1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49 * structures are incorrect, as the timespec structure from userspace
50 * is 4 bytes too small. We define these alternatives here to teach
51 * the kernel about the 32-bit struct packing.
52 */
53 struct btrfs_ioctl_timespec_32 {
54 __u64 sec;
55 __u32 nsec;
56 } __attribute__ ((__packed__));
57
58 struct btrfs_ioctl_received_subvol_args_32 {
59 char uuid[BTRFS_UUID_SIZE]; /* in */
60 __u64 stransid; /* in */
61 __u64 rtransid; /* out */
62 struct btrfs_ioctl_timespec_32 stime; /* in */
63 struct btrfs_ioctl_timespec_32 rtime; /* out */
64 __u64 flags; /* in */
65 __u64 reserved[16]; /* in */
66 } __attribute__ ((__packed__));
67
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 struct btrfs_ioctl_received_subvol_args_32)
70 #endif
71
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 __s64 send_fd; /* in */
75 __u64 clone_sources_count; /* in */
76 compat_uptr_t clone_sources; /* in */
77 __u64 parent_root; /* in */
78 __u64 flags; /* in */
79 __u64 reserved[4]; /* in */
80 } __attribute__ ((__packed__));
81
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 struct btrfs_ioctl_send_args_32)
84 #endif
85
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 int no_time_update);
89
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93 {
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131 }
132
133 /*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155 }
156
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
165 }
166
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
check_fsflags(unsigned int flags)168 static int check_fsflags(unsigned int flags)
169 {
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
174 FS_NOCOW_FL))
175 return -EOPNOTSUPP;
176
177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 return -EINVAL;
179
180 return 0;
181 }
182
btrfs_ioctl_setflags(struct file * file,void __user * arg)183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 struct inode *inode = file_inode(file);
186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 struct btrfs_inode *binode = BTRFS_I(inode);
188 struct btrfs_root *root = binode->root;
189 struct btrfs_trans_handle *trans;
190 unsigned int fsflags, old_fsflags;
191 int ret;
192 u64 old_flags;
193 unsigned int old_i_flags;
194 umode_t mode;
195
196 if (!inode_owner_or_capable(inode))
197 return -EPERM;
198
199 if (btrfs_root_readonly(root))
200 return -EROFS;
201
202 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
203 return -EFAULT;
204
205 ret = check_fsflags(fsflags);
206 if (ret)
207 return ret;
208
209 ret = mnt_want_write_file(file);
210 if (ret)
211 return ret;
212
213 inode_lock(inode);
214
215 old_flags = binode->flags;
216 old_i_flags = inode->i_flags;
217 mode = inode->i_mode;
218
219 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
220 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
221 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
222 if (!capable(CAP_LINUX_IMMUTABLE)) {
223 ret = -EPERM;
224 goto out_unlock;
225 }
226 }
227
228 if (fsflags & FS_SYNC_FL)
229 binode->flags |= BTRFS_INODE_SYNC;
230 else
231 binode->flags &= ~BTRFS_INODE_SYNC;
232 if (fsflags & FS_IMMUTABLE_FL)
233 binode->flags |= BTRFS_INODE_IMMUTABLE;
234 else
235 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
236 if (fsflags & FS_APPEND_FL)
237 binode->flags |= BTRFS_INODE_APPEND;
238 else
239 binode->flags &= ~BTRFS_INODE_APPEND;
240 if (fsflags & FS_NODUMP_FL)
241 binode->flags |= BTRFS_INODE_NODUMP;
242 else
243 binode->flags &= ~BTRFS_INODE_NODUMP;
244 if (fsflags & FS_NOATIME_FL)
245 binode->flags |= BTRFS_INODE_NOATIME;
246 else
247 binode->flags &= ~BTRFS_INODE_NOATIME;
248 if (fsflags & FS_DIRSYNC_FL)
249 binode->flags |= BTRFS_INODE_DIRSYNC;
250 else
251 binode->flags &= ~BTRFS_INODE_DIRSYNC;
252 if (fsflags & FS_NOCOW_FL) {
253 if (S_ISREG(mode)) {
254 /*
255 * It's safe to turn csums off here, no extents exist.
256 * Otherwise we want the flag to reflect the real COW
257 * status of the file and will not set it.
258 */
259 if (inode->i_size == 0)
260 binode->flags |= BTRFS_INODE_NODATACOW
261 | BTRFS_INODE_NODATASUM;
262 } else {
263 binode->flags |= BTRFS_INODE_NODATACOW;
264 }
265 } else {
266 /*
267 * Revert back under same assumptions as above
268 */
269 if (S_ISREG(mode)) {
270 if (inode->i_size == 0)
271 binode->flags &= ~(BTRFS_INODE_NODATACOW
272 | BTRFS_INODE_NODATASUM);
273 } else {
274 binode->flags &= ~BTRFS_INODE_NODATACOW;
275 }
276 }
277
278 /*
279 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
280 * flag may be changed automatically if compression code won't make
281 * things smaller.
282 */
283 if (fsflags & FS_NOCOMP_FL) {
284 binode->flags &= ~BTRFS_INODE_COMPRESS;
285 binode->flags |= BTRFS_INODE_NOCOMPRESS;
286
287 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
288 if (ret && ret != -ENODATA)
289 goto out_drop;
290 } else if (fsflags & FS_COMPR_FL) {
291 const char *comp;
292
293 binode->flags |= BTRFS_INODE_COMPRESS;
294 binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
295
296 comp = btrfs_compress_type2str(fs_info->compress_type);
297 if (!comp || comp[0] == 0)
298 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
299
300 ret = btrfs_set_prop(inode, "btrfs.compression",
301 comp, strlen(comp), 0);
302 if (ret)
303 goto out_drop;
304
305 } else {
306 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
307 if (ret && ret != -ENODATA)
308 goto out_drop;
309 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
310 }
311
312 trans = btrfs_start_transaction(root, 1);
313 if (IS_ERR(trans)) {
314 ret = PTR_ERR(trans);
315 goto out_drop;
316 }
317
318 btrfs_sync_inode_flags_to_i_flags(inode);
319 inode_inc_iversion(inode);
320 inode->i_ctime = current_time(inode);
321 ret = btrfs_update_inode(trans, root, inode);
322
323 btrfs_end_transaction(trans);
324 out_drop:
325 if (ret) {
326 binode->flags = old_flags;
327 inode->i_flags = old_i_flags;
328 }
329
330 out_unlock:
331 inode_unlock(inode);
332 mnt_drop_write_file(file);
333 return ret;
334 }
335
336 /*
337 * Translate btrfs internal inode flags to xflags as expected by the
338 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
339 * silently dropped.
340 */
btrfs_inode_flags_to_xflags(unsigned int flags)341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
342 {
343 unsigned int xflags = 0;
344
345 if (flags & BTRFS_INODE_APPEND)
346 xflags |= FS_XFLAG_APPEND;
347 if (flags & BTRFS_INODE_IMMUTABLE)
348 xflags |= FS_XFLAG_IMMUTABLE;
349 if (flags & BTRFS_INODE_NOATIME)
350 xflags |= FS_XFLAG_NOATIME;
351 if (flags & BTRFS_INODE_NODUMP)
352 xflags |= FS_XFLAG_NODUMP;
353 if (flags & BTRFS_INODE_SYNC)
354 xflags |= FS_XFLAG_SYNC;
355
356 return xflags;
357 }
358
359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)360 static int check_xflags(unsigned int flags)
361 {
362 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
363 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
364 return -EOPNOTSUPP;
365 return 0;
366 }
367
368 /*
369 * Set the xflags from the internal inode flags. The remaining items of fsxattr
370 * are zeroed.
371 */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
373 {
374 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
375 struct fsxattr fa;
376
377 memset(&fa, 0, sizeof(fa));
378 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
379
380 if (copy_to_user(arg, &fa, sizeof(fa)))
381 return -EFAULT;
382
383 return 0;
384 }
385
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
387 {
388 struct inode *inode = file_inode(file);
389 struct btrfs_inode *binode = BTRFS_I(inode);
390 struct btrfs_root *root = binode->root;
391 struct btrfs_trans_handle *trans;
392 struct fsxattr fa;
393 unsigned old_flags;
394 unsigned old_i_flags;
395 int ret = 0;
396
397 if (!inode_owner_or_capable(inode))
398 return -EPERM;
399
400 if (btrfs_root_readonly(root))
401 return -EROFS;
402
403 memset(&fa, 0, sizeof(fa));
404 if (copy_from_user(&fa, arg, sizeof(fa)))
405 return -EFAULT;
406
407 ret = check_xflags(fa.fsx_xflags);
408 if (ret)
409 return ret;
410
411 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
412 return -EOPNOTSUPP;
413
414 ret = mnt_want_write_file(file);
415 if (ret)
416 return ret;
417
418 inode_lock(inode);
419
420 old_flags = binode->flags;
421 old_i_flags = inode->i_flags;
422
423 /* We need the capabilities to change append-only or immutable inode */
424 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
425 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
426 !capable(CAP_LINUX_IMMUTABLE)) {
427 ret = -EPERM;
428 goto out_unlock;
429 }
430
431 if (fa.fsx_xflags & FS_XFLAG_SYNC)
432 binode->flags |= BTRFS_INODE_SYNC;
433 else
434 binode->flags &= ~BTRFS_INODE_SYNC;
435 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
436 binode->flags |= BTRFS_INODE_IMMUTABLE;
437 else
438 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
439 if (fa.fsx_xflags & FS_XFLAG_APPEND)
440 binode->flags |= BTRFS_INODE_APPEND;
441 else
442 binode->flags &= ~BTRFS_INODE_APPEND;
443 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
444 binode->flags |= BTRFS_INODE_NODUMP;
445 else
446 binode->flags &= ~BTRFS_INODE_NODUMP;
447 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
448 binode->flags |= BTRFS_INODE_NOATIME;
449 else
450 binode->flags &= ~BTRFS_INODE_NOATIME;
451
452 /* 1 item for the inode */
453 trans = btrfs_start_transaction(root, 1);
454 if (IS_ERR(trans)) {
455 ret = PTR_ERR(trans);
456 goto out_unlock;
457 }
458
459 btrfs_sync_inode_flags_to_i_flags(inode);
460 inode_inc_iversion(inode);
461 inode->i_ctime = current_time(inode);
462 ret = btrfs_update_inode(trans, root, inode);
463
464 btrfs_end_transaction(trans);
465
466 out_unlock:
467 if (ret) {
468 binode->flags = old_flags;
469 inode->i_flags = old_i_flags;
470 }
471
472 inode_unlock(inode);
473 mnt_drop_write_file(file);
474
475 return ret;
476 }
477
btrfs_ioctl_getversion(struct file * file,int __user * arg)478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
479 {
480 struct inode *inode = file_inode(file);
481
482 return put_user(inode->i_generation, arg);
483 }
484
btrfs_ioctl_fitrim(struct file * file,void __user * arg)485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
486 {
487 struct inode *inode = file_inode(file);
488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
489 struct btrfs_device *device;
490 struct request_queue *q;
491 struct fstrim_range range;
492 u64 minlen = ULLONG_MAX;
493 u64 num_devices = 0;
494 int ret;
495
496 if (!capable(CAP_SYS_ADMIN))
497 return -EPERM;
498
499 /*
500 * If the fs is mounted with nologreplay, which requires it to be
501 * mounted in RO mode as well, we can not allow discard on free space
502 * inside block groups, because log trees refer to extents that are not
503 * pinned in a block group's free space cache (pinning the extents is
504 * precisely the first phase of replaying a log tree).
505 */
506 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
507 return -EROFS;
508
509 rcu_read_lock();
510 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
511 dev_list) {
512 if (!device->bdev)
513 continue;
514 q = bdev_get_queue(device->bdev);
515 if (blk_queue_discard(q)) {
516 num_devices++;
517 minlen = min_t(u64, q->limits.discard_granularity,
518 minlen);
519 }
520 }
521 rcu_read_unlock();
522
523 if (!num_devices)
524 return -EOPNOTSUPP;
525 if (copy_from_user(&range, arg, sizeof(range)))
526 return -EFAULT;
527
528 /*
529 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
530 * block group is in the logical address space, which can be any
531 * sectorsize aligned bytenr in the range [0, U64_MAX].
532 */
533 if (range.len < fs_info->sb->s_blocksize)
534 return -EINVAL;
535
536 range.minlen = max(range.minlen, minlen);
537 ret = btrfs_trim_fs(fs_info, &range);
538 if (ret < 0)
539 return ret;
540
541 if (copy_to_user(arg, &range, sizeof(range)))
542 return -EFAULT;
543
544 return 0;
545 }
546
btrfs_is_empty_uuid(u8 * uuid)547 int btrfs_is_empty_uuid(u8 *uuid)
548 {
549 int i;
550
551 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
552 if (uuid[i])
553 return 0;
554 }
555 return 1;
556 }
557
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)558 static noinline int create_subvol(struct inode *dir,
559 struct dentry *dentry,
560 const char *name, int namelen,
561 u64 *async_transid,
562 struct btrfs_qgroup_inherit *inherit)
563 {
564 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
565 struct btrfs_trans_handle *trans;
566 struct btrfs_key key;
567 struct btrfs_root_item *root_item;
568 struct btrfs_inode_item *inode_item;
569 struct extent_buffer *leaf;
570 struct btrfs_root *root = BTRFS_I(dir)->root;
571 struct btrfs_root *new_root;
572 struct btrfs_block_rsv block_rsv;
573 struct timespec64 cur_time = current_time(dir);
574 struct inode *inode;
575 int ret;
576 int err;
577 u64 objectid;
578 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
579 u64 index = 0;
580 uuid_le new_uuid;
581
582 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
583 if (!root_item)
584 return -ENOMEM;
585
586 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
587 if (ret)
588 goto fail_free;
589
590 /*
591 * Don't create subvolume whose level is not zero. Or qgroup will be
592 * screwed up since it assumes subvolume qgroup's level to be 0.
593 */
594 if (btrfs_qgroup_level(objectid)) {
595 ret = -ENOSPC;
596 goto fail_free;
597 }
598
599 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
600 /*
601 * The same as the snapshot creation, please see the comment
602 * of create_snapshot().
603 */
604 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
605 if (ret)
606 goto fail_free;
607
608 trans = btrfs_start_transaction(root, 0);
609 if (IS_ERR(trans)) {
610 ret = PTR_ERR(trans);
611 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
612 goto fail_free;
613 }
614 trans->block_rsv = &block_rsv;
615 trans->bytes_reserved = block_rsv.size;
616
617 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
618 if (ret)
619 goto fail;
620
621 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
622 if (IS_ERR(leaf)) {
623 ret = PTR_ERR(leaf);
624 goto fail;
625 }
626
627 btrfs_mark_buffer_dirty(leaf);
628
629 inode_item = &root_item->inode;
630 btrfs_set_stack_inode_generation(inode_item, 1);
631 btrfs_set_stack_inode_size(inode_item, 3);
632 btrfs_set_stack_inode_nlink(inode_item, 1);
633 btrfs_set_stack_inode_nbytes(inode_item,
634 fs_info->nodesize);
635 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
636
637 btrfs_set_root_flags(root_item, 0);
638 btrfs_set_root_limit(root_item, 0);
639 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
640
641 btrfs_set_root_bytenr(root_item, leaf->start);
642 btrfs_set_root_generation(root_item, trans->transid);
643 btrfs_set_root_level(root_item, 0);
644 btrfs_set_root_refs(root_item, 1);
645 btrfs_set_root_used(root_item, leaf->len);
646 btrfs_set_root_last_snapshot(root_item, 0);
647
648 btrfs_set_root_generation_v2(root_item,
649 btrfs_root_generation(root_item));
650 uuid_le_gen(&new_uuid);
651 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
652 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
653 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
654 root_item->ctime = root_item->otime;
655 btrfs_set_root_ctransid(root_item, trans->transid);
656 btrfs_set_root_otransid(root_item, trans->transid);
657
658 btrfs_tree_unlock(leaf);
659
660 btrfs_set_root_dirid(root_item, new_dirid);
661
662 key.objectid = objectid;
663 key.offset = 0;
664 key.type = BTRFS_ROOT_ITEM_KEY;
665 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
666 root_item);
667 if (ret) {
668 /*
669 * Since we don't abort the transaction in this case, free the
670 * tree block so that we don't leak space and leave the
671 * filesystem in an inconsistent state (an extent item in the
672 * extent tree without backreferences). Also no need to have
673 * the tree block locked since it is not in any tree at this
674 * point, so no other task can find it and use it.
675 */
676 btrfs_free_tree_block(trans, root, leaf, 0, 1);
677 free_extent_buffer(leaf);
678 goto fail;
679 }
680
681 free_extent_buffer(leaf);
682 leaf = NULL;
683
684 key.offset = (u64)-1;
685 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
686 if (IS_ERR(new_root)) {
687 ret = PTR_ERR(new_root);
688 btrfs_abort_transaction(trans, ret);
689 goto fail;
690 }
691
692 btrfs_record_root_in_trans(trans, new_root);
693
694 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
695 if (ret) {
696 /* We potentially lose an unused inode item here */
697 btrfs_abort_transaction(trans, ret);
698 goto fail;
699 }
700
701 mutex_lock(&new_root->objectid_mutex);
702 new_root->highest_objectid = new_dirid;
703 mutex_unlock(&new_root->objectid_mutex);
704
705 /*
706 * insert the directory item
707 */
708 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
709 if (ret) {
710 btrfs_abort_transaction(trans, ret);
711 goto fail;
712 }
713
714 ret = btrfs_insert_dir_item(trans, root,
715 name, namelen, BTRFS_I(dir), &key,
716 BTRFS_FT_DIR, index);
717 if (ret) {
718 btrfs_abort_transaction(trans, ret);
719 goto fail;
720 }
721
722 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
723 ret = btrfs_update_inode(trans, root, dir);
724 if (ret) {
725 btrfs_abort_transaction(trans, ret);
726 goto fail;
727 }
728
729 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
730 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
731 if (ret) {
732 btrfs_abort_transaction(trans, ret);
733 goto fail;
734 }
735
736 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
737 BTRFS_UUID_KEY_SUBVOL, objectid);
738 if (ret)
739 btrfs_abort_transaction(trans, ret);
740
741 fail:
742 kfree(root_item);
743 trans->block_rsv = NULL;
744 trans->bytes_reserved = 0;
745 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
746
747 if (async_transid) {
748 *async_transid = trans->transid;
749 err = btrfs_commit_transaction_async(trans, 1);
750 if (err)
751 err = btrfs_commit_transaction(trans);
752 } else {
753 err = btrfs_commit_transaction(trans);
754 }
755 if (err && !ret)
756 ret = err;
757
758 if (!ret) {
759 inode = btrfs_lookup_dentry(dir, dentry);
760 if (IS_ERR(inode))
761 return PTR_ERR(inode);
762 d_instantiate(dentry, inode);
763 }
764 return ret;
765
766 fail_free:
767 kfree(root_item);
768 return ret;
769 }
770
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)771 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
772 struct dentry *dentry,
773 u64 *async_transid, bool readonly,
774 struct btrfs_qgroup_inherit *inherit)
775 {
776 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
777 struct inode *inode;
778 struct btrfs_pending_snapshot *pending_snapshot;
779 struct btrfs_trans_handle *trans;
780 int ret;
781 bool snapshot_force_cow = false;
782
783 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
784 return -EINVAL;
785
786 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
787 if (!pending_snapshot)
788 return -ENOMEM;
789
790 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
791 GFP_KERNEL);
792 pending_snapshot->path = btrfs_alloc_path();
793 if (!pending_snapshot->root_item || !pending_snapshot->path) {
794 ret = -ENOMEM;
795 goto free_pending;
796 }
797
798 /*
799 * Force new buffered writes to reserve space even when NOCOW is
800 * possible. This is to avoid later writeback (running dealloc) to
801 * fallback to COW mode and unexpectedly fail with ENOSPC.
802 */
803 atomic_inc(&root->will_be_snapshotted);
804 smp_mb__after_atomic();
805 /* wait for no snapshot writes */
806 wait_event(root->subv_writers->wait,
807 percpu_counter_sum(&root->subv_writers->counter) == 0);
808
809 ret = btrfs_start_delalloc_snapshot(root);
810 if (ret)
811 goto dec_and_free;
812
813 /*
814 * All previous writes have started writeback in NOCOW mode, so now
815 * we force future writes to fallback to COW mode during snapshot
816 * creation.
817 */
818 atomic_inc(&root->snapshot_force_cow);
819 snapshot_force_cow = true;
820
821 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
822
823 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
824 BTRFS_BLOCK_RSV_TEMP);
825 /*
826 * 1 - parent dir inode
827 * 2 - dir entries
828 * 1 - root item
829 * 2 - root ref/backref
830 * 1 - root of snapshot
831 * 1 - UUID item
832 */
833 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
834 &pending_snapshot->block_rsv, 8,
835 false);
836 if (ret)
837 goto dec_and_free;
838
839 pending_snapshot->dentry = dentry;
840 pending_snapshot->root = root;
841 pending_snapshot->readonly = readonly;
842 pending_snapshot->dir = dir;
843 pending_snapshot->inherit = inherit;
844
845 trans = btrfs_start_transaction(root, 0);
846 if (IS_ERR(trans)) {
847 ret = PTR_ERR(trans);
848 goto fail;
849 }
850
851 spin_lock(&fs_info->trans_lock);
852 list_add(&pending_snapshot->list,
853 &trans->transaction->pending_snapshots);
854 spin_unlock(&fs_info->trans_lock);
855 if (async_transid) {
856 *async_transid = trans->transid;
857 ret = btrfs_commit_transaction_async(trans, 1);
858 if (ret)
859 ret = btrfs_commit_transaction(trans);
860 } else {
861 ret = btrfs_commit_transaction(trans);
862 }
863 if (ret)
864 goto fail;
865
866 ret = pending_snapshot->error;
867 if (ret)
868 goto fail;
869
870 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
871 if (ret)
872 goto fail;
873
874 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
875 if (IS_ERR(inode)) {
876 ret = PTR_ERR(inode);
877 goto fail;
878 }
879
880 d_instantiate(dentry, inode);
881 ret = 0;
882 fail:
883 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
884 dec_and_free:
885 if (snapshot_force_cow)
886 atomic_dec(&root->snapshot_force_cow);
887 if (atomic_dec_and_test(&root->will_be_snapshotted))
888 wake_up_var(&root->will_be_snapshotted);
889 free_pending:
890 kfree(pending_snapshot->root_item);
891 btrfs_free_path(pending_snapshot->path);
892 kfree(pending_snapshot);
893
894 return ret;
895 }
896
897 /* copy of may_delete in fs/namei.c()
898 * Check whether we can remove a link victim from directory dir, check
899 * whether the type of victim is right.
900 * 1. We can't do it if dir is read-only (done in permission())
901 * 2. We should have write and exec permissions on dir
902 * 3. We can't remove anything from append-only dir
903 * 4. We can't do anything with immutable dir (done in permission())
904 * 5. If the sticky bit on dir is set we should either
905 * a. be owner of dir, or
906 * b. be owner of victim, or
907 * c. have CAP_FOWNER capability
908 * 6. If the victim is append-only or immutable we can't do anything with
909 * links pointing to it.
910 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
911 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
912 * 9. We can't remove a root or mountpoint.
913 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
914 * nfs_async_unlink().
915 */
916
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)917 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
918 {
919 int error;
920
921 if (d_really_is_negative(victim))
922 return -ENOENT;
923
924 BUG_ON(d_inode(victim->d_parent) != dir);
925 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
926
927 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
928 if (error)
929 return error;
930 if (IS_APPEND(dir))
931 return -EPERM;
932 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
933 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
934 return -EPERM;
935 if (isdir) {
936 if (!d_is_dir(victim))
937 return -ENOTDIR;
938 if (IS_ROOT(victim))
939 return -EBUSY;
940 } else if (d_is_dir(victim))
941 return -EISDIR;
942 if (IS_DEADDIR(dir))
943 return -ENOENT;
944 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
945 return -EBUSY;
946 return 0;
947 }
948
949 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)950 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
951 {
952 if (d_really_is_positive(child))
953 return -EEXIST;
954 if (IS_DEADDIR(dir))
955 return -ENOENT;
956 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
957 }
958
959 /*
960 * Create a new subvolume below @parent. This is largely modeled after
961 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
962 * inside this filesystem so it's quite a bit simpler.
963 */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)964 static noinline int btrfs_mksubvol(const struct path *parent,
965 const char *name, int namelen,
966 struct btrfs_root *snap_src,
967 u64 *async_transid, bool readonly,
968 struct btrfs_qgroup_inherit *inherit)
969 {
970 struct inode *dir = d_inode(parent->dentry);
971 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
972 struct dentry *dentry;
973 int error;
974
975 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
976 if (error == -EINTR)
977 return error;
978
979 dentry = lookup_one_len(name, parent->dentry, namelen);
980 error = PTR_ERR(dentry);
981 if (IS_ERR(dentry))
982 goto out_unlock;
983
984 error = btrfs_may_create(dir, dentry);
985 if (error)
986 goto out_dput;
987
988 /*
989 * even if this name doesn't exist, we may get hash collisions.
990 * check for them now when we can safely fail
991 */
992 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
993 dir->i_ino, name,
994 namelen);
995 if (error)
996 goto out_dput;
997
998 down_read(&fs_info->subvol_sem);
999
1000 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1001 goto out_up_read;
1002
1003 if (snap_src) {
1004 error = create_snapshot(snap_src, dir, dentry,
1005 async_transid, readonly, inherit);
1006 } else {
1007 error = create_subvol(dir, dentry, name, namelen,
1008 async_transid, inherit);
1009 }
1010 if (!error)
1011 fsnotify_mkdir(dir, dentry);
1012 out_up_read:
1013 up_read(&fs_info->subvol_sem);
1014 out_dput:
1015 dput(dentry);
1016 out_unlock:
1017 inode_unlock(dir);
1018 return error;
1019 }
1020
1021 /*
1022 * When we're defragging a range, we don't want to kick it off again
1023 * if it is really just waiting for delalloc to send it down.
1024 * If we find a nice big extent or delalloc range for the bytes in the
1025 * file you want to defrag, we return 0 to let you know to skip this
1026 * part of the file
1027 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1028 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1029 {
1030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1031 struct extent_map *em = NULL;
1032 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1033 u64 end;
1034
1035 read_lock(&em_tree->lock);
1036 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1037 read_unlock(&em_tree->lock);
1038
1039 if (em) {
1040 end = extent_map_end(em);
1041 free_extent_map(em);
1042 if (end - offset > thresh)
1043 return 0;
1044 }
1045 /* if we already have a nice delalloc here, just stop */
1046 thresh /= 2;
1047 end = count_range_bits(io_tree, &offset, offset + thresh,
1048 thresh, EXTENT_DELALLOC, 1);
1049 if (end >= thresh)
1050 return 0;
1051 return 1;
1052 }
1053
1054 /*
1055 * helper function to walk through a file and find extents
1056 * newer than a specific transid, and smaller than thresh.
1057 *
1058 * This is used by the defragging code to find new and small
1059 * extents
1060 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1061 static int find_new_extents(struct btrfs_root *root,
1062 struct inode *inode, u64 newer_than,
1063 u64 *off, u32 thresh)
1064 {
1065 struct btrfs_path *path;
1066 struct btrfs_key min_key;
1067 struct extent_buffer *leaf;
1068 struct btrfs_file_extent_item *extent;
1069 int type;
1070 int ret;
1071 u64 ino = btrfs_ino(BTRFS_I(inode));
1072
1073 path = btrfs_alloc_path();
1074 if (!path)
1075 return -ENOMEM;
1076
1077 min_key.objectid = ino;
1078 min_key.type = BTRFS_EXTENT_DATA_KEY;
1079 min_key.offset = *off;
1080
1081 while (1) {
1082 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1083 if (ret != 0)
1084 goto none;
1085 process_slot:
1086 if (min_key.objectid != ino)
1087 goto none;
1088 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1089 goto none;
1090
1091 leaf = path->nodes[0];
1092 extent = btrfs_item_ptr(leaf, path->slots[0],
1093 struct btrfs_file_extent_item);
1094
1095 type = btrfs_file_extent_type(leaf, extent);
1096 if (type == BTRFS_FILE_EXTENT_REG &&
1097 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1098 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1099 *off = min_key.offset;
1100 btrfs_free_path(path);
1101 return 0;
1102 }
1103
1104 path->slots[0]++;
1105 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1106 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1107 goto process_slot;
1108 }
1109
1110 if (min_key.offset == (u64)-1)
1111 goto none;
1112
1113 min_key.offset++;
1114 btrfs_release_path(path);
1115 }
1116 none:
1117 btrfs_free_path(path);
1118 return -ENOENT;
1119 }
1120
defrag_lookup_extent(struct inode * inode,u64 start)1121 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1122 {
1123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1124 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1125 struct extent_map *em;
1126 u64 len = PAGE_SIZE;
1127
1128 /*
1129 * hopefully we have this extent in the tree already, try without
1130 * the full extent lock
1131 */
1132 read_lock(&em_tree->lock);
1133 em = lookup_extent_mapping(em_tree, start, len);
1134 read_unlock(&em_tree->lock);
1135
1136 if (!em) {
1137 struct extent_state *cached = NULL;
1138 u64 end = start + len - 1;
1139
1140 /* get the big lock and read metadata off disk */
1141 lock_extent_bits(io_tree, start, end, &cached);
1142 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1143 unlock_extent_cached(io_tree, start, end, &cached);
1144
1145 if (IS_ERR(em))
1146 return NULL;
1147 }
1148
1149 return em;
1150 }
1151
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1152 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1153 {
1154 struct extent_map *next;
1155 bool ret = true;
1156
1157 /* this is the last extent */
1158 if (em->start + em->len >= i_size_read(inode))
1159 return false;
1160
1161 next = defrag_lookup_extent(inode, em->start + em->len);
1162 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1163 ret = false;
1164 else if ((em->block_start + em->block_len == next->block_start) &&
1165 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1166 ret = false;
1167
1168 free_extent_map(next);
1169 return ret;
1170 }
1171
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1172 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1173 u64 *last_len, u64 *skip, u64 *defrag_end,
1174 int compress)
1175 {
1176 struct extent_map *em;
1177 int ret = 1;
1178 bool next_mergeable = true;
1179 bool prev_mergeable = true;
1180
1181 /*
1182 * make sure that once we start defragging an extent, we keep on
1183 * defragging it
1184 */
1185 if (start < *defrag_end)
1186 return 1;
1187
1188 *skip = 0;
1189
1190 em = defrag_lookup_extent(inode, start);
1191 if (!em)
1192 return 0;
1193
1194 /* this will cover holes, and inline extents */
1195 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1196 ret = 0;
1197 goto out;
1198 }
1199
1200 if (!*defrag_end)
1201 prev_mergeable = false;
1202
1203 next_mergeable = defrag_check_next_extent(inode, em);
1204 /*
1205 * we hit a real extent, if it is big or the next extent is not a
1206 * real extent, don't bother defragging it
1207 */
1208 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1209 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1210 ret = 0;
1211 out:
1212 /*
1213 * last_len ends up being a counter of how many bytes we've defragged.
1214 * every time we choose not to defrag an extent, we reset *last_len
1215 * so that the next tiny extent will force a defrag.
1216 *
1217 * The end result of this is that tiny extents before a single big
1218 * extent will force at least part of that big extent to be defragged.
1219 */
1220 if (ret) {
1221 *defrag_end = extent_map_end(em);
1222 } else {
1223 *last_len = 0;
1224 *skip = extent_map_end(em);
1225 *defrag_end = 0;
1226 }
1227
1228 free_extent_map(em);
1229 return ret;
1230 }
1231
1232 /*
1233 * it doesn't do much good to defrag one or two pages
1234 * at a time. This pulls in a nice chunk of pages
1235 * to COW and defrag.
1236 *
1237 * It also makes sure the delalloc code has enough
1238 * dirty data to avoid making new small extents as part
1239 * of the defrag
1240 *
1241 * It's a good idea to start RA on this range
1242 * before calling this.
1243 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1244 static int cluster_pages_for_defrag(struct inode *inode,
1245 struct page **pages,
1246 unsigned long start_index,
1247 unsigned long num_pages)
1248 {
1249 unsigned long file_end;
1250 u64 isize = i_size_read(inode);
1251 u64 page_start;
1252 u64 page_end;
1253 u64 page_cnt;
1254 u64 start = (u64)start_index << PAGE_SHIFT;
1255 int ret;
1256 int i;
1257 int i_done;
1258 struct btrfs_ordered_extent *ordered;
1259 struct extent_state *cached_state = NULL;
1260 struct extent_io_tree *tree;
1261 struct extent_changeset *data_reserved = NULL;
1262 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1263
1264 file_end = (isize - 1) >> PAGE_SHIFT;
1265 if (!isize || start_index > file_end)
1266 return 0;
1267
1268 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1269
1270 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1271 start, page_cnt << PAGE_SHIFT);
1272 if (ret)
1273 return ret;
1274 i_done = 0;
1275 tree = &BTRFS_I(inode)->io_tree;
1276
1277 /* step one, lock all the pages */
1278 for (i = 0; i < page_cnt; i++) {
1279 struct page *page;
1280 again:
1281 page = find_or_create_page(inode->i_mapping,
1282 start_index + i, mask);
1283 if (!page)
1284 break;
1285
1286 page_start = page_offset(page);
1287 page_end = page_start + PAGE_SIZE - 1;
1288 while (1) {
1289 lock_extent_bits(tree, page_start, page_end,
1290 &cached_state);
1291 ordered = btrfs_lookup_ordered_extent(inode,
1292 page_start);
1293 unlock_extent_cached(tree, page_start, page_end,
1294 &cached_state);
1295 if (!ordered)
1296 break;
1297
1298 unlock_page(page);
1299 btrfs_start_ordered_extent(inode, ordered, 1);
1300 btrfs_put_ordered_extent(ordered);
1301 lock_page(page);
1302 /*
1303 * we unlocked the page above, so we need check if
1304 * it was released or not.
1305 */
1306 if (page->mapping != inode->i_mapping) {
1307 unlock_page(page);
1308 put_page(page);
1309 goto again;
1310 }
1311 }
1312
1313 if (!PageUptodate(page)) {
1314 btrfs_readpage(NULL, page);
1315 lock_page(page);
1316 if (!PageUptodate(page)) {
1317 unlock_page(page);
1318 put_page(page);
1319 ret = -EIO;
1320 break;
1321 }
1322 }
1323
1324 if (page->mapping != inode->i_mapping) {
1325 unlock_page(page);
1326 put_page(page);
1327 goto again;
1328 }
1329
1330 pages[i] = page;
1331 i_done++;
1332 }
1333 if (!i_done || ret)
1334 goto out;
1335
1336 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337 goto out;
1338
1339 /*
1340 * so now we have a nice long stream of locked
1341 * and up to date pages, lets wait on them
1342 */
1343 for (i = 0; i < i_done; i++)
1344 wait_on_page_writeback(pages[i]);
1345
1346 page_start = page_offset(pages[0]);
1347 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1348
1349 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1350 page_start, page_end - 1, &cached_state);
1351 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1352 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1353 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1354 &cached_state);
1355
1356 if (i_done != page_cnt) {
1357 spin_lock(&BTRFS_I(inode)->lock);
1358 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1359 spin_unlock(&BTRFS_I(inode)->lock);
1360 btrfs_delalloc_release_space(inode, data_reserved,
1361 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1362 }
1363
1364
1365 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1366 &cached_state);
1367
1368 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1369 page_start, page_end - 1, &cached_state);
1370
1371 for (i = 0; i < i_done; i++) {
1372 clear_page_dirty_for_io(pages[i]);
1373 ClearPageChecked(pages[i]);
1374 set_page_extent_mapped(pages[i]);
1375 set_page_dirty(pages[i]);
1376 unlock_page(pages[i]);
1377 put_page(pages[i]);
1378 }
1379 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1380 extent_changeset_free(data_reserved);
1381 return i_done;
1382 out:
1383 for (i = 0; i < i_done; i++) {
1384 unlock_page(pages[i]);
1385 put_page(pages[i]);
1386 }
1387 btrfs_delalloc_release_space(inode, data_reserved,
1388 start, page_cnt << PAGE_SHIFT, true);
1389 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1390 extent_changeset_free(data_reserved);
1391 return ret;
1392
1393 }
1394
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1395 int btrfs_defrag_file(struct inode *inode, struct file *file,
1396 struct btrfs_ioctl_defrag_range_args *range,
1397 u64 newer_than, unsigned long max_to_defrag)
1398 {
1399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1400 struct btrfs_root *root = BTRFS_I(inode)->root;
1401 struct file_ra_state *ra = NULL;
1402 unsigned long last_index;
1403 u64 isize = i_size_read(inode);
1404 u64 last_len = 0;
1405 u64 skip = 0;
1406 u64 defrag_end = 0;
1407 u64 newer_off = range->start;
1408 unsigned long i;
1409 unsigned long ra_index = 0;
1410 int ret;
1411 int defrag_count = 0;
1412 int compress_type = BTRFS_COMPRESS_ZLIB;
1413 u32 extent_thresh = range->extent_thresh;
1414 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1415 unsigned long cluster = max_cluster;
1416 u64 new_align = ~((u64)SZ_128K - 1);
1417 struct page **pages = NULL;
1418 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1419
1420 if (isize == 0)
1421 return 0;
1422
1423 if (range->start >= isize)
1424 return -EINVAL;
1425
1426 if (do_compress) {
1427 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1428 return -EINVAL;
1429 if (range->compress_type)
1430 compress_type = range->compress_type;
1431 }
1432
1433 if (extent_thresh == 0)
1434 extent_thresh = SZ_256K;
1435
1436 /*
1437 * If we were not given a file, allocate a readahead context. As
1438 * readahead is just an optimization, defrag will work without it so
1439 * we don't error out.
1440 */
1441 if (!file) {
1442 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1443 if (ra)
1444 file_ra_state_init(ra, inode->i_mapping);
1445 } else {
1446 ra = &file->f_ra;
1447 }
1448
1449 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1450 if (!pages) {
1451 ret = -ENOMEM;
1452 goto out_ra;
1453 }
1454
1455 /* find the last page to defrag */
1456 if (range->start + range->len > range->start) {
1457 last_index = min_t(u64, isize - 1,
1458 range->start + range->len - 1) >> PAGE_SHIFT;
1459 } else {
1460 last_index = (isize - 1) >> PAGE_SHIFT;
1461 }
1462
1463 if (newer_than) {
1464 ret = find_new_extents(root, inode, newer_than,
1465 &newer_off, SZ_64K);
1466 if (!ret) {
1467 range->start = newer_off;
1468 /*
1469 * we always align our defrag to help keep
1470 * the extents in the file evenly spaced
1471 */
1472 i = (newer_off & new_align) >> PAGE_SHIFT;
1473 } else
1474 goto out_ra;
1475 } else {
1476 i = range->start >> PAGE_SHIFT;
1477 }
1478 if (!max_to_defrag)
1479 max_to_defrag = last_index - i + 1;
1480
1481 /*
1482 * make writeback starts from i, so the defrag range can be
1483 * written sequentially.
1484 */
1485 if (i < inode->i_mapping->writeback_index)
1486 inode->i_mapping->writeback_index = i;
1487
1488 while (i <= last_index && defrag_count < max_to_defrag &&
1489 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1490 /*
1491 * make sure we stop running if someone unmounts
1492 * the FS
1493 */
1494 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1495 break;
1496
1497 if (btrfs_defrag_cancelled(fs_info)) {
1498 btrfs_debug(fs_info, "defrag_file cancelled");
1499 ret = -EAGAIN;
1500 break;
1501 }
1502
1503 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1504 extent_thresh, &last_len, &skip,
1505 &defrag_end, do_compress)){
1506 unsigned long next;
1507 /*
1508 * the should_defrag function tells us how much to skip
1509 * bump our counter by the suggested amount
1510 */
1511 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1512 i = max(i + 1, next);
1513 continue;
1514 }
1515
1516 if (!newer_than) {
1517 cluster = (PAGE_ALIGN(defrag_end) >>
1518 PAGE_SHIFT) - i;
1519 cluster = min(cluster, max_cluster);
1520 } else {
1521 cluster = max_cluster;
1522 }
1523
1524 if (i + cluster > ra_index) {
1525 ra_index = max(i, ra_index);
1526 if (ra)
1527 page_cache_sync_readahead(inode->i_mapping, ra,
1528 file, ra_index, cluster);
1529 ra_index += cluster;
1530 }
1531
1532 inode_lock(inode);
1533 if (do_compress)
1534 BTRFS_I(inode)->defrag_compress = compress_type;
1535 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1536 if (ret < 0) {
1537 inode_unlock(inode);
1538 goto out_ra;
1539 }
1540
1541 defrag_count += ret;
1542 balance_dirty_pages_ratelimited(inode->i_mapping);
1543 inode_unlock(inode);
1544
1545 if (newer_than) {
1546 if (newer_off == (u64)-1)
1547 break;
1548
1549 if (ret > 0)
1550 i += ret;
1551
1552 newer_off = max(newer_off + 1,
1553 (u64)i << PAGE_SHIFT);
1554
1555 ret = find_new_extents(root, inode, newer_than,
1556 &newer_off, SZ_64K);
1557 if (!ret) {
1558 range->start = newer_off;
1559 i = (newer_off & new_align) >> PAGE_SHIFT;
1560 } else {
1561 break;
1562 }
1563 } else {
1564 if (ret > 0) {
1565 i += ret;
1566 last_len += ret << PAGE_SHIFT;
1567 } else {
1568 i++;
1569 last_len = 0;
1570 }
1571 }
1572 }
1573
1574 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1575 filemap_flush(inode->i_mapping);
1576 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1577 &BTRFS_I(inode)->runtime_flags))
1578 filemap_flush(inode->i_mapping);
1579 }
1580
1581 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1582 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1583 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1584 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1585 }
1586
1587 ret = defrag_count;
1588
1589 out_ra:
1590 if (do_compress) {
1591 inode_lock(inode);
1592 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1593 inode_unlock(inode);
1594 }
1595 if (!file)
1596 kfree(ra);
1597 kfree(pages);
1598 return ret;
1599 }
1600
btrfs_ioctl_resize(struct file * file,void __user * arg)1601 static noinline int btrfs_ioctl_resize(struct file *file,
1602 void __user *arg)
1603 {
1604 struct inode *inode = file_inode(file);
1605 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1606 u64 new_size;
1607 u64 old_size;
1608 u64 devid = 1;
1609 struct btrfs_root *root = BTRFS_I(inode)->root;
1610 struct btrfs_ioctl_vol_args *vol_args;
1611 struct btrfs_trans_handle *trans;
1612 struct btrfs_device *device = NULL;
1613 char *sizestr;
1614 char *retptr;
1615 char *devstr = NULL;
1616 int ret = 0;
1617 int mod = 0;
1618
1619 if (!capable(CAP_SYS_ADMIN))
1620 return -EPERM;
1621
1622 ret = mnt_want_write_file(file);
1623 if (ret)
1624 return ret;
1625
1626 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1627 mnt_drop_write_file(file);
1628 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1629 }
1630
1631 vol_args = memdup_user(arg, sizeof(*vol_args));
1632 if (IS_ERR(vol_args)) {
1633 ret = PTR_ERR(vol_args);
1634 goto out;
1635 }
1636
1637 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1638
1639 sizestr = vol_args->name;
1640 devstr = strchr(sizestr, ':');
1641 if (devstr) {
1642 sizestr = devstr + 1;
1643 *devstr = '\0';
1644 devstr = vol_args->name;
1645 ret = kstrtoull(devstr, 10, &devid);
1646 if (ret)
1647 goto out_free;
1648 if (!devid) {
1649 ret = -EINVAL;
1650 goto out_free;
1651 }
1652 btrfs_info(fs_info, "resizing devid %llu", devid);
1653 }
1654
1655 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1656 if (!device) {
1657 btrfs_info(fs_info, "resizer unable to find device %llu",
1658 devid);
1659 ret = -ENODEV;
1660 goto out_free;
1661 }
1662
1663 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1664 btrfs_info(fs_info,
1665 "resizer unable to apply on readonly device %llu",
1666 devid);
1667 ret = -EPERM;
1668 goto out_free;
1669 }
1670
1671 if (!strcmp(sizestr, "max"))
1672 new_size = device->bdev->bd_inode->i_size;
1673 else {
1674 if (sizestr[0] == '-') {
1675 mod = -1;
1676 sizestr++;
1677 } else if (sizestr[0] == '+') {
1678 mod = 1;
1679 sizestr++;
1680 }
1681 new_size = memparse(sizestr, &retptr);
1682 if (*retptr != '\0' || new_size == 0) {
1683 ret = -EINVAL;
1684 goto out_free;
1685 }
1686 }
1687
1688 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1689 ret = -EPERM;
1690 goto out_free;
1691 }
1692
1693 old_size = btrfs_device_get_total_bytes(device);
1694
1695 if (mod < 0) {
1696 if (new_size > old_size) {
1697 ret = -EINVAL;
1698 goto out_free;
1699 }
1700 new_size = old_size - new_size;
1701 } else if (mod > 0) {
1702 if (new_size > ULLONG_MAX - old_size) {
1703 ret = -ERANGE;
1704 goto out_free;
1705 }
1706 new_size = old_size + new_size;
1707 }
1708
1709 if (new_size < SZ_256M) {
1710 ret = -EINVAL;
1711 goto out_free;
1712 }
1713 if (new_size > device->bdev->bd_inode->i_size) {
1714 ret = -EFBIG;
1715 goto out_free;
1716 }
1717
1718 new_size = round_down(new_size, fs_info->sectorsize);
1719
1720 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1721 rcu_str_deref(device->name), new_size);
1722
1723 if (new_size > old_size) {
1724 trans = btrfs_start_transaction(root, 0);
1725 if (IS_ERR(trans)) {
1726 ret = PTR_ERR(trans);
1727 goto out_free;
1728 }
1729 ret = btrfs_grow_device(trans, device, new_size);
1730 btrfs_commit_transaction(trans);
1731 } else if (new_size < old_size) {
1732 ret = btrfs_shrink_device(device, new_size);
1733 } /* equal, nothing need to do */
1734
1735 out_free:
1736 kfree(vol_args);
1737 out:
1738 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1739 mnt_drop_write_file(file);
1740 return ret;
1741 }
1742
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1743 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1744 const char *name, unsigned long fd, int subvol,
1745 u64 *transid, bool readonly,
1746 struct btrfs_qgroup_inherit *inherit)
1747 {
1748 int namelen;
1749 int ret = 0;
1750
1751 if (!S_ISDIR(file_inode(file)->i_mode))
1752 return -ENOTDIR;
1753
1754 ret = mnt_want_write_file(file);
1755 if (ret)
1756 goto out;
1757
1758 namelen = strlen(name);
1759 if (strchr(name, '/')) {
1760 ret = -EINVAL;
1761 goto out_drop_write;
1762 }
1763
1764 if (name[0] == '.' &&
1765 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1766 ret = -EEXIST;
1767 goto out_drop_write;
1768 }
1769
1770 if (subvol) {
1771 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1772 NULL, transid, readonly, inherit);
1773 } else {
1774 struct fd src = fdget(fd);
1775 struct inode *src_inode;
1776 if (!src.file) {
1777 ret = -EINVAL;
1778 goto out_drop_write;
1779 }
1780
1781 src_inode = file_inode(src.file);
1782 if (src_inode->i_sb != file_inode(file)->i_sb) {
1783 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1784 "Snapshot src from another FS");
1785 ret = -EXDEV;
1786 } else if (!inode_owner_or_capable(src_inode)) {
1787 /*
1788 * Subvolume creation is not restricted, but snapshots
1789 * are limited to own subvolumes only
1790 */
1791 ret = -EPERM;
1792 } else {
1793 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1794 BTRFS_I(src_inode)->root,
1795 transid, readonly, inherit);
1796 }
1797 fdput(src);
1798 }
1799 out_drop_write:
1800 mnt_drop_write_file(file);
1801 out:
1802 return ret;
1803 }
1804
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1805 static noinline int btrfs_ioctl_snap_create(struct file *file,
1806 void __user *arg, int subvol)
1807 {
1808 struct btrfs_ioctl_vol_args *vol_args;
1809 int ret;
1810
1811 if (!S_ISDIR(file_inode(file)->i_mode))
1812 return -ENOTDIR;
1813
1814 vol_args = memdup_user(arg, sizeof(*vol_args));
1815 if (IS_ERR(vol_args))
1816 return PTR_ERR(vol_args);
1817 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1818
1819 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1820 vol_args->fd, subvol,
1821 NULL, false, NULL);
1822
1823 kfree(vol_args);
1824 return ret;
1825 }
1826
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1827 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1828 void __user *arg, int subvol)
1829 {
1830 struct btrfs_ioctl_vol_args_v2 *vol_args;
1831 int ret;
1832 u64 transid = 0;
1833 u64 *ptr = NULL;
1834 bool readonly = false;
1835 struct btrfs_qgroup_inherit *inherit = NULL;
1836
1837 if (!S_ISDIR(file_inode(file)->i_mode))
1838 return -ENOTDIR;
1839
1840 vol_args = memdup_user(arg, sizeof(*vol_args));
1841 if (IS_ERR(vol_args))
1842 return PTR_ERR(vol_args);
1843 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1844
1845 if (vol_args->flags &
1846 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1847 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1848 ret = -EOPNOTSUPP;
1849 goto free_args;
1850 }
1851
1852 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1853 ptr = &transid;
1854 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1855 readonly = true;
1856 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1857 u64 nums;
1858
1859 if (vol_args->size < sizeof(*inherit) ||
1860 vol_args->size > PAGE_SIZE) {
1861 ret = -EINVAL;
1862 goto free_args;
1863 }
1864 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1865 if (IS_ERR(inherit)) {
1866 ret = PTR_ERR(inherit);
1867 goto free_args;
1868 }
1869
1870 if (inherit->num_qgroups > PAGE_SIZE ||
1871 inherit->num_ref_copies > PAGE_SIZE ||
1872 inherit->num_excl_copies > PAGE_SIZE) {
1873 ret = -EINVAL;
1874 goto free_inherit;
1875 }
1876
1877 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1878 2 * inherit->num_excl_copies;
1879 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1880 ret = -EINVAL;
1881 goto free_inherit;
1882 }
1883 }
1884
1885 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1886 vol_args->fd, subvol, ptr,
1887 readonly, inherit);
1888 if (ret)
1889 goto free_inherit;
1890
1891 if (ptr && copy_to_user(arg +
1892 offsetof(struct btrfs_ioctl_vol_args_v2,
1893 transid),
1894 ptr, sizeof(*ptr)))
1895 ret = -EFAULT;
1896
1897 free_inherit:
1898 kfree(inherit);
1899 free_args:
1900 kfree(vol_args);
1901 return ret;
1902 }
1903
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1904 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1905 void __user *arg)
1906 {
1907 struct inode *inode = file_inode(file);
1908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1909 struct btrfs_root *root = BTRFS_I(inode)->root;
1910 int ret = 0;
1911 u64 flags = 0;
1912
1913 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1914 return -EINVAL;
1915
1916 down_read(&fs_info->subvol_sem);
1917 if (btrfs_root_readonly(root))
1918 flags |= BTRFS_SUBVOL_RDONLY;
1919 up_read(&fs_info->subvol_sem);
1920
1921 if (copy_to_user(arg, &flags, sizeof(flags)))
1922 ret = -EFAULT;
1923
1924 return ret;
1925 }
1926
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1927 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1928 void __user *arg)
1929 {
1930 struct inode *inode = file_inode(file);
1931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1932 struct btrfs_root *root = BTRFS_I(inode)->root;
1933 struct btrfs_trans_handle *trans;
1934 u64 root_flags;
1935 u64 flags;
1936 int ret = 0;
1937
1938 if (!inode_owner_or_capable(inode))
1939 return -EPERM;
1940
1941 ret = mnt_want_write_file(file);
1942 if (ret)
1943 goto out;
1944
1945 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1946 ret = -EINVAL;
1947 goto out_drop_write;
1948 }
1949
1950 if (copy_from_user(&flags, arg, sizeof(flags))) {
1951 ret = -EFAULT;
1952 goto out_drop_write;
1953 }
1954
1955 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1956 ret = -EINVAL;
1957 goto out_drop_write;
1958 }
1959
1960 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1961 ret = -EOPNOTSUPP;
1962 goto out_drop_write;
1963 }
1964
1965 down_write(&fs_info->subvol_sem);
1966
1967 /* nothing to do */
1968 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1969 goto out_drop_sem;
1970
1971 root_flags = btrfs_root_flags(&root->root_item);
1972 if (flags & BTRFS_SUBVOL_RDONLY) {
1973 btrfs_set_root_flags(&root->root_item,
1974 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1975 } else {
1976 /*
1977 * Block RO -> RW transition if this subvolume is involved in
1978 * send
1979 */
1980 spin_lock(&root->root_item_lock);
1981 if (root->send_in_progress == 0) {
1982 btrfs_set_root_flags(&root->root_item,
1983 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1984 spin_unlock(&root->root_item_lock);
1985 } else {
1986 spin_unlock(&root->root_item_lock);
1987 btrfs_warn(fs_info,
1988 "Attempt to set subvolume %llu read-write during send",
1989 root->root_key.objectid);
1990 ret = -EPERM;
1991 goto out_drop_sem;
1992 }
1993 }
1994
1995 trans = btrfs_start_transaction(root, 1);
1996 if (IS_ERR(trans)) {
1997 ret = PTR_ERR(trans);
1998 goto out_reset;
1999 }
2000
2001 ret = btrfs_update_root(trans, fs_info->tree_root,
2002 &root->root_key, &root->root_item);
2003 if (ret < 0) {
2004 btrfs_end_transaction(trans);
2005 goto out_reset;
2006 }
2007
2008 ret = btrfs_commit_transaction(trans);
2009
2010 out_reset:
2011 if (ret)
2012 btrfs_set_root_flags(&root->root_item, root_flags);
2013 out_drop_sem:
2014 up_write(&fs_info->subvol_sem);
2015 out_drop_write:
2016 mnt_drop_write_file(file);
2017 out:
2018 return ret;
2019 }
2020
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2021 static noinline int key_in_sk(struct btrfs_key *key,
2022 struct btrfs_ioctl_search_key *sk)
2023 {
2024 struct btrfs_key test;
2025 int ret;
2026
2027 test.objectid = sk->min_objectid;
2028 test.type = sk->min_type;
2029 test.offset = sk->min_offset;
2030
2031 ret = btrfs_comp_cpu_keys(key, &test);
2032 if (ret < 0)
2033 return 0;
2034
2035 test.objectid = sk->max_objectid;
2036 test.type = sk->max_type;
2037 test.offset = sk->max_offset;
2038
2039 ret = btrfs_comp_cpu_keys(key, &test);
2040 if (ret > 0)
2041 return 0;
2042 return 1;
2043 }
2044
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2045 static noinline int copy_to_sk(struct btrfs_path *path,
2046 struct btrfs_key *key,
2047 struct btrfs_ioctl_search_key *sk,
2048 size_t *buf_size,
2049 char __user *ubuf,
2050 unsigned long *sk_offset,
2051 int *num_found)
2052 {
2053 u64 found_transid;
2054 struct extent_buffer *leaf;
2055 struct btrfs_ioctl_search_header sh;
2056 struct btrfs_key test;
2057 unsigned long item_off;
2058 unsigned long item_len;
2059 int nritems;
2060 int i;
2061 int slot;
2062 int ret = 0;
2063
2064 leaf = path->nodes[0];
2065 slot = path->slots[0];
2066 nritems = btrfs_header_nritems(leaf);
2067
2068 if (btrfs_header_generation(leaf) > sk->max_transid) {
2069 i = nritems;
2070 goto advance_key;
2071 }
2072 found_transid = btrfs_header_generation(leaf);
2073
2074 for (i = slot; i < nritems; i++) {
2075 item_off = btrfs_item_ptr_offset(leaf, i);
2076 item_len = btrfs_item_size_nr(leaf, i);
2077
2078 btrfs_item_key_to_cpu(leaf, key, i);
2079 if (!key_in_sk(key, sk))
2080 continue;
2081
2082 if (sizeof(sh) + item_len > *buf_size) {
2083 if (*num_found) {
2084 ret = 1;
2085 goto out;
2086 }
2087
2088 /*
2089 * return one empty item back for v1, which does not
2090 * handle -EOVERFLOW
2091 */
2092
2093 *buf_size = sizeof(sh) + item_len;
2094 item_len = 0;
2095 ret = -EOVERFLOW;
2096 }
2097
2098 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2099 ret = 1;
2100 goto out;
2101 }
2102
2103 sh.objectid = key->objectid;
2104 sh.offset = key->offset;
2105 sh.type = key->type;
2106 sh.len = item_len;
2107 sh.transid = found_transid;
2108
2109 /*
2110 * Copy search result header. If we fault then loop again so we
2111 * can fault in the pages and -EFAULT there if there's a
2112 * problem. Otherwise we'll fault and then copy the buffer in
2113 * properly this next time through
2114 */
2115 if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2116 ret = 0;
2117 goto out;
2118 }
2119
2120 *sk_offset += sizeof(sh);
2121
2122 if (item_len) {
2123 char __user *up = ubuf + *sk_offset;
2124 /*
2125 * Copy the item, same behavior as above, but reset the
2126 * * sk_offset so we copy the full thing again.
2127 */
2128 if (read_extent_buffer_to_user_nofault(leaf, up,
2129 item_off, item_len)) {
2130 ret = 0;
2131 *sk_offset -= sizeof(sh);
2132 goto out;
2133 }
2134
2135 *sk_offset += item_len;
2136 }
2137 (*num_found)++;
2138
2139 if (ret) /* -EOVERFLOW from above */
2140 goto out;
2141
2142 if (*num_found >= sk->nr_items) {
2143 ret = 1;
2144 goto out;
2145 }
2146 }
2147 advance_key:
2148 ret = 0;
2149 test.objectid = sk->max_objectid;
2150 test.type = sk->max_type;
2151 test.offset = sk->max_offset;
2152 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2153 ret = 1;
2154 else if (key->offset < (u64)-1)
2155 key->offset++;
2156 else if (key->type < (u8)-1) {
2157 key->offset = 0;
2158 key->type++;
2159 } else if (key->objectid < (u64)-1) {
2160 key->offset = 0;
2161 key->type = 0;
2162 key->objectid++;
2163 } else
2164 ret = 1;
2165 out:
2166 /*
2167 * 0: all items from this leaf copied, continue with next
2168 * 1: * more items can be copied, but unused buffer is too small
2169 * * all items were found
2170 * Either way, it will stops the loop which iterates to the next
2171 * leaf
2172 * -EOVERFLOW: item was to large for buffer
2173 * -EFAULT: could not copy extent buffer back to userspace
2174 */
2175 return ret;
2176 }
2177
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2178 static noinline int search_ioctl(struct inode *inode,
2179 struct btrfs_ioctl_search_key *sk,
2180 size_t *buf_size,
2181 char __user *ubuf)
2182 {
2183 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2184 struct btrfs_root *root;
2185 struct btrfs_key key;
2186 struct btrfs_path *path;
2187 int ret;
2188 int num_found = 0;
2189 unsigned long sk_offset = 0;
2190
2191 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2192 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2193 return -EOVERFLOW;
2194 }
2195
2196 path = btrfs_alloc_path();
2197 if (!path)
2198 return -ENOMEM;
2199
2200 if (sk->tree_id == 0) {
2201 /* search the root of the inode that was passed */
2202 root = BTRFS_I(inode)->root;
2203 } else {
2204 key.objectid = sk->tree_id;
2205 key.type = BTRFS_ROOT_ITEM_KEY;
2206 key.offset = (u64)-1;
2207 root = btrfs_read_fs_root_no_name(info, &key);
2208 if (IS_ERR(root)) {
2209 btrfs_free_path(path);
2210 return PTR_ERR(root);
2211 }
2212 }
2213
2214 key.objectid = sk->min_objectid;
2215 key.type = sk->min_type;
2216 key.offset = sk->min_offset;
2217
2218 while (1) {
2219 ret = fault_in_pages_writeable(ubuf + sk_offset,
2220 *buf_size - sk_offset);
2221 if (ret)
2222 break;
2223
2224 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2225 if (ret != 0) {
2226 if (ret > 0)
2227 ret = 0;
2228 goto err;
2229 }
2230 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2231 &sk_offset, &num_found);
2232 btrfs_release_path(path);
2233 if (ret)
2234 break;
2235
2236 }
2237 if (ret > 0)
2238 ret = 0;
2239 err:
2240 sk->nr_items = num_found;
2241 btrfs_free_path(path);
2242 return ret;
2243 }
2244
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2245 static noinline int btrfs_ioctl_tree_search(struct file *file,
2246 void __user *argp)
2247 {
2248 struct btrfs_ioctl_search_args __user *uargs;
2249 struct btrfs_ioctl_search_key sk;
2250 struct inode *inode;
2251 int ret;
2252 size_t buf_size;
2253
2254 if (!capable(CAP_SYS_ADMIN))
2255 return -EPERM;
2256
2257 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2258
2259 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2260 return -EFAULT;
2261
2262 buf_size = sizeof(uargs->buf);
2263
2264 inode = file_inode(file);
2265 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2266
2267 /*
2268 * In the origin implementation an overflow is handled by returning a
2269 * search header with a len of zero, so reset ret.
2270 */
2271 if (ret == -EOVERFLOW)
2272 ret = 0;
2273
2274 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2275 ret = -EFAULT;
2276 return ret;
2277 }
2278
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2279 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2280 void __user *argp)
2281 {
2282 struct btrfs_ioctl_search_args_v2 __user *uarg;
2283 struct btrfs_ioctl_search_args_v2 args;
2284 struct inode *inode;
2285 int ret;
2286 size_t buf_size;
2287 const size_t buf_limit = SZ_16M;
2288
2289 if (!capable(CAP_SYS_ADMIN))
2290 return -EPERM;
2291
2292 /* copy search header and buffer size */
2293 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2294 if (copy_from_user(&args, uarg, sizeof(args)))
2295 return -EFAULT;
2296
2297 buf_size = args.buf_size;
2298
2299 /* limit result size to 16MB */
2300 if (buf_size > buf_limit)
2301 buf_size = buf_limit;
2302
2303 inode = file_inode(file);
2304 ret = search_ioctl(inode, &args.key, &buf_size,
2305 (char __user *)(&uarg->buf[0]));
2306 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2307 ret = -EFAULT;
2308 else if (ret == -EOVERFLOW &&
2309 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2310 ret = -EFAULT;
2311
2312 return ret;
2313 }
2314
2315 /*
2316 * Search INODE_REFs to identify path name of 'dirid' directory
2317 * in a 'tree_id' tree. and sets path name to 'name'.
2318 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2319 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2320 u64 tree_id, u64 dirid, char *name)
2321 {
2322 struct btrfs_root *root;
2323 struct btrfs_key key;
2324 char *ptr;
2325 int ret = -1;
2326 int slot;
2327 int len;
2328 int total_len = 0;
2329 struct btrfs_inode_ref *iref;
2330 struct extent_buffer *l;
2331 struct btrfs_path *path;
2332
2333 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2334 name[0]='\0';
2335 return 0;
2336 }
2337
2338 path = btrfs_alloc_path();
2339 if (!path)
2340 return -ENOMEM;
2341
2342 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2343
2344 key.objectid = tree_id;
2345 key.type = BTRFS_ROOT_ITEM_KEY;
2346 key.offset = (u64)-1;
2347 root = btrfs_read_fs_root_no_name(info, &key);
2348 if (IS_ERR(root)) {
2349 ret = PTR_ERR(root);
2350 goto out;
2351 }
2352
2353 key.objectid = dirid;
2354 key.type = BTRFS_INODE_REF_KEY;
2355 key.offset = (u64)-1;
2356
2357 while (1) {
2358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2359 if (ret < 0)
2360 goto out;
2361 else if (ret > 0) {
2362 ret = btrfs_previous_item(root, path, dirid,
2363 BTRFS_INODE_REF_KEY);
2364 if (ret < 0)
2365 goto out;
2366 else if (ret > 0) {
2367 ret = -ENOENT;
2368 goto out;
2369 }
2370 }
2371
2372 l = path->nodes[0];
2373 slot = path->slots[0];
2374 btrfs_item_key_to_cpu(l, &key, slot);
2375
2376 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2377 len = btrfs_inode_ref_name_len(l, iref);
2378 ptr -= len + 1;
2379 total_len += len + 1;
2380 if (ptr < name) {
2381 ret = -ENAMETOOLONG;
2382 goto out;
2383 }
2384
2385 *(ptr + len) = '/';
2386 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2387
2388 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2389 break;
2390
2391 btrfs_release_path(path);
2392 key.objectid = key.offset;
2393 key.offset = (u64)-1;
2394 dirid = key.objectid;
2395 }
2396 memmove(name, ptr, total_len);
2397 name[total_len] = '\0';
2398 ret = 0;
2399 out:
2400 btrfs_free_path(path);
2401 return ret;
2402 }
2403
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2404 static int btrfs_search_path_in_tree_user(struct inode *inode,
2405 struct btrfs_ioctl_ino_lookup_user_args *args)
2406 {
2407 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2408 struct super_block *sb = inode->i_sb;
2409 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2410 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2411 u64 dirid = args->dirid;
2412 unsigned long item_off;
2413 unsigned long item_len;
2414 struct btrfs_inode_ref *iref;
2415 struct btrfs_root_ref *rref;
2416 struct btrfs_root *root;
2417 struct btrfs_path *path;
2418 struct btrfs_key key, key2;
2419 struct extent_buffer *leaf;
2420 struct inode *temp_inode;
2421 char *ptr;
2422 int slot;
2423 int len;
2424 int total_len = 0;
2425 int ret;
2426
2427 path = btrfs_alloc_path();
2428 if (!path)
2429 return -ENOMEM;
2430
2431 /*
2432 * If the bottom subvolume does not exist directly under upper_limit,
2433 * construct the path in from the bottom up.
2434 */
2435 if (dirid != upper_limit.objectid) {
2436 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2437
2438 key.objectid = treeid;
2439 key.type = BTRFS_ROOT_ITEM_KEY;
2440 key.offset = (u64)-1;
2441 root = btrfs_read_fs_root_no_name(fs_info, &key);
2442 if (IS_ERR(root)) {
2443 ret = PTR_ERR(root);
2444 goto out;
2445 }
2446
2447 key.objectid = dirid;
2448 key.type = BTRFS_INODE_REF_KEY;
2449 key.offset = (u64)-1;
2450 while (1) {
2451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2452 if (ret < 0) {
2453 goto out;
2454 } else if (ret > 0) {
2455 ret = btrfs_previous_item(root, path, dirid,
2456 BTRFS_INODE_REF_KEY);
2457 if (ret < 0) {
2458 goto out;
2459 } else if (ret > 0) {
2460 ret = -ENOENT;
2461 goto out;
2462 }
2463 }
2464
2465 leaf = path->nodes[0];
2466 slot = path->slots[0];
2467 btrfs_item_key_to_cpu(leaf, &key, slot);
2468
2469 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2470 len = btrfs_inode_ref_name_len(leaf, iref);
2471 ptr -= len + 1;
2472 total_len += len + 1;
2473 if (ptr < args->path) {
2474 ret = -ENAMETOOLONG;
2475 goto out;
2476 }
2477
2478 *(ptr + len) = '/';
2479 read_extent_buffer(leaf, ptr,
2480 (unsigned long)(iref + 1), len);
2481
2482 /* Check the read+exec permission of this directory */
2483 ret = btrfs_previous_item(root, path, dirid,
2484 BTRFS_INODE_ITEM_KEY);
2485 if (ret < 0) {
2486 goto out;
2487 } else if (ret > 0) {
2488 ret = -ENOENT;
2489 goto out;
2490 }
2491
2492 leaf = path->nodes[0];
2493 slot = path->slots[0];
2494 btrfs_item_key_to_cpu(leaf, &key2, slot);
2495 if (key2.objectid != dirid) {
2496 ret = -ENOENT;
2497 goto out;
2498 }
2499
2500 temp_inode = btrfs_iget(sb, &key2, root, NULL);
2501 if (IS_ERR(temp_inode)) {
2502 ret = PTR_ERR(temp_inode);
2503 goto out;
2504 }
2505 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2506 iput(temp_inode);
2507 if (ret) {
2508 ret = -EACCES;
2509 goto out;
2510 }
2511
2512 if (key.offset == upper_limit.objectid)
2513 break;
2514 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2515 ret = -EACCES;
2516 goto out;
2517 }
2518
2519 btrfs_release_path(path);
2520 key.objectid = key.offset;
2521 key.offset = (u64)-1;
2522 dirid = key.objectid;
2523 }
2524
2525 memmove(args->path, ptr, total_len);
2526 args->path[total_len] = '\0';
2527 btrfs_release_path(path);
2528 }
2529
2530 /* Get the bottom subvolume's name from ROOT_REF */
2531 root = fs_info->tree_root;
2532 key.objectid = treeid;
2533 key.type = BTRFS_ROOT_REF_KEY;
2534 key.offset = args->treeid;
2535 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2536 if (ret < 0) {
2537 goto out;
2538 } else if (ret > 0) {
2539 ret = -ENOENT;
2540 goto out;
2541 }
2542
2543 leaf = path->nodes[0];
2544 slot = path->slots[0];
2545 btrfs_item_key_to_cpu(leaf, &key, slot);
2546
2547 item_off = btrfs_item_ptr_offset(leaf, slot);
2548 item_len = btrfs_item_size_nr(leaf, slot);
2549 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2550 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2551 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2552 ret = -EINVAL;
2553 goto out;
2554 }
2555
2556 /* Copy subvolume's name */
2557 item_off += sizeof(struct btrfs_root_ref);
2558 item_len -= sizeof(struct btrfs_root_ref);
2559 read_extent_buffer(leaf, args->name, item_off, item_len);
2560 args->name[item_len] = 0;
2561
2562 out:
2563 btrfs_free_path(path);
2564 return ret;
2565 }
2566
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2567 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2568 void __user *argp)
2569 {
2570 struct btrfs_ioctl_ino_lookup_args *args;
2571 struct inode *inode;
2572 int ret = 0;
2573
2574 args = memdup_user(argp, sizeof(*args));
2575 if (IS_ERR(args))
2576 return PTR_ERR(args);
2577
2578 inode = file_inode(file);
2579
2580 /*
2581 * Unprivileged query to obtain the containing subvolume root id. The
2582 * path is reset so it's consistent with btrfs_search_path_in_tree.
2583 */
2584 if (args->treeid == 0)
2585 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2586
2587 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2588 args->name[0] = 0;
2589 goto out;
2590 }
2591
2592 if (!capable(CAP_SYS_ADMIN)) {
2593 ret = -EPERM;
2594 goto out;
2595 }
2596
2597 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2598 args->treeid, args->objectid,
2599 args->name);
2600
2601 out:
2602 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2603 ret = -EFAULT;
2604
2605 kfree(args);
2606 return ret;
2607 }
2608
2609 /*
2610 * Version of ino_lookup ioctl (unprivileged)
2611 *
2612 * The main differences from ino_lookup ioctl are:
2613 *
2614 * 1. Read + Exec permission will be checked using inode_permission() during
2615 * path construction. -EACCES will be returned in case of failure.
2616 * 2. Path construction will be stopped at the inode number which corresponds
2617 * to the fd with which this ioctl is called. If constructed path does not
2618 * exist under fd's inode, -EACCES will be returned.
2619 * 3. The name of bottom subvolume is also searched and filled.
2620 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2621 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2622 {
2623 struct btrfs_ioctl_ino_lookup_user_args *args;
2624 struct inode *inode;
2625 int ret;
2626
2627 args = memdup_user(argp, sizeof(*args));
2628 if (IS_ERR(args))
2629 return PTR_ERR(args);
2630
2631 inode = file_inode(file);
2632
2633 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2634 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2635 /*
2636 * The subvolume does not exist under fd with which this is
2637 * called
2638 */
2639 kfree(args);
2640 return -EACCES;
2641 }
2642
2643 ret = btrfs_search_path_in_tree_user(inode, args);
2644
2645 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2646 ret = -EFAULT;
2647
2648 kfree(args);
2649 return ret;
2650 }
2651
2652 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2653 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2654 {
2655 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2656 struct btrfs_fs_info *fs_info;
2657 struct btrfs_root *root;
2658 struct btrfs_path *path;
2659 struct btrfs_key key;
2660 struct btrfs_root_item *root_item;
2661 struct btrfs_root_ref *rref;
2662 struct extent_buffer *leaf;
2663 unsigned long item_off;
2664 unsigned long item_len;
2665 struct inode *inode;
2666 int slot;
2667 int ret = 0;
2668
2669 path = btrfs_alloc_path();
2670 if (!path)
2671 return -ENOMEM;
2672
2673 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2674 if (!subvol_info) {
2675 btrfs_free_path(path);
2676 return -ENOMEM;
2677 }
2678
2679 inode = file_inode(file);
2680 fs_info = BTRFS_I(inode)->root->fs_info;
2681
2682 /* Get root_item of inode's subvolume */
2683 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2684 key.type = BTRFS_ROOT_ITEM_KEY;
2685 key.offset = (u64)-1;
2686 root = btrfs_read_fs_root_no_name(fs_info, &key);
2687 if (IS_ERR(root)) {
2688 ret = PTR_ERR(root);
2689 goto out;
2690 }
2691 root_item = &root->root_item;
2692
2693 subvol_info->treeid = key.objectid;
2694
2695 subvol_info->generation = btrfs_root_generation(root_item);
2696 subvol_info->flags = btrfs_root_flags(root_item);
2697
2698 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2699 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2700 BTRFS_UUID_SIZE);
2701 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2702 BTRFS_UUID_SIZE);
2703
2704 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2705 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2706 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2707
2708 subvol_info->otransid = btrfs_root_otransid(root_item);
2709 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2710 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2711
2712 subvol_info->stransid = btrfs_root_stransid(root_item);
2713 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2714 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2715
2716 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2717 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2718 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2719
2720 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2721 /* Search root tree for ROOT_BACKREF of this subvolume */
2722 root = fs_info->tree_root;
2723
2724 key.type = BTRFS_ROOT_BACKREF_KEY;
2725 key.offset = 0;
2726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2727 if (ret < 0) {
2728 goto out;
2729 } else if (path->slots[0] >=
2730 btrfs_header_nritems(path->nodes[0])) {
2731 ret = btrfs_next_leaf(root, path);
2732 if (ret < 0) {
2733 goto out;
2734 } else if (ret > 0) {
2735 ret = -EUCLEAN;
2736 goto out;
2737 }
2738 }
2739
2740 leaf = path->nodes[0];
2741 slot = path->slots[0];
2742 btrfs_item_key_to_cpu(leaf, &key, slot);
2743 if (key.objectid == subvol_info->treeid &&
2744 key.type == BTRFS_ROOT_BACKREF_KEY) {
2745 subvol_info->parent_id = key.offset;
2746
2747 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2748 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2749
2750 item_off = btrfs_item_ptr_offset(leaf, slot)
2751 + sizeof(struct btrfs_root_ref);
2752 item_len = btrfs_item_size_nr(leaf, slot)
2753 - sizeof(struct btrfs_root_ref);
2754 read_extent_buffer(leaf, subvol_info->name,
2755 item_off, item_len);
2756 } else {
2757 ret = -ENOENT;
2758 goto out;
2759 }
2760 }
2761
2762 btrfs_free_path(path);
2763 path = NULL;
2764 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2765 ret = -EFAULT;
2766
2767 out:
2768 btrfs_free_path(path);
2769 kzfree(subvol_info);
2770 return ret;
2771 }
2772
2773 /*
2774 * Return ROOT_REF information of the subvolume containing this inode
2775 * except the subvolume name.
2776 */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2777 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2778 {
2779 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2780 struct btrfs_root_ref *rref;
2781 struct btrfs_root *root;
2782 struct btrfs_path *path;
2783 struct btrfs_key key;
2784 struct extent_buffer *leaf;
2785 struct inode *inode;
2786 u64 objectid;
2787 int slot;
2788 int ret;
2789 u8 found;
2790
2791 path = btrfs_alloc_path();
2792 if (!path)
2793 return -ENOMEM;
2794
2795 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2796 if (IS_ERR(rootrefs)) {
2797 btrfs_free_path(path);
2798 return PTR_ERR(rootrefs);
2799 }
2800
2801 inode = file_inode(file);
2802 root = BTRFS_I(inode)->root->fs_info->tree_root;
2803 objectid = BTRFS_I(inode)->root->root_key.objectid;
2804
2805 key.objectid = objectid;
2806 key.type = BTRFS_ROOT_REF_KEY;
2807 key.offset = rootrefs->min_treeid;
2808 found = 0;
2809
2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 if (ret < 0) {
2812 goto out;
2813 } else if (path->slots[0] >=
2814 btrfs_header_nritems(path->nodes[0])) {
2815 ret = btrfs_next_leaf(root, path);
2816 if (ret < 0) {
2817 goto out;
2818 } else if (ret > 0) {
2819 ret = -EUCLEAN;
2820 goto out;
2821 }
2822 }
2823 while (1) {
2824 leaf = path->nodes[0];
2825 slot = path->slots[0];
2826
2827 btrfs_item_key_to_cpu(leaf, &key, slot);
2828 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2829 ret = 0;
2830 goto out;
2831 }
2832
2833 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2834 ret = -EOVERFLOW;
2835 goto out;
2836 }
2837
2838 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2839 rootrefs->rootref[found].treeid = key.offset;
2840 rootrefs->rootref[found].dirid =
2841 btrfs_root_ref_dirid(leaf, rref);
2842 found++;
2843
2844 ret = btrfs_next_item(root, path);
2845 if (ret < 0) {
2846 goto out;
2847 } else if (ret > 0) {
2848 ret = -EUCLEAN;
2849 goto out;
2850 }
2851 }
2852
2853 out:
2854 btrfs_free_path(path);
2855
2856 if (!ret || ret == -EOVERFLOW) {
2857 rootrefs->num_items = found;
2858 /* update min_treeid for next search */
2859 if (found)
2860 rootrefs->min_treeid =
2861 rootrefs->rootref[found - 1].treeid + 1;
2862 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2863 ret = -EFAULT;
2864 }
2865
2866 kfree(rootrefs);
2867
2868 return ret;
2869 }
2870
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2871 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2872 void __user *arg)
2873 {
2874 struct dentry *parent = file->f_path.dentry;
2875 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2876 struct dentry *dentry;
2877 struct inode *dir = d_inode(parent);
2878 struct inode *inode;
2879 struct btrfs_root *root = BTRFS_I(dir)->root;
2880 struct btrfs_root *dest = NULL;
2881 struct btrfs_ioctl_vol_args *vol_args;
2882 int namelen;
2883 int err = 0;
2884
2885 if (!S_ISDIR(dir->i_mode))
2886 return -ENOTDIR;
2887
2888 vol_args = memdup_user(arg, sizeof(*vol_args));
2889 if (IS_ERR(vol_args))
2890 return PTR_ERR(vol_args);
2891
2892 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2893 namelen = strlen(vol_args->name);
2894 if (strchr(vol_args->name, '/') ||
2895 strncmp(vol_args->name, "..", namelen) == 0) {
2896 err = -EINVAL;
2897 goto out;
2898 }
2899
2900 err = mnt_want_write_file(file);
2901 if (err)
2902 goto out;
2903
2904
2905 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2906 if (err == -EINTR)
2907 goto out_drop_write;
2908 dentry = lookup_one_len(vol_args->name, parent, namelen);
2909 if (IS_ERR(dentry)) {
2910 err = PTR_ERR(dentry);
2911 goto out_unlock_dir;
2912 }
2913
2914 if (d_really_is_negative(dentry)) {
2915 err = -ENOENT;
2916 goto out_dput;
2917 }
2918
2919 inode = d_inode(dentry);
2920 dest = BTRFS_I(inode)->root;
2921 if (!capable(CAP_SYS_ADMIN)) {
2922 /*
2923 * Regular user. Only allow this with a special mount
2924 * option, when the user has write+exec access to the
2925 * subvol root, and when rmdir(2) would have been
2926 * allowed.
2927 *
2928 * Note that this is _not_ check that the subvol is
2929 * empty or doesn't contain data that we wouldn't
2930 * otherwise be able to delete.
2931 *
2932 * Users who want to delete empty subvols should try
2933 * rmdir(2).
2934 */
2935 err = -EPERM;
2936 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2937 goto out_dput;
2938
2939 /*
2940 * Do not allow deletion if the parent dir is the same
2941 * as the dir to be deleted. That means the ioctl
2942 * must be called on the dentry referencing the root
2943 * of the subvol, not a random directory contained
2944 * within it.
2945 */
2946 err = -EINVAL;
2947 if (root == dest)
2948 goto out_dput;
2949
2950 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2951 if (err)
2952 goto out_dput;
2953 }
2954
2955 /* check if subvolume may be deleted by a user */
2956 err = btrfs_may_delete(dir, dentry, 1);
2957 if (err)
2958 goto out_dput;
2959
2960 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2961 err = -EINVAL;
2962 goto out_dput;
2963 }
2964
2965 inode_lock(inode);
2966 err = btrfs_delete_subvolume(dir, dentry);
2967 inode_unlock(inode);
2968 if (!err)
2969 d_delete(dentry);
2970
2971 out_dput:
2972 dput(dentry);
2973 out_unlock_dir:
2974 inode_unlock(dir);
2975 out_drop_write:
2976 mnt_drop_write_file(file);
2977 out:
2978 kfree(vol_args);
2979 return err;
2980 }
2981
btrfs_ioctl_defrag(struct file * file,void __user * argp)2982 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2983 {
2984 struct inode *inode = file_inode(file);
2985 struct btrfs_root *root = BTRFS_I(inode)->root;
2986 struct btrfs_ioctl_defrag_range_args *range;
2987 int ret;
2988
2989 ret = mnt_want_write_file(file);
2990 if (ret)
2991 return ret;
2992
2993 if (btrfs_root_readonly(root)) {
2994 ret = -EROFS;
2995 goto out;
2996 }
2997
2998 switch (inode->i_mode & S_IFMT) {
2999 case S_IFDIR:
3000 if (!capable(CAP_SYS_ADMIN)) {
3001 ret = -EPERM;
3002 goto out;
3003 }
3004 ret = btrfs_defrag_root(root);
3005 break;
3006 case S_IFREG:
3007 /*
3008 * Note that this does not check the file descriptor for write
3009 * access. This prevents defragmenting executables that are
3010 * running and allows defrag on files open in read-only mode.
3011 */
3012 if (!capable(CAP_SYS_ADMIN) &&
3013 inode_permission(inode, MAY_WRITE)) {
3014 ret = -EPERM;
3015 goto out;
3016 }
3017
3018 range = kzalloc(sizeof(*range), GFP_KERNEL);
3019 if (!range) {
3020 ret = -ENOMEM;
3021 goto out;
3022 }
3023
3024 if (argp) {
3025 if (copy_from_user(range, argp,
3026 sizeof(*range))) {
3027 ret = -EFAULT;
3028 kfree(range);
3029 goto out;
3030 }
3031 /* compression requires us to start the IO */
3032 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3033 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3034 range->extent_thresh = (u32)-1;
3035 }
3036 } else {
3037 /* the rest are all set to zero by kzalloc */
3038 range->len = (u64)-1;
3039 }
3040 ret = btrfs_defrag_file(file_inode(file), file,
3041 range, BTRFS_OLDEST_GENERATION, 0);
3042 if (ret > 0)
3043 ret = 0;
3044 kfree(range);
3045 break;
3046 default:
3047 ret = -EINVAL;
3048 }
3049 out:
3050 mnt_drop_write_file(file);
3051 return ret;
3052 }
3053
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3054 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3055 {
3056 struct btrfs_ioctl_vol_args *vol_args;
3057 int ret;
3058
3059 if (!capable(CAP_SYS_ADMIN))
3060 return -EPERM;
3061
3062 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3063 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3064
3065 vol_args = memdup_user(arg, sizeof(*vol_args));
3066 if (IS_ERR(vol_args)) {
3067 ret = PTR_ERR(vol_args);
3068 goto out;
3069 }
3070
3071 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3072 ret = btrfs_init_new_device(fs_info, vol_args->name);
3073
3074 if (!ret)
3075 btrfs_info(fs_info, "disk added %s", vol_args->name);
3076
3077 kfree(vol_args);
3078 out:
3079 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3080 return ret;
3081 }
3082
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3083 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3084 {
3085 struct inode *inode = file_inode(file);
3086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3087 struct btrfs_ioctl_vol_args_v2 *vol_args;
3088 int ret;
3089
3090 if (!capable(CAP_SYS_ADMIN))
3091 return -EPERM;
3092
3093 ret = mnt_want_write_file(file);
3094 if (ret)
3095 return ret;
3096
3097 vol_args = memdup_user(arg, sizeof(*vol_args));
3098 if (IS_ERR(vol_args)) {
3099 ret = PTR_ERR(vol_args);
3100 goto err_drop;
3101 }
3102
3103 /* Check for compatibility reject unknown flags */
3104 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3105 ret = -EOPNOTSUPP;
3106 goto out;
3107 }
3108
3109 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3110 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3111 goto out;
3112 }
3113
3114 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3115 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3116 } else {
3117 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3118 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3119 }
3120 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3121
3122 if (!ret) {
3123 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3124 btrfs_info(fs_info, "device deleted: id %llu",
3125 vol_args->devid);
3126 else
3127 btrfs_info(fs_info, "device deleted: %s",
3128 vol_args->name);
3129 }
3130 out:
3131 kfree(vol_args);
3132 err_drop:
3133 mnt_drop_write_file(file);
3134 return ret;
3135 }
3136
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3137 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3138 {
3139 struct inode *inode = file_inode(file);
3140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3141 struct btrfs_ioctl_vol_args *vol_args;
3142 int ret;
3143
3144 if (!capable(CAP_SYS_ADMIN))
3145 return -EPERM;
3146
3147 ret = mnt_want_write_file(file);
3148 if (ret)
3149 return ret;
3150
3151 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3152 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3153 goto out_drop_write;
3154 }
3155
3156 vol_args = memdup_user(arg, sizeof(*vol_args));
3157 if (IS_ERR(vol_args)) {
3158 ret = PTR_ERR(vol_args);
3159 goto out;
3160 }
3161
3162 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3163 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3164
3165 if (!ret)
3166 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3167 kfree(vol_args);
3168 out:
3169 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3170 out_drop_write:
3171 mnt_drop_write_file(file);
3172
3173 return ret;
3174 }
3175
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3176 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3177 void __user *arg)
3178 {
3179 struct btrfs_ioctl_fs_info_args *fi_args;
3180 struct btrfs_device *device;
3181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3182 int ret = 0;
3183
3184 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3185 if (!fi_args)
3186 return -ENOMEM;
3187
3188 rcu_read_lock();
3189 fi_args->num_devices = fs_devices->num_devices;
3190
3191 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3192 if (device->devid > fi_args->max_id)
3193 fi_args->max_id = device->devid;
3194 }
3195 rcu_read_unlock();
3196
3197 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3198 fi_args->nodesize = fs_info->nodesize;
3199 fi_args->sectorsize = fs_info->sectorsize;
3200 fi_args->clone_alignment = fs_info->sectorsize;
3201
3202 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3203 ret = -EFAULT;
3204
3205 kfree(fi_args);
3206 return ret;
3207 }
3208
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3209 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3210 void __user *arg)
3211 {
3212 struct btrfs_ioctl_dev_info_args *di_args;
3213 struct btrfs_device *dev;
3214 int ret = 0;
3215 char *s_uuid = NULL;
3216
3217 di_args = memdup_user(arg, sizeof(*di_args));
3218 if (IS_ERR(di_args))
3219 return PTR_ERR(di_args);
3220
3221 if (!btrfs_is_empty_uuid(di_args->uuid))
3222 s_uuid = di_args->uuid;
3223
3224 rcu_read_lock();
3225 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3226 NULL, true);
3227
3228 if (!dev) {
3229 ret = -ENODEV;
3230 goto out;
3231 }
3232
3233 di_args->devid = dev->devid;
3234 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3235 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3236 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3237 if (dev->name)
3238 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3239 else
3240 di_args->path[0] = '\0';
3241
3242 out:
3243 rcu_read_unlock();
3244 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3245 ret = -EFAULT;
3246
3247 kfree(di_args);
3248 return ret;
3249 }
3250
extent_same_get_page(struct inode * inode,pgoff_t index)3251 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3252 {
3253 struct page *page;
3254
3255 page = grab_cache_page(inode->i_mapping, index);
3256 if (!page)
3257 return ERR_PTR(-ENOMEM);
3258
3259 if (!PageUptodate(page)) {
3260 int ret;
3261
3262 ret = btrfs_readpage(NULL, page);
3263 if (ret)
3264 return ERR_PTR(ret);
3265 lock_page(page);
3266 if (!PageUptodate(page)) {
3267 unlock_page(page);
3268 put_page(page);
3269 return ERR_PTR(-EIO);
3270 }
3271 if (page->mapping != inode->i_mapping) {
3272 unlock_page(page);
3273 put_page(page);
3274 return ERR_PTR(-EAGAIN);
3275 }
3276 }
3277
3278 return page;
3279 }
3280
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)3281 static int gather_extent_pages(struct inode *inode, struct page **pages,
3282 int num_pages, u64 off)
3283 {
3284 int i;
3285 pgoff_t index = off >> PAGE_SHIFT;
3286
3287 for (i = 0; i < num_pages; i++) {
3288 again:
3289 pages[i] = extent_same_get_page(inode, index + i);
3290 if (IS_ERR(pages[i])) {
3291 int err = PTR_ERR(pages[i]);
3292
3293 if (err == -EAGAIN)
3294 goto again;
3295 pages[i] = NULL;
3296 return err;
3297 }
3298 }
3299 return 0;
3300 }
3301
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)3302 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3303 bool retry_range_locking)
3304 {
3305 /*
3306 * Do any pending delalloc/csum calculations on inode, one way or
3307 * another, and lock file content.
3308 * The locking order is:
3309 *
3310 * 1) pages
3311 * 2) range in the inode's io tree
3312 */
3313 while (1) {
3314 struct btrfs_ordered_extent *ordered;
3315 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3316 ordered = btrfs_lookup_first_ordered_extent(inode,
3317 off + len - 1);
3318 if ((!ordered ||
3319 ordered->file_offset + ordered->len <= off ||
3320 ordered->file_offset >= off + len) &&
3321 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3322 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3323 if (ordered)
3324 btrfs_put_ordered_extent(ordered);
3325 break;
3326 }
3327 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3328 if (ordered)
3329 btrfs_put_ordered_extent(ordered);
3330 if (!retry_range_locking)
3331 return -EAGAIN;
3332 btrfs_wait_ordered_range(inode, off, len);
3333 }
3334 return 0;
3335 }
3336
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)3337 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3338 {
3339 inode_unlock(inode1);
3340 inode_unlock(inode2);
3341 }
3342
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)3343 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3344 {
3345 if (inode1 < inode2)
3346 swap(inode1, inode2);
3347
3348 inode_lock_nested(inode1, I_MUTEX_PARENT);
3349 inode_lock_nested(inode2, I_MUTEX_CHILD);
3350 }
3351
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3352 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3353 struct inode *inode2, u64 loff2, u64 len)
3354 {
3355 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3356 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3357 }
3358
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)3359 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3360 struct inode *inode2, u64 loff2, u64 len,
3361 bool retry_range_locking)
3362 {
3363 int ret;
3364
3365 if (inode1 < inode2) {
3366 swap(inode1, inode2);
3367 swap(loff1, loff2);
3368 }
3369 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3370 if (ret)
3371 return ret;
3372 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3373 if (ret)
3374 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3375 loff1 + len - 1);
3376 return ret;
3377 }
3378
3379 struct cmp_pages {
3380 int num_pages;
3381 struct page **src_pages;
3382 struct page **dst_pages;
3383 };
3384
btrfs_cmp_data_free(struct cmp_pages * cmp)3385 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3386 {
3387 int i;
3388 struct page *pg;
3389
3390 for (i = 0; i < cmp->num_pages; i++) {
3391 pg = cmp->src_pages[i];
3392 if (pg) {
3393 unlock_page(pg);
3394 put_page(pg);
3395 cmp->src_pages[i] = NULL;
3396 }
3397 pg = cmp->dst_pages[i];
3398 if (pg) {
3399 unlock_page(pg);
3400 put_page(pg);
3401 cmp->dst_pages[i] = NULL;
3402 }
3403 }
3404 }
3405
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3406 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3407 struct inode *dst, u64 dst_loff,
3408 u64 len, struct cmp_pages *cmp)
3409 {
3410 int ret;
3411 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3412
3413 cmp->num_pages = num_pages;
3414
3415 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3416 if (ret)
3417 goto out;
3418
3419 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3420
3421 out:
3422 if (ret)
3423 btrfs_cmp_data_free(cmp);
3424 return ret;
3425 }
3426
btrfs_cmp_data(u64 len,struct cmp_pages * cmp)3427 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3428 {
3429 int ret = 0;
3430 int i;
3431 struct page *src_page, *dst_page;
3432 unsigned int cmp_len = PAGE_SIZE;
3433 void *addr, *dst_addr;
3434
3435 i = 0;
3436 while (len) {
3437 if (len < PAGE_SIZE)
3438 cmp_len = len;
3439
3440 BUG_ON(i >= cmp->num_pages);
3441
3442 src_page = cmp->src_pages[i];
3443 dst_page = cmp->dst_pages[i];
3444 ASSERT(PageLocked(src_page));
3445 ASSERT(PageLocked(dst_page));
3446
3447 addr = kmap_atomic(src_page);
3448 dst_addr = kmap_atomic(dst_page);
3449
3450 flush_dcache_page(src_page);
3451 flush_dcache_page(dst_page);
3452
3453 if (memcmp(addr, dst_addr, cmp_len))
3454 ret = -EBADE;
3455
3456 kunmap_atomic(addr);
3457 kunmap_atomic(dst_addr);
3458
3459 if (ret)
3460 break;
3461
3462 len -= cmp_len;
3463 i++;
3464 }
3465
3466 return ret;
3467 }
3468
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3469 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3470 u64 olen)
3471 {
3472 u64 len = *plen;
3473 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3474
3475 if (off + olen > inode->i_size || off + olen < off)
3476 return -EINVAL;
3477
3478 /* if we extend to eof, continue to block boundary */
3479 if (off + len == inode->i_size)
3480 *plen = len = ALIGN(inode->i_size, bs) - off;
3481
3482 /* Check that we are block aligned - btrfs_clone() requires this */
3483 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3484 return -EINVAL;
3485
3486 return 0;
3487 }
3488
btrfs_extent_same_range(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff,struct cmp_pages * cmp)3489 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3490 struct inode *dst, u64 dst_loff,
3491 struct cmp_pages *cmp)
3492 {
3493 int ret;
3494 u64 len = olen;
3495 bool same_inode = (src == dst);
3496 u64 same_lock_start = 0;
3497 u64 same_lock_len = 0;
3498
3499 ret = extent_same_check_offsets(src, loff, &len, olen);
3500 if (ret)
3501 return ret;
3502
3503 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3504 if (ret)
3505 return ret;
3506
3507 if (same_inode) {
3508 /*
3509 * Single inode case wants the same checks, except we
3510 * don't want our length pushed out past i_size as
3511 * comparing that data range makes no sense.
3512 *
3513 * extent_same_check_offsets() will do this for an
3514 * unaligned length at i_size, so catch it here and
3515 * reject the request.
3516 *
3517 * This effectively means we require aligned extents
3518 * for the single-inode case, whereas the other cases
3519 * allow an unaligned length so long as it ends at
3520 * i_size.
3521 */
3522 if (len != olen)
3523 return -EINVAL;
3524
3525 /* Check for overlapping ranges */
3526 if (dst_loff + len > loff && dst_loff < loff + len)
3527 return -EINVAL;
3528
3529 same_lock_start = min_t(u64, loff, dst_loff);
3530 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3531 } else {
3532 /*
3533 * If the source and destination inodes are different, the
3534 * source's range end offset matches the source's i_size, that
3535 * i_size is not a multiple of the sector size, and the
3536 * destination range does not go past the destination's i_size,
3537 * we must round down the length to the nearest sector size
3538 * multiple. If we don't do this adjustment we end replacing
3539 * with zeroes the bytes in the range that starts at the
3540 * deduplication range's end offset and ends at the next sector
3541 * size multiple.
3542 */
3543 if (loff + olen == i_size_read(src) &&
3544 dst_loff + len < i_size_read(dst)) {
3545 const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3546
3547 len = round_down(i_size_read(src), sz) - loff;
3548 if (len == 0)
3549 return 0;
3550 olen = len;
3551 }
3552 }
3553
3554 again:
3555 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3556 if (ret)
3557 return ret;
3558
3559 if (same_inode)
3560 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3561 false);
3562 else
3563 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3564 false);
3565 /*
3566 * If one of the inodes has dirty pages in the respective range or
3567 * ordered extents, we need to flush dellaloc and wait for all ordered
3568 * extents in the range. We must unlock the pages and the ranges in the
3569 * io trees to avoid deadlocks when flushing delalloc (requires locking
3570 * pages) and when waiting for ordered extents to complete (they require
3571 * range locking).
3572 */
3573 if (ret == -EAGAIN) {
3574 /*
3575 * Ranges in the io trees already unlocked. Now unlock all
3576 * pages before waiting for all IO to complete.
3577 */
3578 btrfs_cmp_data_free(cmp);
3579 if (same_inode) {
3580 btrfs_wait_ordered_range(src, same_lock_start,
3581 same_lock_len);
3582 } else {
3583 btrfs_wait_ordered_range(src, loff, len);
3584 btrfs_wait_ordered_range(dst, dst_loff, len);
3585 }
3586 goto again;
3587 }
3588 ASSERT(ret == 0);
3589 if (WARN_ON(ret)) {
3590 /* ranges in the io trees already unlocked */
3591 btrfs_cmp_data_free(cmp);
3592 return ret;
3593 }
3594
3595 /* pass original length for comparison so we stay within i_size */
3596 ret = btrfs_cmp_data(olen, cmp);
3597 if (ret == 0)
3598 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3599
3600 if (same_inode)
3601 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3602 same_lock_start + same_lock_len - 1);
3603 else
3604 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3605
3606 btrfs_cmp_data_free(cmp);
3607
3608 return ret;
3609 }
3610
3611 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3612
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3613 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3614 struct inode *dst, u64 dst_loff)
3615 {
3616 int ret;
3617 struct cmp_pages cmp;
3618 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3619 bool same_inode = (src == dst);
3620 u64 i, tail_len, chunk_count;
3621
3622 if (olen == 0)
3623 return 0;
3624
3625 if (same_inode)
3626 inode_lock(src);
3627 else
3628 btrfs_double_inode_lock(src, dst);
3629
3630 /* don't make the dst file partly checksummed */
3631 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3632 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3633 ret = -EINVAL;
3634 goto out_unlock;
3635 }
3636
3637 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3638 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3639 if (chunk_count == 0)
3640 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3641
3642 /*
3643 * If deduping ranges in the same inode, locking rules make it
3644 * mandatory to always lock pages in ascending order to avoid deadlocks
3645 * with concurrent tasks (such as starting writeback/delalloc).
3646 */
3647 if (same_inode && dst_loff < loff)
3648 swap(loff, dst_loff);
3649
3650 /*
3651 * We must gather up all the pages before we initiate our extent
3652 * locking. We use an array for the page pointers. Size of the array is
3653 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3654 */
3655 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3656 GFP_KERNEL | __GFP_ZERO);
3657 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3658 GFP_KERNEL | __GFP_ZERO);
3659 if (!cmp.src_pages || !cmp.dst_pages) {
3660 ret = -ENOMEM;
3661 goto out_free;
3662 }
3663
3664 for (i = 0; i < chunk_count; i++) {
3665 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3666 dst, dst_loff, &cmp);
3667 if (ret)
3668 goto out_free;
3669
3670 loff += BTRFS_MAX_DEDUPE_LEN;
3671 dst_loff += BTRFS_MAX_DEDUPE_LEN;
3672 }
3673
3674 if (tail_len > 0)
3675 ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3676 dst_loff, &cmp);
3677
3678 out_free:
3679 kvfree(cmp.src_pages);
3680 kvfree(cmp.dst_pages);
3681
3682 out_unlock:
3683 if (same_inode)
3684 inode_unlock(src);
3685 else
3686 btrfs_double_inode_unlock(src, dst);
3687
3688 return ret;
3689 }
3690
btrfs_dedupe_file_range(struct file * src_file,loff_t src_loff,struct file * dst_file,loff_t dst_loff,u64 olen)3691 int btrfs_dedupe_file_range(struct file *src_file, loff_t src_loff,
3692 struct file *dst_file, loff_t dst_loff,
3693 u64 olen)
3694 {
3695 struct inode *src = file_inode(src_file);
3696 struct inode *dst = file_inode(dst_file);
3697 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3698
3699 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3700 /*
3701 * Btrfs does not support blocksize < page_size. As a
3702 * result, btrfs_cmp_data() won't correctly handle
3703 * this situation without an update.
3704 */
3705 return -EINVAL;
3706 }
3707
3708 return btrfs_extent_same(src, src_loff, olen, dst, dst_loff);
3709 }
3710
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3711 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3712 struct inode *inode,
3713 u64 endoff,
3714 const u64 destoff,
3715 const u64 olen,
3716 int no_time_update)
3717 {
3718 struct btrfs_root *root = BTRFS_I(inode)->root;
3719 int ret;
3720
3721 inode_inc_iversion(inode);
3722 if (!no_time_update)
3723 inode->i_mtime = inode->i_ctime = current_time(inode);
3724 /*
3725 * We round up to the block size at eof when determining which
3726 * extents to clone above, but shouldn't round up the file size.
3727 */
3728 if (endoff > destoff + olen)
3729 endoff = destoff + olen;
3730 if (endoff > inode->i_size)
3731 btrfs_i_size_write(BTRFS_I(inode), endoff);
3732
3733 ret = btrfs_update_inode(trans, root, inode);
3734 if (ret) {
3735 btrfs_abort_transaction(trans, ret);
3736 btrfs_end_transaction(trans);
3737 goto out;
3738 }
3739 ret = btrfs_end_transaction(trans);
3740 out:
3741 return ret;
3742 }
3743
clone_update_extent_map(struct btrfs_inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3744 static void clone_update_extent_map(struct btrfs_inode *inode,
3745 const struct btrfs_trans_handle *trans,
3746 const struct btrfs_path *path,
3747 const u64 hole_offset,
3748 const u64 hole_len)
3749 {
3750 struct extent_map_tree *em_tree = &inode->extent_tree;
3751 struct extent_map *em;
3752 int ret;
3753
3754 em = alloc_extent_map();
3755 if (!em) {
3756 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3757 return;
3758 }
3759
3760 if (path) {
3761 struct btrfs_file_extent_item *fi;
3762
3763 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3764 struct btrfs_file_extent_item);
3765 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3766 em->generation = -1;
3767 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3768 BTRFS_FILE_EXTENT_INLINE)
3769 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3770 &inode->runtime_flags);
3771 } else {
3772 em->start = hole_offset;
3773 em->len = hole_len;
3774 em->ram_bytes = em->len;
3775 em->orig_start = hole_offset;
3776 em->block_start = EXTENT_MAP_HOLE;
3777 em->block_len = 0;
3778 em->orig_block_len = 0;
3779 em->compress_type = BTRFS_COMPRESS_NONE;
3780 em->generation = trans->transid;
3781 }
3782
3783 while (1) {
3784 write_lock(&em_tree->lock);
3785 ret = add_extent_mapping(em_tree, em, 1);
3786 write_unlock(&em_tree->lock);
3787 if (ret != -EEXIST) {
3788 free_extent_map(em);
3789 break;
3790 }
3791 btrfs_drop_extent_cache(inode, em->start,
3792 em->start + em->len - 1, 0);
3793 }
3794
3795 if (ret)
3796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3797 }
3798
3799 /*
3800 * Make sure we do not end up inserting an inline extent into a file that has
3801 * already other (non-inline) extents. If a file has an inline extent it can
3802 * not have any other extents and the (single) inline extent must start at the
3803 * file offset 0. Failing to respect these rules will lead to file corruption,
3804 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3805 *
3806 * We can have extents that have been already written to disk or we can have
3807 * dirty ranges still in delalloc, in which case the extent maps and items are
3808 * created only when we run delalloc, and the delalloc ranges might fall outside
3809 * the range we are currently locking in the inode's io tree. So we check the
3810 * inode's i_size because of that (i_size updates are done while holding the
3811 * i_mutex, which we are holding here).
3812 * We also check to see if the inode has a size not greater than "datal" but has
3813 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3814 * protected against such concurrent fallocate calls by the i_mutex).
3815 *
3816 * If the file has no extents but a size greater than datal, do not allow the
3817 * copy because we would need turn the inline extent into a non-inline one (even
3818 * with NO_HOLES enabled). If we find our destination inode only has one inline
3819 * extent, just overwrite it with the source inline extent if its size is less
3820 * than the source extent's size, or we could copy the source inline extent's
3821 * data into the destination inode's inline extent if the later is greater then
3822 * the former.
3823 */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3824 static int clone_copy_inline_extent(struct inode *dst,
3825 struct btrfs_trans_handle *trans,
3826 struct btrfs_path *path,
3827 struct btrfs_key *new_key,
3828 const u64 drop_start,
3829 const u64 datal,
3830 const u64 skip,
3831 const u64 size,
3832 char *inline_data)
3833 {
3834 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3835 struct btrfs_root *root = BTRFS_I(dst)->root;
3836 const u64 aligned_end = ALIGN(new_key->offset + datal,
3837 fs_info->sectorsize);
3838 int ret;
3839 struct btrfs_key key;
3840
3841 if (new_key->offset > 0)
3842 return -EOPNOTSUPP;
3843
3844 key.objectid = btrfs_ino(BTRFS_I(dst));
3845 key.type = BTRFS_EXTENT_DATA_KEY;
3846 key.offset = 0;
3847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3848 if (ret < 0) {
3849 return ret;
3850 } else if (ret > 0) {
3851 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3852 ret = btrfs_next_leaf(root, path);
3853 if (ret < 0)
3854 return ret;
3855 else if (ret > 0)
3856 goto copy_inline_extent;
3857 }
3858 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3859 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3860 key.type == BTRFS_EXTENT_DATA_KEY) {
3861 ASSERT(key.offset > 0);
3862 return -EOPNOTSUPP;
3863 }
3864 } else if (i_size_read(dst) <= datal) {
3865 struct btrfs_file_extent_item *ei;
3866 u64 ext_len;
3867
3868 /*
3869 * If the file size is <= datal, make sure there are no other
3870 * extents following (can happen do to an fallocate call with
3871 * the flag FALLOC_FL_KEEP_SIZE).
3872 */
3873 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3874 struct btrfs_file_extent_item);
3875 /*
3876 * If it's an inline extent, it can not have other extents
3877 * following it.
3878 */
3879 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3880 BTRFS_FILE_EXTENT_INLINE)
3881 goto copy_inline_extent;
3882
3883 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3884 if (ext_len > aligned_end)
3885 return -EOPNOTSUPP;
3886
3887 ret = btrfs_next_item(root, path);
3888 if (ret < 0) {
3889 return ret;
3890 } else if (ret == 0) {
3891 btrfs_item_key_to_cpu(path->nodes[0], &key,
3892 path->slots[0]);
3893 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3894 key.type == BTRFS_EXTENT_DATA_KEY)
3895 return -EOPNOTSUPP;
3896 }
3897 }
3898
3899 copy_inline_extent:
3900 /*
3901 * We have no extent items, or we have an extent at offset 0 which may
3902 * or may not be inlined. All these cases are dealt the same way.
3903 */
3904 if (i_size_read(dst) > datal) {
3905 /*
3906 * If the destination inode has an inline extent...
3907 * This would require copying the data from the source inline
3908 * extent into the beginning of the destination's inline extent.
3909 * But this is really complex, both extents can be compressed
3910 * or just one of them, which would require decompressing and
3911 * re-compressing data (which could increase the new compressed
3912 * size, not allowing the compressed data to fit anymore in an
3913 * inline extent).
3914 * So just don't support this case for now (it should be rare,
3915 * we are not really saving space when cloning inline extents).
3916 */
3917 return -EOPNOTSUPP;
3918 }
3919
3920 btrfs_release_path(path);
3921 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3922 if (ret)
3923 return ret;
3924 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3925 if (ret)
3926 return ret;
3927
3928 if (skip) {
3929 const u32 start = btrfs_file_extent_calc_inline_size(0);
3930
3931 memmove(inline_data + start, inline_data + start + skip, datal);
3932 }
3933
3934 write_extent_buffer(path->nodes[0], inline_data,
3935 btrfs_item_ptr_offset(path->nodes[0],
3936 path->slots[0]),
3937 size);
3938 inode_add_bytes(dst, datal);
3939
3940 return 0;
3941 }
3942
3943 /**
3944 * btrfs_clone() - clone a range from inode file to another
3945 *
3946 * @src: Inode to clone from
3947 * @inode: Inode to clone to
3948 * @off: Offset within source to start clone from
3949 * @olen: Original length, passed by user, of range to clone
3950 * @olen_aligned: Block-aligned value of olen
3951 * @destoff: Offset within @inode to start clone
3952 * @no_time_update: Whether to update mtime/ctime on the target inode
3953 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3954 static int btrfs_clone(struct inode *src, struct inode *inode,
3955 const u64 off, const u64 olen, const u64 olen_aligned,
3956 const u64 destoff, int no_time_update)
3957 {
3958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3959 struct btrfs_root *root = BTRFS_I(inode)->root;
3960 struct btrfs_path *path = NULL;
3961 struct extent_buffer *leaf;
3962 struct btrfs_trans_handle *trans;
3963 char *buf = NULL;
3964 struct btrfs_key key;
3965 u32 nritems;
3966 int slot;
3967 int ret;
3968 const u64 len = olen_aligned;
3969 u64 last_dest_end = destoff;
3970
3971 ret = -ENOMEM;
3972 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3973 if (!buf)
3974 return ret;
3975
3976 path = btrfs_alloc_path();
3977 if (!path) {
3978 kvfree(buf);
3979 return ret;
3980 }
3981
3982 path->reada = READA_FORWARD;
3983 /* clone data */
3984 key.objectid = btrfs_ino(BTRFS_I(src));
3985 key.type = BTRFS_EXTENT_DATA_KEY;
3986 key.offset = off;
3987
3988 while (1) {
3989 u64 next_key_min_offset = key.offset + 1;
3990
3991 /*
3992 * note the key will change type as we walk through the
3993 * tree.
3994 */
3995 path->leave_spinning = 1;
3996 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3997 0, 0);
3998 if (ret < 0)
3999 goto out;
4000 /*
4001 * First search, if no extent item that starts at offset off was
4002 * found but the previous item is an extent item, it's possible
4003 * it might overlap our target range, therefore process it.
4004 */
4005 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
4006 btrfs_item_key_to_cpu(path->nodes[0], &key,
4007 path->slots[0] - 1);
4008 if (key.type == BTRFS_EXTENT_DATA_KEY)
4009 path->slots[0]--;
4010 }
4011
4012 nritems = btrfs_header_nritems(path->nodes[0]);
4013 process_slot:
4014 if (path->slots[0] >= nritems) {
4015 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
4016 if (ret < 0)
4017 goto out;
4018 if (ret > 0)
4019 break;
4020 nritems = btrfs_header_nritems(path->nodes[0]);
4021 }
4022 leaf = path->nodes[0];
4023 slot = path->slots[0];
4024
4025 btrfs_item_key_to_cpu(leaf, &key, slot);
4026 if (key.type > BTRFS_EXTENT_DATA_KEY ||
4027 key.objectid != btrfs_ino(BTRFS_I(src)))
4028 break;
4029
4030 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4031 struct btrfs_file_extent_item *extent;
4032 int type;
4033 u32 size;
4034 struct btrfs_key new_key;
4035 u64 disko = 0, diskl = 0;
4036 u64 datao = 0, datal = 0;
4037 u8 comp;
4038 u64 drop_start;
4039
4040 extent = btrfs_item_ptr(leaf, slot,
4041 struct btrfs_file_extent_item);
4042 comp = btrfs_file_extent_compression(leaf, extent);
4043 type = btrfs_file_extent_type(leaf, extent);
4044 if (type == BTRFS_FILE_EXTENT_REG ||
4045 type == BTRFS_FILE_EXTENT_PREALLOC) {
4046 disko = btrfs_file_extent_disk_bytenr(leaf,
4047 extent);
4048 diskl = btrfs_file_extent_disk_num_bytes(leaf,
4049 extent);
4050 datao = btrfs_file_extent_offset(leaf, extent);
4051 datal = btrfs_file_extent_num_bytes(leaf,
4052 extent);
4053 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
4054 /* take upper bound, may be compressed */
4055 datal = btrfs_file_extent_ram_bytes(leaf,
4056 extent);
4057 }
4058
4059 /*
4060 * The first search might have left us at an extent
4061 * item that ends before our target range's start, can
4062 * happen if we have holes and NO_HOLES feature enabled.
4063 */
4064 if (key.offset + datal <= off) {
4065 path->slots[0]++;
4066 goto process_slot;
4067 } else if (key.offset >= off + len) {
4068 break;
4069 }
4070 next_key_min_offset = key.offset + datal;
4071 size = btrfs_item_size_nr(leaf, slot);
4072 read_extent_buffer(leaf, buf,
4073 btrfs_item_ptr_offset(leaf, slot),
4074 size);
4075
4076 btrfs_release_path(path);
4077 path->leave_spinning = 0;
4078
4079 memcpy(&new_key, &key, sizeof(new_key));
4080 new_key.objectid = btrfs_ino(BTRFS_I(inode));
4081 if (off <= key.offset)
4082 new_key.offset = key.offset + destoff - off;
4083 else
4084 new_key.offset = destoff;
4085
4086 /*
4087 * Deal with a hole that doesn't have an extent item
4088 * that represents it (NO_HOLES feature enabled).
4089 * This hole is either in the middle of the cloning
4090 * range or at the beginning (fully overlaps it or
4091 * partially overlaps it).
4092 */
4093 if (new_key.offset != last_dest_end)
4094 drop_start = last_dest_end;
4095 else
4096 drop_start = new_key.offset;
4097
4098 /*
4099 * 1 - adjusting old extent (we may have to split it)
4100 * 1 - add new extent
4101 * 1 - inode update
4102 */
4103 trans = btrfs_start_transaction(root, 3);
4104 if (IS_ERR(trans)) {
4105 ret = PTR_ERR(trans);
4106 goto out;
4107 }
4108
4109 if (type == BTRFS_FILE_EXTENT_REG ||
4110 type == BTRFS_FILE_EXTENT_PREALLOC) {
4111 /*
4112 * a | --- range to clone ---| b
4113 * | ------------- extent ------------- |
4114 */
4115
4116 /* subtract range b */
4117 if (key.offset + datal > off + len)
4118 datal = off + len - key.offset;
4119
4120 /* subtract range a */
4121 if (off > key.offset) {
4122 datao += off - key.offset;
4123 datal -= off - key.offset;
4124 }
4125
4126 ret = btrfs_drop_extents(trans, root, inode,
4127 drop_start,
4128 new_key.offset + datal,
4129 1);
4130 if (ret) {
4131 if (ret != -EOPNOTSUPP)
4132 btrfs_abort_transaction(trans,
4133 ret);
4134 btrfs_end_transaction(trans);
4135 goto out;
4136 }
4137
4138 ret = btrfs_insert_empty_item(trans, root, path,
4139 &new_key, size);
4140 if (ret) {
4141 btrfs_abort_transaction(trans, ret);
4142 btrfs_end_transaction(trans);
4143 goto out;
4144 }
4145
4146 leaf = path->nodes[0];
4147 slot = path->slots[0];
4148 write_extent_buffer(leaf, buf,
4149 btrfs_item_ptr_offset(leaf, slot),
4150 size);
4151
4152 extent = btrfs_item_ptr(leaf, slot,
4153 struct btrfs_file_extent_item);
4154
4155 /* disko == 0 means it's a hole */
4156 if (!disko)
4157 datao = 0;
4158
4159 btrfs_set_file_extent_offset(leaf, extent,
4160 datao);
4161 btrfs_set_file_extent_num_bytes(leaf, extent,
4162 datal);
4163
4164 if (disko) {
4165 inode_add_bytes(inode, datal);
4166 ret = btrfs_inc_extent_ref(trans,
4167 root,
4168 disko, diskl, 0,
4169 root->root_key.objectid,
4170 btrfs_ino(BTRFS_I(inode)),
4171 new_key.offset - datao);
4172 if (ret) {
4173 btrfs_abort_transaction(trans,
4174 ret);
4175 btrfs_end_transaction(trans);
4176 goto out;
4177
4178 }
4179 }
4180 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
4181 u64 skip = 0;
4182 u64 trim = 0;
4183
4184 if (off > key.offset) {
4185 skip = off - key.offset;
4186 new_key.offset += skip;
4187 }
4188
4189 if (key.offset + datal > off + len)
4190 trim = key.offset + datal - (off + len);
4191
4192 if (comp && (skip || trim)) {
4193 ret = -EINVAL;
4194 btrfs_end_transaction(trans);
4195 goto out;
4196 }
4197 size -= skip + trim;
4198 datal -= skip + trim;
4199
4200 ret = clone_copy_inline_extent(inode,
4201 trans, path,
4202 &new_key,
4203 drop_start,
4204 datal,
4205 skip, size, buf);
4206 if (ret) {
4207 if (ret != -EOPNOTSUPP)
4208 btrfs_abort_transaction(trans,
4209 ret);
4210 btrfs_end_transaction(trans);
4211 goto out;
4212 }
4213 leaf = path->nodes[0];
4214 slot = path->slots[0];
4215 }
4216
4217 /* If we have an implicit hole (NO_HOLES feature). */
4218 if (drop_start < new_key.offset)
4219 clone_update_extent_map(BTRFS_I(inode), trans,
4220 NULL, drop_start,
4221 new_key.offset - drop_start);
4222
4223 clone_update_extent_map(BTRFS_I(inode), trans,
4224 path, 0, 0);
4225
4226 btrfs_mark_buffer_dirty(leaf);
4227 btrfs_release_path(path);
4228
4229 last_dest_end = ALIGN(new_key.offset + datal,
4230 fs_info->sectorsize);
4231 ret = clone_finish_inode_update(trans, inode,
4232 last_dest_end,
4233 destoff, olen,
4234 no_time_update);
4235 if (ret)
4236 goto out;
4237 if (new_key.offset + datal >= destoff + len)
4238 break;
4239 }
4240 btrfs_release_path(path);
4241 key.offset = next_key_min_offset;
4242
4243 if (fatal_signal_pending(current)) {
4244 ret = -EINTR;
4245 goto out;
4246 }
4247
4248 cond_resched();
4249 }
4250 ret = 0;
4251
4252 if (last_dest_end < destoff + len) {
4253 /*
4254 * We have an implicit hole (NO_HOLES feature is enabled) that
4255 * fully or partially overlaps our cloning range at its end.
4256 */
4257 btrfs_release_path(path);
4258
4259 /*
4260 * 1 - remove extent(s)
4261 * 1 - inode update
4262 */
4263 trans = btrfs_start_transaction(root, 2);
4264 if (IS_ERR(trans)) {
4265 ret = PTR_ERR(trans);
4266 goto out;
4267 }
4268 ret = btrfs_drop_extents(trans, root, inode,
4269 last_dest_end, destoff + len, 1);
4270 if (ret) {
4271 if (ret != -EOPNOTSUPP)
4272 btrfs_abort_transaction(trans, ret);
4273 btrfs_end_transaction(trans);
4274 goto out;
4275 }
4276 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
4277 last_dest_end,
4278 destoff + len - last_dest_end);
4279 ret = clone_finish_inode_update(trans, inode, destoff + len,
4280 destoff, olen, no_time_update);
4281 }
4282
4283 out:
4284 btrfs_free_path(path);
4285 kvfree(buf);
4286 return ret;
4287 }
4288
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)4289 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
4290 u64 off, u64 olen, u64 destoff)
4291 {
4292 struct inode *inode = file_inode(file);
4293 struct inode *src = file_inode(file_src);
4294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4295 struct btrfs_root *root = BTRFS_I(inode)->root;
4296 int ret;
4297 u64 len = olen;
4298 u64 bs = fs_info->sb->s_blocksize;
4299 int same_inode = src == inode;
4300
4301 /*
4302 * TODO:
4303 * - split compressed inline extents. annoying: we need to
4304 * decompress into destination's address_space (the file offset
4305 * may change, so source mapping won't do), then recompress (or
4306 * otherwise reinsert) a subrange.
4307 *
4308 * - split destination inode's inline extents. The inline extents can
4309 * be either compressed or non-compressed.
4310 */
4311
4312 if (btrfs_root_readonly(root))
4313 return -EROFS;
4314
4315 if (file_src->f_path.mnt != file->f_path.mnt ||
4316 src->i_sb != inode->i_sb)
4317 return -EXDEV;
4318
4319 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
4320 return -EISDIR;
4321
4322 if (!same_inode) {
4323 btrfs_double_inode_lock(src, inode);
4324 } else {
4325 inode_lock(src);
4326 }
4327
4328 /* don't make the dst file partly checksummed */
4329 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
4330 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
4331 ret = -EINVAL;
4332 goto out_unlock;
4333 }
4334
4335 /* determine range to clone */
4336 ret = -EINVAL;
4337 if (off + len > src->i_size || off + len < off)
4338 goto out_unlock;
4339 if (len == 0)
4340 olen = len = src->i_size - off;
4341 /*
4342 * If we extend to eof, continue to block boundary if and only if the
4343 * destination end offset matches the destination file's size, otherwise
4344 * we would be corrupting data by placing the eof block into the middle
4345 * of a file.
4346 */
4347 if (off + len == src->i_size) {
4348 if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
4349 goto out_unlock;
4350 len = ALIGN(src->i_size, bs) - off;
4351 }
4352
4353 if (len == 0) {
4354 ret = 0;
4355 goto out_unlock;
4356 }
4357
4358 /* verify the end result is block aligned */
4359 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4360 !IS_ALIGNED(destoff, bs))
4361 goto out_unlock;
4362
4363 /* verify if ranges are overlapped within the same file */
4364 if (same_inode) {
4365 if (destoff + len > off && destoff < off + len)
4366 goto out_unlock;
4367 }
4368
4369 if (destoff > inode->i_size) {
4370 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4371 if (ret)
4372 goto out_unlock;
4373 }
4374
4375 /*
4376 * Lock the target range too. Right after we replace the file extent
4377 * items in the fs tree (which now point to the cloned data), we might
4378 * have a worker replace them with extent items relative to a write
4379 * operation that was issued before this clone operation (i.e. confront
4380 * with inode.c:btrfs_finish_ordered_io).
4381 */
4382 if (same_inode) {
4383 u64 lock_start = min_t(u64, off, destoff);
4384 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4385
4386 ret = lock_extent_range(src, lock_start, lock_len, true);
4387 } else {
4388 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4389 true);
4390 }
4391 ASSERT(ret == 0);
4392 if (WARN_ON(ret)) {
4393 /* ranges in the io trees already unlocked */
4394 goto out_unlock;
4395 }
4396
4397 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4398
4399 if (same_inode) {
4400 u64 lock_start = min_t(u64, off, destoff);
4401 u64 lock_end = max_t(u64, off, destoff) + len - 1;
4402
4403 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4404 } else {
4405 btrfs_double_extent_unlock(src, off, inode, destoff, len);
4406 }
4407 /*
4408 * Truncate page cache pages so that future reads will see the cloned
4409 * data immediately and not the previous data.
4410 */
4411 truncate_inode_pages_range(&inode->i_data,
4412 round_down(destoff, PAGE_SIZE),
4413 round_up(destoff + len, PAGE_SIZE) - 1);
4414 out_unlock:
4415 if (!same_inode)
4416 btrfs_double_inode_unlock(src, inode);
4417 else
4418 inode_unlock(src);
4419 return ret;
4420 }
4421
btrfs_clone_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,u64 len)4422 int btrfs_clone_file_range(struct file *src_file, loff_t off,
4423 struct file *dst_file, loff_t destoff, u64 len)
4424 {
4425 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
4426 }
4427
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4428 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4429 {
4430 struct inode *inode = file_inode(file);
4431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4432 struct btrfs_root *root = BTRFS_I(inode)->root;
4433 struct btrfs_root *new_root;
4434 struct btrfs_dir_item *di;
4435 struct btrfs_trans_handle *trans;
4436 struct btrfs_path *path;
4437 struct btrfs_key location;
4438 struct btrfs_disk_key disk_key;
4439 u64 objectid = 0;
4440 u64 dir_id;
4441 int ret;
4442
4443 if (!capable(CAP_SYS_ADMIN))
4444 return -EPERM;
4445
4446 ret = mnt_want_write_file(file);
4447 if (ret)
4448 return ret;
4449
4450 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4451 ret = -EFAULT;
4452 goto out;
4453 }
4454
4455 if (!objectid)
4456 objectid = BTRFS_FS_TREE_OBJECTID;
4457
4458 location.objectid = objectid;
4459 location.type = BTRFS_ROOT_ITEM_KEY;
4460 location.offset = (u64)-1;
4461
4462 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4463 if (IS_ERR(new_root)) {
4464 ret = PTR_ERR(new_root);
4465 goto out;
4466 }
4467 if (!is_fstree(new_root->objectid)) {
4468 ret = -ENOENT;
4469 goto out;
4470 }
4471
4472 path = btrfs_alloc_path();
4473 if (!path) {
4474 ret = -ENOMEM;
4475 goto out;
4476 }
4477 path->leave_spinning = 1;
4478
4479 trans = btrfs_start_transaction(root, 1);
4480 if (IS_ERR(trans)) {
4481 btrfs_free_path(path);
4482 ret = PTR_ERR(trans);
4483 goto out;
4484 }
4485
4486 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4487 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4488 dir_id, "default", 7, 1);
4489 if (IS_ERR_OR_NULL(di)) {
4490 btrfs_free_path(path);
4491 btrfs_end_transaction(trans);
4492 btrfs_err(fs_info,
4493 "Umm, you don't have the default diritem, this isn't going to work");
4494 ret = -ENOENT;
4495 goto out;
4496 }
4497
4498 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4499 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4500 btrfs_mark_buffer_dirty(path->nodes[0]);
4501 btrfs_free_path(path);
4502
4503 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4504 btrfs_end_transaction(trans);
4505 out:
4506 mnt_drop_write_file(file);
4507 return ret;
4508 }
4509
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4510 static void get_block_group_info(struct list_head *groups_list,
4511 struct btrfs_ioctl_space_info *space)
4512 {
4513 struct btrfs_block_group_cache *block_group;
4514
4515 space->total_bytes = 0;
4516 space->used_bytes = 0;
4517 space->flags = 0;
4518 list_for_each_entry(block_group, groups_list, list) {
4519 space->flags = block_group->flags;
4520 space->total_bytes += block_group->key.offset;
4521 space->used_bytes +=
4522 btrfs_block_group_used(&block_group->item);
4523 }
4524 }
4525
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4526 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4527 void __user *arg)
4528 {
4529 struct btrfs_ioctl_space_args space_args;
4530 struct btrfs_ioctl_space_info space;
4531 struct btrfs_ioctl_space_info *dest;
4532 struct btrfs_ioctl_space_info *dest_orig;
4533 struct btrfs_ioctl_space_info __user *user_dest;
4534 struct btrfs_space_info *info;
4535 static const u64 types[] = {
4536 BTRFS_BLOCK_GROUP_DATA,
4537 BTRFS_BLOCK_GROUP_SYSTEM,
4538 BTRFS_BLOCK_GROUP_METADATA,
4539 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4540 };
4541 int num_types = 4;
4542 int alloc_size;
4543 int ret = 0;
4544 u64 slot_count = 0;
4545 int i, c;
4546
4547 if (copy_from_user(&space_args,
4548 (struct btrfs_ioctl_space_args __user *)arg,
4549 sizeof(space_args)))
4550 return -EFAULT;
4551
4552 for (i = 0; i < num_types; i++) {
4553 struct btrfs_space_info *tmp;
4554
4555 info = NULL;
4556 rcu_read_lock();
4557 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4558 list) {
4559 if (tmp->flags == types[i]) {
4560 info = tmp;
4561 break;
4562 }
4563 }
4564 rcu_read_unlock();
4565
4566 if (!info)
4567 continue;
4568
4569 down_read(&info->groups_sem);
4570 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4571 if (!list_empty(&info->block_groups[c]))
4572 slot_count++;
4573 }
4574 up_read(&info->groups_sem);
4575 }
4576
4577 /*
4578 * Global block reserve, exported as a space_info
4579 */
4580 slot_count++;
4581
4582 /* space_slots == 0 means they are asking for a count */
4583 if (space_args.space_slots == 0) {
4584 space_args.total_spaces = slot_count;
4585 goto out;
4586 }
4587
4588 slot_count = min_t(u64, space_args.space_slots, slot_count);
4589
4590 alloc_size = sizeof(*dest) * slot_count;
4591
4592 /* we generally have at most 6 or so space infos, one for each raid
4593 * level. So, a whole page should be more than enough for everyone
4594 */
4595 if (alloc_size > PAGE_SIZE)
4596 return -ENOMEM;
4597
4598 space_args.total_spaces = 0;
4599 dest = kmalloc(alloc_size, GFP_KERNEL);
4600 if (!dest)
4601 return -ENOMEM;
4602 dest_orig = dest;
4603
4604 /* now we have a buffer to copy into */
4605 for (i = 0; i < num_types; i++) {
4606 struct btrfs_space_info *tmp;
4607
4608 if (!slot_count)
4609 break;
4610
4611 info = NULL;
4612 rcu_read_lock();
4613 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4614 list) {
4615 if (tmp->flags == types[i]) {
4616 info = tmp;
4617 break;
4618 }
4619 }
4620 rcu_read_unlock();
4621
4622 if (!info)
4623 continue;
4624 down_read(&info->groups_sem);
4625 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4626 if (!list_empty(&info->block_groups[c])) {
4627 get_block_group_info(&info->block_groups[c],
4628 &space);
4629 memcpy(dest, &space, sizeof(space));
4630 dest++;
4631 space_args.total_spaces++;
4632 slot_count--;
4633 }
4634 if (!slot_count)
4635 break;
4636 }
4637 up_read(&info->groups_sem);
4638 }
4639
4640 /*
4641 * Add global block reserve
4642 */
4643 if (slot_count) {
4644 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4645
4646 spin_lock(&block_rsv->lock);
4647 space.total_bytes = block_rsv->size;
4648 space.used_bytes = block_rsv->size - block_rsv->reserved;
4649 spin_unlock(&block_rsv->lock);
4650 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4651 memcpy(dest, &space, sizeof(space));
4652 space_args.total_spaces++;
4653 }
4654
4655 user_dest = (struct btrfs_ioctl_space_info __user *)
4656 (arg + sizeof(struct btrfs_ioctl_space_args));
4657
4658 if (copy_to_user(user_dest, dest_orig, alloc_size))
4659 ret = -EFAULT;
4660
4661 kfree(dest_orig);
4662 out:
4663 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4664 ret = -EFAULT;
4665
4666 return ret;
4667 }
4668
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4669 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4670 void __user *argp)
4671 {
4672 struct btrfs_trans_handle *trans;
4673 u64 transid;
4674 int ret;
4675
4676 trans = btrfs_attach_transaction_barrier(root);
4677 if (IS_ERR(trans)) {
4678 if (PTR_ERR(trans) != -ENOENT)
4679 return PTR_ERR(trans);
4680
4681 /* No running transaction, don't bother */
4682 transid = root->fs_info->last_trans_committed;
4683 goto out;
4684 }
4685 transid = trans->transid;
4686 ret = btrfs_commit_transaction_async(trans, 0);
4687 if (ret) {
4688 btrfs_end_transaction(trans);
4689 return ret;
4690 }
4691 out:
4692 if (argp)
4693 if (copy_to_user(argp, &transid, sizeof(transid)))
4694 return -EFAULT;
4695 return 0;
4696 }
4697
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4698 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4699 void __user *argp)
4700 {
4701 u64 transid;
4702
4703 if (argp) {
4704 if (copy_from_user(&transid, argp, sizeof(transid)))
4705 return -EFAULT;
4706 } else {
4707 transid = 0; /* current trans */
4708 }
4709 return btrfs_wait_for_commit(fs_info, transid);
4710 }
4711
btrfs_ioctl_scrub(struct file * file,void __user * arg)4712 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4713 {
4714 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4715 struct btrfs_ioctl_scrub_args *sa;
4716 int ret;
4717
4718 if (!capable(CAP_SYS_ADMIN))
4719 return -EPERM;
4720
4721 sa = memdup_user(arg, sizeof(*sa));
4722 if (IS_ERR(sa))
4723 return PTR_ERR(sa);
4724
4725 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
4726 ret = -EOPNOTSUPP;
4727 goto out;
4728 }
4729
4730 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4731 ret = mnt_want_write_file(file);
4732 if (ret)
4733 goto out;
4734 }
4735
4736 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4737 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4738 0);
4739
4740 if (copy_to_user(arg, sa, sizeof(*sa)))
4741 ret = -EFAULT;
4742
4743 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4744 mnt_drop_write_file(file);
4745 out:
4746 kfree(sa);
4747 return ret;
4748 }
4749
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4750 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4751 {
4752 if (!capable(CAP_SYS_ADMIN))
4753 return -EPERM;
4754
4755 return btrfs_scrub_cancel(fs_info);
4756 }
4757
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4758 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4759 void __user *arg)
4760 {
4761 struct btrfs_ioctl_scrub_args *sa;
4762 int ret;
4763
4764 if (!capable(CAP_SYS_ADMIN))
4765 return -EPERM;
4766
4767 sa = memdup_user(arg, sizeof(*sa));
4768 if (IS_ERR(sa))
4769 return PTR_ERR(sa);
4770
4771 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4772
4773 if (copy_to_user(arg, sa, sizeof(*sa)))
4774 ret = -EFAULT;
4775
4776 kfree(sa);
4777 return ret;
4778 }
4779
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4780 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4781 void __user *arg)
4782 {
4783 struct btrfs_ioctl_get_dev_stats *sa;
4784 int ret;
4785
4786 sa = memdup_user(arg, sizeof(*sa));
4787 if (IS_ERR(sa))
4788 return PTR_ERR(sa);
4789
4790 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4791 kfree(sa);
4792 return -EPERM;
4793 }
4794
4795 ret = btrfs_get_dev_stats(fs_info, sa);
4796
4797 if (copy_to_user(arg, sa, sizeof(*sa)))
4798 ret = -EFAULT;
4799
4800 kfree(sa);
4801 return ret;
4802 }
4803
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4804 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4805 void __user *arg)
4806 {
4807 struct btrfs_ioctl_dev_replace_args *p;
4808 int ret;
4809
4810 if (!capable(CAP_SYS_ADMIN))
4811 return -EPERM;
4812
4813 p = memdup_user(arg, sizeof(*p));
4814 if (IS_ERR(p))
4815 return PTR_ERR(p);
4816
4817 switch (p->cmd) {
4818 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4819 if (sb_rdonly(fs_info->sb)) {
4820 ret = -EROFS;
4821 goto out;
4822 }
4823 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4824 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4825 } else {
4826 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4827 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4828 }
4829 break;
4830 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4831 btrfs_dev_replace_status(fs_info, p);
4832 ret = 0;
4833 break;
4834 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4835 p->result = btrfs_dev_replace_cancel(fs_info);
4836 ret = 0;
4837 break;
4838 default:
4839 ret = -EINVAL;
4840 break;
4841 }
4842
4843 if (copy_to_user(arg, p, sizeof(*p)))
4844 ret = -EFAULT;
4845 out:
4846 kfree(p);
4847 return ret;
4848 }
4849
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4850 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4851 {
4852 int ret = 0;
4853 int i;
4854 u64 rel_ptr;
4855 int size;
4856 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4857 struct inode_fs_paths *ipath = NULL;
4858 struct btrfs_path *path;
4859
4860 if (!capable(CAP_DAC_READ_SEARCH))
4861 return -EPERM;
4862
4863 path = btrfs_alloc_path();
4864 if (!path) {
4865 ret = -ENOMEM;
4866 goto out;
4867 }
4868
4869 ipa = memdup_user(arg, sizeof(*ipa));
4870 if (IS_ERR(ipa)) {
4871 ret = PTR_ERR(ipa);
4872 ipa = NULL;
4873 goto out;
4874 }
4875
4876 size = min_t(u32, ipa->size, 4096);
4877 ipath = init_ipath(size, root, path);
4878 if (IS_ERR(ipath)) {
4879 ret = PTR_ERR(ipath);
4880 ipath = NULL;
4881 goto out;
4882 }
4883
4884 ret = paths_from_inode(ipa->inum, ipath);
4885 if (ret < 0)
4886 goto out;
4887
4888 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4889 rel_ptr = ipath->fspath->val[i] -
4890 (u64)(unsigned long)ipath->fspath->val;
4891 ipath->fspath->val[i] = rel_ptr;
4892 }
4893
4894 btrfs_free_path(path);
4895 path = NULL;
4896 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4897 ipath->fspath, size);
4898 if (ret) {
4899 ret = -EFAULT;
4900 goto out;
4901 }
4902
4903 out:
4904 btrfs_free_path(path);
4905 free_ipath(ipath);
4906 kfree(ipa);
4907
4908 return ret;
4909 }
4910
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4911 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4912 {
4913 struct btrfs_data_container *inodes = ctx;
4914 const size_t c = 3 * sizeof(u64);
4915
4916 if (inodes->bytes_left >= c) {
4917 inodes->bytes_left -= c;
4918 inodes->val[inodes->elem_cnt] = inum;
4919 inodes->val[inodes->elem_cnt + 1] = offset;
4920 inodes->val[inodes->elem_cnt + 2] = root;
4921 inodes->elem_cnt += 3;
4922 } else {
4923 inodes->bytes_missing += c - inodes->bytes_left;
4924 inodes->bytes_left = 0;
4925 inodes->elem_missed += 3;
4926 }
4927
4928 return 0;
4929 }
4930
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4931 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4932 void __user *arg, int version)
4933 {
4934 int ret = 0;
4935 int size;
4936 struct btrfs_ioctl_logical_ino_args *loi;
4937 struct btrfs_data_container *inodes = NULL;
4938 struct btrfs_path *path = NULL;
4939 bool ignore_offset;
4940
4941 if (!capable(CAP_SYS_ADMIN))
4942 return -EPERM;
4943
4944 loi = memdup_user(arg, sizeof(*loi));
4945 if (IS_ERR(loi))
4946 return PTR_ERR(loi);
4947
4948 if (version == 1) {
4949 ignore_offset = false;
4950 size = min_t(u32, loi->size, SZ_64K);
4951 } else {
4952 /* All reserved bits must be 0 for now */
4953 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4954 ret = -EINVAL;
4955 goto out_loi;
4956 }
4957 /* Only accept flags we have defined so far */
4958 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4959 ret = -EINVAL;
4960 goto out_loi;
4961 }
4962 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4963 size = min_t(u32, loi->size, SZ_16M);
4964 }
4965
4966 inodes = init_data_container(size);
4967 if (IS_ERR(inodes)) {
4968 ret = PTR_ERR(inodes);
4969 goto out_loi;
4970 }
4971
4972 path = btrfs_alloc_path();
4973 if (!path) {
4974 ret = -ENOMEM;
4975 goto out;
4976 }
4977 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4978 build_ino_list, inodes, ignore_offset);
4979 btrfs_free_path(path);
4980 if (ret == -EINVAL)
4981 ret = -ENOENT;
4982 if (ret < 0)
4983 goto out;
4984
4985 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4986 size);
4987 if (ret)
4988 ret = -EFAULT;
4989
4990 out:
4991 kvfree(inodes);
4992 out_loi:
4993 kfree(loi);
4994
4995 return ret;
4996 }
4997
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4998 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4999 struct btrfs_ioctl_balance_args *bargs)
5000 {
5001 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
5002
5003 bargs->flags = bctl->flags;
5004
5005 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
5006 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
5007 if (atomic_read(&fs_info->balance_pause_req))
5008 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
5009 if (atomic_read(&fs_info->balance_cancel_req))
5010 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
5011
5012 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
5013 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
5014 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
5015
5016 spin_lock(&fs_info->balance_lock);
5017 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
5018 spin_unlock(&fs_info->balance_lock);
5019 }
5020
btrfs_ioctl_balance(struct file * file,void __user * arg)5021 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
5022 {
5023 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5024 struct btrfs_fs_info *fs_info = root->fs_info;
5025 struct btrfs_ioctl_balance_args *bargs;
5026 struct btrfs_balance_control *bctl;
5027 bool need_unlock; /* for mut. excl. ops lock */
5028 int ret;
5029
5030 if (!capable(CAP_SYS_ADMIN))
5031 return -EPERM;
5032
5033 ret = mnt_want_write_file(file);
5034 if (ret)
5035 return ret;
5036
5037 again:
5038 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
5039 mutex_lock(&fs_info->balance_mutex);
5040 need_unlock = true;
5041 goto locked;
5042 }
5043
5044 /*
5045 * mut. excl. ops lock is locked. Three possibilities:
5046 * (1) some other op is running
5047 * (2) balance is running
5048 * (3) balance is paused -- special case (think resume)
5049 */
5050 mutex_lock(&fs_info->balance_mutex);
5051 if (fs_info->balance_ctl) {
5052 /* this is either (2) or (3) */
5053 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5054 mutex_unlock(&fs_info->balance_mutex);
5055 /*
5056 * Lock released to allow other waiters to continue,
5057 * we'll reexamine the status again.
5058 */
5059 mutex_lock(&fs_info->balance_mutex);
5060
5061 if (fs_info->balance_ctl &&
5062 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5063 /* this is (3) */
5064 need_unlock = false;
5065 goto locked;
5066 }
5067
5068 mutex_unlock(&fs_info->balance_mutex);
5069 goto again;
5070 } else {
5071 /* this is (2) */
5072 mutex_unlock(&fs_info->balance_mutex);
5073 ret = -EINPROGRESS;
5074 goto out;
5075 }
5076 } else {
5077 /* this is (1) */
5078 mutex_unlock(&fs_info->balance_mutex);
5079 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
5080 goto out;
5081 }
5082
5083 locked:
5084 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
5085
5086 if (arg) {
5087 bargs = memdup_user(arg, sizeof(*bargs));
5088 if (IS_ERR(bargs)) {
5089 ret = PTR_ERR(bargs);
5090 goto out_unlock;
5091 }
5092
5093 if (bargs->flags & BTRFS_BALANCE_RESUME) {
5094 if (!fs_info->balance_ctl) {
5095 ret = -ENOTCONN;
5096 goto out_bargs;
5097 }
5098
5099 bctl = fs_info->balance_ctl;
5100 spin_lock(&fs_info->balance_lock);
5101 bctl->flags |= BTRFS_BALANCE_RESUME;
5102 spin_unlock(&fs_info->balance_lock);
5103
5104 goto do_balance;
5105 }
5106 } else {
5107 bargs = NULL;
5108 }
5109
5110 if (fs_info->balance_ctl) {
5111 ret = -EINPROGRESS;
5112 goto out_bargs;
5113 }
5114
5115 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
5116 if (!bctl) {
5117 ret = -ENOMEM;
5118 goto out_bargs;
5119 }
5120
5121 if (arg) {
5122 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
5123 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
5124 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
5125
5126 bctl->flags = bargs->flags;
5127 } else {
5128 /* balance everything - no filters */
5129 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
5130 }
5131
5132 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
5133 ret = -EINVAL;
5134 goto out_bctl;
5135 }
5136
5137 do_balance:
5138 /*
5139 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
5140 * btrfs_balance. bctl is freed in reset_balance_state, or, if
5141 * restriper was paused all the way until unmount, in free_fs_info.
5142 * The flag should be cleared after reset_balance_state.
5143 */
5144 need_unlock = false;
5145
5146 ret = btrfs_balance(fs_info, bctl, bargs);
5147 bctl = NULL;
5148
5149 if (arg) {
5150 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5151 ret = -EFAULT;
5152 }
5153
5154 out_bctl:
5155 kfree(bctl);
5156 out_bargs:
5157 kfree(bargs);
5158 out_unlock:
5159 mutex_unlock(&fs_info->balance_mutex);
5160 if (need_unlock)
5161 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
5162 out:
5163 mnt_drop_write_file(file);
5164 return ret;
5165 }
5166
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)5167 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
5168 {
5169 if (!capable(CAP_SYS_ADMIN))
5170 return -EPERM;
5171
5172 switch (cmd) {
5173 case BTRFS_BALANCE_CTL_PAUSE:
5174 return btrfs_pause_balance(fs_info);
5175 case BTRFS_BALANCE_CTL_CANCEL:
5176 return btrfs_cancel_balance(fs_info);
5177 }
5178
5179 return -EINVAL;
5180 }
5181
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)5182 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
5183 void __user *arg)
5184 {
5185 struct btrfs_ioctl_balance_args *bargs;
5186 int ret = 0;
5187
5188 if (!capable(CAP_SYS_ADMIN))
5189 return -EPERM;
5190
5191 mutex_lock(&fs_info->balance_mutex);
5192 if (!fs_info->balance_ctl) {
5193 ret = -ENOTCONN;
5194 goto out;
5195 }
5196
5197 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
5198 if (!bargs) {
5199 ret = -ENOMEM;
5200 goto out;
5201 }
5202
5203 btrfs_update_ioctl_balance_args(fs_info, bargs);
5204
5205 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5206 ret = -EFAULT;
5207
5208 kfree(bargs);
5209 out:
5210 mutex_unlock(&fs_info->balance_mutex);
5211 return ret;
5212 }
5213
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)5214 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
5215 {
5216 struct inode *inode = file_inode(file);
5217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5218 struct btrfs_ioctl_quota_ctl_args *sa;
5219 int ret;
5220
5221 if (!capable(CAP_SYS_ADMIN))
5222 return -EPERM;
5223
5224 ret = mnt_want_write_file(file);
5225 if (ret)
5226 return ret;
5227
5228 sa = memdup_user(arg, sizeof(*sa));
5229 if (IS_ERR(sa)) {
5230 ret = PTR_ERR(sa);
5231 goto drop_write;
5232 }
5233
5234 down_write(&fs_info->subvol_sem);
5235
5236 switch (sa->cmd) {
5237 case BTRFS_QUOTA_CTL_ENABLE:
5238 ret = btrfs_quota_enable(fs_info);
5239 break;
5240 case BTRFS_QUOTA_CTL_DISABLE:
5241 ret = btrfs_quota_disable(fs_info);
5242 break;
5243 default:
5244 ret = -EINVAL;
5245 break;
5246 }
5247
5248 kfree(sa);
5249 up_write(&fs_info->subvol_sem);
5250 drop_write:
5251 mnt_drop_write_file(file);
5252 return ret;
5253 }
5254
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)5255 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
5256 {
5257 struct inode *inode = file_inode(file);
5258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5259 struct btrfs_root *root = BTRFS_I(inode)->root;
5260 struct btrfs_ioctl_qgroup_assign_args *sa;
5261 struct btrfs_trans_handle *trans;
5262 int ret;
5263 int err;
5264
5265 if (!capable(CAP_SYS_ADMIN))
5266 return -EPERM;
5267
5268 ret = mnt_want_write_file(file);
5269 if (ret)
5270 return ret;
5271
5272 sa = memdup_user(arg, sizeof(*sa));
5273 if (IS_ERR(sa)) {
5274 ret = PTR_ERR(sa);
5275 goto drop_write;
5276 }
5277
5278 trans = btrfs_join_transaction(root);
5279 if (IS_ERR(trans)) {
5280 ret = PTR_ERR(trans);
5281 goto out;
5282 }
5283
5284 if (sa->assign) {
5285 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
5286 } else {
5287 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
5288 }
5289
5290 /* update qgroup status and info */
5291 err = btrfs_run_qgroups(trans);
5292 if (err < 0)
5293 btrfs_handle_fs_error(fs_info, err,
5294 "failed to update qgroup status and info");
5295 err = btrfs_end_transaction(trans);
5296 if (err && !ret)
5297 ret = err;
5298
5299 out:
5300 kfree(sa);
5301 drop_write:
5302 mnt_drop_write_file(file);
5303 return ret;
5304 }
5305
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)5306 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5307 {
5308 struct inode *inode = file_inode(file);
5309 struct btrfs_root *root = BTRFS_I(inode)->root;
5310 struct btrfs_ioctl_qgroup_create_args *sa;
5311 struct btrfs_trans_handle *trans;
5312 int ret;
5313 int err;
5314
5315 if (!capable(CAP_SYS_ADMIN))
5316 return -EPERM;
5317
5318 ret = mnt_want_write_file(file);
5319 if (ret)
5320 return ret;
5321
5322 sa = memdup_user(arg, sizeof(*sa));
5323 if (IS_ERR(sa)) {
5324 ret = PTR_ERR(sa);
5325 goto drop_write;
5326 }
5327
5328 if (!sa->qgroupid) {
5329 ret = -EINVAL;
5330 goto out;
5331 }
5332
5333 trans = btrfs_join_transaction(root);
5334 if (IS_ERR(trans)) {
5335 ret = PTR_ERR(trans);
5336 goto out;
5337 }
5338
5339 if (sa->create) {
5340 ret = btrfs_create_qgroup(trans, sa->qgroupid);
5341 } else {
5342 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
5343 }
5344
5345 err = btrfs_end_transaction(trans);
5346 if (err && !ret)
5347 ret = err;
5348
5349 out:
5350 kfree(sa);
5351 drop_write:
5352 mnt_drop_write_file(file);
5353 return ret;
5354 }
5355
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5356 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5357 {
5358 struct inode *inode = file_inode(file);
5359 struct btrfs_root *root = BTRFS_I(inode)->root;
5360 struct btrfs_ioctl_qgroup_limit_args *sa;
5361 struct btrfs_trans_handle *trans;
5362 int ret;
5363 int err;
5364 u64 qgroupid;
5365
5366 if (!capable(CAP_SYS_ADMIN))
5367 return -EPERM;
5368
5369 ret = mnt_want_write_file(file);
5370 if (ret)
5371 return ret;
5372
5373 sa = memdup_user(arg, sizeof(*sa));
5374 if (IS_ERR(sa)) {
5375 ret = PTR_ERR(sa);
5376 goto drop_write;
5377 }
5378
5379 trans = btrfs_join_transaction(root);
5380 if (IS_ERR(trans)) {
5381 ret = PTR_ERR(trans);
5382 goto out;
5383 }
5384
5385 qgroupid = sa->qgroupid;
5386 if (!qgroupid) {
5387 /* take the current subvol as qgroup */
5388 qgroupid = root->root_key.objectid;
5389 }
5390
5391 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5392
5393 err = btrfs_end_transaction(trans);
5394 if (err && !ret)
5395 ret = err;
5396
5397 out:
5398 kfree(sa);
5399 drop_write:
5400 mnt_drop_write_file(file);
5401 return ret;
5402 }
5403
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5404 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5405 {
5406 struct inode *inode = file_inode(file);
5407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5408 struct btrfs_ioctl_quota_rescan_args *qsa;
5409 int ret;
5410
5411 if (!capable(CAP_SYS_ADMIN))
5412 return -EPERM;
5413
5414 ret = mnt_want_write_file(file);
5415 if (ret)
5416 return ret;
5417
5418 qsa = memdup_user(arg, sizeof(*qsa));
5419 if (IS_ERR(qsa)) {
5420 ret = PTR_ERR(qsa);
5421 goto drop_write;
5422 }
5423
5424 if (qsa->flags) {
5425 ret = -EINVAL;
5426 goto out;
5427 }
5428
5429 ret = btrfs_qgroup_rescan(fs_info);
5430
5431 out:
5432 kfree(qsa);
5433 drop_write:
5434 mnt_drop_write_file(file);
5435 return ret;
5436 }
5437
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5438 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5439 {
5440 struct inode *inode = file_inode(file);
5441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5442 struct btrfs_ioctl_quota_rescan_args *qsa;
5443 int ret = 0;
5444
5445 if (!capable(CAP_SYS_ADMIN))
5446 return -EPERM;
5447
5448 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5449 if (!qsa)
5450 return -ENOMEM;
5451
5452 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5453 qsa->flags = 1;
5454 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5455 }
5456
5457 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5458 ret = -EFAULT;
5459
5460 kfree(qsa);
5461 return ret;
5462 }
5463
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5464 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5465 {
5466 struct inode *inode = file_inode(file);
5467 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5468
5469 if (!capable(CAP_SYS_ADMIN))
5470 return -EPERM;
5471
5472 return btrfs_qgroup_wait_for_completion(fs_info, true);
5473 }
5474
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5475 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5476 struct btrfs_ioctl_received_subvol_args *sa)
5477 {
5478 struct inode *inode = file_inode(file);
5479 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5480 struct btrfs_root *root = BTRFS_I(inode)->root;
5481 struct btrfs_root_item *root_item = &root->root_item;
5482 struct btrfs_trans_handle *trans;
5483 struct timespec64 ct = current_time(inode);
5484 int ret = 0;
5485 int received_uuid_changed;
5486
5487 if (!inode_owner_or_capable(inode))
5488 return -EPERM;
5489
5490 ret = mnt_want_write_file(file);
5491 if (ret < 0)
5492 return ret;
5493
5494 down_write(&fs_info->subvol_sem);
5495
5496 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5497 ret = -EINVAL;
5498 goto out;
5499 }
5500
5501 if (btrfs_root_readonly(root)) {
5502 ret = -EROFS;
5503 goto out;
5504 }
5505
5506 /*
5507 * 1 - root item
5508 * 2 - uuid items (received uuid + subvol uuid)
5509 */
5510 trans = btrfs_start_transaction(root, 3);
5511 if (IS_ERR(trans)) {
5512 ret = PTR_ERR(trans);
5513 trans = NULL;
5514 goto out;
5515 }
5516
5517 sa->rtransid = trans->transid;
5518 sa->rtime.sec = ct.tv_sec;
5519 sa->rtime.nsec = ct.tv_nsec;
5520
5521 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5522 BTRFS_UUID_SIZE);
5523 if (received_uuid_changed &&
5524 !btrfs_is_empty_uuid(root_item->received_uuid)) {
5525 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5526 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5527 root->root_key.objectid);
5528 if (ret && ret != -ENOENT) {
5529 btrfs_abort_transaction(trans, ret);
5530 btrfs_end_transaction(trans);
5531 goto out;
5532 }
5533 }
5534 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5535 btrfs_set_root_stransid(root_item, sa->stransid);
5536 btrfs_set_root_rtransid(root_item, sa->rtransid);
5537 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5538 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5539 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5540 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5541
5542 ret = btrfs_update_root(trans, fs_info->tree_root,
5543 &root->root_key, &root->root_item);
5544 if (ret < 0) {
5545 btrfs_end_transaction(trans);
5546 goto out;
5547 }
5548 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5549 ret = btrfs_uuid_tree_add(trans, sa->uuid,
5550 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5551 root->root_key.objectid);
5552 if (ret < 0 && ret != -EEXIST) {
5553 btrfs_abort_transaction(trans, ret);
5554 btrfs_end_transaction(trans);
5555 goto out;
5556 }
5557 }
5558 ret = btrfs_commit_transaction(trans);
5559 out:
5560 up_write(&fs_info->subvol_sem);
5561 mnt_drop_write_file(file);
5562 return ret;
5563 }
5564
5565 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5566 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5567 void __user *arg)
5568 {
5569 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5570 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5571 int ret = 0;
5572
5573 args32 = memdup_user(arg, sizeof(*args32));
5574 if (IS_ERR(args32))
5575 return PTR_ERR(args32);
5576
5577 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5578 if (!args64) {
5579 ret = -ENOMEM;
5580 goto out;
5581 }
5582
5583 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5584 args64->stransid = args32->stransid;
5585 args64->rtransid = args32->rtransid;
5586 args64->stime.sec = args32->stime.sec;
5587 args64->stime.nsec = args32->stime.nsec;
5588 args64->rtime.sec = args32->rtime.sec;
5589 args64->rtime.nsec = args32->rtime.nsec;
5590 args64->flags = args32->flags;
5591
5592 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5593 if (ret)
5594 goto out;
5595
5596 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5597 args32->stransid = args64->stransid;
5598 args32->rtransid = args64->rtransid;
5599 args32->stime.sec = args64->stime.sec;
5600 args32->stime.nsec = args64->stime.nsec;
5601 args32->rtime.sec = args64->rtime.sec;
5602 args32->rtime.nsec = args64->rtime.nsec;
5603 args32->flags = args64->flags;
5604
5605 ret = copy_to_user(arg, args32, sizeof(*args32));
5606 if (ret)
5607 ret = -EFAULT;
5608
5609 out:
5610 kfree(args32);
5611 kfree(args64);
5612 return ret;
5613 }
5614 #endif
5615
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5616 static long btrfs_ioctl_set_received_subvol(struct file *file,
5617 void __user *arg)
5618 {
5619 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5620 int ret = 0;
5621
5622 sa = memdup_user(arg, sizeof(*sa));
5623 if (IS_ERR(sa))
5624 return PTR_ERR(sa);
5625
5626 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5627
5628 if (ret)
5629 goto out;
5630
5631 ret = copy_to_user(arg, sa, sizeof(*sa));
5632 if (ret)
5633 ret = -EFAULT;
5634
5635 out:
5636 kfree(sa);
5637 return ret;
5638 }
5639
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5640 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5641 {
5642 struct inode *inode = file_inode(file);
5643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5644 size_t len;
5645 int ret;
5646 char label[BTRFS_LABEL_SIZE];
5647
5648 spin_lock(&fs_info->super_lock);
5649 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5650 spin_unlock(&fs_info->super_lock);
5651
5652 len = strnlen(label, BTRFS_LABEL_SIZE);
5653
5654 if (len == BTRFS_LABEL_SIZE) {
5655 btrfs_warn(fs_info,
5656 "label is too long, return the first %zu bytes",
5657 --len);
5658 }
5659
5660 ret = copy_to_user(arg, label, len);
5661
5662 return ret ? -EFAULT : 0;
5663 }
5664
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5665 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5666 {
5667 struct inode *inode = file_inode(file);
5668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5669 struct btrfs_root *root = BTRFS_I(inode)->root;
5670 struct btrfs_super_block *super_block = fs_info->super_copy;
5671 struct btrfs_trans_handle *trans;
5672 char label[BTRFS_LABEL_SIZE];
5673 int ret;
5674
5675 if (!capable(CAP_SYS_ADMIN))
5676 return -EPERM;
5677
5678 if (copy_from_user(label, arg, sizeof(label)))
5679 return -EFAULT;
5680
5681 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5682 btrfs_err(fs_info,
5683 "unable to set label with more than %d bytes",
5684 BTRFS_LABEL_SIZE - 1);
5685 return -EINVAL;
5686 }
5687
5688 ret = mnt_want_write_file(file);
5689 if (ret)
5690 return ret;
5691
5692 trans = btrfs_start_transaction(root, 0);
5693 if (IS_ERR(trans)) {
5694 ret = PTR_ERR(trans);
5695 goto out_unlock;
5696 }
5697
5698 spin_lock(&fs_info->super_lock);
5699 strcpy(super_block->label, label);
5700 spin_unlock(&fs_info->super_lock);
5701 ret = btrfs_commit_transaction(trans);
5702
5703 out_unlock:
5704 mnt_drop_write_file(file);
5705 return ret;
5706 }
5707
5708 #define INIT_FEATURE_FLAGS(suffix) \
5709 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5710 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5711 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5712
btrfs_ioctl_get_supported_features(void __user * arg)5713 int btrfs_ioctl_get_supported_features(void __user *arg)
5714 {
5715 static const struct btrfs_ioctl_feature_flags features[3] = {
5716 INIT_FEATURE_FLAGS(SUPP),
5717 INIT_FEATURE_FLAGS(SAFE_SET),
5718 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5719 };
5720
5721 if (copy_to_user(arg, &features, sizeof(features)))
5722 return -EFAULT;
5723
5724 return 0;
5725 }
5726
btrfs_ioctl_get_features(struct file * file,void __user * arg)5727 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5728 {
5729 struct inode *inode = file_inode(file);
5730 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5731 struct btrfs_super_block *super_block = fs_info->super_copy;
5732 struct btrfs_ioctl_feature_flags features;
5733
5734 features.compat_flags = btrfs_super_compat_flags(super_block);
5735 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5736 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5737
5738 if (copy_to_user(arg, &features, sizeof(features)))
5739 return -EFAULT;
5740
5741 return 0;
5742 }
5743
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5744 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5745 enum btrfs_feature_set set,
5746 u64 change_mask, u64 flags, u64 supported_flags,
5747 u64 safe_set, u64 safe_clear)
5748 {
5749 const char *type = btrfs_feature_set_names[set];
5750 char *names;
5751 u64 disallowed, unsupported;
5752 u64 set_mask = flags & change_mask;
5753 u64 clear_mask = ~flags & change_mask;
5754
5755 unsupported = set_mask & ~supported_flags;
5756 if (unsupported) {
5757 names = btrfs_printable_features(set, unsupported);
5758 if (names) {
5759 btrfs_warn(fs_info,
5760 "this kernel does not support the %s feature bit%s",
5761 names, strchr(names, ',') ? "s" : "");
5762 kfree(names);
5763 } else
5764 btrfs_warn(fs_info,
5765 "this kernel does not support %s bits 0x%llx",
5766 type, unsupported);
5767 return -EOPNOTSUPP;
5768 }
5769
5770 disallowed = set_mask & ~safe_set;
5771 if (disallowed) {
5772 names = btrfs_printable_features(set, disallowed);
5773 if (names) {
5774 btrfs_warn(fs_info,
5775 "can't set the %s feature bit%s while mounted",
5776 names, strchr(names, ',') ? "s" : "");
5777 kfree(names);
5778 } else
5779 btrfs_warn(fs_info,
5780 "can't set %s bits 0x%llx while mounted",
5781 type, disallowed);
5782 return -EPERM;
5783 }
5784
5785 disallowed = clear_mask & ~safe_clear;
5786 if (disallowed) {
5787 names = btrfs_printable_features(set, disallowed);
5788 if (names) {
5789 btrfs_warn(fs_info,
5790 "can't clear the %s feature bit%s while mounted",
5791 names, strchr(names, ',') ? "s" : "");
5792 kfree(names);
5793 } else
5794 btrfs_warn(fs_info,
5795 "can't clear %s bits 0x%llx while mounted",
5796 type, disallowed);
5797 return -EPERM;
5798 }
5799
5800 return 0;
5801 }
5802
5803 #define check_feature(fs_info, change_mask, flags, mask_base) \
5804 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5805 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5806 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5807 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5808
btrfs_ioctl_set_features(struct file * file,void __user * arg)5809 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5810 {
5811 struct inode *inode = file_inode(file);
5812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5813 struct btrfs_root *root = BTRFS_I(inode)->root;
5814 struct btrfs_super_block *super_block = fs_info->super_copy;
5815 struct btrfs_ioctl_feature_flags flags[2];
5816 struct btrfs_trans_handle *trans;
5817 u64 newflags;
5818 int ret;
5819
5820 if (!capable(CAP_SYS_ADMIN))
5821 return -EPERM;
5822
5823 if (copy_from_user(flags, arg, sizeof(flags)))
5824 return -EFAULT;
5825
5826 /* Nothing to do */
5827 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5828 !flags[0].incompat_flags)
5829 return 0;
5830
5831 ret = check_feature(fs_info, flags[0].compat_flags,
5832 flags[1].compat_flags, COMPAT);
5833 if (ret)
5834 return ret;
5835
5836 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5837 flags[1].compat_ro_flags, COMPAT_RO);
5838 if (ret)
5839 return ret;
5840
5841 ret = check_feature(fs_info, flags[0].incompat_flags,
5842 flags[1].incompat_flags, INCOMPAT);
5843 if (ret)
5844 return ret;
5845
5846 ret = mnt_want_write_file(file);
5847 if (ret)
5848 return ret;
5849
5850 trans = btrfs_start_transaction(root, 0);
5851 if (IS_ERR(trans)) {
5852 ret = PTR_ERR(trans);
5853 goto out_drop_write;
5854 }
5855
5856 spin_lock(&fs_info->super_lock);
5857 newflags = btrfs_super_compat_flags(super_block);
5858 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5859 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5860 btrfs_set_super_compat_flags(super_block, newflags);
5861
5862 newflags = btrfs_super_compat_ro_flags(super_block);
5863 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5864 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5865 btrfs_set_super_compat_ro_flags(super_block, newflags);
5866
5867 newflags = btrfs_super_incompat_flags(super_block);
5868 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5869 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5870 btrfs_set_super_incompat_flags(super_block, newflags);
5871 spin_unlock(&fs_info->super_lock);
5872
5873 ret = btrfs_commit_transaction(trans);
5874 out_drop_write:
5875 mnt_drop_write_file(file);
5876
5877 return ret;
5878 }
5879
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)5880 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5881 {
5882 struct btrfs_ioctl_send_args *arg;
5883 int ret;
5884
5885 if (compat) {
5886 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5887 struct btrfs_ioctl_send_args_32 args32;
5888
5889 ret = copy_from_user(&args32, argp, sizeof(args32));
5890 if (ret)
5891 return -EFAULT;
5892 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5893 if (!arg)
5894 return -ENOMEM;
5895 arg->send_fd = args32.send_fd;
5896 arg->clone_sources_count = args32.clone_sources_count;
5897 arg->clone_sources = compat_ptr(args32.clone_sources);
5898 arg->parent_root = args32.parent_root;
5899 arg->flags = args32.flags;
5900 memcpy(arg->reserved, args32.reserved,
5901 sizeof(args32.reserved));
5902 #else
5903 return -ENOTTY;
5904 #endif
5905 } else {
5906 arg = memdup_user(argp, sizeof(*arg));
5907 if (IS_ERR(arg))
5908 return PTR_ERR(arg);
5909 }
5910 ret = btrfs_ioctl_send(file, arg);
5911 kfree(arg);
5912 return ret;
5913 }
5914
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5915 long btrfs_ioctl(struct file *file, unsigned int
5916 cmd, unsigned long arg)
5917 {
5918 struct inode *inode = file_inode(file);
5919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5920 struct btrfs_root *root = BTRFS_I(inode)->root;
5921 void __user *argp = (void __user *)arg;
5922
5923 switch (cmd) {
5924 case FS_IOC_GETFLAGS:
5925 return btrfs_ioctl_getflags(file, argp);
5926 case FS_IOC_SETFLAGS:
5927 return btrfs_ioctl_setflags(file, argp);
5928 case FS_IOC_GETVERSION:
5929 return btrfs_ioctl_getversion(file, argp);
5930 case FITRIM:
5931 return btrfs_ioctl_fitrim(file, argp);
5932 case BTRFS_IOC_SNAP_CREATE:
5933 return btrfs_ioctl_snap_create(file, argp, 0);
5934 case BTRFS_IOC_SNAP_CREATE_V2:
5935 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5936 case BTRFS_IOC_SUBVOL_CREATE:
5937 return btrfs_ioctl_snap_create(file, argp, 1);
5938 case BTRFS_IOC_SUBVOL_CREATE_V2:
5939 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5940 case BTRFS_IOC_SNAP_DESTROY:
5941 return btrfs_ioctl_snap_destroy(file, argp);
5942 case BTRFS_IOC_SUBVOL_GETFLAGS:
5943 return btrfs_ioctl_subvol_getflags(file, argp);
5944 case BTRFS_IOC_SUBVOL_SETFLAGS:
5945 return btrfs_ioctl_subvol_setflags(file, argp);
5946 case BTRFS_IOC_DEFAULT_SUBVOL:
5947 return btrfs_ioctl_default_subvol(file, argp);
5948 case BTRFS_IOC_DEFRAG:
5949 return btrfs_ioctl_defrag(file, NULL);
5950 case BTRFS_IOC_DEFRAG_RANGE:
5951 return btrfs_ioctl_defrag(file, argp);
5952 case BTRFS_IOC_RESIZE:
5953 return btrfs_ioctl_resize(file, argp);
5954 case BTRFS_IOC_ADD_DEV:
5955 return btrfs_ioctl_add_dev(fs_info, argp);
5956 case BTRFS_IOC_RM_DEV:
5957 return btrfs_ioctl_rm_dev(file, argp);
5958 case BTRFS_IOC_RM_DEV_V2:
5959 return btrfs_ioctl_rm_dev_v2(file, argp);
5960 case BTRFS_IOC_FS_INFO:
5961 return btrfs_ioctl_fs_info(fs_info, argp);
5962 case BTRFS_IOC_DEV_INFO:
5963 return btrfs_ioctl_dev_info(fs_info, argp);
5964 case BTRFS_IOC_BALANCE:
5965 return btrfs_ioctl_balance(file, NULL);
5966 case BTRFS_IOC_TREE_SEARCH:
5967 return btrfs_ioctl_tree_search(file, argp);
5968 case BTRFS_IOC_TREE_SEARCH_V2:
5969 return btrfs_ioctl_tree_search_v2(file, argp);
5970 case BTRFS_IOC_INO_LOOKUP:
5971 return btrfs_ioctl_ino_lookup(file, argp);
5972 case BTRFS_IOC_INO_PATHS:
5973 return btrfs_ioctl_ino_to_path(root, argp);
5974 case BTRFS_IOC_LOGICAL_INO:
5975 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5976 case BTRFS_IOC_LOGICAL_INO_V2:
5977 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5978 case BTRFS_IOC_SPACE_INFO:
5979 return btrfs_ioctl_space_info(fs_info, argp);
5980 case BTRFS_IOC_SYNC: {
5981 int ret;
5982
5983 ret = btrfs_start_delalloc_roots(fs_info, -1);
5984 if (ret)
5985 return ret;
5986 ret = btrfs_sync_fs(inode->i_sb, 1);
5987 /*
5988 * The transaction thread may want to do more work,
5989 * namely it pokes the cleaner kthread that will start
5990 * processing uncleaned subvols.
5991 */
5992 wake_up_process(fs_info->transaction_kthread);
5993 return ret;
5994 }
5995 case BTRFS_IOC_START_SYNC:
5996 return btrfs_ioctl_start_sync(root, argp);
5997 case BTRFS_IOC_WAIT_SYNC:
5998 return btrfs_ioctl_wait_sync(fs_info, argp);
5999 case BTRFS_IOC_SCRUB:
6000 return btrfs_ioctl_scrub(file, argp);
6001 case BTRFS_IOC_SCRUB_CANCEL:
6002 return btrfs_ioctl_scrub_cancel(fs_info);
6003 case BTRFS_IOC_SCRUB_PROGRESS:
6004 return btrfs_ioctl_scrub_progress(fs_info, argp);
6005 case BTRFS_IOC_BALANCE_V2:
6006 return btrfs_ioctl_balance(file, argp);
6007 case BTRFS_IOC_BALANCE_CTL:
6008 return btrfs_ioctl_balance_ctl(fs_info, arg);
6009 case BTRFS_IOC_BALANCE_PROGRESS:
6010 return btrfs_ioctl_balance_progress(fs_info, argp);
6011 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
6012 return btrfs_ioctl_set_received_subvol(file, argp);
6013 #ifdef CONFIG_64BIT
6014 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
6015 return btrfs_ioctl_set_received_subvol_32(file, argp);
6016 #endif
6017 case BTRFS_IOC_SEND:
6018 return _btrfs_ioctl_send(file, argp, false);
6019 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
6020 case BTRFS_IOC_SEND_32:
6021 return _btrfs_ioctl_send(file, argp, true);
6022 #endif
6023 case BTRFS_IOC_GET_DEV_STATS:
6024 return btrfs_ioctl_get_dev_stats(fs_info, argp);
6025 case BTRFS_IOC_QUOTA_CTL:
6026 return btrfs_ioctl_quota_ctl(file, argp);
6027 case BTRFS_IOC_QGROUP_ASSIGN:
6028 return btrfs_ioctl_qgroup_assign(file, argp);
6029 case BTRFS_IOC_QGROUP_CREATE:
6030 return btrfs_ioctl_qgroup_create(file, argp);
6031 case BTRFS_IOC_QGROUP_LIMIT:
6032 return btrfs_ioctl_qgroup_limit(file, argp);
6033 case BTRFS_IOC_QUOTA_RESCAN:
6034 return btrfs_ioctl_quota_rescan(file, argp);
6035 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
6036 return btrfs_ioctl_quota_rescan_status(file, argp);
6037 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
6038 return btrfs_ioctl_quota_rescan_wait(file, argp);
6039 case BTRFS_IOC_DEV_REPLACE:
6040 return btrfs_ioctl_dev_replace(fs_info, argp);
6041 case BTRFS_IOC_GET_FSLABEL:
6042 return btrfs_ioctl_get_fslabel(file, argp);
6043 case BTRFS_IOC_SET_FSLABEL:
6044 return btrfs_ioctl_set_fslabel(file, argp);
6045 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
6046 return btrfs_ioctl_get_supported_features(argp);
6047 case BTRFS_IOC_GET_FEATURES:
6048 return btrfs_ioctl_get_features(file, argp);
6049 case BTRFS_IOC_SET_FEATURES:
6050 return btrfs_ioctl_set_features(file, argp);
6051 case FS_IOC_FSGETXATTR:
6052 return btrfs_ioctl_fsgetxattr(file, argp);
6053 case FS_IOC_FSSETXATTR:
6054 return btrfs_ioctl_fssetxattr(file, argp);
6055 case BTRFS_IOC_GET_SUBVOL_INFO:
6056 return btrfs_ioctl_get_subvol_info(file, argp);
6057 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
6058 return btrfs_ioctl_get_subvol_rootref(file, argp);
6059 case BTRFS_IOC_INO_LOOKUP_USER:
6060 return btrfs_ioctl_ino_lookup_user(file, argp);
6061 }
6062
6063 return -ENOTTY;
6064 }
6065
6066 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6067 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6068 {
6069 /*
6070 * These all access 32-bit values anyway so no further
6071 * handling is necessary.
6072 */
6073 switch (cmd) {
6074 case FS_IOC32_GETFLAGS:
6075 cmd = FS_IOC_GETFLAGS;
6076 break;
6077 case FS_IOC32_SETFLAGS:
6078 cmd = FS_IOC_SETFLAGS;
6079 break;
6080 case FS_IOC32_GETVERSION:
6081 cmd = FS_IOC_GETVERSION;
6082 break;
6083 }
6084
6085 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
6086 }
6087 #endif
6088