1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19 
20 struct extent_inode_elem {
21 	u64 inum;
22 	u64 offset;
23 	struct extent_inode_elem *next;
24 };
25 
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)26 static int check_extent_in_eb(const struct btrfs_key *key,
27 			      const struct extent_buffer *eb,
28 			      const struct btrfs_file_extent_item *fi,
29 			      u64 extent_item_pos,
30 			      struct extent_inode_elem **eie,
31 			      bool ignore_offset)
32 {
33 	u64 offset = 0;
34 	struct extent_inode_elem *e;
35 
36 	if (!ignore_offset &&
37 	    !btrfs_file_extent_compression(eb, fi) &&
38 	    !btrfs_file_extent_encryption(eb, fi) &&
39 	    !btrfs_file_extent_other_encoding(eb, fi)) {
40 		u64 data_offset;
41 		u64 data_len;
42 
43 		data_offset = btrfs_file_extent_offset(eb, fi);
44 		data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 		if (extent_item_pos < data_offset ||
47 		    extent_item_pos >= data_offset + data_len)
48 			return 1;
49 		offset = extent_item_pos - data_offset;
50 	}
51 
52 	e = kmalloc(sizeof(*e), GFP_NOFS);
53 	if (!e)
54 		return -ENOMEM;
55 
56 	e->next = *eie;
57 	e->inum = key->objectid;
58 	e->offset = key->offset + offset;
59 	*eie = e;
60 
61 	return 0;
62 }
63 
free_inode_elem_list(struct extent_inode_elem * eie)64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 	struct extent_inode_elem *eie_next;
67 
68 	for (; eie; eie = eie_next) {
69 		eie_next = eie->next;
70 		kfree(eie);
71 	}
72 }
73 
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 			     u64 wanted_disk_byte, u64 extent_item_pos,
76 			     struct extent_inode_elem **eie,
77 			     bool ignore_offset)
78 {
79 	u64 disk_byte;
80 	struct btrfs_key key;
81 	struct btrfs_file_extent_item *fi;
82 	int slot;
83 	int nritems;
84 	int extent_type;
85 	int ret;
86 
87 	/*
88 	 * from the shared data ref, we only have the leaf but we need
89 	 * the key. thus, we must look into all items and see that we
90 	 * find one (some) with a reference to our extent item.
91 	 */
92 	nritems = btrfs_header_nritems(eb);
93 	for (slot = 0; slot < nritems; ++slot) {
94 		btrfs_item_key_to_cpu(eb, &key, slot);
95 		if (key.type != BTRFS_EXTENT_DATA_KEY)
96 			continue;
97 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 		extent_type = btrfs_file_extent_type(eb, fi);
99 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 			continue;
101 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 		if (disk_byte != wanted_disk_byte)
104 			continue;
105 
106 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 		if (ret < 0)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 struct preftree {
115 	struct rb_root root;
116 	unsigned int count;
117 };
118 
119 #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
120 
121 struct preftrees {
122 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 	struct preftree indirect_missing_keys;
125 };
126 
127 /*
128  * Checks for a shared extent during backref search.
129  *
130  * The share_count tracks prelim_refs (direct and indirect) having a
131  * ref->count >0:
132  *  - incremented when a ref->count transitions to >0
133  *  - decremented when a ref->count transitions to <1
134  */
135 struct share_check {
136 	u64 root_objectid;
137 	u64 inum;
138 	int share_count;
139 	bool have_delayed_delete_refs;
140 };
141 
extent_is_shared(struct share_check * sc)142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146 
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148 
btrfs_prelim_ref_init(void)149 int __init btrfs_prelim_ref_init(void)
150 {
151 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 					sizeof(struct prelim_ref),
153 					0,
154 					SLAB_MEM_SPREAD,
155 					NULL);
156 	if (!btrfs_prelim_ref_cache)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
btrfs_prelim_ref_exit(void)161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165 
free_pref(struct prelim_ref * ref)166 static void free_pref(struct prelim_ref *ref)
167 {
168 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170 
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 			      struct prelim_ref *ref2)
178 {
179 	if (ref1->level < ref2->level)
180 		return -1;
181 	if (ref1->level > ref2->level)
182 		return 1;
183 	if (ref1->root_id < ref2->root_id)
184 		return -1;
185 	if (ref1->root_id > ref2->root_id)
186 		return 1;
187 	if (ref1->key_for_search.type < ref2->key_for_search.type)
188 		return -1;
189 	if (ref1->key_for_search.type > ref2->key_for_search.type)
190 		return 1;
191 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 		return -1;
193 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 		return 1;
195 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 		return -1;
197 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 		return 1;
199 	if (ref1->parent < ref2->parent)
200 		return -1;
201 	if (ref1->parent > ref2->parent)
202 		return 1;
203 
204 	return 0;
205 }
206 
update_share_count(struct share_check * sc,int oldcount,int newcount)207 static void update_share_count(struct share_check *sc, int oldcount,
208 			       int newcount)
209 {
210 	if ((!sc) || (oldcount == 0 && newcount < 1))
211 		return;
212 
213 	if (oldcount > 0 && newcount < 1)
214 		sc->share_count--;
215 	else if (oldcount < 1 && newcount > 0)
216 		sc->share_count++;
217 }
218 
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 			      struct preftree *preftree,
226 			      struct prelim_ref *newref,
227 			      struct share_check *sc)
228 {
229 	struct rb_root *root;
230 	struct rb_node **p;
231 	struct rb_node *parent = NULL;
232 	struct prelim_ref *ref;
233 	int result;
234 
235 	root = &preftree->root;
236 	p = &root->rb_node;
237 
238 	while (*p) {
239 		parent = *p;
240 		ref = rb_entry(parent, struct prelim_ref, rbnode);
241 		result = prelim_ref_compare(ref, newref);
242 		if (result < 0) {
243 			p = &(*p)->rb_left;
244 		} else if (result > 0) {
245 			p = &(*p)->rb_right;
246 		} else {
247 			/* Identical refs, merge them and free @newref */
248 			struct extent_inode_elem *eie = ref->inode_list;
249 
250 			while (eie && eie->next)
251 				eie = eie->next;
252 
253 			if (!eie)
254 				ref->inode_list = newref->inode_list;
255 			else
256 				eie->next = newref->inode_list;
257 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
258 						     preftree->count);
259 			/*
260 			 * A delayed ref can have newref->count < 0.
261 			 * The ref->count is updated to follow any
262 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
263 			 */
264 			update_share_count(sc, ref->count,
265 					   ref->count + newref->count);
266 			ref->count += newref->count;
267 			free_pref(newref);
268 			return;
269 		}
270 	}
271 
272 	update_share_count(sc, 0, newref->count);
273 	preftree->count++;
274 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
275 	rb_link_node(&newref->rbnode, parent, p);
276 	rb_insert_color(&newref->rbnode, root);
277 }
278 
279 /*
280  * Release the entire tree.  We don't care about internal consistency so
281  * just free everything and then reset the tree root.
282  */
prelim_release(struct preftree * preftree)283 static void prelim_release(struct preftree *preftree)
284 {
285 	struct prelim_ref *ref, *next_ref;
286 
287 	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
288 					     rbnode)
289 		free_pref(ref);
290 
291 	preftree->root = RB_ROOT;
292 	preftree->count = 0;
293 }
294 
295 /*
296  * the rules for all callers of this function are:
297  * - obtaining the parent is the goal
298  * - if you add a key, you must know that it is a correct key
299  * - if you cannot add the parent or a correct key, then we will look into the
300  *   block later to set a correct key
301  *
302  * delayed refs
303  * ============
304  *        backref type | shared | indirect | shared | indirect
305  * information         |   tree |     tree |   data |     data
306  * --------------------+--------+----------+--------+----------
307  *      parent logical |    y   |     -    |    -   |     -
308  *      key to resolve |    -   |     y    |    y   |     y
309  *  tree block logical |    -   |     -    |    -   |     -
310  *  root for resolving |    y   |     y    |    y   |     y
311  *
312  * - column 1:       we've the parent -> done
313  * - column 2, 3, 4: we use the key to find the parent
314  *
315  * on disk refs (inline or keyed)
316  * ==============================
317  *        backref type | shared | indirect | shared | indirect
318  * information         |   tree |     tree |   data |     data
319  * --------------------+--------+----------+--------+----------
320  *      parent logical |    y   |     -    |    y   |     -
321  *      key to resolve |    -   |     -    |    -   |     y
322  *  tree block logical |    y   |     y    |    y   |     y
323  *  root for resolving |    -   |     y    |    y   |     y
324  *
325  * - column 1, 3: we've the parent -> done
326  * - column 2:    we take the first key from the block to find the parent
327  *                (see add_missing_keys)
328  * - column 4:    we use the key to find the parent
329  *
330  * additional information that's available but not required to find the parent
331  * block might help in merging entries to gain some speed.
332  */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)333 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
334 			  struct preftree *preftree, u64 root_id,
335 			  const struct btrfs_key *key, int level, u64 parent,
336 			  u64 wanted_disk_byte, int count,
337 			  struct share_check *sc, gfp_t gfp_mask)
338 {
339 	struct prelim_ref *ref;
340 
341 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
342 		return 0;
343 
344 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
345 	if (!ref)
346 		return -ENOMEM;
347 
348 	ref->root_id = root_id;
349 	if (key) {
350 		ref->key_for_search = *key;
351 		/*
352 		 * We can often find data backrefs with an offset that is too
353 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
354 		 * underflows when subtracting a file's offset with the data
355 		 * offset of its corresponding extent data item. This can
356 		 * happen for example in the clone ioctl.
357 		 * So if we detect such case we set the search key's offset to
358 		 * zero to make sure we will find the matching file extent item
359 		 * at add_all_parents(), otherwise we will miss it because the
360 		 * offset taken form the backref is much larger then the offset
361 		 * of the file extent item. This can make us scan a very large
362 		 * number of file extent items, but at least it will not make
363 		 * us miss any.
364 		 * This is an ugly workaround for a behaviour that should have
365 		 * never existed, but it does and a fix for the clone ioctl
366 		 * would touch a lot of places, cause backwards incompatibility
367 		 * and would not fix the problem for extents cloned with older
368 		 * kernels.
369 		 */
370 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
371 		    ref->key_for_search.offset >= LLONG_MAX)
372 			ref->key_for_search.offset = 0;
373 	} else {
374 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
375 	}
376 
377 	ref->inode_list = NULL;
378 	ref->level = level;
379 	ref->count = count;
380 	ref->parent = parent;
381 	ref->wanted_disk_byte = wanted_disk_byte;
382 	prelim_ref_insert(fs_info, preftree, ref, sc);
383 	return extent_is_shared(sc);
384 }
385 
386 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)387 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
388 			  struct preftrees *preftrees, int level, u64 parent,
389 			  u64 wanted_disk_byte, int count,
390 			  struct share_check *sc, gfp_t gfp_mask)
391 {
392 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
393 			      parent, wanted_disk_byte, count, sc, gfp_mask);
394 }
395 
396 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)397 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
398 			    struct preftrees *preftrees, u64 root_id,
399 			    const struct btrfs_key *key, int level,
400 			    u64 wanted_disk_byte, int count,
401 			    struct share_check *sc, gfp_t gfp_mask)
402 {
403 	struct preftree *tree = &preftrees->indirect;
404 
405 	if (!key)
406 		tree = &preftrees->indirect_missing_keys;
407 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
408 			      wanted_disk_byte, count, sc, gfp_mask);
409 }
410 
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,u64 total_refs,bool ignore_offset)411 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
412 			   struct ulist *parents, struct prelim_ref *ref,
413 			   int level, u64 time_seq, const u64 *extent_item_pos,
414 			   u64 total_refs, bool ignore_offset)
415 {
416 	int ret = 0;
417 	int slot;
418 	struct extent_buffer *eb;
419 	struct btrfs_key key;
420 	struct btrfs_key *key_for_search = &ref->key_for_search;
421 	struct btrfs_file_extent_item *fi;
422 	struct extent_inode_elem *eie = NULL, *old = NULL;
423 	u64 disk_byte;
424 	u64 wanted_disk_byte = ref->wanted_disk_byte;
425 	u64 count = 0;
426 
427 	if (level != 0) {
428 		eb = path->nodes[level];
429 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
430 		if (ret < 0)
431 			return ret;
432 		return 0;
433 	}
434 
435 	/*
436 	 * We normally enter this function with the path already pointing to
437 	 * the first item to check. But sometimes, we may enter it with
438 	 * slot==nritems. In that case, go to the next leaf before we continue.
439 	 */
440 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
441 		if (time_seq == SEQ_LAST)
442 			ret = btrfs_next_leaf(root, path);
443 		else
444 			ret = btrfs_next_old_leaf(root, path, time_seq);
445 	}
446 
447 	while (!ret && count < total_refs) {
448 		eb = path->nodes[0];
449 		slot = path->slots[0];
450 
451 		btrfs_item_key_to_cpu(eb, &key, slot);
452 
453 		if (key.objectid != key_for_search->objectid ||
454 		    key.type != BTRFS_EXTENT_DATA_KEY)
455 			break;
456 
457 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
458 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
459 
460 		if (disk_byte == wanted_disk_byte) {
461 			eie = NULL;
462 			old = NULL;
463 			count++;
464 			if (extent_item_pos) {
465 				ret = check_extent_in_eb(&key, eb, fi,
466 						*extent_item_pos,
467 						&eie, ignore_offset);
468 				if (ret < 0)
469 					break;
470 			}
471 			if (ret > 0)
472 				goto next;
473 			ret = ulist_add_merge_ptr(parents, eb->start,
474 						  eie, (void **)&old, GFP_NOFS);
475 			if (ret < 0)
476 				break;
477 			if (!ret && extent_item_pos) {
478 				while (old->next)
479 					old = old->next;
480 				old->next = eie;
481 			}
482 			eie = NULL;
483 		}
484 next:
485 		if (time_seq == SEQ_LAST)
486 			ret = btrfs_next_item(root, path);
487 		else
488 			ret = btrfs_next_old_item(root, path, time_seq);
489 	}
490 
491 	if (ret > 0)
492 		ret = 0;
493 	else if (ret < 0)
494 		free_inode_elem_list(eie);
495 	return ret;
496 }
497 
498 /*
499  * resolve an indirect backref in the form (root_id, key, level)
500  * to a logical address
501  */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,u64 total_refs,bool ignore_offset)502 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
503 				struct btrfs_path *path, u64 time_seq,
504 				struct prelim_ref *ref, struct ulist *parents,
505 				const u64 *extent_item_pos, u64 total_refs,
506 				bool ignore_offset)
507 {
508 	struct btrfs_root *root;
509 	struct btrfs_key root_key;
510 	struct extent_buffer *eb;
511 	int ret = 0;
512 	int root_level;
513 	int level = ref->level;
514 	int index;
515 
516 	root_key.objectid = ref->root_id;
517 	root_key.type = BTRFS_ROOT_ITEM_KEY;
518 	root_key.offset = (u64)-1;
519 
520 	index = srcu_read_lock(&fs_info->subvol_srcu);
521 
522 	root = btrfs_get_fs_root(fs_info, &root_key, false);
523 	if (IS_ERR(root)) {
524 		srcu_read_unlock(&fs_info->subvol_srcu, index);
525 		ret = PTR_ERR(root);
526 		goto out;
527 	}
528 
529 	if (btrfs_is_testing(fs_info)) {
530 		srcu_read_unlock(&fs_info->subvol_srcu, index);
531 		ret = -ENOENT;
532 		goto out;
533 	}
534 
535 	if (path->search_commit_root)
536 		root_level = btrfs_header_level(root->commit_root);
537 	else if (time_seq == SEQ_LAST)
538 		root_level = btrfs_header_level(root->node);
539 	else
540 		root_level = btrfs_old_root_level(root, time_seq);
541 
542 	if (root_level + 1 == level) {
543 		srcu_read_unlock(&fs_info->subvol_srcu, index);
544 		goto out;
545 	}
546 
547 	path->lowest_level = level;
548 	if (time_seq == SEQ_LAST)
549 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
550 					0, 0);
551 	else
552 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
553 					    time_seq);
554 
555 	/* root node has been locked, we can release @subvol_srcu safely here */
556 	srcu_read_unlock(&fs_info->subvol_srcu, index);
557 
558 	btrfs_debug(fs_info,
559 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
560 		 ref->root_id, level, ref->count, ret,
561 		 ref->key_for_search.objectid, ref->key_for_search.type,
562 		 ref->key_for_search.offset);
563 	if (ret < 0)
564 		goto out;
565 
566 	eb = path->nodes[level];
567 	while (!eb) {
568 		if (WARN_ON(!level)) {
569 			ret = 1;
570 			goto out;
571 		}
572 		level--;
573 		eb = path->nodes[level];
574 	}
575 
576 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
577 			      extent_item_pos, total_refs, ignore_offset);
578 out:
579 	path->lowest_level = 0;
580 	btrfs_release_path(path);
581 	return ret;
582 }
583 
584 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)585 unode_aux_to_inode_list(struct ulist_node *node)
586 {
587 	if (!node)
588 		return NULL;
589 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
590 }
591 
free_leaf_list(struct ulist * ulist)592 static void free_leaf_list(struct ulist *ulist)
593 {
594 	struct ulist_node *node;
595 	struct ulist_iterator uiter;
596 
597 	ULIST_ITER_INIT(&uiter);
598 	while ((node = ulist_next(ulist, &uiter)))
599 		free_inode_elem_list(unode_aux_to_inode_list(node));
600 
601 	ulist_free(ulist);
602 }
603 
604 /*
605  * We maintain three seperate rbtrees: one for direct refs, one for
606  * indirect refs which have a key, and one for indirect refs which do not
607  * have a key. Each tree does merge on insertion.
608  *
609  * Once all of the references are located, we iterate over the tree of
610  * indirect refs with missing keys. An appropriate key is located and
611  * the ref is moved onto the tree for indirect refs. After all missing
612  * keys are thus located, we iterate over the indirect ref tree, resolve
613  * each reference, and then insert the resolved reference onto the
614  * direct tree (merging there too).
615  *
616  * New backrefs (i.e., for parent nodes) are added to the appropriate
617  * rbtree as they are encountered. The new backrefs are subsequently
618  * resolved as above.
619  */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,u64 total_refs,struct share_check * sc,bool ignore_offset)620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 				 struct btrfs_path *path, u64 time_seq,
622 				 struct preftrees *preftrees,
623 				 const u64 *extent_item_pos, u64 total_refs,
624 				 struct share_check *sc, bool ignore_offset)
625 {
626 	int err;
627 	int ret = 0;
628 	struct ulist *parents;
629 	struct ulist_node *node;
630 	struct ulist_iterator uiter;
631 	struct rb_node *rnode;
632 
633 	parents = ulist_alloc(GFP_NOFS);
634 	if (!parents)
635 		return -ENOMEM;
636 
637 	/*
638 	 * We could trade memory usage for performance here by iterating
639 	 * the tree, allocating new refs for each insertion, and then
640 	 * freeing the entire indirect tree when we're done.  In some test
641 	 * cases, the tree can grow quite large (~200k objects).
642 	 */
643 	while ((rnode = rb_first(&preftrees->indirect.root))) {
644 		struct prelim_ref *ref;
645 
646 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 		if (WARN(ref->parent,
648 			 "BUG: direct ref found in indirect tree")) {
649 			ret = -EINVAL;
650 			goto out;
651 		}
652 
653 		rb_erase(&ref->rbnode, &preftrees->indirect.root);
654 		preftrees->indirect.count--;
655 
656 		if (ref->count == 0) {
657 			free_pref(ref);
658 			continue;
659 		}
660 
661 		if (sc && sc->root_objectid &&
662 		    ref->root_id != sc->root_objectid) {
663 			free_pref(ref);
664 			ret = BACKREF_FOUND_SHARED;
665 			goto out;
666 		}
667 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 					   parents, extent_item_pos,
669 					   total_refs, ignore_offset);
670 		/*
671 		 * we can only tolerate ENOENT,otherwise,we should catch error
672 		 * and return directly.
673 		 */
674 		if (err == -ENOENT) {
675 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 					  NULL);
677 			continue;
678 		} else if (err) {
679 			free_pref(ref);
680 			ret = err;
681 			goto out;
682 		}
683 
684 		/* we put the first parent into the ref at hand */
685 		ULIST_ITER_INIT(&uiter);
686 		node = ulist_next(parents, &uiter);
687 		ref->parent = node ? node->val : 0;
688 		ref->inode_list = unode_aux_to_inode_list(node);
689 
690 		/* Add a prelim_ref(s) for any other parent(s). */
691 		while ((node = ulist_next(parents, &uiter))) {
692 			struct prelim_ref *new_ref;
693 
694 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 						   GFP_NOFS);
696 			if (!new_ref) {
697 				free_pref(ref);
698 				ret = -ENOMEM;
699 				goto out;
700 			}
701 			memcpy(new_ref, ref, sizeof(*ref));
702 			new_ref->parent = node->val;
703 			new_ref->inode_list = unode_aux_to_inode_list(node);
704 			prelim_ref_insert(fs_info, &preftrees->direct,
705 					  new_ref, NULL);
706 		}
707 
708 		/*
709 		 * Now it's a direct ref, put it in the the direct tree. We must
710 		 * do this last because the ref could be merged/freed here.
711 		 */
712 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
713 
714 		ulist_reinit(parents);
715 		cond_resched();
716 	}
717 out:
718 	/*
719 	 * We may have inode lists attached to refs in the parents ulist, so we
720 	 * must free them before freeing the ulist and its refs.
721 	 */
722 	free_leaf_list(parents);
723 	return ret;
724 }
725 
726 /*
727  * read tree blocks and add keys where required.
728  */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)729 static int add_missing_keys(struct btrfs_fs_info *fs_info,
730 			    struct preftrees *preftrees, bool lock)
731 {
732 	struct prelim_ref *ref;
733 	struct extent_buffer *eb;
734 	struct preftree *tree = &preftrees->indirect_missing_keys;
735 	struct rb_node *node;
736 
737 	while ((node = rb_first(&tree->root))) {
738 		ref = rb_entry(node, struct prelim_ref, rbnode);
739 		rb_erase(node, &tree->root);
740 
741 		BUG_ON(ref->parent);	/* should not be a direct ref */
742 		BUG_ON(ref->key_for_search.type);
743 		BUG_ON(!ref->wanted_disk_byte);
744 
745 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
746 				     ref->level - 1, NULL);
747 		if (IS_ERR(eb)) {
748 			free_pref(ref);
749 			return PTR_ERR(eb);
750 		} else if (!extent_buffer_uptodate(eb)) {
751 			free_pref(ref);
752 			free_extent_buffer(eb);
753 			return -EIO;
754 		}
755 		if (lock)
756 			btrfs_tree_read_lock(eb);
757 		if (btrfs_header_level(eb) == 0)
758 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
759 		else
760 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
761 		if (lock)
762 			btrfs_tree_read_unlock(eb);
763 		free_extent_buffer(eb);
764 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
765 		cond_resched();
766 	}
767 	return 0;
768 }
769 
770 /*
771  * add all currently queued delayed refs from this head whose seq nr is
772  * smaller or equal that seq to the list
773  */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,u64 * total_refs,struct share_check * sc)774 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
775 			    struct btrfs_delayed_ref_head *head, u64 seq,
776 			    struct preftrees *preftrees, u64 *total_refs,
777 			    struct share_check *sc)
778 {
779 	struct btrfs_delayed_ref_node *node;
780 	struct btrfs_key key;
781 	struct rb_node *n;
782 	int count;
783 	int ret = 0;
784 
785 	spin_lock(&head->lock);
786 	for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
787 		node = rb_entry(n, struct btrfs_delayed_ref_node,
788 				ref_node);
789 		if (node->seq > seq)
790 			continue;
791 
792 		switch (node->action) {
793 		case BTRFS_ADD_DELAYED_EXTENT:
794 		case BTRFS_UPDATE_DELAYED_HEAD:
795 			WARN_ON(1);
796 			continue;
797 		case BTRFS_ADD_DELAYED_REF:
798 			count = node->ref_mod;
799 			break;
800 		case BTRFS_DROP_DELAYED_REF:
801 			count = node->ref_mod * -1;
802 			break;
803 		default:
804 			BUG_ON(1);
805 		}
806 		*total_refs += count;
807 		switch (node->type) {
808 		case BTRFS_TREE_BLOCK_REF_KEY: {
809 			/* NORMAL INDIRECT METADATA backref */
810 			struct btrfs_delayed_tree_ref *ref;
811 			struct btrfs_key *key_ptr = NULL;
812 
813 			if (head->extent_op && head->extent_op->update_key) {
814 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
815 				key_ptr = &key;
816 			}
817 
818 			ref = btrfs_delayed_node_to_tree_ref(node);
819 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
820 					       key_ptr, ref->level + 1,
821 					       node->bytenr, count, sc,
822 					       GFP_ATOMIC);
823 			break;
824 		}
825 		case BTRFS_SHARED_BLOCK_REF_KEY: {
826 			/* SHARED DIRECT METADATA backref */
827 			struct btrfs_delayed_tree_ref *ref;
828 
829 			ref = btrfs_delayed_node_to_tree_ref(node);
830 
831 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
832 					     ref->parent, node->bytenr, count,
833 					     sc, GFP_ATOMIC);
834 			break;
835 		}
836 		case BTRFS_EXTENT_DATA_REF_KEY: {
837 			/* NORMAL INDIRECT DATA backref */
838 			struct btrfs_delayed_data_ref *ref;
839 			ref = btrfs_delayed_node_to_data_ref(node);
840 
841 			key.objectid = ref->objectid;
842 			key.type = BTRFS_EXTENT_DATA_KEY;
843 			key.offset = ref->offset;
844 
845 			/*
846 			 * If we have a share check context and a reference for
847 			 * another inode, we can't exit immediately. This is
848 			 * because even if this is a BTRFS_ADD_DELAYED_REF
849 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
850 			 * which cancels out this ADD reference.
851 			 *
852 			 * If this is a DROP reference and there was no previous
853 			 * ADD reference, then we need to signal that when we
854 			 * process references from the extent tree (through
855 			 * add_inline_refs() and add_keyed_refs()), we should
856 			 * not exit early if we find a reference for another
857 			 * inode, because one of the delayed DROP references
858 			 * may cancel that reference in the extent tree.
859 			 */
860 			if (sc && count < 0)
861 				sc->have_delayed_delete_refs = true;
862 
863 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
864 					       &key, 0, node->bytenr, count, sc,
865 					       GFP_ATOMIC);
866 			break;
867 		}
868 		case BTRFS_SHARED_DATA_REF_KEY: {
869 			/* SHARED DIRECT FULL backref */
870 			struct btrfs_delayed_data_ref *ref;
871 
872 			ref = btrfs_delayed_node_to_data_ref(node);
873 
874 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
875 					     node->bytenr, count, sc,
876 					     GFP_ATOMIC);
877 			break;
878 		}
879 		default:
880 			WARN_ON(1);
881 		}
882 		/*
883 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
884 		 * refs have been checked.
885 		 */
886 		if (ret && (ret != BACKREF_FOUND_SHARED))
887 			break;
888 	}
889 	if (!ret)
890 		ret = extent_is_shared(sc);
891 
892 	spin_unlock(&head->lock);
893 	return ret;
894 }
895 
896 /*
897  * add all inline backrefs for bytenr to the list
898  *
899  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
900  */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,u64 * total_refs,struct share_check * sc)901 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
902 			   struct btrfs_path *path, u64 bytenr,
903 			   int *info_level, struct preftrees *preftrees,
904 			   u64 *total_refs, struct share_check *sc)
905 {
906 	int ret = 0;
907 	int slot;
908 	struct extent_buffer *leaf;
909 	struct btrfs_key key;
910 	struct btrfs_key found_key;
911 	unsigned long ptr;
912 	unsigned long end;
913 	struct btrfs_extent_item *ei;
914 	u64 flags;
915 	u64 item_size;
916 
917 	/*
918 	 * enumerate all inline refs
919 	 */
920 	leaf = path->nodes[0];
921 	slot = path->slots[0];
922 
923 	item_size = btrfs_item_size_nr(leaf, slot);
924 	BUG_ON(item_size < sizeof(*ei));
925 
926 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
927 	flags = btrfs_extent_flags(leaf, ei);
928 	*total_refs += btrfs_extent_refs(leaf, ei);
929 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
930 
931 	ptr = (unsigned long)(ei + 1);
932 	end = (unsigned long)ei + item_size;
933 
934 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
935 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
936 		struct btrfs_tree_block_info *info;
937 
938 		info = (struct btrfs_tree_block_info *)ptr;
939 		*info_level = btrfs_tree_block_level(leaf, info);
940 		ptr += sizeof(struct btrfs_tree_block_info);
941 		BUG_ON(ptr > end);
942 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
943 		*info_level = found_key.offset;
944 	} else {
945 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
946 	}
947 
948 	while (ptr < end) {
949 		struct btrfs_extent_inline_ref *iref;
950 		u64 offset;
951 		int type;
952 
953 		iref = (struct btrfs_extent_inline_ref *)ptr;
954 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
955 							BTRFS_REF_TYPE_ANY);
956 		if (type == BTRFS_REF_TYPE_INVALID)
957 			return -EUCLEAN;
958 
959 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
960 
961 		switch (type) {
962 		case BTRFS_SHARED_BLOCK_REF_KEY:
963 			ret = add_direct_ref(fs_info, preftrees,
964 					     *info_level + 1, offset,
965 					     bytenr, 1, NULL, GFP_NOFS);
966 			break;
967 		case BTRFS_SHARED_DATA_REF_KEY: {
968 			struct btrfs_shared_data_ref *sdref;
969 			int count;
970 
971 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
972 			count = btrfs_shared_data_ref_count(leaf, sdref);
973 
974 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
975 					     bytenr, count, sc, GFP_NOFS);
976 			break;
977 		}
978 		case BTRFS_TREE_BLOCK_REF_KEY:
979 			ret = add_indirect_ref(fs_info, preftrees, offset,
980 					       NULL, *info_level + 1,
981 					       bytenr, 1, NULL, GFP_NOFS);
982 			break;
983 		case BTRFS_EXTENT_DATA_REF_KEY: {
984 			struct btrfs_extent_data_ref *dref;
985 			int count;
986 			u64 root;
987 
988 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
989 			count = btrfs_extent_data_ref_count(leaf, dref);
990 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
991 								      dref);
992 			key.type = BTRFS_EXTENT_DATA_KEY;
993 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
994 
995 			if (sc && sc->inum && key.objectid != sc->inum &&
996 			    !sc->have_delayed_delete_refs) {
997 				ret = BACKREF_FOUND_SHARED;
998 				break;
999 			}
1000 
1001 			root = btrfs_extent_data_ref_root(leaf, dref);
1002 
1003 			ret = add_indirect_ref(fs_info, preftrees, root,
1004 					       &key, 0, bytenr, count,
1005 					       sc, GFP_NOFS);
1006 
1007 			break;
1008 		}
1009 		default:
1010 			WARN_ON(1);
1011 		}
1012 		if (ret)
1013 			return ret;
1014 		ptr += btrfs_extent_inline_ref_size(type);
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * add all non-inline backrefs for bytenr to the list
1022  *
1023  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1024  */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1025 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1026 			  struct btrfs_path *path, u64 bytenr,
1027 			  int info_level, struct preftrees *preftrees,
1028 			  struct share_check *sc)
1029 {
1030 	struct btrfs_root *extent_root = fs_info->extent_root;
1031 	int ret;
1032 	int slot;
1033 	struct extent_buffer *leaf;
1034 	struct btrfs_key key;
1035 
1036 	while (1) {
1037 		ret = btrfs_next_item(extent_root, path);
1038 		if (ret < 0)
1039 			break;
1040 		if (ret) {
1041 			ret = 0;
1042 			break;
1043 		}
1044 
1045 		slot = path->slots[0];
1046 		leaf = path->nodes[0];
1047 		btrfs_item_key_to_cpu(leaf, &key, slot);
1048 
1049 		if (key.objectid != bytenr)
1050 			break;
1051 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1052 			continue;
1053 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1054 			break;
1055 
1056 		switch (key.type) {
1057 		case BTRFS_SHARED_BLOCK_REF_KEY:
1058 			/* SHARED DIRECT METADATA backref */
1059 			ret = add_direct_ref(fs_info, preftrees,
1060 					     info_level + 1, key.offset,
1061 					     bytenr, 1, NULL, GFP_NOFS);
1062 			break;
1063 		case BTRFS_SHARED_DATA_REF_KEY: {
1064 			/* SHARED DIRECT FULL backref */
1065 			struct btrfs_shared_data_ref *sdref;
1066 			int count;
1067 
1068 			sdref = btrfs_item_ptr(leaf, slot,
1069 					      struct btrfs_shared_data_ref);
1070 			count = btrfs_shared_data_ref_count(leaf, sdref);
1071 			ret = add_direct_ref(fs_info, preftrees, 0,
1072 					     key.offset, bytenr, count,
1073 					     sc, GFP_NOFS);
1074 			break;
1075 		}
1076 		case BTRFS_TREE_BLOCK_REF_KEY:
1077 			/* NORMAL INDIRECT METADATA backref */
1078 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1079 					       NULL, info_level + 1, bytenr,
1080 					       1, NULL, GFP_NOFS);
1081 			break;
1082 		case BTRFS_EXTENT_DATA_REF_KEY: {
1083 			/* NORMAL INDIRECT DATA backref */
1084 			struct btrfs_extent_data_ref *dref;
1085 			int count;
1086 			u64 root;
1087 
1088 			dref = btrfs_item_ptr(leaf, slot,
1089 					      struct btrfs_extent_data_ref);
1090 			count = btrfs_extent_data_ref_count(leaf, dref);
1091 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1092 								      dref);
1093 			key.type = BTRFS_EXTENT_DATA_KEY;
1094 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1095 
1096 			if (sc && sc->inum && key.objectid != sc->inum &&
1097 			    !sc->have_delayed_delete_refs) {
1098 				ret = BACKREF_FOUND_SHARED;
1099 				break;
1100 			}
1101 
1102 			root = btrfs_extent_data_ref_root(leaf, dref);
1103 			ret = add_indirect_ref(fs_info, preftrees, root,
1104 					       &key, 0, bytenr, count,
1105 					       sc, GFP_NOFS);
1106 			break;
1107 		}
1108 		default:
1109 			WARN_ON(1);
1110 		}
1111 		if (ret)
1112 			return ret;
1113 
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 /*
1120  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1121  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1122  * indirect refs to their parent bytenr.
1123  * When roots are found, they're added to the roots list
1124  *
1125  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1126  * much like trans == NULL case, the difference only lies in it will not
1127  * commit root.
1128  * The special case is for qgroup to search roots in commit_transaction().
1129  *
1130  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1131  * shared extent is detected.
1132  *
1133  * Otherwise this returns 0 for success and <0 for an error.
1134  *
1135  * If ignore_offset is set to false, only extent refs whose offsets match
1136  * extent_item_pos are returned.  If true, every extent ref is returned
1137  * and extent_item_pos is ignored.
1138  *
1139  * FIXME some caching might speed things up
1140  */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1141 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1142 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1143 			     u64 time_seq, struct ulist *refs,
1144 			     struct ulist *roots, const u64 *extent_item_pos,
1145 			     struct share_check *sc, bool ignore_offset)
1146 {
1147 	struct btrfs_key key;
1148 	struct btrfs_path *path;
1149 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1150 	struct btrfs_delayed_ref_head *head;
1151 	int info_level = 0;
1152 	int ret;
1153 	struct prelim_ref *ref;
1154 	struct rb_node *node;
1155 	struct extent_inode_elem *eie = NULL;
1156 	/* total of both direct AND indirect refs! */
1157 	u64 total_refs = 0;
1158 	struct preftrees preftrees = {
1159 		.direct = PREFTREE_INIT,
1160 		.indirect = PREFTREE_INIT,
1161 		.indirect_missing_keys = PREFTREE_INIT
1162 	};
1163 
1164 	key.objectid = bytenr;
1165 	key.offset = (u64)-1;
1166 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1167 		key.type = BTRFS_METADATA_ITEM_KEY;
1168 	else
1169 		key.type = BTRFS_EXTENT_ITEM_KEY;
1170 
1171 	path = btrfs_alloc_path();
1172 	if (!path)
1173 		return -ENOMEM;
1174 	if (!trans) {
1175 		path->search_commit_root = 1;
1176 		path->skip_locking = 1;
1177 	}
1178 
1179 	if (time_seq == SEQ_LAST)
1180 		path->skip_locking = 1;
1181 
1182 	/*
1183 	 * grab both a lock on the path and a lock on the delayed ref head.
1184 	 * We need both to get a consistent picture of how the refs look
1185 	 * at a specified point in time
1186 	 */
1187 again:
1188 	head = NULL;
1189 
1190 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1191 	if (ret < 0)
1192 		goto out;
1193 	if (ret == 0) {
1194 		/* This shouldn't happen, indicates a bug or fs corruption. */
1195 		ASSERT(ret != 0);
1196 		ret = -EUCLEAN;
1197 		goto out;
1198 	}
1199 
1200 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1201 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1202 	    time_seq != SEQ_LAST) {
1203 #else
1204 	if (trans && time_seq != SEQ_LAST) {
1205 #endif
1206 		/*
1207 		 * look if there are updates for this ref queued and lock the
1208 		 * head
1209 		 */
1210 		delayed_refs = &trans->transaction->delayed_refs;
1211 		spin_lock(&delayed_refs->lock);
1212 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1213 		if (head) {
1214 			if (!mutex_trylock(&head->mutex)) {
1215 				refcount_inc(&head->refs);
1216 				spin_unlock(&delayed_refs->lock);
1217 
1218 				btrfs_release_path(path);
1219 
1220 				/*
1221 				 * Mutex was contended, block until it's
1222 				 * released and try again
1223 				 */
1224 				mutex_lock(&head->mutex);
1225 				mutex_unlock(&head->mutex);
1226 				btrfs_put_delayed_ref_head(head);
1227 				goto again;
1228 			}
1229 			spin_unlock(&delayed_refs->lock);
1230 			ret = add_delayed_refs(fs_info, head, time_seq,
1231 					       &preftrees, &total_refs, sc);
1232 			mutex_unlock(&head->mutex);
1233 			if (ret)
1234 				goto out;
1235 		} else {
1236 			spin_unlock(&delayed_refs->lock);
1237 		}
1238 	}
1239 
1240 	if (path->slots[0]) {
1241 		struct extent_buffer *leaf;
1242 		int slot;
1243 
1244 		path->slots[0]--;
1245 		leaf = path->nodes[0];
1246 		slot = path->slots[0];
1247 		btrfs_item_key_to_cpu(leaf, &key, slot);
1248 		if (key.objectid == bytenr &&
1249 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1250 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1251 			ret = add_inline_refs(fs_info, path, bytenr,
1252 					      &info_level, &preftrees,
1253 					      &total_refs, sc);
1254 			if (ret)
1255 				goto out;
1256 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1257 					     &preftrees, sc);
1258 			if (ret)
1259 				goto out;
1260 		}
1261 	}
1262 
1263 	btrfs_release_path(path);
1264 
1265 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1266 	if (ret)
1267 		goto out;
1268 
1269 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1270 
1271 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1272 				    extent_item_pos, total_refs, sc, ignore_offset);
1273 	if (ret)
1274 		goto out;
1275 
1276 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1277 
1278 	/*
1279 	 * This walks the tree of merged and resolved refs. Tree blocks are
1280 	 * read in as needed. Unique entries are added to the ulist, and
1281 	 * the list of found roots is updated.
1282 	 *
1283 	 * We release the entire tree in one go before returning.
1284 	 */
1285 	node = rb_first(&preftrees.direct.root);
1286 	while (node) {
1287 		ref = rb_entry(node, struct prelim_ref, rbnode);
1288 		node = rb_next(&ref->rbnode);
1289 		/*
1290 		 * ref->count < 0 can happen here if there are delayed
1291 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1292 		 * prelim_ref_insert() relies on this when merging
1293 		 * identical refs to keep the overall count correct.
1294 		 * prelim_ref_insert() will merge only those refs
1295 		 * which compare identically.  Any refs having
1296 		 * e.g. different offsets would not be merged,
1297 		 * and would retain their original ref->count < 0.
1298 		 */
1299 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1300 			if (sc && sc->root_objectid &&
1301 			    ref->root_id != sc->root_objectid) {
1302 				ret = BACKREF_FOUND_SHARED;
1303 				goto out;
1304 			}
1305 
1306 			/* no parent == root of tree */
1307 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1308 			if (ret < 0)
1309 				goto out;
1310 		}
1311 		if (ref->count && ref->parent) {
1312 			if (extent_item_pos && !ref->inode_list &&
1313 			    ref->level == 0) {
1314 				struct extent_buffer *eb;
1315 
1316 				eb = read_tree_block(fs_info, ref->parent, 0,
1317 						     ref->level, NULL);
1318 				if (IS_ERR(eb)) {
1319 					ret = PTR_ERR(eb);
1320 					goto out;
1321 				} else if (!extent_buffer_uptodate(eb)) {
1322 					free_extent_buffer(eb);
1323 					ret = -EIO;
1324 					goto out;
1325 				}
1326 				if (!path->skip_locking) {
1327 					btrfs_tree_read_lock(eb);
1328 					btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1329 				}
1330 				ret = find_extent_in_eb(eb, bytenr,
1331 							*extent_item_pos, &eie, ignore_offset);
1332 				if (!path->skip_locking)
1333 					btrfs_tree_read_unlock_blocking(eb);
1334 				free_extent_buffer(eb);
1335 				if (ret < 0)
1336 					goto out;
1337 				ref->inode_list = eie;
1338 			}
1339 			ret = ulist_add_merge_ptr(refs, ref->parent,
1340 						  ref->inode_list,
1341 						  (void **)&eie, GFP_NOFS);
1342 			if (ret < 0)
1343 				goto out;
1344 			if (!ret && extent_item_pos) {
1345 				/*
1346 				 * We've recorded that parent, so we must extend
1347 				 * its inode list here.
1348 				 *
1349 				 * However if there was corruption we may not
1350 				 * have found an eie, return an error in this
1351 				 * case.
1352 				 */
1353 				ASSERT(eie);
1354 				if (!eie) {
1355 					ret = -EUCLEAN;
1356 					goto out;
1357 				}
1358 				while (eie->next)
1359 					eie = eie->next;
1360 				eie->next = ref->inode_list;
1361 			}
1362 			eie = NULL;
1363 		}
1364 		cond_resched();
1365 	}
1366 
1367 out:
1368 	btrfs_free_path(path);
1369 
1370 	prelim_release(&preftrees.direct);
1371 	prelim_release(&preftrees.indirect);
1372 	prelim_release(&preftrees.indirect_missing_keys);
1373 
1374 	if (ret < 0)
1375 		free_inode_elem_list(eie);
1376 	return ret;
1377 }
1378 
1379 /*
1380  * Finds all leafs with a reference to the specified combination of bytenr and
1381  * offset. key_list_head will point to a list of corresponding keys (caller must
1382  * free each list element). The leafs will be stored in the leafs ulist, which
1383  * must be freed with ulist_free.
1384  *
1385  * returns 0 on success, <0 on error
1386  */
1387 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1388 				struct btrfs_fs_info *fs_info, u64 bytenr,
1389 				u64 time_seq, struct ulist **leafs,
1390 				const u64 *extent_item_pos, bool ignore_offset)
1391 {
1392 	int ret;
1393 
1394 	*leafs = ulist_alloc(GFP_NOFS);
1395 	if (!*leafs)
1396 		return -ENOMEM;
1397 
1398 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1399 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1400 	if (ret < 0 && ret != -ENOENT) {
1401 		free_leaf_list(*leafs);
1402 		return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /*
1409  * walk all backrefs for a given extent to find all roots that reference this
1410  * extent. Walking a backref means finding all extents that reference this
1411  * extent and in turn walk the backrefs of those, too. Naturally this is a
1412  * recursive process, but here it is implemented in an iterative fashion: We
1413  * find all referencing extents for the extent in question and put them on a
1414  * list. In turn, we find all referencing extents for those, further appending
1415  * to the list. The way we iterate the list allows adding more elements after
1416  * the current while iterating. The process stops when we reach the end of the
1417  * list. Found roots are added to the roots list.
1418  *
1419  * returns 0 on success, < 0 on error.
1420  */
1421 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1422 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1423 				     u64 time_seq, struct ulist **roots,
1424 				     bool ignore_offset)
1425 {
1426 	struct ulist *tmp;
1427 	struct ulist_node *node = NULL;
1428 	struct ulist_iterator uiter;
1429 	int ret;
1430 
1431 	tmp = ulist_alloc(GFP_NOFS);
1432 	if (!tmp)
1433 		return -ENOMEM;
1434 	*roots = ulist_alloc(GFP_NOFS);
1435 	if (!*roots) {
1436 		ulist_free(tmp);
1437 		return -ENOMEM;
1438 	}
1439 
1440 	ULIST_ITER_INIT(&uiter);
1441 	while (1) {
1442 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1443 					tmp, *roots, NULL, NULL, ignore_offset);
1444 		if (ret < 0 && ret != -ENOENT) {
1445 			ulist_free(tmp);
1446 			ulist_free(*roots);
1447 			*roots = NULL;
1448 			return ret;
1449 		}
1450 		node = ulist_next(tmp, &uiter);
1451 		if (!node)
1452 			break;
1453 		bytenr = node->val;
1454 		cond_resched();
1455 	}
1456 
1457 	ulist_free(tmp);
1458 	return 0;
1459 }
1460 
1461 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1462 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1463 			 u64 time_seq, struct ulist **roots,
1464 			 bool ignore_offset)
1465 {
1466 	int ret;
1467 
1468 	if (!trans)
1469 		down_read(&fs_info->commit_root_sem);
1470 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1471 					time_seq, roots, ignore_offset);
1472 	if (!trans)
1473 		up_read(&fs_info->commit_root_sem);
1474 	return ret;
1475 }
1476 
1477 /**
1478  * btrfs_check_shared - tell us whether an extent is shared
1479  *
1480  * btrfs_check_shared uses the backref walking code but will short
1481  * circuit as soon as it finds a root or inode that doesn't match the
1482  * one passed in. This provides a significant performance benefit for
1483  * callers (such as fiemap) which want to know whether the extent is
1484  * shared but do not need a ref count.
1485  *
1486  * This attempts to attach to the running transaction in order to account for
1487  * delayed refs, but continues on even when no running transaction exists.
1488  *
1489  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1490  */
1491 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1492 {
1493 	struct btrfs_fs_info *fs_info = root->fs_info;
1494 	struct btrfs_trans_handle *trans;
1495 	struct ulist *tmp = NULL;
1496 	struct ulist *roots = NULL;
1497 	struct ulist_iterator uiter;
1498 	struct ulist_node *node;
1499 	struct seq_list elem = SEQ_LIST_INIT(elem);
1500 	int ret = 0;
1501 	struct share_check shared = {
1502 		.root_objectid = root->objectid,
1503 		.inum = inum,
1504 		.share_count = 0,
1505 		.have_delayed_delete_refs = false,
1506 	};
1507 
1508 	tmp = ulist_alloc(GFP_NOFS);
1509 	roots = ulist_alloc(GFP_NOFS);
1510 	if (!tmp || !roots) {
1511 		ret = -ENOMEM;
1512 		goto out;
1513 	}
1514 
1515 	trans = btrfs_join_transaction_nostart(root);
1516 	if (IS_ERR(trans)) {
1517 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1518 			ret = PTR_ERR(trans);
1519 			goto out;
1520 		}
1521 		trans = NULL;
1522 		down_read(&fs_info->commit_root_sem);
1523 	} else {
1524 		btrfs_get_tree_mod_seq(fs_info, &elem);
1525 	}
1526 
1527 	ULIST_ITER_INIT(&uiter);
1528 	while (1) {
1529 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1530 					roots, NULL, &shared, false);
1531 		if (ret == BACKREF_FOUND_SHARED) {
1532 			/* this is the only condition under which we return 1 */
1533 			ret = 1;
1534 			break;
1535 		}
1536 		if (ret < 0 && ret != -ENOENT)
1537 			break;
1538 		ret = 0;
1539 		node = ulist_next(tmp, &uiter);
1540 		if (!node)
1541 			break;
1542 		bytenr = node->val;
1543 		shared.share_count = 0;
1544 		shared.have_delayed_delete_refs = false;
1545 		cond_resched();
1546 	}
1547 
1548 	if (trans) {
1549 		btrfs_put_tree_mod_seq(fs_info, &elem);
1550 		btrfs_end_transaction(trans);
1551 	} else {
1552 		up_read(&fs_info->commit_root_sem);
1553 	}
1554 out:
1555 	ulist_free(tmp);
1556 	ulist_free(roots);
1557 	return ret;
1558 }
1559 
1560 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1561 			  u64 start_off, struct btrfs_path *path,
1562 			  struct btrfs_inode_extref **ret_extref,
1563 			  u64 *found_off)
1564 {
1565 	int ret, slot;
1566 	struct btrfs_key key;
1567 	struct btrfs_key found_key;
1568 	struct btrfs_inode_extref *extref;
1569 	const struct extent_buffer *leaf;
1570 	unsigned long ptr;
1571 
1572 	key.objectid = inode_objectid;
1573 	key.type = BTRFS_INODE_EXTREF_KEY;
1574 	key.offset = start_off;
1575 
1576 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1577 	if (ret < 0)
1578 		return ret;
1579 
1580 	while (1) {
1581 		leaf = path->nodes[0];
1582 		slot = path->slots[0];
1583 		if (slot >= btrfs_header_nritems(leaf)) {
1584 			/*
1585 			 * If the item at offset is not found,
1586 			 * btrfs_search_slot will point us to the slot
1587 			 * where it should be inserted. In our case
1588 			 * that will be the slot directly before the
1589 			 * next INODE_REF_KEY_V2 item. In the case
1590 			 * that we're pointing to the last slot in a
1591 			 * leaf, we must move one leaf over.
1592 			 */
1593 			ret = btrfs_next_leaf(root, path);
1594 			if (ret) {
1595 				if (ret >= 1)
1596 					ret = -ENOENT;
1597 				break;
1598 			}
1599 			continue;
1600 		}
1601 
1602 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1603 
1604 		/*
1605 		 * Check that we're still looking at an extended ref key for
1606 		 * this particular objectid. If we have different
1607 		 * objectid or type then there are no more to be found
1608 		 * in the tree and we can exit.
1609 		 */
1610 		ret = -ENOENT;
1611 		if (found_key.objectid != inode_objectid)
1612 			break;
1613 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1614 			break;
1615 
1616 		ret = 0;
1617 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1618 		extref = (struct btrfs_inode_extref *)ptr;
1619 		*ret_extref = extref;
1620 		if (found_off)
1621 			*found_off = found_key.offset;
1622 		break;
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1630  * Elements of the path are separated by '/' and the path is guaranteed to be
1631  * 0-terminated. the path is only given within the current file system.
1632  * Therefore, it never starts with a '/'. the caller is responsible to provide
1633  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1634  * the start point of the resulting string is returned. this pointer is within
1635  * dest, normally.
1636  * in case the path buffer would overflow, the pointer is decremented further
1637  * as if output was written to the buffer, though no more output is actually
1638  * generated. that way, the caller can determine how much space would be
1639  * required for the path to fit into the buffer. in that case, the returned
1640  * value will be smaller than dest. callers must check this!
1641  */
1642 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1643 			u32 name_len, unsigned long name_off,
1644 			struct extent_buffer *eb_in, u64 parent,
1645 			char *dest, u32 size)
1646 {
1647 	int slot;
1648 	u64 next_inum;
1649 	int ret;
1650 	s64 bytes_left = ((s64)size) - 1;
1651 	struct extent_buffer *eb = eb_in;
1652 	struct btrfs_key found_key;
1653 	int leave_spinning = path->leave_spinning;
1654 	struct btrfs_inode_ref *iref;
1655 
1656 	if (bytes_left >= 0)
1657 		dest[bytes_left] = '\0';
1658 
1659 	path->leave_spinning = 1;
1660 	while (1) {
1661 		bytes_left -= name_len;
1662 		if (bytes_left >= 0)
1663 			read_extent_buffer(eb, dest + bytes_left,
1664 					   name_off, name_len);
1665 		if (eb != eb_in) {
1666 			if (!path->skip_locking)
1667 				btrfs_tree_read_unlock_blocking(eb);
1668 			free_extent_buffer(eb);
1669 		}
1670 		ret = btrfs_find_item(fs_root, path, parent, 0,
1671 				BTRFS_INODE_REF_KEY, &found_key);
1672 		if (ret > 0)
1673 			ret = -ENOENT;
1674 		if (ret)
1675 			break;
1676 
1677 		next_inum = found_key.offset;
1678 
1679 		/* regular exit ahead */
1680 		if (parent == next_inum)
1681 			break;
1682 
1683 		slot = path->slots[0];
1684 		eb = path->nodes[0];
1685 		/* make sure we can use eb after releasing the path */
1686 		if (eb != eb_in) {
1687 			if (!path->skip_locking)
1688 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1689 			path->nodes[0] = NULL;
1690 			path->locks[0] = 0;
1691 		}
1692 		btrfs_release_path(path);
1693 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1694 
1695 		name_len = btrfs_inode_ref_name_len(eb, iref);
1696 		name_off = (unsigned long)(iref + 1);
1697 
1698 		parent = next_inum;
1699 		--bytes_left;
1700 		if (bytes_left >= 0)
1701 			dest[bytes_left] = '/';
1702 	}
1703 
1704 	btrfs_release_path(path);
1705 	path->leave_spinning = leave_spinning;
1706 
1707 	if (ret)
1708 		return ERR_PTR(ret);
1709 
1710 	return dest + bytes_left;
1711 }
1712 
1713 /*
1714  * this makes the path point to (logical EXTENT_ITEM *)
1715  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1716  * tree blocks and <0 on error.
1717  */
1718 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1719 			struct btrfs_path *path, struct btrfs_key *found_key,
1720 			u64 *flags_ret)
1721 {
1722 	int ret;
1723 	u64 flags;
1724 	u64 size = 0;
1725 	u32 item_size;
1726 	const struct extent_buffer *eb;
1727 	struct btrfs_extent_item *ei;
1728 	struct btrfs_key key;
1729 
1730 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1731 		key.type = BTRFS_METADATA_ITEM_KEY;
1732 	else
1733 		key.type = BTRFS_EXTENT_ITEM_KEY;
1734 	key.objectid = logical;
1735 	key.offset = (u64)-1;
1736 
1737 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1738 	if (ret < 0)
1739 		return ret;
1740 
1741 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1742 	if (ret) {
1743 		if (ret > 0)
1744 			ret = -ENOENT;
1745 		return ret;
1746 	}
1747 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1748 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1749 		size = fs_info->nodesize;
1750 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1751 		size = found_key->offset;
1752 
1753 	if (found_key->objectid > logical ||
1754 	    found_key->objectid + size <= logical) {
1755 		btrfs_debug(fs_info,
1756 			"logical %llu is not within any extent", logical);
1757 		return -ENOENT;
1758 	}
1759 
1760 	eb = path->nodes[0];
1761 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1762 	BUG_ON(item_size < sizeof(*ei));
1763 
1764 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1765 	flags = btrfs_extent_flags(eb, ei);
1766 
1767 	btrfs_debug(fs_info,
1768 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1769 		 logical, logical - found_key->objectid, found_key->objectid,
1770 		 found_key->offset, flags, item_size);
1771 
1772 	WARN_ON(!flags_ret);
1773 	if (flags_ret) {
1774 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1775 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1776 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1777 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1778 		else
1779 			BUG_ON(1);
1780 		return 0;
1781 	}
1782 
1783 	return -EIO;
1784 }
1785 
1786 /*
1787  * helper function to iterate extent inline refs. ptr must point to a 0 value
1788  * for the first call and may be modified. it is used to track state.
1789  * if more refs exist, 0 is returned and the next call to
1790  * get_extent_inline_ref must pass the modified ptr parameter to get the
1791  * next ref. after the last ref was processed, 1 is returned.
1792  * returns <0 on error
1793  */
1794 static int get_extent_inline_ref(unsigned long *ptr,
1795 				 const struct extent_buffer *eb,
1796 				 const struct btrfs_key *key,
1797 				 const struct btrfs_extent_item *ei,
1798 				 u32 item_size,
1799 				 struct btrfs_extent_inline_ref **out_eiref,
1800 				 int *out_type)
1801 {
1802 	unsigned long end;
1803 	u64 flags;
1804 	struct btrfs_tree_block_info *info;
1805 
1806 	if (!*ptr) {
1807 		/* first call */
1808 		flags = btrfs_extent_flags(eb, ei);
1809 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1810 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1811 				/* a skinny metadata extent */
1812 				*out_eiref =
1813 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1814 			} else {
1815 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1816 				info = (struct btrfs_tree_block_info *)(ei + 1);
1817 				*out_eiref =
1818 				   (struct btrfs_extent_inline_ref *)(info + 1);
1819 			}
1820 		} else {
1821 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1822 		}
1823 		*ptr = (unsigned long)*out_eiref;
1824 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1825 			return -ENOENT;
1826 	}
1827 
1828 	end = (unsigned long)ei + item_size;
1829 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1830 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1831 						     BTRFS_REF_TYPE_ANY);
1832 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1833 		return -EUCLEAN;
1834 
1835 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1836 	WARN_ON(*ptr > end);
1837 	if (*ptr == end)
1838 		return 1; /* last */
1839 
1840 	return 0;
1841 }
1842 
1843 /*
1844  * reads the tree block backref for an extent. tree level and root are returned
1845  * through out_level and out_root. ptr must point to a 0 value for the first
1846  * call and may be modified (see get_extent_inline_ref comment).
1847  * returns 0 if data was provided, 1 if there was no more data to provide or
1848  * <0 on error.
1849  */
1850 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1851 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1852 			    u32 item_size, u64 *out_root, u8 *out_level)
1853 {
1854 	int ret;
1855 	int type;
1856 	struct btrfs_extent_inline_ref *eiref;
1857 
1858 	if (*ptr == (unsigned long)-1)
1859 		return 1;
1860 
1861 	while (1) {
1862 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1863 					      &eiref, &type);
1864 		if (ret < 0)
1865 			return ret;
1866 
1867 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1868 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1869 			break;
1870 
1871 		if (ret == 1)
1872 			return 1;
1873 	}
1874 
1875 	/* we can treat both ref types equally here */
1876 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1877 
1878 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1879 		struct btrfs_tree_block_info *info;
1880 
1881 		info = (struct btrfs_tree_block_info *)(ei + 1);
1882 		*out_level = btrfs_tree_block_level(eb, info);
1883 	} else {
1884 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1885 		*out_level = (u8)key->offset;
1886 	}
1887 
1888 	if (ret == 1)
1889 		*ptr = (unsigned long)-1;
1890 
1891 	return 0;
1892 }
1893 
1894 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1895 			     struct extent_inode_elem *inode_list,
1896 			     u64 root, u64 extent_item_objectid,
1897 			     iterate_extent_inodes_t *iterate, void *ctx)
1898 {
1899 	struct extent_inode_elem *eie;
1900 	int ret = 0;
1901 
1902 	for (eie = inode_list; eie; eie = eie->next) {
1903 		btrfs_debug(fs_info,
1904 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1905 			    extent_item_objectid, eie->inum,
1906 			    eie->offset, root);
1907 		ret = iterate(eie->inum, eie->offset, root, ctx);
1908 		if (ret) {
1909 			btrfs_debug(fs_info,
1910 				    "stopping iteration for %llu due to ret=%d",
1911 				    extent_item_objectid, ret);
1912 			break;
1913 		}
1914 	}
1915 
1916 	return ret;
1917 }
1918 
1919 /*
1920  * calls iterate() for every inode that references the extent identified by
1921  * the given parameters.
1922  * when the iterator function returns a non-zero value, iteration stops.
1923  */
1924 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1925 				u64 extent_item_objectid, u64 extent_item_pos,
1926 				int search_commit_root,
1927 				iterate_extent_inodes_t *iterate, void *ctx,
1928 				bool ignore_offset)
1929 {
1930 	int ret;
1931 	struct btrfs_trans_handle *trans = NULL;
1932 	struct ulist *refs = NULL;
1933 	struct ulist *roots = NULL;
1934 	struct ulist_node *ref_node = NULL;
1935 	struct ulist_node *root_node = NULL;
1936 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1937 	struct ulist_iterator ref_uiter;
1938 	struct ulist_iterator root_uiter;
1939 
1940 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1941 			extent_item_objectid);
1942 
1943 	if (!search_commit_root) {
1944 		trans = btrfs_attach_transaction(fs_info->extent_root);
1945 		if (IS_ERR(trans)) {
1946 			if (PTR_ERR(trans) != -ENOENT &&
1947 			    PTR_ERR(trans) != -EROFS)
1948 				return PTR_ERR(trans);
1949 			trans = NULL;
1950 		}
1951 	}
1952 
1953 	if (trans)
1954 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1955 	else
1956 		down_read(&fs_info->commit_root_sem);
1957 
1958 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1959 				   tree_mod_seq_elem.seq, &refs,
1960 				   &extent_item_pos, ignore_offset);
1961 	if (ret)
1962 		goto out;
1963 
1964 	ULIST_ITER_INIT(&ref_uiter);
1965 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1966 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1967 						tree_mod_seq_elem.seq, &roots,
1968 						ignore_offset);
1969 		if (ret)
1970 			break;
1971 		ULIST_ITER_INIT(&root_uiter);
1972 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1973 			btrfs_debug(fs_info,
1974 				    "root %llu references leaf %llu, data list %#llx",
1975 				    root_node->val, ref_node->val,
1976 				    ref_node->aux);
1977 			ret = iterate_leaf_refs(fs_info,
1978 						(struct extent_inode_elem *)
1979 						(uintptr_t)ref_node->aux,
1980 						root_node->val,
1981 						extent_item_objectid,
1982 						iterate, ctx);
1983 		}
1984 		ulist_free(roots);
1985 	}
1986 
1987 	free_leaf_list(refs);
1988 out:
1989 	if (trans) {
1990 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1991 		btrfs_end_transaction(trans);
1992 	} else {
1993 		up_read(&fs_info->commit_root_sem);
1994 	}
1995 
1996 	return ret;
1997 }
1998 
1999 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2000 				struct btrfs_path *path,
2001 				iterate_extent_inodes_t *iterate, void *ctx,
2002 				bool ignore_offset)
2003 {
2004 	int ret;
2005 	u64 extent_item_pos;
2006 	u64 flags = 0;
2007 	struct btrfs_key found_key;
2008 	int search_commit_root = path->search_commit_root;
2009 
2010 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2011 	btrfs_release_path(path);
2012 	if (ret < 0)
2013 		return ret;
2014 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2015 		return -EINVAL;
2016 
2017 	extent_item_pos = logical - found_key.objectid;
2018 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2019 					extent_item_pos, search_commit_root,
2020 					iterate, ctx, ignore_offset);
2021 
2022 	return ret;
2023 }
2024 
2025 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2026 			      struct extent_buffer *eb, void *ctx);
2027 
2028 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2029 			      struct btrfs_path *path,
2030 			      iterate_irefs_t *iterate, void *ctx)
2031 {
2032 	int ret = 0;
2033 	int slot;
2034 	u32 cur;
2035 	u32 len;
2036 	u32 name_len;
2037 	u64 parent = 0;
2038 	int found = 0;
2039 	struct extent_buffer *eb;
2040 	struct btrfs_item *item;
2041 	struct btrfs_inode_ref *iref;
2042 	struct btrfs_key found_key;
2043 
2044 	while (!ret) {
2045 		ret = btrfs_find_item(fs_root, path, inum,
2046 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2047 				&found_key);
2048 
2049 		if (ret < 0)
2050 			break;
2051 		if (ret) {
2052 			ret = found ? 0 : -ENOENT;
2053 			break;
2054 		}
2055 		++found;
2056 
2057 		parent = found_key.offset;
2058 		slot = path->slots[0];
2059 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2060 		if (!eb) {
2061 			ret = -ENOMEM;
2062 			break;
2063 		}
2064 		extent_buffer_get(eb);
2065 		btrfs_tree_read_lock(eb);
2066 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2067 		btrfs_release_path(path);
2068 
2069 		item = btrfs_item_nr(slot);
2070 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2071 
2072 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2073 			name_len = btrfs_inode_ref_name_len(eb, iref);
2074 			/* path must be released before calling iterate()! */
2075 			btrfs_debug(fs_root->fs_info,
2076 				"following ref at offset %u for inode %llu in tree %llu",
2077 				cur, found_key.objectid, fs_root->objectid);
2078 			ret = iterate(parent, name_len,
2079 				      (unsigned long)(iref + 1), eb, ctx);
2080 			if (ret)
2081 				break;
2082 			len = sizeof(*iref) + name_len;
2083 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2084 		}
2085 		btrfs_tree_read_unlock_blocking(eb);
2086 		free_extent_buffer(eb);
2087 	}
2088 
2089 	btrfs_release_path(path);
2090 
2091 	return ret;
2092 }
2093 
2094 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2095 				 struct btrfs_path *path,
2096 				 iterate_irefs_t *iterate, void *ctx)
2097 {
2098 	int ret;
2099 	int slot;
2100 	u64 offset = 0;
2101 	u64 parent;
2102 	int found = 0;
2103 	struct extent_buffer *eb;
2104 	struct btrfs_inode_extref *extref;
2105 	u32 item_size;
2106 	u32 cur_offset;
2107 	unsigned long ptr;
2108 
2109 	while (1) {
2110 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2111 					    &offset);
2112 		if (ret < 0)
2113 			break;
2114 		if (ret) {
2115 			ret = found ? 0 : -ENOENT;
2116 			break;
2117 		}
2118 		++found;
2119 
2120 		slot = path->slots[0];
2121 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2122 		if (!eb) {
2123 			ret = -ENOMEM;
2124 			break;
2125 		}
2126 		extent_buffer_get(eb);
2127 
2128 		btrfs_tree_read_lock(eb);
2129 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2130 		btrfs_release_path(path);
2131 
2132 		item_size = btrfs_item_size_nr(eb, slot);
2133 		ptr = btrfs_item_ptr_offset(eb, slot);
2134 		cur_offset = 0;
2135 
2136 		while (cur_offset < item_size) {
2137 			u32 name_len;
2138 
2139 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2140 			parent = btrfs_inode_extref_parent(eb, extref);
2141 			name_len = btrfs_inode_extref_name_len(eb, extref);
2142 			ret = iterate(parent, name_len,
2143 				      (unsigned long)&extref->name, eb, ctx);
2144 			if (ret)
2145 				break;
2146 
2147 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2148 			cur_offset += sizeof(*extref);
2149 		}
2150 		btrfs_tree_read_unlock_blocking(eb);
2151 		free_extent_buffer(eb);
2152 
2153 		offset++;
2154 	}
2155 
2156 	btrfs_release_path(path);
2157 
2158 	return ret;
2159 }
2160 
2161 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2162 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2163 			 void *ctx)
2164 {
2165 	int ret;
2166 	int found_refs = 0;
2167 
2168 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2169 	if (!ret)
2170 		++found_refs;
2171 	else if (ret != -ENOENT)
2172 		return ret;
2173 
2174 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2175 	if (ret == -ENOENT && found_refs)
2176 		return 0;
2177 
2178 	return ret;
2179 }
2180 
2181 /*
2182  * returns 0 if the path could be dumped (probably truncated)
2183  * returns <0 in case of an error
2184  */
2185 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2186 			 struct extent_buffer *eb, void *ctx)
2187 {
2188 	struct inode_fs_paths *ipath = ctx;
2189 	char *fspath;
2190 	char *fspath_min;
2191 	int i = ipath->fspath->elem_cnt;
2192 	const int s_ptr = sizeof(char *);
2193 	u32 bytes_left;
2194 
2195 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2196 					ipath->fspath->bytes_left - s_ptr : 0;
2197 
2198 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2199 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2200 				   name_off, eb, inum, fspath_min, bytes_left);
2201 	if (IS_ERR(fspath))
2202 		return PTR_ERR(fspath);
2203 
2204 	if (fspath > fspath_min) {
2205 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2206 		++ipath->fspath->elem_cnt;
2207 		ipath->fspath->bytes_left = fspath - fspath_min;
2208 	} else {
2209 		++ipath->fspath->elem_missed;
2210 		ipath->fspath->bytes_missing += fspath_min - fspath;
2211 		ipath->fspath->bytes_left = 0;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /*
2218  * this dumps all file system paths to the inode into the ipath struct, provided
2219  * is has been created large enough. each path is zero-terminated and accessed
2220  * from ipath->fspath->val[i].
2221  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2222  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2223  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2224  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2225  * have been needed to return all paths.
2226  */
2227 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2228 {
2229 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2230 			     inode_to_path, ipath);
2231 }
2232 
2233 struct btrfs_data_container *init_data_container(u32 total_bytes)
2234 {
2235 	struct btrfs_data_container *data;
2236 	size_t alloc_bytes;
2237 
2238 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2239 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2240 	if (!data)
2241 		return ERR_PTR(-ENOMEM);
2242 
2243 	if (total_bytes >= sizeof(*data)) {
2244 		data->bytes_left = total_bytes - sizeof(*data);
2245 		data->bytes_missing = 0;
2246 	} else {
2247 		data->bytes_missing = sizeof(*data) - total_bytes;
2248 		data->bytes_left = 0;
2249 	}
2250 
2251 	data->elem_cnt = 0;
2252 	data->elem_missed = 0;
2253 
2254 	return data;
2255 }
2256 
2257 /*
2258  * allocates space to return multiple file system paths for an inode.
2259  * total_bytes to allocate are passed, note that space usable for actual path
2260  * information will be total_bytes - sizeof(struct inode_fs_paths).
2261  * the returned pointer must be freed with free_ipath() in the end.
2262  */
2263 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2264 					struct btrfs_path *path)
2265 {
2266 	struct inode_fs_paths *ifp;
2267 	struct btrfs_data_container *fspath;
2268 
2269 	fspath = init_data_container(total_bytes);
2270 	if (IS_ERR(fspath))
2271 		return ERR_CAST(fspath);
2272 
2273 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2274 	if (!ifp) {
2275 		kvfree(fspath);
2276 		return ERR_PTR(-ENOMEM);
2277 	}
2278 
2279 	ifp->btrfs_path = path;
2280 	ifp->fspath = fspath;
2281 	ifp->fs_root = fs_root;
2282 
2283 	return ifp;
2284 }
2285 
2286 void free_ipath(struct inode_fs_paths *ipath)
2287 {
2288 	if (!ipath)
2289 		return;
2290 	kvfree(ipath->fspath);
2291 	kfree(ipath);
2292 }
2293