1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt Cactus Ridge driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sched/signal.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_DEVID		0x05
22 #define NVM_VERSION		0x08
23 #define NVM_CSS			0x10
24 #define NVM_FLASH_SIZE		0x45
25 
26 #define NVM_MIN_SIZE		SZ_32K
27 #define NVM_MAX_SIZE		SZ_512K
28 
29 static DEFINE_IDA(nvm_ida);
30 
31 struct nvm_auth_status {
32 	struct list_head list;
33 	uuid_t uuid;
34 	u32 status;
35 };
36 
37 /*
38  * Hold NVM authentication failure status per switch This information
39  * needs to stay around even when the switch gets power cycled so we
40  * keep it separately.
41  */
42 static LIST_HEAD(nvm_auth_status_cache);
43 static DEFINE_MUTEX(nvm_auth_status_lock);
44 
__nvm_get_auth_status(const struct tb_switch * sw)45 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
46 {
47 	struct nvm_auth_status *st;
48 
49 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
50 		if (uuid_equal(&st->uuid, sw->uuid))
51 			return st;
52 	}
53 
54 	return NULL;
55 }
56 
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)57 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
58 {
59 	struct nvm_auth_status *st;
60 
61 	mutex_lock(&nvm_auth_status_lock);
62 	st = __nvm_get_auth_status(sw);
63 	mutex_unlock(&nvm_auth_status_lock);
64 
65 	*status = st ? st->status : 0;
66 }
67 
nvm_set_auth_status(const struct tb_switch * sw,u32 status)68 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
69 {
70 	struct nvm_auth_status *st;
71 
72 	if (WARN_ON(!sw->uuid))
73 		return;
74 
75 	mutex_lock(&nvm_auth_status_lock);
76 	st = __nvm_get_auth_status(sw);
77 
78 	if (!st) {
79 		st = kzalloc(sizeof(*st), GFP_KERNEL);
80 		if (!st)
81 			goto unlock;
82 
83 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
84 		INIT_LIST_HEAD(&st->list);
85 		list_add_tail(&st->list, &nvm_auth_status_cache);
86 	}
87 
88 	st->status = status;
89 unlock:
90 	mutex_unlock(&nvm_auth_status_lock);
91 }
92 
nvm_clear_auth_status(const struct tb_switch * sw)93 static void nvm_clear_auth_status(const struct tb_switch *sw)
94 {
95 	struct nvm_auth_status *st;
96 
97 	mutex_lock(&nvm_auth_status_lock);
98 	st = __nvm_get_auth_status(sw);
99 	if (st) {
100 		list_del(&st->list);
101 		kfree(st);
102 	}
103 	mutex_unlock(&nvm_auth_status_lock);
104 }
105 
nvm_validate_and_write(struct tb_switch * sw)106 static int nvm_validate_and_write(struct tb_switch *sw)
107 {
108 	unsigned int image_size, hdr_size;
109 	const u8 *buf = sw->nvm->buf;
110 	u16 ds_size;
111 	int ret;
112 
113 	if (!buf)
114 		return -EINVAL;
115 
116 	image_size = sw->nvm->buf_data_size;
117 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
118 		return -EINVAL;
119 
120 	/*
121 	 * FARB pointer must point inside the image and must at least
122 	 * contain parts of the digital section we will be reading here.
123 	 */
124 	hdr_size = (*(u32 *)buf) & 0xffffff;
125 	if (hdr_size + NVM_DEVID + 2 >= image_size)
126 		return -EINVAL;
127 
128 	/* Digital section start should be aligned to 4k page */
129 	if (!IS_ALIGNED(hdr_size, SZ_4K))
130 		return -EINVAL;
131 
132 	/*
133 	 * Read digital section size and check that it also fits inside
134 	 * the image.
135 	 */
136 	ds_size = *(u16 *)(buf + hdr_size);
137 	if (ds_size >= image_size)
138 		return -EINVAL;
139 
140 	if (!sw->safe_mode) {
141 		u16 device_id;
142 
143 		/*
144 		 * Make sure the device ID in the image matches the one
145 		 * we read from the switch config space.
146 		 */
147 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
148 		if (device_id != sw->config.device_id)
149 			return -EINVAL;
150 
151 		if (sw->generation < 3) {
152 			/* Write CSS headers first */
153 			ret = dma_port_flash_write(sw->dma_port,
154 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
155 				DMA_PORT_CSS_MAX_SIZE);
156 			if (ret)
157 				return ret;
158 		}
159 
160 		/* Skip headers in the image */
161 		buf += hdr_size;
162 		image_size -= hdr_size;
163 	}
164 
165 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 }
167 
nvm_authenticate_host(struct tb_switch * sw)168 static int nvm_authenticate_host(struct tb_switch *sw)
169 {
170 	int ret = 0;
171 
172 	/*
173 	 * Root switch NVM upgrade requires that we disconnect the
174 	 * existing paths first (in case it is not in safe mode
175 	 * already).
176 	 */
177 	if (!sw->safe_mode) {
178 		u32 status;
179 
180 		ret = tb_domain_disconnect_all_paths(sw->tb);
181 		if (ret)
182 			return ret;
183 		/*
184 		 * The host controller goes away pretty soon after this if
185 		 * everything goes well so getting timeout is expected.
186 		 */
187 		ret = dma_port_flash_update_auth(sw->dma_port);
188 		if (!ret || ret == -ETIMEDOUT)
189 			return 0;
190 
191 		/*
192 		 * Any error from update auth operation requires power
193 		 * cycling of the host router.
194 		 */
195 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
196 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
197 			nvm_set_auth_status(sw, status);
198 	}
199 
200 	/*
201 	 * From safe mode we can get out by just power cycling the
202 	 * switch.
203 	 */
204 	dma_port_power_cycle(sw->dma_port);
205 	return ret;
206 }
207 
nvm_authenticate_device(struct tb_switch * sw)208 static int nvm_authenticate_device(struct tb_switch *sw)
209 {
210 	int ret, retries = 10;
211 
212 	ret = dma_port_flash_update_auth(sw->dma_port);
213 	switch (ret) {
214 	case 0:
215 	case -ETIMEDOUT:
216 	case -EACCES:
217 	case -EINVAL:
218 		/* Power cycle is required */
219 		break;
220 	default:
221 		return ret;
222 	}
223 
224 	/*
225 	 * Poll here for the authentication status. It takes some time
226 	 * for the device to respond (we get timeout for a while). Once
227 	 * we get response the device needs to be power cycled in order
228 	 * to the new NVM to be taken into use.
229 	 */
230 	do {
231 		u32 status;
232 
233 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
234 		if (ret < 0 && ret != -ETIMEDOUT)
235 			return ret;
236 		if (ret > 0) {
237 			if (status) {
238 				tb_sw_warn(sw, "failed to authenticate NVM\n");
239 				nvm_set_auth_status(sw, status);
240 			}
241 
242 			tb_sw_info(sw, "power cycling the switch now\n");
243 			dma_port_power_cycle(sw->dma_port);
244 			return 0;
245 		}
246 
247 		msleep(500);
248 	} while (--retries);
249 
250 	return -ETIMEDOUT;
251 }
252 
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)253 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
254 			      size_t bytes)
255 {
256 	struct tb_switch *sw = priv;
257 	int ret;
258 
259 	pm_runtime_get_sync(&sw->dev);
260 	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
261 	pm_runtime_mark_last_busy(&sw->dev);
262 	pm_runtime_put_autosuspend(&sw->dev);
263 
264 	return ret;
265 }
266 
tb_switch_nvm_no_read(void * priv,unsigned int offset,void * val,size_t bytes)267 static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val,
268 				 size_t bytes)
269 {
270 	return -EPERM;
271 }
272 
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)273 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
274 			       size_t bytes)
275 {
276 	struct tb_switch *sw = priv;
277 	int ret = 0;
278 
279 	if (!mutex_trylock(&sw->tb->lock))
280 		return restart_syscall();
281 
282 	/*
283 	 * Since writing the NVM image might require some special steps,
284 	 * for example when CSS headers are written, we cache the image
285 	 * locally here and handle the special cases when the user asks
286 	 * us to authenticate the image.
287 	 */
288 	if (!sw->nvm->buf) {
289 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
290 		if (!sw->nvm->buf) {
291 			ret = -ENOMEM;
292 			goto unlock;
293 		}
294 	}
295 
296 	sw->nvm->buf_data_size = offset + bytes;
297 	memcpy(sw->nvm->buf + offset, val, bytes);
298 
299 unlock:
300 	mutex_unlock(&sw->tb->lock);
301 
302 	return ret;
303 }
304 
register_nvmem(struct tb_switch * sw,int id,size_t size,bool active)305 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
306 					   size_t size, bool active)
307 {
308 	struct nvmem_config config;
309 
310 	memset(&config, 0, sizeof(config));
311 
312 	if (active) {
313 		config.name = "nvm_active";
314 		config.reg_read = tb_switch_nvm_read;
315 		config.read_only = true;
316 	} else {
317 		config.name = "nvm_non_active";
318 		config.reg_read = tb_switch_nvm_no_read;
319 		config.reg_write = tb_switch_nvm_write;
320 		config.root_only = true;
321 	}
322 
323 	config.id = id;
324 	config.stride = 4;
325 	config.word_size = 4;
326 	config.size = size;
327 	config.dev = &sw->dev;
328 	config.owner = THIS_MODULE;
329 	config.priv = sw;
330 
331 	return nvmem_register(&config);
332 }
333 
tb_switch_nvm_add(struct tb_switch * sw)334 static int tb_switch_nvm_add(struct tb_switch *sw)
335 {
336 	struct nvmem_device *nvm_dev;
337 	struct tb_switch_nvm *nvm;
338 	u32 val;
339 	int ret;
340 
341 	if (!sw->dma_port)
342 		return 0;
343 
344 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
345 	if (!nvm)
346 		return -ENOMEM;
347 
348 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
349 
350 	/*
351 	 * If the switch is in safe-mode the only accessible portion of
352 	 * the NVM is the non-active one where userspace is expected to
353 	 * write new functional NVM.
354 	 */
355 	if (!sw->safe_mode) {
356 		u32 nvm_size, hdr_size;
357 
358 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
359 					  sizeof(val));
360 		if (ret)
361 			goto err_ida;
362 
363 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
364 		nvm_size = (SZ_1M << (val & 7)) / 8;
365 		nvm_size = (nvm_size - hdr_size) / 2;
366 
367 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
368 					  sizeof(val));
369 		if (ret)
370 			goto err_ida;
371 
372 		nvm->major = val >> 16;
373 		nvm->minor = val >> 8;
374 
375 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
376 		if (IS_ERR(nvm_dev)) {
377 			ret = PTR_ERR(nvm_dev);
378 			goto err_ida;
379 		}
380 		nvm->active = nvm_dev;
381 	}
382 
383 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
384 	if (IS_ERR(nvm_dev)) {
385 		ret = PTR_ERR(nvm_dev);
386 		goto err_nvm_active;
387 	}
388 	nvm->non_active = nvm_dev;
389 
390 	sw->nvm = nvm;
391 	return 0;
392 
393 err_nvm_active:
394 	if (nvm->active)
395 		nvmem_unregister(nvm->active);
396 err_ida:
397 	ida_simple_remove(&nvm_ida, nvm->id);
398 	kfree(nvm);
399 
400 	return ret;
401 }
402 
tb_switch_nvm_remove(struct tb_switch * sw)403 static void tb_switch_nvm_remove(struct tb_switch *sw)
404 {
405 	struct tb_switch_nvm *nvm;
406 
407 	nvm = sw->nvm;
408 	sw->nvm = NULL;
409 
410 	if (!nvm)
411 		return;
412 
413 	/* Remove authentication status in case the switch is unplugged */
414 	if (!nvm->authenticating)
415 		nvm_clear_auth_status(sw);
416 
417 	nvmem_unregister(nvm->non_active);
418 	if (nvm->active)
419 		nvmem_unregister(nvm->active);
420 	ida_simple_remove(&nvm_ida, nvm->id);
421 	vfree(nvm->buf);
422 	kfree(nvm);
423 }
424 
425 /* port utility functions */
426 
tb_port_type(struct tb_regs_port_header * port)427 static const char *tb_port_type(struct tb_regs_port_header *port)
428 {
429 	switch (port->type >> 16) {
430 	case 0:
431 		switch ((u8) port->type) {
432 		case 0:
433 			return "Inactive";
434 		case 1:
435 			return "Port";
436 		case 2:
437 			return "NHI";
438 		default:
439 			return "unknown";
440 		}
441 	case 0x2:
442 		return "Ethernet";
443 	case 0x8:
444 		return "SATA";
445 	case 0xe:
446 		return "DP/HDMI";
447 	case 0x10:
448 		return "PCIe";
449 	case 0x20:
450 		return "USB";
451 	default:
452 		return "unknown";
453 	}
454 }
455 
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)456 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
457 {
458 	tb_info(tb,
459 		" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
460 		port->port_number, port->vendor_id, port->device_id,
461 		port->revision, port->thunderbolt_version, tb_port_type(port),
462 		port->type);
463 	tb_info(tb, "  Max hop id (in/out): %d/%d\n",
464 		port->max_in_hop_id, port->max_out_hop_id);
465 	tb_info(tb, "  Max counters: %d\n", port->max_counters);
466 	tb_info(tb, "  NFC Credits: %#x\n", port->nfc_credits);
467 }
468 
469 /**
470  * tb_port_state() - get connectedness state of a port
471  *
472  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
473  *
474  * Return: Returns an enum tb_port_state on success or an error code on failure.
475  */
tb_port_state(struct tb_port * port)476 static int tb_port_state(struct tb_port *port)
477 {
478 	struct tb_cap_phy phy;
479 	int res;
480 	if (port->cap_phy == 0) {
481 		tb_port_WARN(port, "does not have a PHY\n");
482 		return -EINVAL;
483 	}
484 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
485 	if (res)
486 		return res;
487 	return phy.state;
488 }
489 
490 /**
491  * tb_wait_for_port() - wait for a port to become ready
492  *
493  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
494  * wait_if_unplugged is set then we also wait if the port is in state
495  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
496  * switch resume). Otherwise we only wait if a device is registered but the link
497  * has not yet been established.
498  *
499  * Return: Returns an error code on failure. Returns 0 if the port is not
500  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
501  * if the port is connected and in state TB_PORT_UP.
502  */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)503 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
504 {
505 	int retries = 10;
506 	int state;
507 	if (!port->cap_phy) {
508 		tb_port_WARN(port, "does not have PHY\n");
509 		return -EINVAL;
510 	}
511 	if (tb_is_upstream_port(port)) {
512 		tb_port_WARN(port, "is the upstream port\n");
513 		return -EINVAL;
514 	}
515 
516 	while (retries--) {
517 		state = tb_port_state(port);
518 		if (state < 0)
519 			return state;
520 		if (state == TB_PORT_DISABLED) {
521 			tb_port_info(port, "is disabled (state: 0)\n");
522 			return 0;
523 		}
524 		if (state == TB_PORT_UNPLUGGED) {
525 			if (wait_if_unplugged) {
526 				/* used during resume */
527 				tb_port_info(port,
528 					     "is unplugged (state: 7), retrying...\n");
529 				msleep(100);
530 				continue;
531 			}
532 			tb_port_info(port, "is unplugged (state: 7)\n");
533 			return 0;
534 		}
535 		if (state == TB_PORT_UP) {
536 			tb_port_info(port,
537 				     "is connected, link is up (state: 2)\n");
538 			return 1;
539 		}
540 
541 		/*
542 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 		 * time.
544 		 */
545 		tb_port_info(port,
546 			     "is connected, link is not up (state: %d), retrying...\n",
547 			     state);
548 		msleep(100);
549 	}
550 	tb_port_warn(port,
551 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
552 	return 0;
553 }
554 
555 /**
556  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
557  *
558  * Change the number of NFC credits allocated to @port by @credits. To remove
559  * NFC credits pass a negative amount of credits.
560  *
561  * Return: Returns 0 on success or an error code on failure.
562  */
tb_port_add_nfc_credits(struct tb_port * port,int credits)563 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
564 {
565 	if (credits == 0)
566 		return 0;
567 	tb_port_info(port,
568 		     "adding %#x NFC credits (%#x -> %#x)",
569 		     credits,
570 		     port->config.nfc_credits,
571 		     port->config.nfc_credits + credits);
572 	port->config.nfc_credits += credits;
573 	return tb_port_write(port, &port->config.nfc_credits,
574 			     TB_CFG_PORT, 4, 1);
575 }
576 
577 /**
578  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
579  *
580  * Return: Returns 0 on success or an error code on failure.
581  */
tb_port_clear_counter(struct tb_port * port,int counter)582 int tb_port_clear_counter(struct tb_port *port, int counter)
583 {
584 	u32 zero[3] = { 0, 0, 0 };
585 	tb_port_info(port, "clearing counter %d\n", counter);
586 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
587 }
588 
589 /**
590  * tb_init_port() - initialize a port
591  *
592  * This is a helper method for tb_switch_alloc. Does not check or initialize
593  * any downstream switches.
594  *
595  * Return: Returns 0 on success or an error code on failure.
596  */
tb_init_port(struct tb_port * port)597 static int tb_init_port(struct tb_port *port)
598 {
599 	int res;
600 	int cap;
601 
602 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
603 	if (res)
604 		return res;
605 
606 	/* Port 0 is the switch itself and has no PHY. */
607 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
608 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
609 
610 		if (cap > 0)
611 			port->cap_phy = cap;
612 		else
613 			tb_port_WARN(port, "non switch port without a PHY\n");
614 	}
615 
616 	tb_dump_port(port->sw->tb, &port->config);
617 
618 	/* TODO: Read dual link port, DP port and more from EEPROM. */
619 	return 0;
620 
621 }
622 
623 /* switch utility functions */
624 
tb_dump_switch(struct tb * tb,struct tb_regs_switch_header * sw)625 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
626 {
627 	tb_info(tb,
628 		" Switch: %x:%x (Revision: %d, TB Version: %d)\n",
629 		sw->vendor_id, sw->device_id, sw->revision,
630 		sw->thunderbolt_version);
631 	tb_info(tb, "  Max Port Number: %d\n", sw->max_port_number);
632 	tb_info(tb, "  Config:\n");
633 	tb_info(tb,
634 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
635 		sw->upstream_port_number, sw->depth,
636 		(((u64) sw->route_hi) << 32) | sw->route_lo,
637 		sw->enabled, sw->plug_events_delay);
638 	tb_info(tb,
639 		"   unknown1: %#x unknown4: %#x\n",
640 		sw->__unknown1, sw->__unknown4);
641 }
642 
643 /**
644  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
645  *
646  * Return: Returns 0 on success or an error code on failure.
647  */
tb_switch_reset(struct tb * tb,u64 route)648 int tb_switch_reset(struct tb *tb, u64 route)
649 {
650 	struct tb_cfg_result res;
651 	struct tb_regs_switch_header header = {
652 		header.route_hi = route >> 32,
653 		header.route_lo = route,
654 		header.enabled = true,
655 	};
656 	tb_info(tb, "resetting switch at %llx\n", route);
657 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
658 			0, 2, 2, 2);
659 	if (res.err)
660 		return res.err;
661 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
662 	if (res.err > 0)
663 		return -EIO;
664 	return res.err;
665 }
666 
667 /**
668  * tb_plug_events_active() - enable/disable plug events on a switch
669  *
670  * Also configures a sane plug_events_delay of 255ms.
671  *
672  * Return: Returns 0 on success or an error code on failure.
673  */
tb_plug_events_active(struct tb_switch * sw,bool active)674 static int tb_plug_events_active(struct tb_switch *sw, bool active)
675 {
676 	u32 data;
677 	int res;
678 
679 	if (!sw->config.enabled)
680 		return 0;
681 
682 	sw->config.plug_events_delay = 0xff;
683 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
684 	if (res)
685 		return res;
686 
687 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
688 	if (res)
689 		return res;
690 
691 	if (active) {
692 		data = data & 0xFFFFFF83;
693 		switch (sw->config.device_id) {
694 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
695 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
696 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
697 			break;
698 		default:
699 			data |= 4;
700 		}
701 	} else {
702 		data = data | 0x7c;
703 	}
704 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
705 			   sw->cap_plug_events + 1, 1);
706 }
707 
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)708 static ssize_t authorized_show(struct device *dev,
709 			       struct device_attribute *attr,
710 			       char *buf)
711 {
712 	struct tb_switch *sw = tb_to_switch(dev);
713 
714 	return sprintf(buf, "%u\n", sw->authorized);
715 }
716 
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)717 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
718 {
719 	int ret = -EINVAL;
720 
721 	if (!mutex_trylock(&sw->tb->lock))
722 		return restart_syscall();
723 
724 	if (sw->authorized)
725 		goto unlock;
726 
727 	/*
728 	 * Make sure there is no PCIe rescan ongoing when a new PCIe
729 	 * tunnel is created. Otherwise the PCIe rescan code might find
730 	 * the new tunnel too early.
731 	 */
732 	pci_lock_rescan_remove();
733 	pm_runtime_get_sync(&sw->dev);
734 
735 	switch (val) {
736 	/* Approve switch */
737 	case 1:
738 		if (sw->key)
739 			ret = tb_domain_approve_switch_key(sw->tb, sw);
740 		else
741 			ret = tb_domain_approve_switch(sw->tb, sw);
742 		break;
743 
744 	/* Challenge switch */
745 	case 2:
746 		if (sw->key)
747 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
748 		break;
749 
750 	default:
751 		break;
752 	}
753 
754 	pm_runtime_mark_last_busy(&sw->dev);
755 	pm_runtime_put_autosuspend(&sw->dev);
756 	pci_unlock_rescan_remove();
757 
758 	if (!ret) {
759 		sw->authorized = val;
760 		/* Notify status change to the userspace */
761 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
762 	}
763 
764 unlock:
765 	mutex_unlock(&sw->tb->lock);
766 	return ret;
767 }
768 
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)769 static ssize_t authorized_store(struct device *dev,
770 				struct device_attribute *attr,
771 				const char *buf, size_t count)
772 {
773 	struct tb_switch *sw = tb_to_switch(dev);
774 	unsigned int val;
775 	ssize_t ret;
776 
777 	ret = kstrtouint(buf, 0, &val);
778 	if (ret)
779 		return ret;
780 	if (val > 2)
781 		return -EINVAL;
782 
783 	ret = tb_switch_set_authorized(sw, val);
784 
785 	return ret ? ret : count;
786 }
787 static DEVICE_ATTR_RW(authorized);
788 
boot_show(struct device * dev,struct device_attribute * attr,char * buf)789 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
790 			 char *buf)
791 {
792 	struct tb_switch *sw = tb_to_switch(dev);
793 
794 	return sprintf(buf, "%u\n", sw->boot);
795 }
796 static DEVICE_ATTR_RO(boot);
797 
device_show(struct device * dev,struct device_attribute * attr,char * buf)798 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
799 			   char *buf)
800 {
801 	struct tb_switch *sw = tb_to_switch(dev);
802 
803 	return sprintf(buf, "%#x\n", sw->device);
804 }
805 static DEVICE_ATTR_RO(device);
806 
807 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)808 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
809 {
810 	struct tb_switch *sw = tb_to_switch(dev);
811 
812 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
813 }
814 static DEVICE_ATTR_RO(device_name);
815 
key_show(struct device * dev,struct device_attribute * attr,char * buf)816 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
817 			char *buf)
818 {
819 	struct tb_switch *sw = tb_to_switch(dev);
820 	ssize_t ret;
821 
822 	if (!mutex_trylock(&sw->tb->lock))
823 		return restart_syscall();
824 
825 	if (sw->key)
826 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
827 	else
828 		ret = sprintf(buf, "\n");
829 
830 	mutex_unlock(&sw->tb->lock);
831 	return ret;
832 }
833 
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)834 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
835 			 const char *buf, size_t count)
836 {
837 	struct tb_switch *sw = tb_to_switch(dev);
838 	u8 key[TB_SWITCH_KEY_SIZE];
839 	ssize_t ret = count;
840 	bool clear = false;
841 
842 	if (!strcmp(buf, "\n"))
843 		clear = true;
844 	else if (hex2bin(key, buf, sizeof(key)))
845 		return -EINVAL;
846 
847 	if (!mutex_trylock(&sw->tb->lock))
848 		return restart_syscall();
849 
850 	if (sw->authorized) {
851 		ret = -EBUSY;
852 	} else {
853 		kfree(sw->key);
854 		if (clear) {
855 			sw->key = NULL;
856 		} else {
857 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
858 			if (!sw->key)
859 				ret = -ENOMEM;
860 		}
861 	}
862 
863 	mutex_unlock(&sw->tb->lock);
864 	return ret;
865 }
866 static DEVICE_ATTR(key, 0600, key_show, key_store);
867 
nvm_authenticate_start(struct tb_switch * sw)868 static void nvm_authenticate_start(struct tb_switch *sw)
869 {
870 	struct pci_dev *root_port;
871 
872 	/*
873 	 * During host router NVM upgrade we should not allow root port to
874 	 * go into D3cold because some root ports cannot trigger PME
875 	 * itself. To be on the safe side keep the root port in D0 during
876 	 * the whole upgrade process.
877 	 */
878 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
879 	if (root_port)
880 		pm_runtime_get_noresume(&root_port->dev);
881 }
882 
nvm_authenticate_complete(struct tb_switch * sw)883 static void nvm_authenticate_complete(struct tb_switch *sw)
884 {
885 	struct pci_dev *root_port;
886 
887 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
888 	if (root_port)
889 		pm_runtime_put(&root_port->dev);
890 }
891 
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)892 static ssize_t nvm_authenticate_show(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct tb_switch *sw = tb_to_switch(dev);
896 	u32 status;
897 
898 	nvm_get_auth_status(sw, &status);
899 	return sprintf(buf, "%#x\n", status);
900 }
901 
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)902 static ssize_t nvm_authenticate_store(struct device *dev,
903 	struct device_attribute *attr, const char *buf, size_t count)
904 {
905 	struct tb_switch *sw = tb_to_switch(dev);
906 	bool val;
907 	int ret;
908 
909 	if (!mutex_trylock(&sw->tb->lock))
910 		return restart_syscall();
911 
912 	/* If NVMem devices are not yet added */
913 	if (!sw->nvm) {
914 		ret = -EAGAIN;
915 		goto exit_unlock;
916 	}
917 
918 	ret = kstrtobool(buf, &val);
919 	if (ret)
920 		goto exit_unlock;
921 
922 	/* Always clear the authentication status */
923 	nvm_clear_auth_status(sw);
924 
925 	if (val) {
926 		if (!sw->nvm->buf) {
927 			ret = -EINVAL;
928 			goto exit_unlock;
929 		}
930 
931 		pm_runtime_get_sync(&sw->dev);
932 		ret = nvm_validate_and_write(sw);
933 		if (ret) {
934 			pm_runtime_mark_last_busy(&sw->dev);
935 			pm_runtime_put_autosuspend(&sw->dev);
936 			goto exit_unlock;
937 		}
938 
939 		sw->nvm->authenticating = true;
940 
941 		if (!tb_route(sw)) {
942 			/*
943 			 * Keep root port from suspending as long as the
944 			 * NVM upgrade process is running.
945 			 */
946 			nvm_authenticate_start(sw);
947 			ret = nvm_authenticate_host(sw);
948 		} else {
949 			ret = nvm_authenticate_device(sw);
950 		}
951 		pm_runtime_mark_last_busy(&sw->dev);
952 		pm_runtime_put_autosuspend(&sw->dev);
953 	}
954 
955 exit_unlock:
956 	mutex_unlock(&sw->tb->lock);
957 
958 	if (ret)
959 		return ret;
960 	return count;
961 }
962 static DEVICE_ATTR_RW(nvm_authenticate);
963 
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)964 static ssize_t nvm_version_show(struct device *dev,
965 				struct device_attribute *attr, char *buf)
966 {
967 	struct tb_switch *sw = tb_to_switch(dev);
968 	int ret;
969 
970 	if (!mutex_trylock(&sw->tb->lock))
971 		return restart_syscall();
972 
973 	if (sw->safe_mode)
974 		ret = -ENODATA;
975 	else if (!sw->nvm)
976 		ret = -EAGAIN;
977 	else
978 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
979 
980 	mutex_unlock(&sw->tb->lock);
981 
982 	return ret;
983 }
984 static DEVICE_ATTR_RO(nvm_version);
985 
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)986 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
987 			   char *buf)
988 {
989 	struct tb_switch *sw = tb_to_switch(dev);
990 
991 	return sprintf(buf, "%#x\n", sw->vendor);
992 }
993 static DEVICE_ATTR_RO(vendor);
994 
995 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)996 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
997 {
998 	struct tb_switch *sw = tb_to_switch(dev);
999 
1000 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1001 }
1002 static DEVICE_ATTR_RO(vendor_name);
1003 
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1004 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1005 			      char *buf)
1006 {
1007 	struct tb_switch *sw = tb_to_switch(dev);
1008 
1009 	return sprintf(buf, "%pUb\n", sw->uuid);
1010 }
1011 static DEVICE_ATTR_RO(unique_id);
1012 
1013 static struct attribute *switch_attrs[] = {
1014 	&dev_attr_authorized.attr,
1015 	&dev_attr_boot.attr,
1016 	&dev_attr_device.attr,
1017 	&dev_attr_device_name.attr,
1018 	&dev_attr_key.attr,
1019 	&dev_attr_nvm_authenticate.attr,
1020 	&dev_attr_nvm_version.attr,
1021 	&dev_attr_vendor.attr,
1022 	&dev_attr_vendor_name.attr,
1023 	&dev_attr_unique_id.attr,
1024 	NULL,
1025 };
1026 
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1027 static umode_t switch_attr_is_visible(struct kobject *kobj,
1028 				      struct attribute *attr, int n)
1029 {
1030 	struct device *dev = container_of(kobj, struct device, kobj);
1031 	struct tb_switch *sw = tb_to_switch(dev);
1032 
1033 	if (attr == &dev_attr_key.attr) {
1034 		if (tb_route(sw) &&
1035 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1036 		    sw->security_level == TB_SECURITY_SECURE)
1037 			return attr->mode;
1038 		return 0;
1039 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
1040 		   attr == &dev_attr_nvm_version.attr) {
1041 		if (sw->dma_port)
1042 			return attr->mode;
1043 		return 0;
1044 	} else if (attr == &dev_attr_boot.attr) {
1045 		if (tb_route(sw))
1046 			return attr->mode;
1047 		return 0;
1048 	}
1049 
1050 	return sw->safe_mode ? 0 : attr->mode;
1051 }
1052 
1053 static struct attribute_group switch_group = {
1054 	.is_visible = switch_attr_is_visible,
1055 	.attrs = switch_attrs,
1056 };
1057 
1058 static const struct attribute_group *switch_groups[] = {
1059 	&switch_group,
1060 	NULL,
1061 };
1062 
tb_switch_release(struct device * dev)1063 static void tb_switch_release(struct device *dev)
1064 {
1065 	struct tb_switch *sw = tb_to_switch(dev);
1066 
1067 	dma_port_free(sw->dma_port);
1068 
1069 	kfree(sw->uuid);
1070 	kfree(sw->device_name);
1071 	kfree(sw->vendor_name);
1072 	kfree(sw->ports);
1073 	kfree(sw->drom);
1074 	kfree(sw->key);
1075 	kfree(sw);
1076 }
1077 
1078 /*
1079  * Currently only need to provide the callbacks. Everything else is handled
1080  * in the connection manager.
1081  */
tb_switch_runtime_suspend(struct device * dev)1082 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1083 {
1084 	return 0;
1085 }
1086 
tb_switch_runtime_resume(struct device * dev)1087 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1088 {
1089 	return 0;
1090 }
1091 
1092 static const struct dev_pm_ops tb_switch_pm_ops = {
1093 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1094 			   NULL)
1095 };
1096 
1097 struct device_type tb_switch_type = {
1098 	.name = "thunderbolt_device",
1099 	.release = tb_switch_release,
1100 	.pm = &tb_switch_pm_ops,
1101 };
1102 
tb_switch_get_generation(struct tb_switch * sw)1103 static int tb_switch_get_generation(struct tb_switch *sw)
1104 {
1105 	switch (sw->config.device_id) {
1106 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1107 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1108 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1109 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1110 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1111 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1112 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1113 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1114 		return 1;
1115 
1116 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1117 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1118 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1119 		return 2;
1120 
1121 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1122 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1123 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1124 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1125 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1126 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1127 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1128 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1129 		return 3;
1130 
1131 	default:
1132 		/*
1133 		 * For unknown switches assume generation to be 1 to be
1134 		 * on the safe side.
1135 		 */
1136 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1137 			   sw->config.device_id);
1138 		return 1;
1139 	}
1140 }
1141 
1142 /**
1143  * tb_switch_alloc() - allocate a switch
1144  * @tb: Pointer to the owning domain
1145  * @parent: Parent device for this switch
1146  * @route: Route string for this switch
1147  *
1148  * Allocates and initializes a switch. Will not upload configuration to
1149  * the switch. For that you need to call tb_switch_configure()
1150  * separately. The returned switch should be released by calling
1151  * tb_switch_put().
1152  *
1153  * Return: Pointer to the allocated switch or %NULL in case of failure
1154  */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1155 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1156 				  u64 route)
1157 {
1158 	int i;
1159 	int cap;
1160 	struct tb_switch *sw;
1161 	int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1162 	if (upstream_port < 0)
1163 		return NULL;
1164 
1165 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1166 	if (!sw)
1167 		return NULL;
1168 
1169 	sw->tb = tb;
1170 	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1171 		goto err_free_sw_ports;
1172 
1173 	tb_info(tb, "current switch config:\n");
1174 	tb_dump_switch(tb, &sw->config);
1175 
1176 	/* configure switch */
1177 	sw->config.upstream_port_number = upstream_port;
1178 	sw->config.depth = tb_route_length(route);
1179 	sw->config.route_lo = route;
1180 	sw->config.route_hi = route >> 32;
1181 	sw->config.enabled = 0;
1182 
1183 	/* initialize ports */
1184 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1185 				GFP_KERNEL);
1186 	if (!sw->ports)
1187 		goto err_free_sw_ports;
1188 
1189 	for (i = 0; i <= sw->config.max_port_number; i++) {
1190 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1191 		sw->ports[i].sw = sw;
1192 		sw->ports[i].port = i;
1193 	}
1194 
1195 	sw->generation = tb_switch_get_generation(sw);
1196 
1197 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1198 	if (cap < 0) {
1199 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1200 		goto err_free_sw_ports;
1201 	}
1202 	sw->cap_plug_events = cap;
1203 
1204 	/* Root switch is always authorized */
1205 	if (!route)
1206 		sw->authorized = true;
1207 
1208 	device_initialize(&sw->dev);
1209 	sw->dev.parent = parent;
1210 	sw->dev.bus = &tb_bus_type;
1211 	sw->dev.type = &tb_switch_type;
1212 	sw->dev.groups = switch_groups;
1213 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1214 
1215 	return sw;
1216 
1217 err_free_sw_ports:
1218 	kfree(sw->ports);
1219 	kfree(sw);
1220 
1221 	return NULL;
1222 }
1223 
1224 /**
1225  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1226  * @tb: Pointer to the owning domain
1227  * @parent: Parent device for this switch
1228  * @route: Route string for this switch
1229  *
1230  * This creates a switch in safe mode. This means the switch pretty much
1231  * lacks all capabilities except DMA configuration port before it is
1232  * flashed with a valid NVM firmware.
1233  *
1234  * The returned switch must be released by calling tb_switch_put().
1235  *
1236  * Return: Pointer to the allocated switch or %NULL in case of failure
1237  */
1238 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1239 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1240 {
1241 	struct tb_switch *sw;
1242 
1243 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1244 	if (!sw)
1245 		return NULL;
1246 
1247 	sw->tb = tb;
1248 	sw->config.depth = tb_route_length(route);
1249 	sw->config.route_hi = upper_32_bits(route);
1250 	sw->config.route_lo = lower_32_bits(route);
1251 	sw->safe_mode = true;
1252 
1253 	device_initialize(&sw->dev);
1254 	sw->dev.parent = parent;
1255 	sw->dev.bus = &tb_bus_type;
1256 	sw->dev.type = &tb_switch_type;
1257 	sw->dev.groups = switch_groups;
1258 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1259 
1260 	return sw;
1261 }
1262 
1263 /**
1264  * tb_switch_configure() - Uploads configuration to the switch
1265  * @sw: Switch to configure
1266  *
1267  * Call this function before the switch is added to the system. It will
1268  * upload configuration to the switch and makes it available for the
1269  * connection manager to use.
1270  *
1271  * Return: %0 in case of success and negative errno in case of failure
1272  */
tb_switch_configure(struct tb_switch * sw)1273 int tb_switch_configure(struct tb_switch *sw)
1274 {
1275 	struct tb *tb = sw->tb;
1276 	u64 route;
1277 	int ret;
1278 
1279 	route = tb_route(sw);
1280 	tb_info(tb,
1281 		"initializing Switch at %#llx (depth: %d, up port: %d)\n",
1282 		route, tb_route_length(route), sw->config.upstream_port_number);
1283 
1284 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1285 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1286 			   sw->config.vendor_id);
1287 
1288 	sw->config.enabled = 1;
1289 
1290 	/* upload configuration */
1291 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1292 	if (ret)
1293 		return ret;
1294 
1295 	return tb_plug_events_active(sw, true);
1296 }
1297 
tb_switch_set_uuid(struct tb_switch * sw)1298 static int tb_switch_set_uuid(struct tb_switch *sw)
1299 {
1300 	u32 uuid[4];
1301 	int cap, ret;
1302 
1303 	ret = 0;
1304 	if (sw->uuid)
1305 		return ret;
1306 
1307 	/*
1308 	 * The newer controllers include fused UUID as part of link
1309 	 * controller specific registers
1310 	 */
1311 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1312 	if (cap > 0) {
1313 		ret = tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1314 		if (ret)
1315 			return ret;
1316 	} else {
1317 		/*
1318 		 * ICM generates UUID based on UID and fills the upper
1319 		 * two words with ones. This is not strictly following
1320 		 * UUID format but we want to be compatible with it so
1321 		 * we do the same here.
1322 		 */
1323 		uuid[0] = sw->uid & 0xffffffff;
1324 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1325 		uuid[2] = 0xffffffff;
1326 		uuid[3] = 0xffffffff;
1327 	}
1328 
1329 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1330 	if (!sw->uuid)
1331 		ret = -ENOMEM;
1332 	return ret;
1333 }
1334 
tb_switch_add_dma_port(struct tb_switch * sw)1335 static int tb_switch_add_dma_port(struct tb_switch *sw)
1336 {
1337 	u32 status;
1338 	int ret;
1339 
1340 	switch (sw->generation) {
1341 	case 2:
1342 		/* Only root switch can be upgraded */
1343 		if (tb_route(sw))
1344 			return 0;
1345 
1346 		/* fallthrough */
1347 	case 3:
1348 		ret = tb_switch_set_uuid(sw);
1349 		if (ret)
1350 			return ret;
1351 		break;
1352 
1353 	default:
1354 		/*
1355 		 * DMA port is the only thing available when the switch
1356 		 * is in safe mode.
1357 		 */
1358 		if (!sw->safe_mode)
1359 			return 0;
1360 		break;
1361 	}
1362 
1363 	if (sw->no_nvm_upgrade)
1364 		return 0;
1365 
1366 	sw->dma_port = dma_port_alloc(sw);
1367 	if (!sw->dma_port)
1368 		return 0;
1369 
1370 	/*
1371 	 * If there is status already set then authentication failed
1372 	 * when the dma_port_flash_update_auth() returned. Power cycling
1373 	 * is not needed (it was done already) so only thing we do here
1374 	 * is to unblock runtime PM of the root port.
1375 	 */
1376 	nvm_get_auth_status(sw, &status);
1377 	if (status) {
1378 		if (!tb_route(sw))
1379 			nvm_authenticate_complete(sw);
1380 		return 0;
1381 	}
1382 
1383 	/*
1384 	 * Check status of the previous flash authentication. If there
1385 	 * is one we need to power cycle the switch in any case to make
1386 	 * it functional again.
1387 	 */
1388 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1389 	if (ret <= 0)
1390 		return ret;
1391 
1392 	/* Now we can allow root port to suspend again */
1393 	if (!tb_route(sw))
1394 		nvm_authenticate_complete(sw);
1395 
1396 	if (status) {
1397 		tb_sw_info(sw, "switch flash authentication failed\n");
1398 		nvm_set_auth_status(sw, status);
1399 	}
1400 
1401 	tb_sw_info(sw, "power cycling the switch now\n");
1402 	dma_port_power_cycle(sw->dma_port);
1403 
1404 	/*
1405 	 * We return error here which causes the switch adding failure.
1406 	 * It should appear back after power cycle is complete.
1407 	 */
1408 	return -ESHUTDOWN;
1409 }
1410 
1411 /**
1412  * tb_switch_add() - Add a switch to the domain
1413  * @sw: Switch to add
1414  *
1415  * This is the last step in adding switch to the domain. It will read
1416  * identification information from DROM and initializes ports so that
1417  * they can be used to connect other switches. The switch will be
1418  * exposed to the userspace when this function successfully returns. To
1419  * remove and release the switch, call tb_switch_remove().
1420  *
1421  * Return: %0 in case of success and negative errno in case of failure
1422  */
tb_switch_add(struct tb_switch * sw)1423 int tb_switch_add(struct tb_switch *sw)
1424 {
1425 	int i, ret;
1426 
1427 	/*
1428 	 * Initialize DMA control port now before we read DROM. Recent
1429 	 * host controllers have more complete DROM on NVM that includes
1430 	 * vendor and model identification strings which we then expose
1431 	 * to the userspace. NVM can be accessed through DMA
1432 	 * configuration based mailbox.
1433 	 */
1434 	ret = tb_switch_add_dma_port(sw);
1435 	if (ret)
1436 		return ret;
1437 
1438 	if (!sw->safe_mode) {
1439 		/* read drom */
1440 		ret = tb_drom_read(sw);
1441 		if (ret) {
1442 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1443 			return ret;
1444 		}
1445 		tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1446 
1447 		ret = tb_switch_set_uuid(sw);
1448 		if (ret)
1449 			return ret;
1450 
1451 		for (i = 0; i <= sw->config.max_port_number; i++) {
1452 			if (sw->ports[i].disabled) {
1453 				tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1454 				continue;
1455 			}
1456 			ret = tb_init_port(&sw->ports[i]);
1457 			if (ret)
1458 				return ret;
1459 		}
1460 	}
1461 
1462 	ret = device_add(&sw->dev);
1463 	if (ret)
1464 		return ret;
1465 
1466 	ret = tb_switch_nvm_add(sw);
1467 	if (ret) {
1468 		device_del(&sw->dev);
1469 		return ret;
1470 	}
1471 
1472 	pm_runtime_set_active(&sw->dev);
1473 	if (sw->rpm) {
1474 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1475 		pm_runtime_use_autosuspend(&sw->dev);
1476 		pm_runtime_mark_last_busy(&sw->dev);
1477 		pm_runtime_enable(&sw->dev);
1478 		pm_request_autosuspend(&sw->dev);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /**
1485  * tb_switch_remove() - Remove and release a switch
1486  * @sw: Switch to remove
1487  *
1488  * This will remove the switch from the domain and release it after last
1489  * reference count drops to zero. If there are switches connected below
1490  * this switch, they will be removed as well.
1491  */
tb_switch_remove(struct tb_switch * sw)1492 void tb_switch_remove(struct tb_switch *sw)
1493 {
1494 	int i;
1495 
1496 	if (sw->rpm) {
1497 		pm_runtime_get_sync(&sw->dev);
1498 		pm_runtime_disable(&sw->dev);
1499 	}
1500 
1501 	/* port 0 is the switch itself and never has a remote */
1502 	for (i = 1; i <= sw->config.max_port_number; i++) {
1503 		if (tb_is_upstream_port(&sw->ports[i]))
1504 			continue;
1505 		if (sw->ports[i].remote)
1506 			tb_switch_remove(sw->ports[i].remote->sw);
1507 		sw->ports[i].remote = NULL;
1508 		if (sw->ports[i].xdomain)
1509 			tb_xdomain_remove(sw->ports[i].xdomain);
1510 		sw->ports[i].xdomain = NULL;
1511 	}
1512 
1513 	if (!sw->is_unplugged)
1514 		tb_plug_events_active(sw, false);
1515 
1516 	tb_switch_nvm_remove(sw);
1517 	device_unregister(&sw->dev);
1518 }
1519 
1520 /**
1521  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1522  */
tb_sw_set_unplugged(struct tb_switch * sw)1523 void tb_sw_set_unplugged(struct tb_switch *sw)
1524 {
1525 	int i;
1526 	if (sw == sw->tb->root_switch) {
1527 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1528 		return;
1529 	}
1530 	if (sw->is_unplugged) {
1531 		tb_sw_WARN(sw, "is_unplugged already set\n");
1532 		return;
1533 	}
1534 	sw->is_unplugged = true;
1535 	for (i = 0; i <= sw->config.max_port_number; i++) {
1536 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1537 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1538 	}
1539 }
1540 
tb_switch_resume(struct tb_switch * sw)1541 int tb_switch_resume(struct tb_switch *sw)
1542 {
1543 	int i, err;
1544 	tb_sw_info(sw, "resuming switch\n");
1545 
1546 	/*
1547 	 * Check for UID of the connected switches except for root
1548 	 * switch which we assume cannot be removed.
1549 	 */
1550 	if (tb_route(sw)) {
1551 		u64 uid;
1552 
1553 		err = tb_drom_read_uid_only(sw, &uid);
1554 		if (err) {
1555 			tb_sw_warn(sw, "uid read failed\n");
1556 			return err;
1557 		}
1558 		if (sw->uid != uid) {
1559 			tb_sw_info(sw,
1560 				"changed while suspended (uid %#llx -> %#llx)\n",
1561 				sw->uid, uid);
1562 			return -ENODEV;
1563 		}
1564 	}
1565 
1566 	/* upload configuration */
1567 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1568 	if (err)
1569 		return err;
1570 
1571 	err = tb_plug_events_active(sw, true);
1572 	if (err)
1573 		return err;
1574 
1575 	/* check for surviving downstream switches */
1576 	for (i = 1; i <= sw->config.max_port_number; i++) {
1577 		struct tb_port *port = &sw->ports[i];
1578 		if (tb_is_upstream_port(port))
1579 			continue;
1580 		if (!port->remote)
1581 			continue;
1582 		if (tb_wait_for_port(port, true) <= 0
1583 			|| tb_switch_resume(port->remote->sw)) {
1584 			tb_port_warn(port,
1585 				     "lost during suspend, disconnecting\n");
1586 			tb_sw_set_unplugged(port->remote->sw);
1587 		}
1588 	}
1589 	return 0;
1590 }
1591 
tb_switch_suspend(struct tb_switch * sw)1592 void tb_switch_suspend(struct tb_switch *sw)
1593 {
1594 	int i, err;
1595 	err = tb_plug_events_active(sw, false);
1596 	if (err)
1597 		return;
1598 
1599 	for (i = 1; i <= sw->config.max_port_number; i++) {
1600 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1601 			tb_switch_suspend(sw->ports[i].remote->sw);
1602 	}
1603 	/*
1604 	 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1605 	 * effect?
1606 	 */
1607 }
1608 
1609 struct tb_sw_lookup {
1610 	struct tb *tb;
1611 	u8 link;
1612 	u8 depth;
1613 	const uuid_t *uuid;
1614 	u64 route;
1615 };
1616 
tb_switch_match(struct device * dev,void * data)1617 static int tb_switch_match(struct device *dev, void *data)
1618 {
1619 	struct tb_switch *sw = tb_to_switch(dev);
1620 	struct tb_sw_lookup *lookup = data;
1621 
1622 	if (!sw)
1623 		return 0;
1624 	if (sw->tb != lookup->tb)
1625 		return 0;
1626 
1627 	if (lookup->uuid)
1628 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1629 
1630 	if (lookup->route) {
1631 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
1632 		       sw->config.route_hi == upper_32_bits(lookup->route);
1633 	}
1634 
1635 	/* Root switch is matched only by depth */
1636 	if (!lookup->depth)
1637 		return !sw->depth;
1638 
1639 	return sw->link == lookup->link && sw->depth == lookup->depth;
1640 }
1641 
1642 /**
1643  * tb_switch_find_by_link_depth() - Find switch by link and depth
1644  * @tb: Domain the switch belongs
1645  * @link: Link number the switch is connected
1646  * @depth: Depth of the switch in link
1647  *
1648  * Returned switch has reference count increased so the caller needs to
1649  * call tb_switch_put() when done with the switch.
1650  */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)1651 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1652 {
1653 	struct tb_sw_lookup lookup;
1654 	struct device *dev;
1655 
1656 	memset(&lookup, 0, sizeof(lookup));
1657 	lookup.tb = tb;
1658 	lookup.link = link;
1659 	lookup.depth = depth;
1660 
1661 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1662 	if (dev)
1663 		return tb_to_switch(dev);
1664 
1665 	return NULL;
1666 }
1667 
1668 /**
1669  * tb_switch_find_by_uuid() - Find switch by UUID
1670  * @tb: Domain the switch belongs
1671  * @uuid: UUID to look for
1672  *
1673  * Returned switch has reference count increased so the caller needs to
1674  * call tb_switch_put() when done with the switch.
1675  */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)1676 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1677 {
1678 	struct tb_sw_lookup lookup;
1679 	struct device *dev;
1680 
1681 	memset(&lookup, 0, sizeof(lookup));
1682 	lookup.tb = tb;
1683 	lookup.uuid = uuid;
1684 
1685 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1686 	if (dev)
1687 		return tb_to_switch(dev);
1688 
1689 	return NULL;
1690 }
1691 
1692 /**
1693  * tb_switch_find_by_route() - Find switch by route string
1694  * @tb: Domain the switch belongs
1695  * @route: Route string to look for
1696  *
1697  * Returned switch has reference count increased so the caller needs to
1698  * call tb_switch_put() when done with the switch.
1699  */
tb_switch_find_by_route(struct tb * tb,u64 route)1700 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1701 {
1702 	struct tb_sw_lookup lookup;
1703 	struct device *dev;
1704 
1705 	if (!route)
1706 		return tb_switch_get(tb->root_switch);
1707 
1708 	memset(&lookup, 0, sizeof(lookup));
1709 	lookup.tb = tb;
1710 	lookup.route = route;
1711 
1712 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1713 	if (dev)
1714 		return tb_to_switch(dev);
1715 
1716 	return NULL;
1717 }
1718 
tb_switch_exit(void)1719 void tb_switch_exit(void)
1720 {
1721 	ida_destroy(&nvm_ida);
1722 }
1723