_remove(struct device * dev)914 static void cmos_do_remove(struct device *dev)
915 {
916 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
917 	struct resource *ports;
918 
919 	cmos_do_shutdown(cmos->irq);
920 
921 	if (is_valid_irq(cmos->irq)) {
922 		free_irq(cmos->irq, cmos->rtc);
923 		if (use_hpet_alarm())
924 			hpet_unregister_irq_handler(cmos_interrupt);
925 	}
926 
927 	cmos->rtc = NULL;
928 
929 	ports = cmos->iomem;
930 	if (RTC_IOMAPPED)
931 		release_region(ports->start, resource_size(ports));
932 	else
933 		release_mem_region(ports->start, resource_size(ports));
934 	cmos->iomem = NULL;
935 
936 	cmos->dev = NULL;
937 }
938 
cmos_aie_poweroff(struct device * dev)939 static int cmos_aie_poweroff(struct device *dev)
940 {
941 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
942 	struct rtc_time now;
943 	time64_t t_now;
944 	int retval = 0;
945 	unsigned char rtc_control;
946 
947 	if (!cmos->alarm_expires)
948 		return -EINVAL;
949 
950 	spin_lock_irq(&rtc_lock);
951 	rtc_control = CMOS_READ(RTC_CONTROL);
952 	spin_unlock_irq(&rtc_lock);
953 
954 	/* We only care about the situation where AIE is disabled. */
955 	if (rtc_control & RTC_AIE)
956 		return -EBUSY;
957 
958 	cmos_read_time(dev, &now);
959 	t_now = rtc_tm_to_time64(&now);
960 
961 	/*
962 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
963 	 * automatically right after shutdown on some buggy boxes.
964 	 * This automatic rebooting issue won't happen when the alarm
965 	 * time is larger than now+1 seconds.
966 	 *
967 	 * If the alarm time is equal to now+1 seconds, the issue can be
968 	 * prevented by cancelling the alarm.
969 	 */
970 	if (cmos->alarm_expires == t_now + 1) {
971 		struct rtc_wkalrm alarm;
972 
973 		/* Cancel the AIE timer by configuring the past time. */
974 		rtc_time64_to_tm(t_now - 1, &alarm.time);
975 		alarm.enabled = 0;
976 		retval = cmos_set_alarm(dev, &alarm);
977 	} else if (cmos->alarm_expires > t_now + 1) {
978 		retval = -EBUSY;
979 	}
980 
981 	return retval;
982 }
983 
cmos_suspend(struct device * dev)984 static int cmos_suspend(struct device *dev)
985 {
986 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
987 	unsigned char	tmp;
988 
989 	/* only the alarm might be a wakeup event source */
990 	spin_lock_irq(&rtc_lock);
991 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
992 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
993 		unsigned char	mask;
994 
995 		if (device_may_wakeup(dev))
996 			mask = RTC_IRQMASK & ~RTC_AIE;
997 		else
998 			mask = RTC_IRQMASK;
999 		tmp &= ~mask;
1000 		CMOS_WRITE(tmp, RTC_CONTROL);
1001 		if (use_hpet_alarm())
1002 			hpet_mask_rtc_irq_bit(mask);
1003 		cmos_checkintr(cmos, tmp);
1004 	}
1005 	spin_unlock_irq(&rtc_lock);
1006 
1007 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1008 		cmos->enabled_wake = 1;
1009 		if (cmos->wake_on)
1010 			cmos->wake_on(dev);
1011 		else
1012 			enable_irq_wake(cmos->irq);
1013 	}
1014 
1015 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1016 
1017 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1018 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1019 			tmp);
1020 
1021 	return 0;
1022 }
1023 
1024 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1025  * after a detour through G3 "mechanical off", although the ACPI spec
1026  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1027  * distinctions between S4 and S5 are pointless.  So when the hardware
1028  * allows, don't draw that distinction.
1029  */
cmos_poweroff(struct device * dev)1030 static inline int cmos_poweroff(struct device *dev)
1031 {
1032 	if (!IS_ENABLED(CONFIG_PM))
1033 		return -ENOSYS;
1034 
1035 	return cmos_suspend(dev);
1036 }
1037 
cmos_check_wkalrm(struct device * dev)1038 static void cmos_check_wkalrm(struct device *dev)
1039 {
1040 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1041 	struct rtc_wkalrm current_alarm;
1042 	time64_t t_now;
1043 	time64_t t_current_expires;
1044 	time64_t t_saved_expires;
1045 	struct rtc_time now;
1046 
1047 	/* Check if we have RTC Alarm armed */
1048 	if (!(cmos->suspend_ctrl & RTC_AIE))
1049 		return;
1050 
1051 	cmos_read_time(dev, &now);
1052 	t_now = rtc_tm_to_time64(&now);
1053 
1054 	/*
1055 	 * ACPI RTC wake event is cleared after resume from STR,
1056 	 * ACK the rtc irq here
1057 	 */
1058 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1059 		cmos_interrupt(0, (void *)cmos->rtc);
1060 		return;
1061 	}
1062 
1063 	cmos_read_alarm(dev, &current_alarm);
1064 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1065 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1066 	if (t_current_expires != t_saved_expires ||
1067 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1068 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1069 	}
1070 }
1071 
1072 static void cmos_check_acpi_rtc_status(struct device *dev,
1073 				       unsigned char *rtc_control);
1074 
cmos_resume(struct device * dev)1075 static int __maybe_unused cmos_resume(struct device *dev)
1076 {
1077 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1078 	unsigned char tmp;
1079 
1080 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1081 		if (cmos->wake_off)
1082 			cmos->wake_off(dev);
1083 		else
1084 			disable_irq_wake(cmos->irq);
1085 		cmos->enabled_wake = 0;
1086 	}
1087 
1088 	/* The BIOS might have changed the alarm, restore it */
1089 	cmos_check_wkalrm(dev);
1090 
1091 	spin_lock_irq(&rtc_lock);
1092 	tmp = cmos->suspend_ctrl;
1093 	cmos->suspend_ctrl = 0;
1094 	/* re-enable any irqs previously active */
1095 	if (tmp & RTC_IRQMASK) {
1096 		unsigned char	mask;
1097 
1098 		if (device_may_wakeup(dev) && use_hpet_alarm())
1099 			hpet_rtc_timer_init();
1100 
1101 		do {
1102 			CMOS_WRITE(tmp, RTC_CONTROL);
1103 			if (use_hpet_alarm())
1104 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1105 
1106 			mask = CMOS_READ(RTC_INTR_FLAGS);
1107 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1108 			if (!use_hpet_alarm() || !is_intr(mask))
1109 				break;
1110 
1111 			/* force one-shot behavior if HPET blocked
1112 			 * the wake alarm's irq
1113 			 */
1114 			rtc_update_irq(cmos->rtc, 1, mask);
1115 			tmp &= ~RTC_AIE;
1116 			hpet_mask_rtc_irq_bit(RTC_AIE);
1117 		} while (mask & RTC_AIE);
1118 
1119 		if (tmp & RTC_AIE)
1120 			cmos_check_acpi_rtc_status(dev, &tmp);
1121 	}
1122 	spin_unlock_irq(&rtc_lock);
1123 
1124 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1125 
1126 	return 0;
1127 }
1128 
1129 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1130 
1131 /*----------------------------------------------------------------*/
1132 
1133 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1134  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1135  * probably list them in similar PNPBIOS tables; so PNP is more common.
1136  *
1137  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1138  * predate even PNPBIOS should set up platform_bus devices.
1139  */
1140 
1141 #ifdef	CONFIG_ACPI
1142 
1143 #include <linux/acpi.h>
1144 
rtc_handler(void * context)1145 static u32 rtc_handler(void *context)
1146 {
1147 	struct device *dev = context;
1148 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1149 	unsigned char rtc_control = 0;
1150 	unsigned char rtc_intr;
1151 	unsigned long flags;
1152 
1153 
1154 	/*
1155 	 * Always update rtc irq when ACPI is used as RTC Alarm.
1156 	 * Or else, ACPI SCI is enabled during suspend/resume only,
1157 	 * update rtc irq in that case.
1158 	 */
1159 	if (cmos_use_acpi_alarm())
1160 		cmos_interrupt(0, (void *)cmos->rtc);
1161 	else {
1162 		/* Fix me: can we use cmos_interrupt() here as well? */
1163 		spin_lock_irqsave(&rtc_lock, flags);
1164 		if (cmos_rtc.suspend_ctrl)
1165 			rtc_control = CMOS_READ(RTC_CONTROL);
1166 		if (rtc_control & RTC_AIE) {
1167 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1168 			CMOS_WRITE(rtc_control, RTC_CONTROL);
1169 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1170 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
1171 		}
1172 		spin_unlock_irqrestore(&rtc_lock, flags);
1173 	}
1174 
1175 	pm_wakeup_hard_event(dev);
1176 	acpi_clear_event(ACPI_EVENT_RTC);
1177 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1178 	return ACPI_INTERRUPT_HANDLED;
1179 }
1180 
rtc_wake_setup(struct device * dev)1181 static inline void rtc_wake_setup(struct device *dev)
1182 {
1183 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1184 	/*
1185 	 * After the RTC handler is installed, the Fixed_RTC event should
1186 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1187 	 */
1188 	acpi_clear_event(ACPI_EVENT_RTC);
1189 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1190 }
1191 
rtc_wake_on(struct device * dev)1192 static void rtc_wake_on(struct device *dev)
1193 {
1194 	acpi_clear_event(ACPI_EVENT_RTC);
1195 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1196 }
1197 
rtc_wake_off(struct device * dev)1198 static void rtc_wake_off(struct device *dev)
1199 {
1200 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1201 }
1202 
1203 #ifdef CONFIG_X86
1204 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
use_acpi_alarm_quirks(void)1205 static void use_acpi_alarm_quirks(void)
1206 {
1207 	int year;
1208 
1209 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1210 		return;
1211 
1212 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1213 		return;
1214 
1215 	if (!is_hpet_enabled())
1216 		return;
1217 
1218 	if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1219 		use_acpi_alarm = true;
1220 }
1221 #else
use_acpi_alarm_quirks(void)1222 static inline void use_acpi_alarm_quirks(void) { }
1223 #endif
1224 
1225 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1226  * its device node and pass extra config data.  This helps its driver use
1227  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1228  * that this board's RTC is wakeup-capable (per ACPI spec).
1229  */
1230 static struct cmos_rtc_board_info acpi_rtc_info;
1231 
cmos_wake_setup(struct device * dev)1232 static void cmos_wake_setup(struct device *dev)
1233 {
1234 	if (acpi_disabled)
1235 		return;
1236 
1237 	use_acpi_alarm_quirks();
1238 
1239 	rtc_wake_setup(dev);
1240 	acpi_rtc_info.wake_on = rtc_wake_on;
1241 	acpi_rtc_info.wake_off = rtc_wake_off;
1242 
1243 	/* workaround bug in some ACPI tables */
1244 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1245 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1246 			acpi_gbl_FADT.month_alarm);
1247 		acpi_gbl_FADT.month_alarm = 0;
1248 	}
1249 
1250 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1251 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1252 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1253 
1254 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1255 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1256 		dev_info(dev, "RTC can wake from S4\n");
1257 
1258 	dev->platform_data = &acpi_rtc_info;
1259 
1260 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1261 	device_init_wakeup(dev, 1);
1262 }
1263 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1264 static void cmos_check_acpi_rtc_status(struct device *dev,
1265 				       unsigned char *rtc_control)
1266 {
1267 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1268 	acpi_event_status rtc_status;
1269 	acpi_status status;
1270 
1271 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1272 		return;
1273 
1274 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1275 	if (ACPI_FAILURE(status)) {
1276 		dev_err(dev, "Could not get RTC status\n");
1277 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1278 		unsigned char mask;
1279 		*rtc_control &= ~RTC_AIE;
1280 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1281 		mask = CMOS_READ(RTC_INTR_FLAGS);
1282 		rtc_update_irq(cmos->rtc, 1, mask);
1283 	}
1284 }
1285 
1286 #else
1287 
cmos_wake_setup(struct device * dev)1288 static void cmos_wake_setup(struct device *dev)
1289 {
1290 }
1291 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1292 static void cmos_check_acpi_rtc_status(struct device *dev,
1293 				       unsigned char *rtc_control)
1294 {
1295 }
1296 
1297 #endif
1298 
1299 #ifdef	CONFIG_PNP
1300 
1301 #include <linux/pnp.h>
1302 
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1303 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1304 {
1305 	cmos_wake_setup(&pnp->dev);
1306 
1307 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1308 		unsigned int irq = 0;
1309 #ifdef CONFIG_X86
1310 		/* Some machines contain a PNP entry for the RTC, but
1311 		 * don't define the IRQ. It should always be safe to
1312 		 * hardcode it on systems with a legacy PIC.
1313 		 */
1314 		if (nr_legacy_irqs())
1315 			irq = 8;
1316 #endif
1317 		return cmos_do_probe(&pnp->dev,
1318 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1319 	} else {
1320 		return cmos_do_probe(&pnp->dev,
1321 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1322 				pnp_irq(pnp, 0));
1323 	}
1324 }
1325 
cmos_pnp_remove(struct pnp_dev * pnp)1326 static void cmos_pnp_remove(struct pnp_dev *pnp)
1327 {
1328 	cmos_do_remove(&pnp->dev);
1329 }
1330 
cmos_pnp_shutdown(struct pnp_dev * pnp)1331 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1332 {
1333 	struct device *dev = &pnp->dev;
1334 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1335 
1336 	if (system_state == SYSTEM_POWER_OFF) {
1337 		int retval = cmos_poweroff(dev);
1338 
1339 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1340 			return;
1341 	}
1342 
1343 	cmos_do_shutdown(cmos->irq);
1344 }
1345 
1346 static const struct pnp_device_id rtc_ids[] = {
1347 	{ .id = "PNP0b00", },
1348 	{ .id = "PNP0b01", },
1349 	{ .id = "PNP0b02", },
1350 	{ },
1351 };
1352 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1353 
1354 static struct pnp_driver cmos_pnp_driver = {
1355 	.name		= (char *) driver_name,
1356 	.id_table	= rtc_ids,
1357 	.probe		= cmos_pnp_probe,
1358 	.remove		= cmos_pnp_remove,
1359 	.shutdown	= cmos_pnp_shutdown,
1360 
1361 	/* flag ensures resume() gets called, and stops syslog spam */
1362 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1363 	.driver		= {
1364 			.pm = &cmos_pm_ops,
1365 	},
1366 };
1367 
1368 #endif	/* CONFIG_PNP */
1369 
1370 #ifdef CONFIG_OF
1371 static const struct of_device_id of_cmos_match[] = {
1372 	{
1373 		.compatible = "motorola,mc146818",
1374 	},
1375 	{ },
1376 };
1377 MODULE_DEVICE_TABLE(of, of_cmos_match);
1378 
cmos_of_init(struct platform_device * pdev)1379 static __init void cmos_of_init(struct platform_device *pdev)
1380 {
1381 	struct device_node *node = pdev->dev.of_node;
1382 	const __be32 *val;
1383 
1384 	if (!node)
1385 		return;
1386 
1387 	val = of_get_property(node, "ctrl-reg", NULL);
1388 	if (val)
1389 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1390 
1391 	val = of_get_property(node, "freq-reg", NULL);
1392 	if (val)
1393 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1394 }
1395 #else
cmos_of_init(struct platform_device * pdev)1396 static inline void cmos_of_init(struct platform_device *pdev) {}
1397 #endif
1398 /*----------------------------------------------------------------*/
1399 
1400 /* Platform setup should have set up an RTC device, when PNP is
1401  * unavailable ... this could happen even on (older) PCs.
1402  */
1403 
cmos_platform_probe(struct platform_device * pdev)1404 static int __init cmos_platform_probe(struct platform_device *pdev)
1405 {
1406 	struct resource *resource;
1407 	int irq;
1408 
1409 	cmos_of_init(pdev);
1410 	cmos_wake_setup(&pdev->dev);
1411 
1412 	if (RTC_IOMAPPED)
1413 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1414 	else
1415 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1416 	irq = platform_get_irq(pdev, 0);
1417 	if (irq < 0)
1418 		irq = -1;
1419 
1420 	return cmos_do_probe(&pdev->dev, resource, irq);
1421 }
1422 
cmos_platform_remove(struct platform_device * pdev)1423 static int cmos_platform_remove(struct platform_device *pdev)
1424 {
1425 	cmos_do_remove(&pdev->dev);
1426 	return 0;
1427 }
1428 
cmos_platform_shutdown(struct platform_device * pdev)1429 static void cmos_platform_shutdown(struct platform_device *pdev)
1430 {
1431 	struct device *dev = &pdev->dev;
1432 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1433 
1434 	if (system_state == SYSTEM_POWER_OFF) {
1435 		int retval = cmos_poweroff(dev);
1436 
1437 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1438 			return;
1439 	}
1440 
1441 	cmos_do_shutdown(cmos->irq);
1442 }
1443 
1444 /* work with hotplug and coldplug */
1445 MODULE_ALIAS("platform:rtc_cmos");
1446 
1447 static struct platform_driver cmos_platform_driver = {
1448 	.remove		= cmos_platform_remove,
1449 	.shutdown	= cmos_platform_shutdown,
1450 	.driver = {
1451 		.name		= driver_name,
1452 		.pm		= &cmos_pm_ops,
1453 		.of_match_table = of_match_ptr(of_cmos_match),
1454 	}
1455 };
1456 
1457 #ifdef CONFIG_PNP
1458 static bool pnp_driver_registered;
1459 #endif
1460 static bool platform_driver_registered;
1461 
cmos_init(void)1462 static int __init cmos_init(void)
1463 {
1464 	int retval = 0;
1465 
1466 #ifdef	CONFIG_PNP
1467 	retval = pnp_register_driver(&cmos_pnp_driver);
1468 	if (retval == 0)
1469 		pnp_driver_registered = true;
1470 #endif
1471 
1472 	if (!cmos_rtc.dev) {
1473 		retval = platform_driver_probe(&cmos_platform_driver,
1474 					       cmos_platform_probe);
1475 		if (retval == 0)
1476 			platform_driver_registered = true;
1477 	}
1478 
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 #ifdef	CONFIG_PNP
1483 	if (pnp_driver_registered)
1484 		pnp_unregister_driver(&cmos_pnp_driver);
1485 #endif
1486 	return retval;
1487 }
1488 module_init(cmos_init);
1489 
cmos_exit(void)1490 static void __exit cmos_exit(void)
1491 {
1492 #ifdef	CONFIG_PNP
1493 	if (pnp_driver_registered)
1494 		pnp_unregister_driver(&cmos_pnp_driver);
1495 #endif
1496 	if (platform_driver_registered)
1497 		platform_driver_unregister(&cmos_platform_driver);
1498 }
1499 module_exit(cmos_exit);
1500 
1501 
1502 MODULE_AUTHOR("David Brownell");
1503 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1504 MODULE_LICENSE("GPL");
1505