1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2012
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 *
10 * Adjunct processor bus.
11 */
12
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41
42 /*
43 * Module parameters; note though this file itself isn't modular.
44 */
45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62
63 static struct device *ap_root_device;
64
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67
68 /* Default permissions (card and domain masking) */
69 static struct ap_perms {
70 DECLARE_BITMAP(apm, AP_DEVICES);
71 DECLARE_BITMAP(aqm, AP_DOMAINS);
72 } ap_perms;
73 static DEFINE_MUTEX(ap_perms_mutex);
74
75 static struct ap_config_info *ap_configuration;
76 static bool initialised;
77
78 /*
79 * AP bus related debug feature things.
80 */
81 debug_info_t *ap_dbf_info;
82
83 /*
84 * Workqueue timer for bus rescan.
85 */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90
91 /*
92 * Tasklet & timer for AP request polling and interrupts
93 */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104 */
105 static unsigned long long poll_timeout = 250000;
106
107 /* Suspend flag */
108 static int ap_suspend_flag;
109 /* Maximum domain id */
110 static int ap_max_domain_id;
111 /*
112 * Flag to check if domain was set through module parameter domain=. This is
113 * important when supsend and resume is done in a z/VM environment where the
114 * domain might change.
115 */
116 static int user_set_domain;
117 static struct bus_type ap_bus_type;
118
119 /* Adapter interrupt definitions */
120 static void ap_interrupt_handler(struct airq_struct *airq);
121
122 static int ap_airq_flag;
123
124 static struct airq_struct ap_airq = {
125 .handler = ap_interrupt_handler,
126 .isc = AP_ISC,
127 };
128
129 /**
130 * ap_using_interrupts() - Returns non-zero if interrupt support is
131 * available.
132 */
ap_using_interrupts(void)133 static inline int ap_using_interrupts(void)
134 {
135 return ap_airq_flag;
136 }
137
138 /**
139 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
140 *
141 * Returns the address of the local-summary-indicator of the adapter
142 * interrupt handler for AP, or NULL if adapter interrupts are not
143 * available.
144 */
ap_airq_ptr(void)145 void *ap_airq_ptr(void)
146 {
147 if (ap_using_interrupts())
148 return ap_airq.lsi_ptr;
149 return NULL;
150 }
151
152 /**
153 * ap_interrupts_available(): Test if AP interrupts are available.
154 *
155 * Returns 1 if AP interrupts are available.
156 */
ap_interrupts_available(void)157 static int ap_interrupts_available(void)
158 {
159 return test_facility(65);
160 }
161
162 /**
163 * ap_configuration_available(): Test if AP configuration
164 * information is available.
165 *
166 * Returns 1 if AP configuration information is available.
167 */
ap_configuration_available(void)168 static int ap_configuration_available(void)
169 {
170 return test_facility(12);
171 }
172
173 /**
174 * ap_apft_available(): Test if AP facilities test (APFT)
175 * facility is available.
176 *
177 * Returns 1 if APFT is is available.
178 */
ap_apft_available(void)179 static int ap_apft_available(void)
180 {
181 return test_facility(15);
182 }
183
184 /*
185 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
186 *
187 * Returns 1 if the QACT subfunction is available.
188 */
ap_qact_available(void)189 static inline int ap_qact_available(void)
190 {
191 if (ap_configuration)
192 return ap_configuration->qact;
193 return 0;
194 }
195
196 /*
197 * ap_query_configuration(): Fetch cryptographic config info
198 *
199 * Returns the ap configuration info fetched via PQAP(QCI).
200 * On success 0 is returned, on failure a negative errno
201 * is returned, e.g. if the PQAP(QCI) instruction is not
202 * available, the return value will be -EOPNOTSUPP.
203 */
ap_query_configuration(struct ap_config_info * info)204 static inline int ap_query_configuration(struct ap_config_info *info)
205 {
206 if (!ap_configuration_available())
207 return -EOPNOTSUPP;
208 if (!info)
209 return -EINVAL;
210 return ap_qci(info);
211 }
212 EXPORT_SYMBOL(ap_query_configuration);
213
214 /**
215 * ap_init_configuration(): Allocate and query configuration array.
216 */
ap_init_configuration(void)217 static void ap_init_configuration(void)
218 {
219 if (!ap_configuration_available())
220 return;
221
222 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
223 if (!ap_configuration)
224 return;
225 if (ap_query_configuration(ap_configuration) != 0) {
226 kfree(ap_configuration);
227 ap_configuration = NULL;
228 return;
229 }
230 }
231
232 /*
233 * ap_test_config(): helper function to extract the nrth bit
234 * within the unsigned int array field.
235 */
ap_test_config(unsigned int * field,unsigned int nr)236 static inline int ap_test_config(unsigned int *field, unsigned int nr)
237 {
238 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
239 }
240
241 /*
242 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
243 * @id AP card ID
244 *
245 * Returns 0 if the card is not configured
246 * 1 if the card is configured or
247 * if the configuration information is not available
248 */
ap_test_config_card_id(unsigned int id)249 static inline int ap_test_config_card_id(unsigned int id)
250 {
251 if (!ap_configuration) /* QCI not supported */
252 /* only ids 0...3F may be probed */
253 return id < 0x40 ? 1 : 0;
254 return ap_test_config(ap_configuration->apm, id);
255 }
256
257 /*
258 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
259 * @domain AP usage domain ID
260 *
261 * Returns 0 if the usage domain is not configured
262 * 1 if the usage domain is configured or
263 * if the configuration information is not available
264 */
ap_test_config_domain(unsigned int domain)265 static inline int ap_test_config_domain(unsigned int domain)
266 {
267 if (!ap_configuration) /* QCI not supported */
268 return domain < 16;
269 return ap_test_config(ap_configuration->aqm, domain);
270 }
271
272 /**
273 * ap_query_queue(): Check if an AP queue is available.
274 * @qid: The AP queue number
275 * @queue_depth: Pointer to queue depth value
276 * @device_type: Pointer to device type value
277 * @facilities: Pointer to facility indicator
278 */
ap_query_queue(ap_qid_t qid,int * queue_depth,int * device_type,unsigned int * facilities)279 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
280 unsigned int *facilities)
281 {
282 struct ap_queue_status status;
283 unsigned long info;
284 int nd;
285
286 if (!ap_test_config_card_id(AP_QID_CARD(qid)))
287 return -ENODEV;
288
289 status = ap_test_queue(qid, ap_apft_available(), &info);
290 switch (status.response_code) {
291 case AP_RESPONSE_NORMAL:
292 *queue_depth = (int)(info & 0xff);
293 *device_type = (int)((info >> 24) & 0xff);
294 *facilities = (unsigned int)(info >> 32);
295 /* Update maximum domain id */
296 nd = (info >> 16) & 0xff;
297 /* if N bit is available, z13 and newer */
298 if ((info & (1UL << 57)) && nd > 0)
299 ap_max_domain_id = nd;
300 else /* older machine types */
301 ap_max_domain_id = 15;
302 switch (*device_type) {
303 /* For CEX2 and CEX3 the available functions
304 * are not refrected by the facilities bits.
305 * Instead it is coded into the type. So here
306 * modify the function bits based on the type.
307 */
308 case AP_DEVICE_TYPE_CEX2A:
309 case AP_DEVICE_TYPE_CEX3A:
310 *facilities |= 0x08000000;
311 break;
312 case AP_DEVICE_TYPE_CEX2C:
313 case AP_DEVICE_TYPE_CEX3C:
314 *facilities |= 0x10000000;
315 break;
316 default:
317 break;
318 }
319 return 0;
320 case AP_RESPONSE_Q_NOT_AVAIL:
321 case AP_RESPONSE_DECONFIGURED:
322 case AP_RESPONSE_CHECKSTOPPED:
323 case AP_RESPONSE_INVALID_ADDRESS:
324 return -ENODEV;
325 case AP_RESPONSE_RESET_IN_PROGRESS:
326 case AP_RESPONSE_OTHERWISE_CHANGED:
327 case AP_RESPONSE_BUSY:
328 return -EBUSY;
329 default:
330 BUG();
331 }
332 }
333
ap_wait(enum ap_wait wait)334 void ap_wait(enum ap_wait wait)
335 {
336 ktime_t hr_time;
337
338 switch (wait) {
339 case AP_WAIT_AGAIN:
340 case AP_WAIT_INTERRUPT:
341 if (ap_using_interrupts())
342 break;
343 if (ap_poll_kthread) {
344 wake_up(&ap_poll_wait);
345 break;
346 }
347 /* Fall through */
348 case AP_WAIT_TIMEOUT:
349 spin_lock_bh(&ap_poll_timer_lock);
350 if (!hrtimer_is_queued(&ap_poll_timer)) {
351 hr_time = poll_timeout;
352 hrtimer_forward_now(&ap_poll_timer, hr_time);
353 hrtimer_restart(&ap_poll_timer);
354 }
355 spin_unlock_bh(&ap_poll_timer_lock);
356 break;
357 case AP_WAIT_NONE:
358 default:
359 break;
360 }
361 }
362
363 /**
364 * ap_request_timeout(): Handling of request timeouts
365 * @t: timer making this callback
366 *
367 * Handles request timeouts.
368 */
ap_request_timeout(struct timer_list * t)369 void ap_request_timeout(struct timer_list *t)
370 {
371 struct ap_queue *aq = from_timer(aq, t, timeout);
372
373 if (ap_suspend_flag)
374 return;
375 spin_lock_bh(&aq->lock);
376 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
377 spin_unlock_bh(&aq->lock);
378 }
379
380 /**
381 * ap_poll_timeout(): AP receive polling for finished AP requests.
382 * @unused: Unused pointer.
383 *
384 * Schedules the AP tasklet using a high resolution timer.
385 */
ap_poll_timeout(struct hrtimer * unused)386 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
387 {
388 if (!ap_suspend_flag)
389 tasklet_schedule(&ap_tasklet);
390 return HRTIMER_NORESTART;
391 }
392
393 /**
394 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
395 * @airq: pointer to adapter interrupt descriptor
396 */
ap_interrupt_handler(struct airq_struct * airq)397 static void ap_interrupt_handler(struct airq_struct *airq)
398 {
399 inc_irq_stat(IRQIO_APB);
400 if (!ap_suspend_flag)
401 tasklet_schedule(&ap_tasklet);
402 }
403
404 /**
405 * ap_tasklet_fn(): Tasklet to poll all AP devices.
406 * @dummy: Unused variable
407 *
408 * Poll all AP devices on the bus.
409 */
ap_tasklet_fn(unsigned long dummy)410 static void ap_tasklet_fn(unsigned long dummy)
411 {
412 struct ap_card *ac;
413 struct ap_queue *aq;
414 enum ap_wait wait = AP_WAIT_NONE;
415
416 /* Reset the indicator if interrupts are used. Thus new interrupts can
417 * be received. Doing it in the beginning of the tasklet is therefor
418 * important that no requests on any AP get lost.
419 */
420 if (ap_using_interrupts())
421 xchg(ap_airq.lsi_ptr, 0);
422
423 spin_lock_bh(&ap_list_lock);
424 for_each_ap_card(ac) {
425 for_each_ap_queue(aq, ac) {
426 spin_lock_bh(&aq->lock);
427 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
428 spin_unlock_bh(&aq->lock);
429 }
430 }
431 spin_unlock_bh(&ap_list_lock);
432
433 ap_wait(wait);
434 }
435
ap_pending_requests(void)436 static int ap_pending_requests(void)
437 {
438 struct ap_card *ac;
439 struct ap_queue *aq;
440
441 spin_lock_bh(&ap_list_lock);
442 for_each_ap_card(ac) {
443 for_each_ap_queue(aq, ac) {
444 if (aq->queue_count == 0)
445 continue;
446 spin_unlock_bh(&ap_list_lock);
447 return 1;
448 }
449 }
450 spin_unlock_bh(&ap_list_lock);
451 return 0;
452 }
453
454 /**
455 * ap_poll_thread(): Thread that polls for finished requests.
456 * @data: Unused pointer
457 *
458 * AP bus poll thread. The purpose of this thread is to poll for
459 * finished requests in a loop if there is a "free" cpu - that is
460 * a cpu that doesn't have anything better to do. The polling stops
461 * as soon as there is another task or if all messages have been
462 * delivered.
463 */
ap_poll_thread(void * data)464 static int ap_poll_thread(void *data)
465 {
466 DECLARE_WAITQUEUE(wait, current);
467
468 set_user_nice(current, MAX_NICE);
469 set_freezable();
470 while (!kthread_should_stop()) {
471 add_wait_queue(&ap_poll_wait, &wait);
472 set_current_state(TASK_INTERRUPTIBLE);
473 if (ap_suspend_flag || !ap_pending_requests()) {
474 schedule();
475 try_to_freeze();
476 }
477 set_current_state(TASK_RUNNING);
478 remove_wait_queue(&ap_poll_wait, &wait);
479 if (need_resched()) {
480 schedule();
481 try_to_freeze();
482 continue;
483 }
484 ap_tasklet_fn(0);
485 }
486
487 return 0;
488 }
489
ap_poll_thread_start(void)490 static int ap_poll_thread_start(void)
491 {
492 int rc;
493
494 if (ap_using_interrupts() || ap_poll_kthread)
495 return 0;
496 mutex_lock(&ap_poll_thread_mutex);
497 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
498 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
499 if (rc)
500 ap_poll_kthread = NULL;
501 mutex_unlock(&ap_poll_thread_mutex);
502 return rc;
503 }
504
ap_poll_thread_stop(void)505 static void ap_poll_thread_stop(void)
506 {
507 if (!ap_poll_kthread)
508 return;
509 mutex_lock(&ap_poll_thread_mutex);
510 kthread_stop(ap_poll_kthread);
511 ap_poll_kthread = NULL;
512 mutex_unlock(&ap_poll_thread_mutex);
513 }
514
515 #define is_card_dev(x) ((x)->parent == ap_root_device)
516 #define is_queue_dev(x) ((x)->parent != ap_root_device)
517
518 /**
519 * ap_bus_match()
520 * @dev: Pointer to device
521 * @drv: Pointer to device_driver
522 *
523 * AP bus driver registration/unregistration.
524 */
ap_bus_match(struct device * dev,struct device_driver * drv)525 static int ap_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 struct ap_driver *ap_drv = to_ap_drv(drv);
528 struct ap_device_id *id;
529
530 /*
531 * Compare device type of the device with the list of
532 * supported types of the device_driver.
533 */
534 for (id = ap_drv->ids; id->match_flags; id++) {
535 if (is_card_dev(dev) &&
536 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
537 id->dev_type == to_ap_dev(dev)->device_type)
538 return 1;
539 if (is_queue_dev(dev) &&
540 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
541 id->dev_type == to_ap_dev(dev)->device_type)
542 return 1;
543 }
544 return 0;
545 }
546
547 /**
548 * ap_uevent(): Uevent function for AP devices.
549 * @dev: Pointer to device
550 * @env: Pointer to kobj_uevent_env
551 *
552 * It sets up a single environment variable DEV_TYPE which contains the
553 * hardware device type.
554 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)555 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
556 {
557 struct ap_device *ap_dev = to_ap_dev(dev);
558 int retval = 0;
559
560 if (!ap_dev)
561 return -ENODEV;
562
563 /* Set up DEV_TYPE environment variable. */
564 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
565 if (retval)
566 return retval;
567
568 /* Add MODALIAS= */
569 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
570
571 return retval;
572 }
573
ap_dev_suspend(struct device * dev)574 static int ap_dev_suspend(struct device *dev)
575 {
576 struct ap_device *ap_dev = to_ap_dev(dev);
577
578 if (ap_dev->drv && ap_dev->drv->suspend)
579 ap_dev->drv->suspend(ap_dev);
580 return 0;
581 }
582
ap_dev_resume(struct device * dev)583 static int ap_dev_resume(struct device *dev)
584 {
585 struct ap_device *ap_dev = to_ap_dev(dev);
586
587 if (ap_dev->drv && ap_dev->drv->resume)
588 ap_dev->drv->resume(ap_dev);
589 return 0;
590 }
591
ap_bus_suspend(void)592 static void ap_bus_suspend(void)
593 {
594 AP_DBF(DBF_DEBUG, "%s running\n", __func__);
595
596 ap_suspend_flag = 1;
597 /*
598 * Disable scanning for devices, thus we do not want to scan
599 * for them after removing.
600 */
601 flush_work(&ap_scan_work);
602 tasklet_disable(&ap_tasklet);
603 }
604
__ap_card_devices_unregister(struct device * dev,void * dummy)605 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
606 {
607 if (is_card_dev(dev))
608 device_unregister(dev);
609 return 0;
610 }
611
__ap_queue_devices_unregister(struct device * dev,void * dummy)612 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
613 {
614 if (is_queue_dev(dev))
615 device_unregister(dev);
616 return 0;
617 }
618
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)619 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
620 {
621 if (is_queue_dev(dev) &&
622 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
623 device_unregister(dev);
624 return 0;
625 }
626
ap_bus_resume(void)627 static void ap_bus_resume(void)
628 {
629 int rc;
630
631 AP_DBF(DBF_DEBUG, "%s running\n", __func__);
632
633 /* remove all queue devices */
634 bus_for_each_dev(&ap_bus_type, NULL, NULL,
635 __ap_queue_devices_unregister);
636 /* remove all card devices */
637 bus_for_each_dev(&ap_bus_type, NULL, NULL,
638 __ap_card_devices_unregister);
639
640 /* Reset thin interrupt setting */
641 if (ap_interrupts_available() && !ap_using_interrupts()) {
642 rc = register_adapter_interrupt(&ap_airq);
643 ap_airq_flag = (rc == 0);
644 }
645 if (!ap_interrupts_available() && ap_using_interrupts()) {
646 unregister_adapter_interrupt(&ap_airq);
647 ap_airq_flag = 0;
648 }
649 /* Reset domain */
650 if (!user_set_domain)
651 ap_domain_index = -1;
652 /* Get things going again */
653 ap_suspend_flag = 0;
654 if (ap_airq_flag)
655 xchg(ap_airq.lsi_ptr, 0);
656 tasklet_enable(&ap_tasklet);
657 queue_work(system_long_wq, &ap_scan_work);
658 }
659
ap_power_event(struct notifier_block * this,unsigned long event,void * ptr)660 static int ap_power_event(struct notifier_block *this, unsigned long event,
661 void *ptr)
662 {
663 switch (event) {
664 case PM_HIBERNATION_PREPARE:
665 case PM_SUSPEND_PREPARE:
666 ap_bus_suspend();
667 break;
668 case PM_POST_HIBERNATION:
669 case PM_POST_SUSPEND:
670 ap_bus_resume();
671 break;
672 default:
673 break;
674 }
675 return NOTIFY_DONE;
676 }
677 static struct notifier_block ap_power_notifier = {
678 .notifier_call = ap_power_event,
679 };
680
681 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
682
683 static struct bus_type ap_bus_type = {
684 .name = "ap",
685 .match = &ap_bus_match,
686 .uevent = &ap_uevent,
687 .pm = &ap_bus_pm_ops,
688 };
689
__ap_revise_reserved(struct device * dev,void * dummy)690 static int __ap_revise_reserved(struct device *dev, void *dummy)
691 {
692 int rc, card, queue, devres, drvres;
693
694 if (is_queue_dev(dev)) {
695 card = AP_QID_CARD(to_ap_queue(dev)->qid);
696 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
697 mutex_lock(&ap_perms_mutex);
698 devres = test_bit_inv(card, ap_perms.apm)
699 && test_bit_inv(queue, ap_perms.aqm);
700 mutex_unlock(&ap_perms_mutex);
701 drvres = to_ap_drv(dev->driver)->flags
702 & AP_DRIVER_FLAG_DEFAULT;
703 if (!!devres != !!drvres) {
704 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
705 card, queue);
706 rc = device_reprobe(dev);
707 }
708 }
709
710 return 0;
711 }
712
ap_bus_revise_bindings(void)713 static void ap_bus_revise_bindings(void)
714 {
715 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
716 }
717
ap_owned_by_def_drv(int card,int queue)718 int ap_owned_by_def_drv(int card, int queue)
719 {
720 int rc = 0;
721
722 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
723 return -EINVAL;
724
725 mutex_lock(&ap_perms_mutex);
726
727 if (test_bit_inv(card, ap_perms.apm)
728 && test_bit_inv(queue, ap_perms.aqm))
729 rc = 1;
730
731 mutex_unlock(&ap_perms_mutex);
732
733 return rc;
734 }
735 EXPORT_SYMBOL(ap_owned_by_def_drv);
736
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)737 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
738 unsigned long *aqm)
739 {
740 int card, queue, rc = 0;
741
742 mutex_lock(&ap_perms_mutex);
743
744 for (card = 0; !rc && card < AP_DEVICES; card++)
745 if (test_bit_inv(card, apm) &&
746 test_bit_inv(card, ap_perms.apm))
747 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
748 if (test_bit_inv(queue, aqm) &&
749 test_bit_inv(queue, ap_perms.aqm))
750 rc = 1;
751
752 mutex_unlock(&ap_perms_mutex);
753
754 return rc;
755 }
756 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
757
ap_device_probe(struct device * dev)758 static int ap_device_probe(struct device *dev)
759 {
760 struct ap_device *ap_dev = to_ap_dev(dev);
761 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
762 int card, queue, devres, drvres, rc;
763
764 if (is_queue_dev(dev)) {
765 /*
766 * If the apqn is marked as reserved/used by ap bus and
767 * default drivers, only probe with drivers with the default
768 * flag set. If it is not marked, only probe with drivers
769 * with the default flag not set.
770 */
771 card = AP_QID_CARD(to_ap_queue(dev)->qid);
772 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
773 mutex_lock(&ap_perms_mutex);
774 devres = test_bit_inv(card, ap_perms.apm)
775 && test_bit_inv(queue, ap_perms.aqm);
776 mutex_unlock(&ap_perms_mutex);
777 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
778 if (!!devres != !!drvres)
779 return -ENODEV;
780 /* (re-)init queue's state machine */
781 ap_queue_reinit_state(to_ap_queue(dev));
782 }
783
784 /* Add queue/card to list of active queues/cards */
785 spin_lock_bh(&ap_list_lock);
786 if (is_card_dev(dev))
787 list_add(&to_ap_card(dev)->list, &ap_card_list);
788 else
789 list_add(&to_ap_queue(dev)->list,
790 &to_ap_queue(dev)->card->queues);
791 spin_unlock_bh(&ap_list_lock);
792
793 ap_dev->drv = ap_drv;
794 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
795
796 if (rc) {
797 spin_lock_bh(&ap_list_lock);
798 if (is_card_dev(dev))
799 list_del_init(&to_ap_card(dev)->list);
800 else
801 list_del_init(&to_ap_queue(dev)->list);
802 spin_unlock_bh(&ap_list_lock);
803 ap_dev->drv = NULL;
804 }
805
806 return rc;
807 }
808
ap_device_remove(struct device * dev)809 static int ap_device_remove(struct device *dev)
810 {
811 struct ap_device *ap_dev = to_ap_dev(dev);
812 struct ap_driver *ap_drv = ap_dev->drv;
813
814 if (is_queue_dev(dev))
815 ap_queue_remove(to_ap_queue(dev));
816 if (ap_drv->remove)
817 ap_drv->remove(ap_dev);
818
819 /* Remove queue/card from list of active queues/cards */
820 spin_lock_bh(&ap_list_lock);
821 if (is_card_dev(dev))
822 list_del_init(&to_ap_card(dev)->list);
823 else
824 list_del_init(&to_ap_queue(dev)->list);
825 spin_unlock_bh(&ap_list_lock);
826
827 return 0;
828 }
829
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)830 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
831 char *name)
832 {
833 struct device_driver *drv = &ap_drv->driver;
834
835 if (!initialised)
836 return -ENODEV;
837
838 drv->bus = &ap_bus_type;
839 drv->probe = ap_device_probe;
840 drv->remove = ap_device_remove;
841 drv->owner = owner;
842 drv->name = name;
843 return driver_register(drv);
844 }
845 EXPORT_SYMBOL(ap_driver_register);
846
ap_driver_unregister(struct ap_driver * ap_drv)847 void ap_driver_unregister(struct ap_driver *ap_drv)
848 {
849 driver_unregister(&ap_drv->driver);
850 }
851 EXPORT_SYMBOL(ap_driver_unregister);
852
ap_bus_force_rescan(void)853 void ap_bus_force_rescan(void)
854 {
855 if (ap_suspend_flag)
856 return;
857 /* processing a asynchronous bus rescan */
858 del_timer(&ap_config_timer);
859 queue_work(system_long_wq, &ap_scan_work);
860 flush_work(&ap_scan_work);
861 }
862 EXPORT_SYMBOL(ap_bus_force_rescan);
863
864 /*
865 * hex2bitmap() - parse hex mask string and set bitmap.
866 * Valid strings are "0x012345678" with at least one valid hex number.
867 * Rest of the bitmap to the right is padded with 0. No spaces allowed
868 * within the string, the leading 0x may be omitted.
869 * Returns the bitmask with exactly the bits set as given by the hex
870 * string (both in big endian order).
871 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)872 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
873 {
874 int i, n, b;
875
876 /* bits needs to be a multiple of 8 */
877 if (bits & 0x07)
878 return -EINVAL;
879
880 if (str[0] == '0' && str[1] == 'x')
881 str++;
882 if (*str == 'x')
883 str++;
884
885 for (i = 0; isxdigit(*str) && i < bits; str++) {
886 b = hex_to_bin(*str);
887 for (n = 0; n < 4; n++)
888 if (b & (0x08 >> n))
889 set_bit_inv(i + n, bitmap);
890 i += 4;
891 }
892
893 if (*str == '\n')
894 str++;
895 if (*str)
896 return -EINVAL;
897 return 0;
898 }
899
900 /*
901 * modify_bitmap() - parse bitmask argument and modify an existing
902 * bit mask accordingly. A concatenation (done with ',') of these
903 * terms is recognized:
904 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
905 * <bitnr> may be any valid number (hex, decimal or octal) in the range
906 * 0...bits-1; the leading + or - is required. Here are some examples:
907 * +0-15,+32,-128,-0xFF
908 * -0-255,+1-16,+0x128
909 * +1,+2,+3,+4,-5,-7-10
910 * Returns the new bitmap after all changes have been applied. Every
911 * positive value in the string will set a bit and every negative value
912 * in the string will clear a bit. As a bit may be touched more than once,
913 * the last 'operation' wins:
914 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
915 * cleared again. All other bits are unmodified.
916 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)917 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
918 {
919 int a, i, z;
920 char *np, sign;
921
922 /* bits needs to be a multiple of 8 */
923 if (bits & 0x07)
924 return -EINVAL;
925
926 while (*str) {
927 sign = *str++;
928 if (sign != '+' && sign != '-')
929 return -EINVAL;
930 a = z = simple_strtoul(str, &np, 0);
931 if (str == np || a >= bits)
932 return -EINVAL;
933 str = np;
934 if (*str == '-') {
935 z = simple_strtoul(++str, &np, 0);
936 if (str == np || a > z || z >= bits)
937 return -EINVAL;
938 str = np;
939 }
940 for (i = a; i <= z; i++)
941 if (sign == '+')
942 set_bit_inv(i, bitmap);
943 else
944 clear_bit_inv(i, bitmap);
945 while (*str == ',' || *str == '\n')
946 str++;
947 }
948
949 return 0;
950 }
951
952 /*
953 * process_mask_arg() - parse a bitmap string and clear/set the
954 * bits in the bitmap accordingly. The string may be given as
955 * absolute value, a hex string like 0x1F2E3D4C5B6A" simple over-
956 * writing the current content of the bitmap. Or as relative string
957 * like "+1-16,-32,-0x40,+128" where only single bits or ranges of
958 * bits are cleared or set. Distinction is done based on the very
959 * first character which may be '+' or '-' for the relative string
960 * and othewise assume to be an absolute value string. If parsing fails
961 * a negative errno value is returned. All arguments and bitmaps are
962 * big endian order.
963 */
process_mask_arg(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)964 static int process_mask_arg(const char *str,
965 unsigned long *bitmap, int bits,
966 struct mutex *lock)
967 {
968 unsigned long *newmap, size;
969 int rc;
970
971 /* bits needs to be a multiple of 8 */
972 if (bits & 0x07)
973 return -EINVAL;
974
975 size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
976 newmap = kmalloc(size, GFP_KERNEL);
977 if (!newmap)
978 return -ENOMEM;
979 if (mutex_lock_interruptible(lock)) {
980 kfree(newmap);
981 return -ERESTARTSYS;
982 }
983
984 if (*str == '+' || *str == '-') {
985 memcpy(newmap, bitmap, size);
986 rc = modify_bitmap(str, newmap, bits);
987 } else {
988 memset(newmap, 0, size);
989 rc = hex2bitmap(str, newmap, bits);
990 }
991 if (rc == 0)
992 memcpy(bitmap, newmap, size);
993 mutex_unlock(lock);
994 kfree(newmap);
995 return rc;
996 }
997
998 /*
999 * AP bus attributes.
1000 */
1001
ap_domain_show(struct bus_type * bus,char * buf)1002 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1003 {
1004 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1005 }
1006
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)1007 static ssize_t ap_domain_store(struct bus_type *bus,
1008 const char *buf, size_t count)
1009 {
1010 int domain;
1011
1012 if (sscanf(buf, "%i\n", &domain) != 1 ||
1013 domain < 0 || domain > ap_max_domain_id ||
1014 !test_bit_inv(domain, ap_perms.aqm))
1015 return -EINVAL;
1016 spin_lock_bh(&ap_domain_lock);
1017 ap_domain_index = domain;
1018 spin_unlock_bh(&ap_domain_lock);
1019
1020 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1021
1022 return count;
1023 }
1024
1025 static BUS_ATTR_RW(ap_domain);
1026
ap_control_domain_mask_show(struct bus_type * bus,char * buf)1027 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1028 {
1029 if (!ap_configuration) /* QCI not supported */
1030 return snprintf(buf, PAGE_SIZE, "not supported\n");
1031
1032 return snprintf(buf, PAGE_SIZE,
1033 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1034 ap_configuration->adm[0], ap_configuration->adm[1],
1035 ap_configuration->adm[2], ap_configuration->adm[3],
1036 ap_configuration->adm[4], ap_configuration->adm[5],
1037 ap_configuration->adm[6], ap_configuration->adm[7]);
1038 }
1039
1040 static BUS_ATTR_RO(ap_control_domain_mask);
1041
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)1042 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1043 {
1044 if (!ap_configuration) /* QCI not supported */
1045 return snprintf(buf, PAGE_SIZE, "not supported\n");
1046
1047 return snprintf(buf, PAGE_SIZE,
1048 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1049 ap_configuration->aqm[0], ap_configuration->aqm[1],
1050 ap_configuration->aqm[2], ap_configuration->aqm[3],
1051 ap_configuration->aqm[4], ap_configuration->aqm[5],
1052 ap_configuration->aqm[6], ap_configuration->aqm[7]);
1053 }
1054
1055 static BUS_ATTR_RO(ap_usage_domain_mask);
1056
ap_interrupts_show(struct bus_type * bus,char * buf)1057 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1058 {
1059 return snprintf(buf, PAGE_SIZE, "%d\n",
1060 ap_using_interrupts() ? 1 : 0);
1061 }
1062
1063 static BUS_ATTR_RO(ap_interrupts);
1064
config_time_show(struct bus_type * bus,char * buf)1065 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1066 {
1067 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1068 }
1069
config_time_store(struct bus_type * bus,const char * buf,size_t count)1070 static ssize_t config_time_store(struct bus_type *bus,
1071 const char *buf, size_t count)
1072 {
1073 int time;
1074
1075 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1076 return -EINVAL;
1077 ap_config_time = time;
1078 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1079 return count;
1080 }
1081
1082 static BUS_ATTR_RW(config_time);
1083
poll_thread_show(struct bus_type * bus,char * buf)1084 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1085 {
1086 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1087 }
1088
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1089 static ssize_t poll_thread_store(struct bus_type *bus,
1090 const char *buf, size_t count)
1091 {
1092 int flag, rc;
1093
1094 if (sscanf(buf, "%d\n", &flag) != 1)
1095 return -EINVAL;
1096 if (flag) {
1097 rc = ap_poll_thread_start();
1098 if (rc)
1099 count = rc;
1100 } else
1101 ap_poll_thread_stop();
1102 return count;
1103 }
1104
1105 static BUS_ATTR_RW(poll_thread);
1106
poll_timeout_show(struct bus_type * bus,char * buf)1107 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1108 {
1109 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1110 }
1111
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1112 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1113 size_t count)
1114 {
1115 unsigned long long time;
1116 ktime_t hr_time;
1117
1118 /* 120 seconds = maximum poll interval */
1119 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1120 time > 120000000000ULL)
1121 return -EINVAL;
1122 poll_timeout = time;
1123 hr_time = poll_timeout;
1124
1125 spin_lock_bh(&ap_poll_timer_lock);
1126 hrtimer_cancel(&ap_poll_timer);
1127 hrtimer_set_expires(&ap_poll_timer, hr_time);
1128 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1129 spin_unlock_bh(&ap_poll_timer_lock);
1130
1131 return count;
1132 }
1133
1134 static BUS_ATTR_RW(poll_timeout);
1135
ap_max_domain_id_show(struct bus_type * bus,char * buf)1136 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1137 {
1138 int max_domain_id;
1139
1140 if (ap_configuration)
1141 max_domain_id = ap_max_domain_id ? : -1;
1142 else
1143 max_domain_id = 15;
1144 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1145 }
1146
1147 static BUS_ATTR_RO(ap_max_domain_id);
1148
apmask_show(struct bus_type * bus,char * buf)1149 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1150 {
1151 int rc;
1152
1153 if (mutex_lock_interruptible(&ap_perms_mutex))
1154 return -ERESTARTSYS;
1155 rc = snprintf(buf, PAGE_SIZE,
1156 "0x%016lx%016lx%016lx%016lx\n",
1157 ap_perms.apm[0], ap_perms.apm[1],
1158 ap_perms.apm[2], ap_perms.apm[3]);
1159 mutex_unlock(&ap_perms_mutex);
1160
1161 return rc;
1162 }
1163
apmask_store(struct bus_type * bus,const char * buf,size_t count)1164 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1165 size_t count)
1166 {
1167 int rc;
1168
1169 rc = process_mask_arg(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1170 if (rc)
1171 return rc;
1172
1173 ap_bus_revise_bindings();
1174
1175 return count;
1176 }
1177
1178 static BUS_ATTR_RW(apmask);
1179
aqmask_show(struct bus_type * bus,char * buf)1180 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1181 {
1182 int rc;
1183
1184 if (mutex_lock_interruptible(&ap_perms_mutex))
1185 return -ERESTARTSYS;
1186 rc = snprintf(buf, PAGE_SIZE,
1187 "0x%016lx%016lx%016lx%016lx\n",
1188 ap_perms.aqm[0], ap_perms.aqm[1],
1189 ap_perms.aqm[2], ap_perms.aqm[3]);
1190 mutex_unlock(&ap_perms_mutex);
1191
1192 return rc;
1193 }
1194
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1195 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1196 size_t count)
1197 {
1198 int rc;
1199
1200 rc = process_mask_arg(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1201 if (rc)
1202 return rc;
1203
1204 ap_bus_revise_bindings();
1205
1206 return count;
1207 }
1208
1209 static BUS_ATTR_RW(aqmask);
1210
1211 static struct bus_attribute *const ap_bus_attrs[] = {
1212 &bus_attr_ap_domain,
1213 &bus_attr_ap_control_domain_mask,
1214 &bus_attr_ap_usage_domain_mask,
1215 &bus_attr_config_time,
1216 &bus_attr_poll_thread,
1217 &bus_attr_ap_interrupts,
1218 &bus_attr_poll_timeout,
1219 &bus_attr_ap_max_domain_id,
1220 &bus_attr_apmask,
1221 &bus_attr_aqmask,
1222 NULL,
1223 };
1224
1225 /**
1226 * ap_select_domain(): Select an AP domain if possible and we haven't
1227 * already done so before.
1228 */
ap_select_domain(void)1229 static void ap_select_domain(void)
1230 {
1231 int count, max_count, best_domain;
1232 struct ap_queue_status status;
1233 int i, j;
1234
1235 /*
1236 * We want to use a single domain. Either the one specified with
1237 * the "domain=" parameter or the domain with the maximum number
1238 * of devices.
1239 */
1240 spin_lock_bh(&ap_domain_lock);
1241 if (ap_domain_index >= 0) {
1242 /* Domain has already been selected. */
1243 spin_unlock_bh(&ap_domain_lock);
1244 return;
1245 }
1246 best_domain = -1;
1247 max_count = 0;
1248 for (i = 0; i < AP_DOMAINS; i++) {
1249 if (!ap_test_config_domain(i) ||
1250 !test_bit_inv(i, ap_perms.aqm))
1251 continue;
1252 count = 0;
1253 for (j = 0; j < AP_DEVICES; j++) {
1254 if (!ap_test_config_card_id(j))
1255 continue;
1256 status = ap_test_queue(AP_MKQID(j, i),
1257 ap_apft_available(),
1258 NULL);
1259 if (status.response_code != AP_RESPONSE_NORMAL)
1260 continue;
1261 count++;
1262 }
1263 if (count > max_count) {
1264 max_count = count;
1265 best_domain = i;
1266 }
1267 }
1268 if (best_domain >= 0) {
1269 ap_domain_index = best_domain;
1270 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1271 }
1272 spin_unlock_bh(&ap_domain_lock);
1273 }
1274
1275 /*
1276 * This function checks the type and returns either 0 for not
1277 * supported or the highest compatible type value (which may
1278 * include the input type value).
1279 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1280 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1281 {
1282 int comp_type = 0;
1283
1284 /* < CEX2A is not supported */
1285 if (rawtype < AP_DEVICE_TYPE_CEX2A)
1286 return 0;
1287 /* up to CEX6 known and fully supported */
1288 if (rawtype <= AP_DEVICE_TYPE_CEX6)
1289 return rawtype;
1290 /*
1291 * unknown new type > CEX6, check for compatibility
1292 * to the highest known and supported type which is
1293 * currently CEX6 with the help of the QACT function.
1294 */
1295 if (ap_qact_available()) {
1296 struct ap_queue_status status;
1297 union ap_qact_ap_info apinfo = {0};
1298
1299 apinfo.mode = (func >> 26) & 0x07;
1300 apinfo.cat = AP_DEVICE_TYPE_CEX6;
1301 status = ap_qact(qid, 0, &apinfo);
1302 if (status.response_code == AP_RESPONSE_NORMAL
1303 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1304 && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1305 comp_type = apinfo.cat;
1306 }
1307 if (!comp_type)
1308 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1309 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1310 else if (comp_type != rawtype)
1311 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1312 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1313 return comp_type;
1314 }
1315
1316 /*
1317 * helper function to be used with bus_find_dev
1318 * matches for the card device with the given id
1319 */
__match_card_device_with_id(struct device * dev,void * data)1320 static int __match_card_device_with_id(struct device *dev, void *data)
1321 {
1322 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1323 }
1324
1325 /* helper function to be used with bus_find_dev
1326 * matches for the queue device with a given qid
1327 */
__match_queue_device_with_qid(struct device * dev,void * data)1328 static int __match_queue_device_with_qid(struct device *dev, void *data)
1329 {
1330 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1331 }
1332
1333 /**
1334 * ap_scan_bus(): Scan the AP bus for new devices
1335 * Runs periodically, workqueue timer (ap_config_time)
1336 */
ap_scan_bus(struct work_struct * unused)1337 static void ap_scan_bus(struct work_struct *unused)
1338 {
1339 struct ap_queue *aq;
1340 struct ap_card *ac;
1341 struct device *dev;
1342 ap_qid_t qid;
1343 int comp_type, depth = 0, type = 0;
1344 unsigned int func = 0;
1345 int rc, id, dom, borked, domains, defdomdevs = 0;
1346
1347 AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1348
1349 ap_query_configuration(ap_configuration);
1350 ap_select_domain();
1351
1352 for (id = 0; id < AP_DEVICES; id++) {
1353 /* check if device is registered */
1354 dev = bus_find_device(&ap_bus_type, NULL,
1355 (void *)(long) id,
1356 __match_card_device_with_id);
1357 ac = dev ? to_ap_card(dev) : NULL;
1358 if (!ap_test_config_card_id(id)) {
1359 if (dev) {
1360 /* Card device has been removed from
1361 * configuration, remove the belonging
1362 * queue devices.
1363 */
1364 bus_for_each_dev(&ap_bus_type, NULL,
1365 (void *)(long) id,
1366 __ap_queue_devices_with_id_unregister);
1367 /* now remove the card device */
1368 device_unregister(dev);
1369 put_device(dev);
1370 }
1371 continue;
1372 }
1373 /* According to the configuration there should be a card
1374 * device, so check if there is at least one valid queue
1375 * and maybe create queue devices and the card device.
1376 */
1377 domains = 0;
1378 for (dom = 0; dom < AP_DOMAINS; dom++) {
1379 qid = AP_MKQID(id, dom);
1380 dev = bus_find_device(&ap_bus_type, NULL,
1381 (void *)(long) qid,
1382 __match_queue_device_with_qid);
1383 aq = dev ? to_ap_queue(dev) : NULL;
1384 if (!ap_test_config_domain(dom)) {
1385 if (dev) {
1386 /* Queue device exists but has been
1387 * removed from configuration.
1388 */
1389 device_unregister(dev);
1390 put_device(dev);
1391 }
1392 continue;
1393 }
1394 rc = ap_query_queue(qid, &depth, &type, &func);
1395 if (dev) {
1396 spin_lock_bh(&aq->lock);
1397 if (rc == -ENODEV ||
1398 /* adapter reconfiguration */
1399 (ac && ac->functions != func))
1400 aq->state = AP_STATE_BORKED;
1401 borked = aq->state == AP_STATE_BORKED;
1402 spin_unlock_bh(&aq->lock);
1403 if (borked) /* Remove broken device */
1404 device_unregister(dev);
1405 put_device(dev);
1406 if (!borked) {
1407 domains++;
1408 if (dom == ap_domain_index)
1409 defdomdevs++;
1410 continue;
1411 }
1412 }
1413 if (rc)
1414 continue;
1415 /* a new queue device is needed, check out comp type */
1416 comp_type = ap_get_compatible_type(qid, type, func);
1417 if (!comp_type)
1418 continue;
1419 /* maybe a card device needs to be created first */
1420 if (!ac) {
1421 ac = ap_card_create(id, depth, type,
1422 comp_type, func);
1423 if (!ac)
1424 continue;
1425 ac->ap_dev.device.bus = &ap_bus_type;
1426 ac->ap_dev.device.parent = ap_root_device;
1427 dev_set_name(&ac->ap_dev.device,
1428 "card%02x", id);
1429 /* Register card with AP bus */
1430 rc = device_register(&ac->ap_dev.device);
1431 if (rc) {
1432 put_device(&ac->ap_dev.device);
1433 ac = NULL;
1434 break;
1435 }
1436 /* get it and thus adjust reference counter */
1437 get_device(&ac->ap_dev.device);
1438 }
1439 /* now create the new queue device */
1440 aq = ap_queue_create(qid, comp_type);
1441 if (!aq)
1442 continue;
1443 aq->card = ac;
1444 aq->ap_dev.device.bus = &ap_bus_type;
1445 aq->ap_dev.device.parent = &ac->ap_dev.device;
1446 dev_set_name(&aq->ap_dev.device,
1447 "%02x.%04x", id, dom);
1448 /* Register device */
1449 rc = device_register(&aq->ap_dev.device);
1450 if (rc) {
1451 put_device(&aq->ap_dev.device);
1452 continue;
1453 }
1454 domains++;
1455 if (dom == ap_domain_index)
1456 defdomdevs++;
1457 } /* end domain loop */
1458 if (ac) {
1459 /* remove card dev if there are no queue devices */
1460 if (!domains)
1461 device_unregister(&ac->ap_dev.device);
1462 put_device(&ac->ap_dev.device);
1463 }
1464 } /* end device loop */
1465
1466 if (ap_domain_index >= 0 && defdomdevs < 1)
1467 AP_DBF(DBF_INFO,
1468 "no queue device with default domain %d available\n",
1469 ap_domain_index);
1470
1471 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1472 }
1473
ap_config_timeout(struct timer_list * unused)1474 static void ap_config_timeout(struct timer_list *unused)
1475 {
1476 if (ap_suspend_flag)
1477 return;
1478 queue_work(system_long_wq, &ap_scan_work);
1479 }
1480
ap_debug_init(void)1481 static int __init ap_debug_init(void)
1482 {
1483 ap_dbf_info = debug_register("ap", 1, 1,
1484 DBF_MAX_SPRINTF_ARGS * sizeof(long));
1485 debug_register_view(ap_dbf_info, &debug_sprintf_view);
1486 debug_set_level(ap_dbf_info, DBF_ERR);
1487
1488 return 0;
1489 }
1490
ap_perms_init(void)1491 static void __init ap_perms_init(void)
1492 {
1493 /* all resources useable if no kernel parameter string given */
1494 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1495 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1496
1497 /* apm kernel parameter string */
1498 if (apm_str) {
1499 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1500 process_mask_arg(apm_str, ap_perms.apm, AP_DEVICES,
1501 &ap_perms_mutex);
1502 }
1503
1504 /* aqm kernel parameter string */
1505 if (aqm_str) {
1506 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1507 process_mask_arg(aqm_str, ap_perms.aqm, AP_DOMAINS,
1508 &ap_perms_mutex);
1509 }
1510 }
1511
1512 /**
1513 * ap_module_init(): The module initialization code.
1514 *
1515 * Initializes the module.
1516 */
ap_module_init(void)1517 static int __init ap_module_init(void)
1518 {
1519 int max_domain_id;
1520 int rc, i;
1521
1522 rc = ap_debug_init();
1523 if (rc)
1524 return rc;
1525
1526 if (!ap_instructions_available()) {
1527 pr_warn("The hardware system does not support AP instructions\n");
1528 return -ENODEV;
1529 }
1530
1531 /* set up the AP permissions (ap and aq masks) */
1532 ap_perms_init();
1533
1534 /* Get AP configuration data if available */
1535 ap_init_configuration();
1536
1537 if (ap_configuration)
1538 max_domain_id =
1539 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1540 else
1541 max_domain_id = 15;
1542 if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1543 (ap_domain_index >= 0 &&
1544 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1545 pr_warn("%d is not a valid cryptographic domain\n",
1546 ap_domain_index);
1547 ap_domain_index = -1;
1548 }
1549 /* In resume callback we need to know if the user had set the domain.
1550 * If so, we can not just reset it.
1551 */
1552 if (ap_domain_index >= 0)
1553 user_set_domain = 1;
1554
1555 if (ap_interrupts_available()) {
1556 rc = register_adapter_interrupt(&ap_airq);
1557 ap_airq_flag = (rc == 0);
1558 }
1559
1560 /* Create /sys/bus/ap. */
1561 rc = bus_register(&ap_bus_type);
1562 if (rc)
1563 goto out;
1564 for (i = 0; ap_bus_attrs[i]; i++) {
1565 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1566 if (rc)
1567 goto out_bus;
1568 }
1569
1570 /* Create /sys/devices/ap. */
1571 ap_root_device = root_device_register("ap");
1572 rc = PTR_ERR_OR_ZERO(ap_root_device);
1573 if (rc)
1574 goto out_bus;
1575
1576 /* Setup the AP bus rescan timer. */
1577 timer_setup(&ap_config_timer, ap_config_timeout, 0);
1578
1579 /*
1580 * Setup the high resultion poll timer.
1581 * If we are running under z/VM adjust polling to z/VM polling rate.
1582 */
1583 if (MACHINE_IS_VM)
1584 poll_timeout = 1500000;
1585 spin_lock_init(&ap_poll_timer_lock);
1586 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1587 ap_poll_timer.function = ap_poll_timeout;
1588
1589 /* Start the low priority AP bus poll thread. */
1590 if (ap_thread_flag) {
1591 rc = ap_poll_thread_start();
1592 if (rc)
1593 goto out_work;
1594 }
1595
1596 rc = register_pm_notifier(&ap_power_notifier);
1597 if (rc)
1598 goto out_pm;
1599
1600 queue_work(system_long_wq, &ap_scan_work);
1601 initialised = true;
1602
1603 return 0;
1604
1605 out_pm:
1606 ap_poll_thread_stop();
1607 out_work:
1608 hrtimer_cancel(&ap_poll_timer);
1609 root_device_unregister(ap_root_device);
1610 out_bus:
1611 while (i--)
1612 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1613 bus_unregister(&ap_bus_type);
1614 out:
1615 if (ap_using_interrupts())
1616 unregister_adapter_interrupt(&ap_airq);
1617 kfree(ap_configuration);
1618 return rc;
1619 }
1620 device_initcall(ap_module_init);
1621