1 /*
2  * Intel Wireless UWB Link 1480
3  * PHY parameters upload
4  *
5  * Copyright (C) 2005-2006 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * Code for uploading the PHY parameters to the PHY through the UWB
24  * Radio Control interface.
25  *
26  * We just send the data through the MPI interface using HWA-like
27  * commands and then reset the PHY to make sure it is ok.
28  */
29 #include <linux/delay.h>
30 #include <linux/device.h>
31 #include <linux/firmware.h>
32 #include <linux/usb/wusb.h>
33 #include "i1480-dfu.h"
34 
35 
36 /**
37  * Write a value array to an address of the MPI interface
38  *
39  * @i1480:	Device descriptor
40  * @data:	Data array to write
41  * @size:	Size of the data array
42  * @returns:	0 if ok, < 0 errno code on error.
43  *
44  * The data array is organized into pairs:
45  *
46  * ADDRESS VALUE
47  *
48  * ADDRESS is BE 16 bit unsigned, VALUE 8 bit unsigned. Size thus has
49  * to be a multiple of three.
50  */
51 static
i1480_mpi_write(struct i1480 * i1480,const void * data,size_t size)52 int i1480_mpi_write(struct i1480 *i1480, const void *data, size_t size)
53 {
54 	int result;
55 	struct i1480_cmd_mpi_write *cmd = i1480->cmd_buf;
56 	struct i1480_evt_confirm *reply = i1480->evt_buf;
57 
58 	BUG_ON(size > 480);
59 	result = -ENOMEM;
60 	cmd->rccb.bCommandType = i1480_CET_VS1;
61 	cmd->rccb.wCommand = cpu_to_le16(i1480_CMD_MPI_WRITE);
62 	cmd->size = cpu_to_le16(size);
63 	memcpy(cmd->data, data, size);
64 	reply->rceb.bEventType = i1480_CET_VS1;
65 	reply->rceb.wEvent = i1480_CMD_MPI_WRITE;
66 	result = i1480_cmd(i1480, "MPI-WRITE", sizeof(*cmd) + size, sizeof(*reply));
67 	if (result < 0)
68 		goto out;
69 	if (reply->bResultCode != UWB_RC_RES_SUCCESS) {
70 		dev_err(i1480->dev, "MPI-WRITE: command execution failed: %d\n",
71 			reply->bResultCode);
72 		result = -EIO;
73 	}
74 out:
75 	return result;
76 }
77 
78 
79 /**
80  * Read a value array to from an address of the MPI interface
81  *
82  * @i1480:	Device descriptor
83  * @data:	where to place the read array
84  * @srcaddr:	Where to read from
85  * @size:	Size of the data read array
86  * @returns:	0 if ok, < 0 errno code on error.
87  *
88  * The command data array is organized into pairs ADDR0 ADDR1..., and
89  * the returned data in ADDR0 VALUE0 ADDR1 VALUE1...
90  *
91  * We generate the command array to be a sequential read and then
92  * rearrange the result.
93  *
94  * We use the i1480->cmd_buf for the command, i1480->evt_buf for the reply.
95  *
96  * As the reply has to fit in 512 bytes (i1480->evt_buffer), the max amount
97  * of values we can read is (512 - sizeof(*reply)) / 3
98  */
99 static
i1480_mpi_read(struct i1480 * i1480,u8 * data,u16 srcaddr,size_t size)100 int i1480_mpi_read(struct i1480 *i1480, u8 *data, u16 srcaddr, size_t size)
101 {
102 	int result;
103 	struct i1480_cmd_mpi_read *cmd = i1480->cmd_buf;
104 	struct i1480_evt_mpi_read *reply = i1480->evt_buf;
105 	unsigned cnt;
106 
107 	memset(i1480->cmd_buf, 0x69, 512);
108 	memset(i1480->evt_buf, 0x69, 512);
109 
110 	BUG_ON(size > (i1480->buf_size - sizeof(*reply)) / 3);
111 	result = -ENOMEM;
112 	cmd->rccb.bCommandType = i1480_CET_VS1;
113 	cmd->rccb.wCommand = cpu_to_le16(i1480_CMD_MPI_READ);
114 	cmd->size = cpu_to_le16(3*size);
115 	for (cnt = 0; cnt < size; cnt++) {
116 		cmd->data[cnt].page = (srcaddr + cnt) >> 8;
117 		cmd->data[cnt].offset = (srcaddr + cnt) & 0xff;
118 	}
119 	reply->rceb.bEventType = i1480_CET_VS1;
120 	reply->rceb.wEvent = i1480_CMD_MPI_READ;
121 	result = i1480_cmd(i1480, "MPI-READ", sizeof(*cmd) + 2*size,
122 			sizeof(*reply) + 3*size);
123 	if (result < 0)
124 		goto out;
125 	if (reply->bResultCode != UWB_RC_RES_SUCCESS) {
126 		dev_err(i1480->dev, "MPI-READ: command execution failed: %d\n",
127 			reply->bResultCode);
128 		result = -EIO;
129 		goto out;
130 	}
131 	for (cnt = 0; cnt < size; cnt++) {
132 		if (reply->data[cnt].page != (srcaddr + cnt) >> 8)
133 			dev_err(i1480->dev, "MPI-READ: page inconsistency at "
134 				"index %u: expected 0x%02x, got 0x%02x\n", cnt,
135 				(srcaddr + cnt) >> 8, reply->data[cnt].page);
136 		if (reply->data[cnt].offset != ((srcaddr + cnt) & 0x00ff))
137 			dev_err(i1480->dev, "MPI-READ: offset inconsistency at "
138 				"index %u: expected 0x%02x, got 0x%02x\n", cnt,
139 				(srcaddr + cnt) & 0x00ff,
140 				reply->data[cnt].offset);
141 		data[cnt] = reply->data[cnt].value;
142 	}
143 	result = 0;
144 out:
145 	return result;
146 }
147 
148 
149 /**
150  * Upload a PHY firmware, wait for it to start
151  *
152  * @i1480:     Device instance
153  * @fw_name: Name of the file that contains the firmware
154  *
155  * We assume the MAC fw is up and running. This means we can use the
156  * MPI interface to write the PHY firmware. Once done, we issue an
157  * MBOA Reset, which will force the MAC to reset and reinitialize the
158  * PHY. If that works, we are ready to go.
159  *
160  * Max packet size for the MPI write is 512, so the max buffer is 480
161  * (which gives us 160 byte triads of MSB, LSB and VAL for the data).
162  */
i1480_phy_fw_upload(struct i1480 * i1480)163 int i1480_phy_fw_upload(struct i1480 *i1480)
164 {
165 	int result;
166 	const struct firmware *fw;
167 	const char *data_itr, *data_top;
168 	const size_t MAX_BLK_SIZE = 480;	/* 160 triads */
169 	size_t data_size;
170 	u8 phy_stat;
171 
172 	result = request_firmware(&fw, i1480->phy_fw_name, i1480->dev);
173 	if (result < 0)
174 		goto out;
175 	/* Loop writing data in chunks as big as possible until done. */
176 	for (data_itr = fw->data, data_top = data_itr + fw->size;
177 	     data_itr < data_top; data_itr += MAX_BLK_SIZE) {
178 		data_size = min(MAX_BLK_SIZE, (size_t) (data_top - data_itr));
179 		result = i1480_mpi_write(i1480, data_itr, data_size);
180 		if (result < 0)
181 			goto error_mpi_write;
182 	}
183 	/* Read MPI page 0, offset 6; if 0, PHY was initialized correctly. */
184 	result = i1480_mpi_read(i1480, &phy_stat, 0x0006, 1);
185 	if (result < 0) {
186 		dev_err(i1480->dev, "PHY: can't get status: %d\n", result);
187 		goto error_mpi_status;
188 	}
189 	if (phy_stat != 0) {
190 		result = -ENODEV;
191 		dev_info(i1480->dev, "error, PHY not ready: %u\n", phy_stat);
192 		goto error_phy_status;
193 	}
194 	dev_info(i1480->dev, "PHY fw '%s': uploaded\n", i1480->phy_fw_name);
195 error_phy_status:
196 error_mpi_status:
197 error_mpi_write:
198 	release_firmware(fw);
199 	if (result < 0)
200 		dev_err(i1480->dev, "PHY fw '%s': failed to upload (%d), "
201 			"power cycle device\n", i1480->phy_fw_name, result);
202 out:
203 	return result;
204 }
205