1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49  * structures are incorrect, as the timespec structure from userspace
50  * is 4 bytes too small. We define these alternatives here to teach
51  * the kernel about the 32-bit struct packing.
52  */
53 struct btrfs_ioctl_timespec_32 {
54 	__u64 sec;
55 	__u32 nsec;
56 } __attribute__ ((__packed__));
57 
58 struct btrfs_ioctl_received_subvol_args_32 {
59 	char	uuid[BTRFS_UUID_SIZE];	/* in */
60 	__u64	stransid;		/* in */
61 	__u64	rtransid;		/* out */
62 	struct btrfs_ioctl_timespec_32 stime; /* in */
63 	struct btrfs_ioctl_timespec_32 rtime; /* out */
64 	__u64	flags;			/* in */
65 	__u64	reserved[16];		/* in */
66 } __attribute__ ((__packed__));
67 
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 				struct btrfs_ioctl_received_subvol_args_32)
70 #endif
71 
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 	__s64 send_fd;			/* in */
75 	__u64 clone_sources_count;	/* in */
76 	compat_uptr_t clone_sources;	/* in */
77 	__u64 parent_root;		/* in */
78 	__u64 flags;			/* in */
79 	__u64 reserved[4];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 			       struct btrfs_ioctl_send_args_32)
84 #endif
85 
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 		       int no_time_update);
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
check_fsflags(unsigned int flags)168 static int check_fsflags(unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
btrfs_ioctl_setflags(struct file * file,void __user * arg)183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 	struct btrfs_inode *binode = BTRFS_I(inode);
188 	struct btrfs_root *root = binode->root;
189 	struct btrfs_trans_handle *trans;
190 	unsigned int fsflags, old_fsflags;
191 	int ret;
192 	u64 old_flags;
193 	unsigned int old_i_flags;
194 	umode_t mode;
195 
196 	if (!inode_owner_or_capable(inode))
197 		return -EPERM;
198 
199 	if (btrfs_root_readonly(root))
200 		return -EROFS;
201 
202 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
203 		return -EFAULT;
204 
205 	ret = check_fsflags(fsflags);
206 	if (ret)
207 		return ret;
208 
209 	ret = mnt_want_write_file(file);
210 	if (ret)
211 		return ret;
212 
213 	inode_lock(inode);
214 
215 	old_flags = binode->flags;
216 	old_i_flags = inode->i_flags;
217 	mode = inode->i_mode;
218 
219 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
220 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
221 	if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
222 		if (!capable(CAP_LINUX_IMMUTABLE)) {
223 			ret = -EPERM;
224 			goto out_unlock;
225 		}
226 	}
227 
228 	if (fsflags & FS_SYNC_FL)
229 		binode->flags |= BTRFS_INODE_SYNC;
230 	else
231 		binode->flags &= ~BTRFS_INODE_SYNC;
232 	if (fsflags & FS_IMMUTABLE_FL)
233 		binode->flags |= BTRFS_INODE_IMMUTABLE;
234 	else
235 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
236 	if (fsflags & FS_APPEND_FL)
237 		binode->flags |= BTRFS_INODE_APPEND;
238 	else
239 		binode->flags &= ~BTRFS_INODE_APPEND;
240 	if (fsflags & FS_NODUMP_FL)
241 		binode->flags |= BTRFS_INODE_NODUMP;
242 	else
243 		binode->flags &= ~BTRFS_INODE_NODUMP;
244 	if (fsflags & FS_NOATIME_FL)
245 		binode->flags |= BTRFS_INODE_NOATIME;
246 	else
247 		binode->flags &= ~BTRFS_INODE_NOATIME;
248 	if (fsflags & FS_DIRSYNC_FL)
249 		binode->flags |= BTRFS_INODE_DIRSYNC;
250 	else
251 		binode->flags &= ~BTRFS_INODE_DIRSYNC;
252 	if (fsflags & FS_NOCOW_FL) {
253 		if (S_ISREG(mode)) {
254 			/*
255 			 * It's safe to turn csums off here, no extents exist.
256 			 * Otherwise we want the flag to reflect the real COW
257 			 * status of the file and will not set it.
258 			 */
259 			if (inode->i_size == 0)
260 				binode->flags |= BTRFS_INODE_NODATACOW
261 					      | BTRFS_INODE_NODATASUM;
262 		} else {
263 			binode->flags |= BTRFS_INODE_NODATACOW;
264 		}
265 	} else {
266 		/*
267 		 * Revert back under same assumptions as above
268 		 */
269 		if (S_ISREG(mode)) {
270 			if (inode->i_size == 0)
271 				binode->flags &= ~(BTRFS_INODE_NODATACOW
272 				             | BTRFS_INODE_NODATASUM);
273 		} else {
274 			binode->flags &= ~BTRFS_INODE_NODATACOW;
275 		}
276 	}
277 
278 	/*
279 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
280 	 * flag may be changed automatically if compression code won't make
281 	 * things smaller.
282 	 */
283 	if (fsflags & FS_NOCOMP_FL) {
284 		binode->flags &= ~BTRFS_INODE_COMPRESS;
285 		binode->flags |= BTRFS_INODE_NOCOMPRESS;
286 
287 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
288 		if (ret && ret != -ENODATA)
289 			goto out_drop;
290 	} else if (fsflags & FS_COMPR_FL) {
291 		const char *comp;
292 
293 		binode->flags |= BTRFS_INODE_COMPRESS;
294 		binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
295 
296 		comp = btrfs_compress_type2str(fs_info->compress_type);
297 		if (!comp || comp[0] == 0)
298 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
299 
300 		ret = btrfs_set_prop(inode, "btrfs.compression",
301 				     comp, strlen(comp), 0);
302 		if (ret)
303 			goto out_drop;
304 
305 	} else {
306 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
307 		if (ret && ret != -ENODATA)
308 			goto out_drop;
309 		binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
310 	}
311 
312 	trans = btrfs_start_transaction(root, 1);
313 	if (IS_ERR(trans)) {
314 		ret = PTR_ERR(trans);
315 		goto out_drop;
316 	}
317 
318 	btrfs_sync_inode_flags_to_i_flags(inode);
319 	inode_inc_iversion(inode);
320 	inode->i_ctime = current_time(inode);
321 	ret = btrfs_update_inode(trans, root, inode);
322 
323 	btrfs_end_transaction(trans);
324  out_drop:
325 	if (ret) {
326 		binode->flags = old_flags;
327 		inode->i_flags = old_i_flags;
328 	}
329 
330  out_unlock:
331 	inode_unlock(inode);
332 	mnt_drop_write_file(file);
333 	return ret;
334 }
335 
336 /*
337  * Translate btrfs internal inode flags to xflags as expected by the
338  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
339  * silently dropped.
340  */
btrfs_inode_flags_to_xflags(unsigned int flags)341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
342 {
343 	unsigned int xflags = 0;
344 
345 	if (flags & BTRFS_INODE_APPEND)
346 		xflags |= FS_XFLAG_APPEND;
347 	if (flags & BTRFS_INODE_IMMUTABLE)
348 		xflags |= FS_XFLAG_IMMUTABLE;
349 	if (flags & BTRFS_INODE_NOATIME)
350 		xflags |= FS_XFLAG_NOATIME;
351 	if (flags & BTRFS_INODE_NODUMP)
352 		xflags |= FS_XFLAG_NODUMP;
353 	if (flags & BTRFS_INODE_SYNC)
354 		xflags |= FS_XFLAG_SYNC;
355 
356 	return xflags;
357 }
358 
359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)360 static int check_xflags(unsigned int flags)
361 {
362 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
363 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
364 		return -EOPNOTSUPP;
365 	return 0;
366 }
367 
368 /*
369  * Set the xflags from the internal inode flags. The remaining items of fsxattr
370  * are zeroed.
371  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
373 {
374 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
375 	struct fsxattr fa;
376 
377 	memset(&fa, 0, sizeof(fa));
378 	fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
379 
380 	if (copy_to_user(arg, &fa, sizeof(fa)))
381 		return -EFAULT;
382 
383 	return 0;
384 }
385 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
387 {
388 	struct inode *inode = file_inode(file);
389 	struct btrfs_inode *binode = BTRFS_I(inode);
390 	struct btrfs_root *root = binode->root;
391 	struct btrfs_trans_handle *trans;
392 	struct fsxattr fa;
393 	unsigned old_flags;
394 	unsigned old_i_flags;
395 	int ret = 0;
396 
397 	if (!inode_owner_or_capable(inode))
398 		return -EPERM;
399 
400 	if (btrfs_root_readonly(root))
401 		return -EROFS;
402 
403 	memset(&fa, 0, sizeof(fa));
404 	if (copy_from_user(&fa, arg, sizeof(fa)))
405 		return -EFAULT;
406 
407 	ret = check_xflags(fa.fsx_xflags);
408 	if (ret)
409 		return ret;
410 
411 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
412 		return -EOPNOTSUPP;
413 
414 	ret = mnt_want_write_file(file);
415 	if (ret)
416 		return ret;
417 
418 	inode_lock(inode);
419 
420 	old_flags = binode->flags;
421 	old_i_flags = inode->i_flags;
422 
423 	/* We need the capabilities to change append-only or immutable inode */
424 	if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
425 	     (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
426 	    !capable(CAP_LINUX_IMMUTABLE)) {
427 		ret = -EPERM;
428 		goto out_unlock;
429 	}
430 
431 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
432 		binode->flags |= BTRFS_INODE_SYNC;
433 	else
434 		binode->flags &= ~BTRFS_INODE_SYNC;
435 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
436 		binode->flags |= BTRFS_INODE_IMMUTABLE;
437 	else
438 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
439 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
440 		binode->flags |= BTRFS_INODE_APPEND;
441 	else
442 		binode->flags &= ~BTRFS_INODE_APPEND;
443 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
444 		binode->flags |= BTRFS_INODE_NODUMP;
445 	else
446 		binode->flags &= ~BTRFS_INODE_NODUMP;
447 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
448 		binode->flags |= BTRFS_INODE_NOATIME;
449 	else
450 		binode->flags &= ~BTRFS_INODE_NOATIME;
451 
452 	/* 1 item for the inode */
453 	trans = btrfs_start_transaction(root, 1);
454 	if (IS_ERR(trans)) {
455 		ret = PTR_ERR(trans);
456 		goto out_unlock;
457 	}
458 
459 	btrfs_sync_inode_flags_to_i_flags(inode);
460 	inode_inc_iversion(inode);
461 	inode->i_ctime = current_time(inode);
462 	ret = btrfs_update_inode(trans, root, inode);
463 
464 	btrfs_end_transaction(trans);
465 
466 out_unlock:
467 	if (ret) {
468 		binode->flags = old_flags;
469 		inode->i_flags = old_i_flags;
470 	}
471 
472 	inode_unlock(inode);
473 	mnt_drop_write_file(file);
474 
475 	return ret;
476 }
477 
btrfs_ioctl_getversion(struct file * file,int __user * arg)478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
479 {
480 	struct inode *inode = file_inode(file);
481 
482 	return put_user(inode->i_generation, arg);
483 }
484 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
486 {
487 	struct inode *inode = file_inode(file);
488 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
489 	struct btrfs_device *device;
490 	struct request_queue *q;
491 	struct fstrim_range range;
492 	u64 minlen = ULLONG_MAX;
493 	u64 num_devices = 0;
494 	int ret;
495 
496 	if (!capable(CAP_SYS_ADMIN))
497 		return -EPERM;
498 
499 	/*
500 	 * If the fs is mounted with nologreplay, which requires it to be
501 	 * mounted in RO mode as well, we can not allow discard on free space
502 	 * inside block groups, because log trees refer to extents that are not
503 	 * pinned in a block group's free space cache (pinning the extents is
504 	 * precisely the first phase of replaying a log tree).
505 	 */
506 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
507 		return -EROFS;
508 
509 	rcu_read_lock();
510 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
511 				dev_list) {
512 		if (!device->bdev)
513 			continue;
514 		q = bdev_get_queue(device->bdev);
515 		if (blk_queue_discard(q)) {
516 			num_devices++;
517 			minlen = min_t(u64, q->limits.discard_granularity,
518 				     minlen);
519 		}
520 	}
521 	rcu_read_unlock();
522 
523 	if (!num_devices)
524 		return -EOPNOTSUPP;
525 	if (copy_from_user(&range, arg, sizeof(range)))
526 		return -EFAULT;
527 
528 	/*
529 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
530 	 * block group is in the logical address space, which can be any
531 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
532 	 */
533 	if (range.len < fs_info->sb->s_blocksize)
534 		return -EINVAL;
535 
536 	range.minlen = max(range.minlen, minlen);
537 	ret = btrfs_trim_fs(fs_info, &range);
538 	if (ret < 0)
539 		return ret;
540 
541 	if (copy_to_user(arg, &range, sizeof(range)))
542 		return -EFAULT;
543 
544 	return 0;
545 }
546 
btrfs_is_empty_uuid(u8 * uuid)547 int btrfs_is_empty_uuid(u8 *uuid)
548 {
549 	int i;
550 
551 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
552 		if (uuid[i])
553 			return 0;
554 	}
555 	return 1;
556 }
557 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)558 static noinline int create_subvol(struct inode *dir,
559 				  struct dentry *dentry,
560 				  const char *name, int namelen,
561 				  u64 *async_transid,
562 				  struct btrfs_qgroup_inherit *inherit)
563 {
564 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
565 	struct btrfs_trans_handle *trans;
566 	struct btrfs_key key;
567 	struct btrfs_root_item *root_item;
568 	struct btrfs_inode_item *inode_item;
569 	struct extent_buffer *leaf;
570 	struct btrfs_root *root = BTRFS_I(dir)->root;
571 	struct btrfs_root *new_root;
572 	struct btrfs_block_rsv block_rsv;
573 	struct timespec64 cur_time = current_time(dir);
574 	struct inode *inode;
575 	int ret;
576 	int err;
577 	u64 objectid;
578 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
579 	u64 index = 0;
580 	uuid_le new_uuid;
581 
582 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
583 	if (!root_item)
584 		return -ENOMEM;
585 
586 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
587 	if (ret)
588 		goto fail_free;
589 
590 	/*
591 	 * Don't create subvolume whose level is not zero. Or qgroup will be
592 	 * screwed up since it assumes subvolume qgroup's level to be 0.
593 	 */
594 	if (btrfs_qgroup_level(objectid)) {
595 		ret = -ENOSPC;
596 		goto fail_free;
597 	}
598 
599 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
600 	/*
601 	 * The same as the snapshot creation, please see the comment
602 	 * of create_snapshot().
603 	 */
604 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
605 	if (ret)
606 		goto fail_free;
607 
608 	trans = btrfs_start_transaction(root, 0);
609 	if (IS_ERR(trans)) {
610 		ret = PTR_ERR(trans);
611 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
612 		goto fail_free;
613 	}
614 	trans->block_rsv = &block_rsv;
615 	trans->bytes_reserved = block_rsv.size;
616 
617 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
618 	if (ret)
619 		goto fail;
620 
621 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
622 	if (IS_ERR(leaf)) {
623 		ret = PTR_ERR(leaf);
624 		goto fail;
625 	}
626 
627 	btrfs_mark_buffer_dirty(leaf);
628 
629 	inode_item = &root_item->inode;
630 	btrfs_set_stack_inode_generation(inode_item, 1);
631 	btrfs_set_stack_inode_size(inode_item, 3);
632 	btrfs_set_stack_inode_nlink(inode_item, 1);
633 	btrfs_set_stack_inode_nbytes(inode_item,
634 				     fs_info->nodesize);
635 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
636 
637 	btrfs_set_root_flags(root_item, 0);
638 	btrfs_set_root_limit(root_item, 0);
639 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
640 
641 	btrfs_set_root_bytenr(root_item, leaf->start);
642 	btrfs_set_root_generation(root_item, trans->transid);
643 	btrfs_set_root_level(root_item, 0);
644 	btrfs_set_root_refs(root_item, 1);
645 	btrfs_set_root_used(root_item, leaf->len);
646 	btrfs_set_root_last_snapshot(root_item, 0);
647 
648 	btrfs_set_root_generation_v2(root_item,
649 			btrfs_root_generation(root_item));
650 	uuid_le_gen(&new_uuid);
651 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
652 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
653 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
654 	root_item->ctime = root_item->otime;
655 	btrfs_set_root_ctransid(root_item, trans->transid);
656 	btrfs_set_root_otransid(root_item, trans->transid);
657 
658 	btrfs_tree_unlock(leaf);
659 
660 	btrfs_set_root_dirid(root_item, new_dirid);
661 
662 	key.objectid = objectid;
663 	key.offset = 0;
664 	key.type = BTRFS_ROOT_ITEM_KEY;
665 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
666 				root_item);
667 	if (ret) {
668 		/*
669 		 * Since we don't abort the transaction in this case, free the
670 		 * tree block so that we don't leak space and leave the
671 		 * filesystem in an inconsistent state (an extent item in the
672 		 * extent tree without backreferences). Also no need to have
673 		 * the tree block locked since it is not in any tree at this
674 		 * point, so no other task can find it and use it.
675 		 */
676 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
677 		free_extent_buffer(leaf);
678 		goto fail;
679 	}
680 
681 	free_extent_buffer(leaf);
682 	leaf = NULL;
683 
684 	key.offset = (u64)-1;
685 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
686 	if (IS_ERR(new_root)) {
687 		ret = PTR_ERR(new_root);
688 		btrfs_abort_transaction(trans, ret);
689 		goto fail;
690 	}
691 
692 	btrfs_record_root_in_trans(trans, new_root);
693 
694 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
695 	if (ret) {
696 		/* We potentially lose an unused inode item here */
697 		btrfs_abort_transaction(trans, ret);
698 		goto fail;
699 	}
700 
701 	mutex_lock(&new_root->objectid_mutex);
702 	new_root->highest_objectid = new_dirid;
703 	mutex_unlock(&new_root->objectid_mutex);
704 
705 	/*
706 	 * insert the directory item
707 	 */
708 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
709 	if (ret) {
710 		btrfs_abort_transaction(trans, ret);
711 		goto fail;
712 	}
713 
714 	ret = btrfs_insert_dir_item(trans, root,
715 				    name, namelen, BTRFS_I(dir), &key,
716 				    BTRFS_FT_DIR, index);
717 	if (ret) {
718 		btrfs_abort_transaction(trans, ret);
719 		goto fail;
720 	}
721 
722 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
723 	ret = btrfs_update_inode(trans, root, dir);
724 	if (ret) {
725 		btrfs_abort_transaction(trans, ret);
726 		goto fail;
727 	}
728 
729 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
730 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
731 	if (ret) {
732 		btrfs_abort_transaction(trans, ret);
733 		goto fail;
734 	}
735 
736 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
737 				  BTRFS_UUID_KEY_SUBVOL, objectid);
738 	if (ret)
739 		btrfs_abort_transaction(trans, ret);
740 
741 fail:
742 	kfree(root_item);
743 	trans->block_rsv = NULL;
744 	trans->bytes_reserved = 0;
745 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
746 
747 	if (async_transid) {
748 		*async_transid = trans->transid;
749 		err = btrfs_commit_transaction_async(trans, 1);
750 		if (err)
751 			err = btrfs_commit_transaction(trans);
752 	} else {
753 		err = btrfs_commit_transaction(trans);
754 	}
755 	if (err && !ret)
756 		ret = err;
757 
758 	if (!ret) {
759 		inode = btrfs_lookup_dentry(dir, dentry);
760 		if (IS_ERR(inode))
761 			return PTR_ERR(inode);
762 		d_instantiate(dentry, inode);
763 	}
764 	return ret;
765 
766 fail_free:
767 	kfree(root_item);
768 	return ret;
769 }
770 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)771 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
772 			   struct dentry *dentry,
773 			   u64 *async_transid, bool readonly,
774 			   struct btrfs_qgroup_inherit *inherit)
775 {
776 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
777 	struct inode *inode;
778 	struct btrfs_pending_snapshot *pending_snapshot;
779 	struct btrfs_trans_handle *trans;
780 	int ret;
781 	bool snapshot_force_cow = false;
782 
783 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
784 		return -EINVAL;
785 
786 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
787 	if (!pending_snapshot)
788 		return -ENOMEM;
789 
790 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
791 			GFP_KERNEL);
792 	pending_snapshot->path = btrfs_alloc_path();
793 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
794 		ret = -ENOMEM;
795 		goto free_pending;
796 	}
797 
798 	/*
799 	 * Force new buffered writes to reserve space even when NOCOW is
800 	 * possible. This is to avoid later writeback (running dealloc) to
801 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
802 	 */
803 	atomic_inc(&root->will_be_snapshotted);
804 	smp_mb__after_atomic();
805 	/* wait for no snapshot writes */
806 	wait_event(root->subv_writers->wait,
807 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
808 
809 	ret = btrfs_start_delalloc_snapshot(root);
810 	if (ret)
811 		goto dec_and_free;
812 
813 	/*
814 	 * All previous writes have started writeback in NOCOW mode, so now
815 	 * we force future writes to fallback to COW mode during snapshot
816 	 * creation.
817 	 */
818 	atomic_inc(&root->snapshot_force_cow);
819 	snapshot_force_cow = true;
820 
821 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
822 
823 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
824 			     BTRFS_BLOCK_RSV_TEMP);
825 	/*
826 	 * 1 - parent dir inode
827 	 * 2 - dir entries
828 	 * 1 - root item
829 	 * 2 - root ref/backref
830 	 * 1 - root of snapshot
831 	 * 1 - UUID item
832 	 */
833 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
834 					&pending_snapshot->block_rsv, 8,
835 					false);
836 	if (ret)
837 		goto dec_and_free;
838 
839 	pending_snapshot->dentry = dentry;
840 	pending_snapshot->root = root;
841 	pending_snapshot->readonly = readonly;
842 	pending_snapshot->dir = dir;
843 	pending_snapshot->inherit = inherit;
844 
845 	trans = btrfs_start_transaction(root, 0);
846 	if (IS_ERR(trans)) {
847 		ret = PTR_ERR(trans);
848 		goto fail;
849 	}
850 
851 	spin_lock(&fs_info->trans_lock);
852 	list_add(&pending_snapshot->list,
853 		 &trans->transaction->pending_snapshots);
854 	spin_unlock(&fs_info->trans_lock);
855 	if (async_transid) {
856 		*async_transid = trans->transid;
857 		ret = btrfs_commit_transaction_async(trans, 1);
858 		if (ret)
859 			ret = btrfs_commit_transaction(trans);
860 	} else {
861 		ret = btrfs_commit_transaction(trans);
862 	}
863 	if (ret)
864 		goto fail;
865 
866 	ret = pending_snapshot->error;
867 	if (ret)
868 		goto fail;
869 
870 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
871 	if (ret)
872 		goto fail;
873 
874 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
875 	if (IS_ERR(inode)) {
876 		ret = PTR_ERR(inode);
877 		goto fail;
878 	}
879 
880 	d_instantiate(dentry, inode);
881 	ret = 0;
882 fail:
883 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
884 dec_and_free:
885 	if (snapshot_force_cow)
886 		atomic_dec(&root->snapshot_force_cow);
887 	if (atomic_dec_and_test(&root->will_be_snapshotted))
888 		wake_up_var(&root->will_be_snapshotted);
889 free_pending:
890 	kfree(pending_snapshot->root_item);
891 	btrfs_free_path(pending_snapshot->path);
892 	kfree(pending_snapshot);
893 
894 	return ret;
895 }
896 
897 /*  copy of may_delete in fs/namei.c()
898  *	Check whether we can remove a link victim from directory dir, check
899  *  whether the type of victim is right.
900  *  1. We can't do it if dir is read-only (done in permission())
901  *  2. We should have write and exec permissions on dir
902  *  3. We can't remove anything from append-only dir
903  *  4. We can't do anything with immutable dir (done in permission())
904  *  5. If the sticky bit on dir is set we should either
905  *	a. be owner of dir, or
906  *	b. be owner of victim, or
907  *	c. have CAP_FOWNER capability
908  *  6. If the victim is append-only or immutable we can't do anything with
909  *     links pointing to it.
910  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
911  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
912  *  9. We can't remove a root or mountpoint.
913  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
914  *     nfs_async_unlink().
915  */
916 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)917 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
918 {
919 	int error;
920 
921 	if (d_really_is_negative(victim))
922 		return -ENOENT;
923 
924 	BUG_ON(d_inode(victim->d_parent) != dir);
925 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
926 
927 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
928 	if (error)
929 		return error;
930 	if (IS_APPEND(dir))
931 		return -EPERM;
932 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
933 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
934 		return -EPERM;
935 	if (isdir) {
936 		if (!d_is_dir(victim))
937 			return -ENOTDIR;
938 		if (IS_ROOT(victim))
939 			return -EBUSY;
940 	} else if (d_is_dir(victim))
941 		return -EISDIR;
942 	if (IS_DEADDIR(dir))
943 		return -ENOENT;
944 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
945 		return -EBUSY;
946 	return 0;
947 }
948 
949 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)950 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
951 {
952 	if (d_really_is_positive(child))
953 		return -EEXIST;
954 	if (IS_DEADDIR(dir))
955 		return -ENOENT;
956 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
957 }
958 
959 /*
960  * Create a new subvolume below @parent.  This is largely modeled after
961  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
962  * inside this filesystem so it's quite a bit simpler.
963  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)964 static noinline int btrfs_mksubvol(const struct path *parent,
965 				   const char *name, int namelen,
966 				   struct btrfs_root *snap_src,
967 				   u64 *async_transid, bool readonly,
968 				   struct btrfs_qgroup_inherit *inherit)
969 {
970 	struct inode *dir = d_inode(parent->dentry);
971 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
972 	struct dentry *dentry;
973 	int error;
974 
975 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
976 	if (error == -EINTR)
977 		return error;
978 
979 	dentry = lookup_one_len(name, parent->dentry, namelen);
980 	error = PTR_ERR(dentry);
981 	if (IS_ERR(dentry))
982 		goto out_unlock;
983 
984 	error = btrfs_may_create(dir, dentry);
985 	if (error)
986 		goto out_dput;
987 
988 	/*
989 	 * even if this name doesn't exist, we may get hash collisions.
990 	 * check for them now when we can safely fail
991 	 */
992 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
993 					       dir->i_ino, name,
994 					       namelen);
995 	if (error)
996 		goto out_dput;
997 
998 	down_read(&fs_info->subvol_sem);
999 
1000 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1001 		goto out_up_read;
1002 
1003 	if (snap_src) {
1004 		error = create_snapshot(snap_src, dir, dentry,
1005 					async_transid, readonly, inherit);
1006 	} else {
1007 		error = create_subvol(dir, dentry, name, namelen,
1008 				      async_transid, inherit);
1009 	}
1010 	if (!error)
1011 		fsnotify_mkdir(dir, dentry);
1012 out_up_read:
1013 	up_read(&fs_info->subvol_sem);
1014 out_dput:
1015 	dput(dentry);
1016 out_unlock:
1017 	inode_unlock(dir);
1018 	return error;
1019 }
1020 
1021 /*
1022  * When we're defragging a range, we don't want to kick it off again
1023  * if it is really just waiting for delalloc to send it down.
1024  * If we find a nice big extent or delalloc range for the bytes in the
1025  * file you want to defrag, we return 0 to let you know to skip this
1026  * part of the file
1027  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1028 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1029 {
1030 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1031 	struct extent_map *em = NULL;
1032 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1033 	u64 end;
1034 
1035 	read_lock(&em_tree->lock);
1036 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1037 	read_unlock(&em_tree->lock);
1038 
1039 	if (em) {
1040 		end = extent_map_end(em);
1041 		free_extent_map(em);
1042 		if (end - offset > thresh)
1043 			return 0;
1044 	}
1045 	/* if we already have a nice delalloc here, just stop */
1046 	thresh /= 2;
1047 	end = count_range_bits(io_tree, &offset, offset + thresh,
1048 			       thresh, EXTENT_DELALLOC, 1);
1049 	if (end >= thresh)
1050 		return 0;
1051 	return 1;
1052 }
1053 
1054 /*
1055  * helper function to walk through a file and find extents
1056  * newer than a specific transid, and smaller than thresh.
1057  *
1058  * This is used by the defragging code to find new and small
1059  * extents
1060  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1061 static int find_new_extents(struct btrfs_root *root,
1062 			    struct inode *inode, u64 newer_than,
1063 			    u64 *off, u32 thresh)
1064 {
1065 	struct btrfs_path *path;
1066 	struct btrfs_key min_key;
1067 	struct extent_buffer *leaf;
1068 	struct btrfs_file_extent_item *extent;
1069 	int type;
1070 	int ret;
1071 	u64 ino = btrfs_ino(BTRFS_I(inode));
1072 
1073 	path = btrfs_alloc_path();
1074 	if (!path)
1075 		return -ENOMEM;
1076 
1077 	min_key.objectid = ino;
1078 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1079 	min_key.offset = *off;
1080 
1081 	while (1) {
1082 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1083 		if (ret != 0)
1084 			goto none;
1085 process_slot:
1086 		if (min_key.objectid != ino)
1087 			goto none;
1088 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1089 			goto none;
1090 
1091 		leaf = path->nodes[0];
1092 		extent = btrfs_item_ptr(leaf, path->slots[0],
1093 					struct btrfs_file_extent_item);
1094 
1095 		type = btrfs_file_extent_type(leaf, extent);
1096 		if (type == BTRFS_FILE_EXTENT_REG &&
1097 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1098 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1099 			*off = min_key.offset;
1100 			btrfs_free_path(path);
1101 			return 0;
1102 		}
1103 
1104 		path->slots[0]++;
1105 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1106 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1107 			goto process_slot;
1108 		}
1109 
1110 		if (min_key.offset == (u64)-1)
1111 			goto none;
1112 
1113 		min_key.offset++;
1114 		btrfs_release_path(path);
1115 	}
1116 none:
1117 	btrfs_free_path(path);
1118 	return -ENOENT;
1119 }
1120 
defrag_lookup_extent(struct inode * inode,u64 start)1121 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1122 {
1123 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1124 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1125 	struct extent_map *em;
1126 	u64 len = PAGE_SIZE;
1127 
1128 	/*
1129 	 * hopefully we have this extent in the tree already, try without
1130 	 * the full extent lock
1131 	 */
1132 	read_lock(&em_tree->lock);
1133 	em = lookup_extent_mapping(em_tree, start, len);
1134 	read_unlock(&em_tree->lock);
1135 
1136 	if (!em) {
1137 		struct extent_state *cached = NULL;
1138 		u64 end = start + len - 1;
1139 
1140 		/* get the big lock and read metadata off disk */
1141 		lock_extent_bits(io_tree, start, end, &cached);
1142 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1143 		unlock_extent_cached(io_tree, start, end, &cached);
1144 
1145 		if (IS_ERR(em))
1146 			return NULL;
1147 	}
1148 
1149 	return em;
1150 }
1151 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1152 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1153 {
1154 	struct extent_map *next;
1155 	bool ret = true;
1156 
1157 	/* this is the last extent */
1158 	if (em->start + em->len >= i_size_read(inode))
1159 		return false;
1160 
1161 	next = defrag_lookup_extent(inode, em->start + em->len);
1162 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1163 		ret = false;
1164 	else if ((em->block_start + em->block_len == next->block_start) &&
1165 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1166 		ret = false;
1167 
1168 	free_extent_map(next);
1169 	return ret;
1170 }
1171 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1172 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1173 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1174 			       int compress)
1175 {
1176 	struct extent_map *em;
1177 	int ret = 1;
1178 	bool next_mergeable = true;
1179 	bool prev_mergeable = true;
1180 
1181 	/*
1182 	 * make sure that once we start defragging an extent, we keep on
1183 	 * defragging it
1184 	 */
1185 	if (start < *defrag_end)
1186 		return 1;
1187 
1188 	*skip = 0;
1189 
1190 	em = defrag_lookup_extent(inode, start);
1191 	if (!em)
1192 		return 0;
1193 
1194 	/* this will cover holes, and inline extents */
1195 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1196 		ret = 0;
1197 		goto out;
1198 	}
1199 
1200 	if (!*defrag_end)
1201 		prev_mergeable = false;
1202 
1203 	next_mergeable = defrag_check_next_extent(inode, em);
1204 	/*
1205 	 * we hit a real extent, if it is big or the next extent is not a
1206 	 * real extent, don't bother defragging it
1207 	 */
1208 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1209 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1210 		ret = 0;
1211 out:
1212 	/*
1213 	 * last_len ends up being a counter of how many bytes we've defragged.
1214 	 * every time we choose not to defrag an extent, we reset *last_len
1215 	 * so that the next tiny extent will force a defrag.
1216 	 *
1217 	 * The end result of this is that tiny extents before a single big
1218 	 * extent will force at least part of that big extent to be defragged.
1219 	 */
1220 	if (ret) {
1221 		*defrag_end = extent_map_end(em);
1222 	} else {
1223 		*last_len = 0;
1224 		*skip = extent_map_end(em);
1225 		*defrag_end = 0;
1226 	}
1227 
1228 	free_extent_map(em);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * it doesn't do much good to defrag one or two pages
1234  * at a time.  This pulls in a nice chunk of pages
1235  * to COW and defrag.
1236  *
1237  * It also makes sure the delalloc code has enough
1238  * dirty data to avoid making new small extents as part
1239  * of the defrag
1240  *
1241  * It's a good idea to start RA on this range
1242  * before calling this.
1243  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1244 static int cluster_pages_for_defrag(struct inode *inode,
1245 				    struct page **pages,
1246 				    unsigned long start_index,
1247 				    unsigned long num_pages)
1248 {
1249 	unsigned long file_end;
1250 	u64 isize = i_size_read(inode);
1251 	u64 page_start;
1252 	u64 page_end;
1253 	u64 page_cnt;
1254 	u64 start = (u64)start_index << PAGE_SHIFT;
1255 	int ret;
1256 	int i;
1257 	int i_done;
1258 	struct btrfs_ordered_extent *ordered;
1259 	struct extent_state *cached_state = NULL;
1260 	struct extent_io_tree *tree;
1261 	struct extent_changeset *data_reserved = NULL;
1262 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1263 
1264 	file_end = (isize - 1) >> PAGE_SHIFT;
1265 	if (!isize || start_index > file_end)
1266 		return 0;
1267 
1268 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1269 
1270 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1271 			start, page_cnt << PAGE_SHIFT);
1272 	if (ret)
1273 		return ret;
1274 	i_done = 0;
1275 	tree = &BTRFS_I(inode)->io_tree;
1276 
1277 	/* step one, lock all the pages */
1278 	for (i = 0; i < page_cnt; i++) {
1279 		struct page *page;
1280 again:
1281 		page = find_or_create_page(inode->i_mapping,
1282 					   start_index + i, mask);
1283 		if (!page)
1284 			break;
1285 
1286 		page_start = page_offset(page);
1287 		page_end = page_start + PAGE_SIZE - 1;
1288 		while (1) {
1289 			lock_extent_bits(tree, page_start, page_end,
1290 					 &cached_state);
1291 			ordered = btrfs_lookup_ordered_extent(inode,
1292 							      page_start);
1293 			unlock_extent_cached(tree, page_start, page_end,
1294 					     &cached_state);
1295 			if (!ordered)
1296 				break;
1297 
1298 			unlock_page(page);
1299 			btrfs_start_ordered_extent(inode, ordered, 1);
1300 			btrfs_put_ordered_extent(ordered);
1301 			lock_page(page);
1302 			/*
1303 			 * we unlocked the page above, so we need check if
1304 			 * it was released or not.
1305 			 */
1306 			if (page->mapping != inode->i_mapping) {
1307 				unlock_page(page);
1308 				put_page(page);
1309 				goto again;
1310 			}
1311 		}
1312 
1313 		if (!PageUptodate(page)) {
1314 			btrfs_readpage(NULL, page);
1315 			lock_page(page);
1316 			if (!PageUptodate(page)) {
1317 				unlock_page(page);
1318 				put_page(page);
1319 				ret = -EIO;
1320 				break;
1321 			}
1322 		}
1323 
1324 		if (page->mapping != inode->i_mapping) {
1325 			unlock_page(page);
1326 			put_page(page);
1327 			goto again;
1328 		}
1329 
1330 		pages[i] = page;
1331 		i_done++;
1332 	}
1333 	if (!i_done || ret)
1334 		goto out;
1335 
1336 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337 		goto out;
1338 
1339 	/*
1340 	 * so now we have a nice long stream of locked
1341 	 * and up to date pages, lets wait on them
1342 	 */
1343 	for (i = 0; i < i_done; i++)
1344 		wait_on_page_writeback(pages[i]);
1345 
1346 	page_start = page_offset(pages[0]);
1347 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1348 
1349 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1350 			 page_start, page_end - 1, &cached_state);
1351 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1352 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1353 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1354 			  &cached_state);
1355 
1356 	if (i_done != page_cnt) {
1357 		spin_lock(&BTRFS_I(inode)->lock);
1358 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1359 		spin_unlock(&BTRFS_I(inode)->lock);
1360 		btrfs_delalloc_release_space(inode, data_reserved,
1361 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1362 	}
1363 
1364 
1365 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1366 			  &cached_state);
1367 
1368 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1369 			     page_start, page_end - 1, &cached_state);
1370 
1371 	for (i = 0; i < i_done; i++) {
1372 		clear_page_dirty_for_io(pages[i]);
1373 		ClearPageChecked(pages[i]);
1374 		set_page_extent_mapped(pages[i]);
1375 		set_page_dirty(pages[i]);
1376 		unlock_page(pages[i]);
1377 		put_page(pages[i]);
1378 	}
1379 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1380 	extent_changeset_free(data_reserved);
1381 	return i_done;
1382 out:
1383 	for (i = 0; i < i_done; i++) {
1384 		unlock_page(pages[i]);
1385 		put_page(pages[i]);
1386 	}
1387 	btrfs_delalloc_release_space(inode, data_reserved,
1388 			start, page_cnt << PAGE_SHIFT, true);
1389 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1390 	extent_changeset_free(data_reserved);
1391 	return ret;
1392 
1393 }
1394 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1395 int btrfs_defrag_file(struct inode *inode, struct file *file,
1396 		      struct btrfs_ioctl_defrag_range_args *range,
1397 		      u64 newer_than, unsigned long max_to_defrag)
1398 {
1399 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1400 	struct btrfs_root *root = BTRFS_I(inode)->root;
1401 	struct file_ra_state *ra = NULL;
1402 	unsigned long last_index;
1403 	u64 isize = i_size_read(inode);
1404 	u64 last_len = 0;
1405 	u64 skip = 0;
1406 	u64 defrag_end = 0;
1407 	u64 newer_off = range->start;
1408 	unsigned long i;
1409 	unsigned long ra_index = 0;
1410 	int ret;
1411 	int defrag_count = 0;
1412 	int compress_type = BTRFS_COMPRESS_ZLIB;
1413 	u32 extent_thresh = range->extent_thresh;
1414 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1415 	unsigned long cluster = max_cluster;
1416 	u64 new_align = ~((u64)SZ_128K - 1);
1417 	struct page **pages = NULL;
1418 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1419 
1420 	if (isize == 0)
1421 		return 0;
1422 
1423 	if (range->start >= isize)
1424 		return -EINVAL;
1425 
1426 	if (do_compress) {
1427 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1428 			return -EINVAL;
1429 		if (range->compress_type)
1430 			compress_type = range->compress_type;
1431 	}
1432 
1433 	if (extent_thresh == 0)
1434 		extent_thresh = SZ_256K;
1435 
1436 	/*
1437 	 * If we were not given a file, allocate a readahead context. As
1438 	 * readahead is just an optimization, defrag will work without it so
1439 	 * we don't error out.
1440 	 */
1441 	if (!file) {
1442 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1443 		if (ra)
1444 			file_ra_state_init(ra, inode->i_mapping);
1445 	} else {
1446 		ra = &file->f_ra;
1447 	}
1448 
1449 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1450 	if (!pages) {
1451 		ret = -ENOMEM;
1452 		goto out_ra;
1453 	}
1454 
1455 	/* find the last page to defrag */
1456 	if (range->start + range->len > range->start) {
1457 		last_index = min_t(u64, isize - 1,
1458 			 range->start + range->len - 1) >> PAGE_SHIFT;
1459 	} else {
1460 		last_index = (isize - 1) >> PAGE_SHIFT;
1461 	}
1462 
1463 	if (newer_than) {
1464 		ret = find_new_extents(root, inode, newer_than,
1465 				       &newer_off, SZ_64K);
1466 		if (!ret) {
1467 			range->start = newer_off;
1468 			/*
1469 			 * we always align our defrag to help keep
1470 			 * the extents in the file evenly spaced
1471 			 */
1472 			i = (newer_off & new_align) >> PAGE_SHIFT;
1473 		} else
1474 			goto out_ra;
1475 	} else {
1476 		i = range->start >> PAGE_SHIFT;
1477 	}
1478 	if (!max_to_defrag)
1479 		max_to_defrag = last_index - i + 1;
1480 
1481 	/*
1482 	 * make writeback starts from i, so the defrag range can be
1483 	 * written sequentially.
1484 	 */
1485 	if (i < inode->i_mapping->writeback_index)
1486 		inode->i_mapping->writeback_index = i;
1487 
1488 	while (i <= last_index && defrag_count < max_to_defrag &&
1489 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1490 		/*
1491 		 * make sure we stop running if someone unmounts
1492 		 * the FS
1493 		 */
1494 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1495 			break;
1496 
1497 		if (btrfs_defrag_cancelled(fs_info)) {
1498 			btrfs_debug(fs_info, "defrag_file cancelled");
1499 			ret = -EAGAIN;
1500 			break;
1501 		}
1502 
1503 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1504 					 extent_thresh, &last_len, &skip,
1505 					 &defrag_end, do_compress)){
1506 			unsigned long next;
1507 			/*
1508 			 * the should_defrag function tells us how much to skip
1509 			 * bump our counter by the suggested amount
1510 			 */
1511 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1512 			i = max(i + 1, next);
1513 			continue;
1514 		}
1515 
1516 		if (!newer_than) {
1517 			cluster = (PAGE_ALIGN(defrag_end) >>
1518 				   PAGE_SHIFT) - i;
1519 			cluster = min(cluster, max_cluster);
1520 		} else {
1521 			cluster = max_cluster;
1522 		}
1523 
1524 		if (i + cluster > ra_index) {
1525 			ra_index = max(i, ra_index);
1526 			if (ra)
1527 				page_cache_sync_readahead(inode->i_mapping, ra,
1528 						file, ra_index, cluster);
1529 			ra_index += cluster;
1530 		}
1531 
1532 		inode_lock(inode);
1533 		if (do_compress)
1534 			BTRFS_I(inode)->defrag_compress = compress_type;
1535 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1536 		if (ret < 0) {
1537 			inode_unlock(inode);
1538 			goto out_ra;
1539 		}
1540 
1541 		defrag_count += ret;
1542 		balance_dirty_pages_ratelimited(inode->i_mapping);
1543 		inode_unlock(inode);
1544 
1545 		if (newer_than) {
1546 			if (newer_off == (u64)-1)
1547 				break;
1548 
1549 			if (ret > 0)
1550 				i += ret;
1551 
1552 			newer_off = max(newer_off + 1,
1553 					(u64)i << PAGE_SHIFT);
1554 
1555 			ret = find_new_extents(root, inode, newer_than,
1556 					       &newer_off, SZ_64K);
1557 			if (!ret) {
1558 				range->start = newer_off;
1559 				i = (newer_off & new_align) >> PAGE_SHIFT;
1560 			} else {
1561 				break;
1562 			}
1563 		} else {
1564 			if (ret > 0) {
1565 				i += ret;
1566 				last_len += ret << PAGE_SHIFT;
1567 			} else {
1568 				i++;
1569 				last_len = 0;
1570 			}
1571 		}
1572 	}
1573 
1574 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1575 		filemap_flush(inode->i_mapping);
1576 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1577 			     &BTRFS_I(inode)->runtime_flags))
1578 			filemap_flush(inode->i_mapping);
1579 	}
1580 
1581 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1582 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1583 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1584 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1585 	}
1586 
1587 	ret = defrag_count;
1588 
1589 out_ra:
1590 	if (do_compress) {
1591 		inode_lock(inode);
1592 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1593 		inode_unlock(inode);
1594 	}
1595 	if (!file)
1596 		kfree(ra);
1597 	kfree(pages);
1598 	return ret;
1599 }
1600 
btrfs_ioctl_resize(struct file * file,void __user * arg)1601 static noinline int btrfs_ioctl_resize(struct file *file,
1602 					void __user *arg)
1603 {
1604 	struct inode *inode = file_inode(file);
1605 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1606 	u64 new_size;
1607 	u64 old_size;
1608 	u64 devid = 1;
1609 	struct btrfs_root *root = BTRFS_I(inode)->root;
1610 	struct btrfs_ioctl_vol_args *vol_args;
1611 	struct btrfs_trans_handle *trans;
1612 	struct btrfs_device *device = NULL;
1613 	char *sizestr;
1614 	char *retptr;
1615 	char *devstr = NULL;
1616 	int ret = 0;
1617 	int mod = 0;
1618 
1619 	if (!capable(CAP_SYS_ADMIN))
1620 		return -EPERM;
1621 
1622 	ret = mnt_want_write_file(file);
1623 	if (ret)
1624 		return ret;
1625 
1626 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1627 		mnt_drop_write_file(file);
1628 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1629 	}
1630 
1631 	vol_args = memdup_user(arg, sizeof(*vol_args));
1632 	if (IS_ERR(vol_args)) {
1633 		ret = PTR_ERR(vol_args);
1634 		goto out;
1635 	}
1636 
1637 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1638 
1639 	sizestr = vol_args->name;
1640 	devstr = strchr(sizestr, ':');
1641 	if (devstr) {
1642 		sizestr = devstr + 1;
1643 		*devstr = '\0';
1644 		devstr = vol_args->name;
1645 		ret = kstrtoull(devstr, 10, &devid);
1646 		if (ret)
1647 			goto out_free;
1648 		if (!devid) {
1649 			ret = -EINVAL;
1650 			goto out_free;
1651 		}
1652 		btrfs_info(fs_info, "resizing devid %llu", devid);
1653 	}
1654 
1655 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1656 	if (!device) {
1657 		btrfs_info(fs_info, "resizer unable to find device %llu",
1658 			   devid);
1659 		ret = -ENODEV;
1660 		goto out_free;
1661 	}
1662 
1663 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1664 		btrfs_info(fs_info,
1665 			   "resizer unable to apply on readonly device %llu",
1666 		       devid);
1667 		ret = -EPERM;
1668 		goto out_free;
1669 	}
1670 
1671 	if (!strcmp(sizestr, "max"))
1672 		new_size = device->bdev->bd_inode->i_size;
1673 	else {
1674 		if (sizestr[0] == '-') {
1675 			mod = -1;
1676 			sizestr++;
1677 		} else if (sizestr[0] == '+') {
1678 			mod = 1;
1679 			sizestr++;
1680 		}
1681 		new_size = memparse(sizestr, &retptr);
1682 		if (*retptr != '\0' || new_size == 0) {
1683 			ret = -EINVAL;
1684 			goto out_free;
1685 		}
1686 	}
1687 
1688 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1689 		ret = -EPERM;
1690 		goto out_free;
1691 	}
1692 
1693 	old_size = btrfs_device_get_total_bytes(device);
1694 
1695 	if (mod < 0) {
1696 		if (new_size > old_size) {
1697 			ret = -EINVAL;
1698 			goto out_free;
1699 		}
1700 		new_size = old_size - new_size;
1701 	} else if (mod > 0) {
1702 		if (new_size > ULLONG_MAX - old_size) {
1703 			ret = -ERANGE;
1704 			goto out_free;
1705 		}
1706 		new_size = old_size + new_size;
1707 	}
1708 
1709 	if (new_size < SZ_256M) {
1710 		ret = -EINVAL;
1711 		goto out_free;
1712 	}
1713 	if (new_size > device->bdev->bd_inode->i_size) {
1714 		ret = -EFBIG;
1715 		goto out_free;
1716 	}
1717 
1718 	new_size = round_down(new_size, fs_info->sectorsize);
1719 
1720 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1721 			  rcu_str_deref(device->name), new_size);
1722 
1723 	if (new_size > old_size) {
1724 		trans = btrfs_start_transaction(root, 0);
1725 		if (IS_ERR(trans)) {
1726 			ret = PTR_ERR(trans);
1727 			goto out_free;
1728 		}
1729 		ret = btrfs_grow_device(trans, device, new_size);
1730 		btrfs_commit_transaction(trans);
1731 	} else if (new_size < old_size) {
1732 		ret = btrfs_shrink_device(device, new_size);
1733 	} /* equal, nothing need to do */
1734 
1735 out_free:
1736 	kfree(vol_args);
1737 out:
1738 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1739 	mnt_drop_write_file(file);
1740 	return ret;
1741 }
1742 
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1743 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1744 				const char *name, unsigned long fd, int subvol,
1745 				u64 *transid, bool readonly,
1746 				struct btrfs_qgroup_inherit *inherit)
1747 {
1748 	int namelen;
1749 	int ret = 0;
1750 
1751 	if (!S_ISDIR(file_inode(file)->i_mode))
1752 		return -ENOTDIR;
1753 
1754 	ret = mnt_want_write_file(file);
1755 	if (ret)
1756 		goto out;
1757 
1758 	namelen = strlen(name);
1759 	if (strchr(name, '/')) {
1760 		ret = -EINVAL;
1761 		goto out_drop_write;
1762 	}
1763 
1764 	if (name[0] == '.' &&
1765 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1766 		ret = -EEXIST;
1767 		goto out_drop_write;
1768 	}
1769 
1770 	if (subvol) {
1771 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1772 				     NULL, transid, readonly, inherit);
1773 	} else {
1774 		struct fd src = fdget(fd);
1775 		struct inode *src_inode;
1776 		if (!src.file) {
1777 			ret = -EINVAL;
1778 			goto out_drop_write;
1779 		}
1780 
1781 		src_inode = file_inode(src.file);
1782 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1783 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1784 				   "Snapshot src from another FS");
1785 			ret = -EXDEV;
1786 		} else if (!inode_owner_or_capable(src_inode)) {
1787 			/*
1788 			 * Subvolume creation is not restricted, but snapshots
1789 			 * are limited to own subvolumes only
1790 			 */
1791 			ret = -EPERM;
1792 		} else {
1793 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1794 					     BTRFS_I(src_inode)->root,
1795 					     transid, readonly, inherit);
1796 		}
1797 		fdput(src);
1798 	}
1799 out_drop_write:
1800 	mnt_drop_write_file(file);
1801 out:
1802 	return ret;
1803 }
1804 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1805 static noinline int btrfs_ioctl_snap_create(struct file *file,
1806 					    void __user *arg, int subvol)
1807 {
1808 	struct btrfs_ioctl_vol_args *vol_args;
1809 	int ret;
1810 
1811 	if (!S_ISDIR(file_inode(file)->i_mode))
1812 		return -ENOTDIR;
1813 
1814 	vol_args = memdup_user(arg, sizeof(*vol_args));
1815 	if (IS_ERR(vol_args))
1816 		return PTR_ERR(vol_args);
1817 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1818 
1819 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1820 					      vol_args->fd, subvol,
1821 					      NULL, false, NULL);
1822 
1823 	kfree(vol_args);
1824 	return ret;
1825 }
1826 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1827 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1828 					       void __user *arg, int subvol)
1829 {
1830 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1831 	int ret;
1832 	u64 transid = 0;
1833 	u64 *ptr = NULL;
1834 	bool readonly = false;
1835 	struct btrfs_qgroup_inherit *inherit = NULL;
1836 
1837 	if (!S_ISDIR(file_inode(file)->i_mode))
1838 		return -ENOTDIR;
1839 
1840 	vol_args = memdup_user(arg, sizeof(*vol_args));
1841 	if (IS_ERR(vol_args))
1842 		return PTR_ERR(vol_args);
1843 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1844 
1845 	if (vol_args->flags &
1846 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1847 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1848 		ret = -EOPNOTSUPP;
1849 		goto free_args;
1850 	}
1851 
1852 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1853 		ptr = &transid;
1854 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1855 		readonly = true;
1856 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1857 		u64 nums;
1858 
1859 		if (vol_args->size < sizeof(*inherit) ||
1860 		    vol_args->size > PAGE_SIZE) {
1861 			ret = -EINVAL;
1862 			goto free_args;
1863 		}
1864 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1865 		if (IS_ERR(inherit)) {
1866 			ret = PTR_ERR(inherit);
1867 			goto free_args;
1868 		}
1869 
1870 		if (inherit->num_qgroups > PAGE_SIZE ||
1871 		    inherit->num_ref_copies > PAGE_SIZE ||
1872 		    inherit->num_excl_copies > PAGE_SIZE) {
1873 			ret = -EINVAL;
1874 			goto free_inherit;
1875 		}
1876 
1877 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1878 		       2 * inherit->num_excl_copies;
1879 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1880 			ret = -EINVAL;
1881 			goto free_inherit;
1882 		}
1883 	}
1884 
1885 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1886 					      vol_args->fd, subvol, ptr,
1887 					      readonly, inherit);
1888 	if (ret)
1889 		goto free_inherit;
1890 
1891 	if (ptr && copy_to_user(arg +
1892 				offsetof(struct btrfs_ioctl_vol_args_v2,
1893 					transid),
1894 				ptr, sizeof(*ptr)))
1895 		ret = -EFAULT;
1896 
1897 free_inherit:
1898 	kfree(inherit);
1899 free_args:
1900 	kfree(vol_args);
1901 	return ret;
1902 }
1903 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1904 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1905 						void __user *arg)
1906 {
1907 	struct inode *inode = file_inode(file);
1908 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1909 	struct btrfs_root *root = BTRFS_I(inode)->root;
1910 	int ret = 0;
1911 	u64 flags = 0;
1912 
1913 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1914 		return -EINVAL;
1915 
1916 	down_read(&fs_info->subvol_sem);
1917 	if (btrfs_root_readonly(root))
1918 		flags |= BTRFS_SUBVOL_RDONLY;
1919 	up_read(&fs_info->subvol_sem);
1920 
1921 	if (copy_to_user(arg, &flags, sizeof(flags)))
1922 		ret = -EFAULT;
1923 
1924 	return ret;
1925 }
1926 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1927 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1928 					      void __user *arg)
1929 {
1930 	struct inode *inode = file_inode(file);
1931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1932 	struct btrfs_root *root = BTRFS_I(inode)->root;
1933 	struct btrfs_trans_handle *trans;
1934 	u64 root_flags;
1935 	u64 flags;
1936 	int ret = 0;
1937 
1938 	if (!inode_owner_or_capable(inode))
1939 		return -EPERM;
1940 
1941 	ret = mnt_want_write_file(file);
1942 	if (ret)
1943 		goto out;
1944 
1945 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1946 		ret = -EINVAL;
1947 		goto out_drop_write;
1948 	}
1949 
1950 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1951 		ret = -EFAULT;
1952 		goto out_drop_write;
1953 	}
1954 
1955 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1956 		ret = -EINVAL;
1957 		goto out_drop_write;
1958 	}
1959 
1960 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1961 		ret = -EOPNOTSUPP;
1962 		goto out_drop_write;
1963 	}
1964 
1965 	down_write(&fs_info->subvol_sem);
1966 
1967 	/* nothing to do */
1968 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1969 		goto out_drop_sem;
1970 
1971 	root_flags = btrfs_root_flags(&root->root_item);
1972 	if (flags & BTRFS_SUBVOL_RDONLY) {
1973 		btrfs_set_root_flags(&root->root_item,
1974 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1975 	} else {
1976 		/*
1977 		 * Block RO -> RW transition if this subvolume is involved in
1978 		 * send
1979 		 */
1980 		spin_lock(&root->root_item_lock);
1981 		if (root->send_in_progress == 0) {
1982 			btrfs_set_root_flags(&root->root_item,
1983 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1984 			spin_unlock(&root->root_item_lock);
1985 		} else {
1986 			spin_unlock(&root->root_item_lock);
1987 			btrfs_warn(fs_info,
1988 				   "Attempt to set subvolume %llu read-write during send",
1989 				   root->root_key.objectid);
1990 			ret = -EPERM;
1991 			goto out_drop_sem;
1992 		}
1993 	}
1994 
1995 	trans = btrfs_start_transaction(root, 1);
1996 	if (IS_ERR(trans)) {
1997 		ret = PTR_ERR(trans);
1998 		goto out_reset;
1999 	}
2000 
2001 	ret = btrfs_update_root(trans, fs_info->tree_root,
2002 				&root->root_key, &root->root_item);
2003 	if (ret < 0) {
2004 		btrfs_end_transaction(trans);
2005 		goto out_reset;
2006 	}
2007 
2008 	ret = btrfs_commit_transaction(trans);
2009 
2010 out_reset:
2011 	if (ret)
2012 		btrfs_set_root_flags(&root->root_item, root_flags);
2013 out_drop_sem:
2014 	up_write(&fs_info->subvol_sem);
2015 out_drop_write:
2016 	mnt_drop_write_file(file);
2017 out:
2018 	return ret;
2019 }
2020 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2021 static noinline int key_in_sk(struct btrfs_key *key,
2022 			      struct btrfs_ioctl_search_key *sk)
2023 {
2024 	struct btrfs_key test;
2025 	int ret;
2026 
2027 	test.objectid = sk->min_objectid;
2028 	test.type = sk->min_type;
2029 	test.offset = sk->min_offset;
2030 
2031 	ret = btrfs_comp_cpu_keys(key, &test);
2032 	if (ret < 0)
2033 		return 0;
2034 
2035 	test.objectid = sk->max_objectid;
2036 	test.type = sk->max_type;
2037 	test.offset = sk->max_offset;
2038 
2039 	ret = btrfs_comp_cpu_keys(key, &test);
2040 	if (ret > 0)
2041 		return 0;
2042 	return 1;
2043 }
2044 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2045 static noinline int copy_to_sk(struct btrfs_path *path,
2046 			       struct btrfs_key *key,
2047 			       struct btrfs_ioctl_search_key *sk,
2048 			       size_t *buf_size,
2049 			       char __user *ubuf,
2050 			       unsigned long *sk_offset,
2051 			       int *num_found)
2052 {
2053 	u64 found_transid;
2054 	struct extent_buffer *leaf;
2055 	struct btrfs_ioctl_search_header sh;
2056 	struct btrfs_key test;
2057 	unsigned long item_off;
2058 	unsigned long item_len;
2059 	int nritems;
2060 	int i;
2061 	int slot;
2062 	int ret = 0;
2063 
2064 	leaf = path->nodes[0];
2065 	slot = path->slots[0];
2066 	nritems = btrfs_header_nritems(leaf);
2067 
2068 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2069 		i = nritems;
2070 		goto advance_key;
2071 	}
2072 	found_transid = btrfs_header_generation(leaf);
2073 
2074 	for (i = slot; i < nritems; i++) {
2075 		item_off = btrfs_item_ptr_offset(leaf, i);
2076 		item_len = btrfs_item_size_nr(leaf, i);
2077 
2078 		btrfs_item_key_to_cpu(leaf, key, i);
2079 		if (!key_in_sk(key, sk))
2080 			continue;
2081 
2082 		if (sizeof(sh) + item_len > *buf_size) {
2083 			if (*num_found) {
2084 				ret = 1;
2085 				goto out;
2086 			}
2087 
2088 			/*
2089 			 * return one empty item back for v1, which does not
2090 			 * handle -EOVERFLOW
2091 			 */
2092 
2093 			*buf_size = sizeof(sh) + item_len;
2094 			item_len = 0;
2095 			ret = -EOVERFLOW;
2096 		}
2097 
2098 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2099 			ret = 1;
2100 			goto out;
2101 		}
2102 
2103 		sh.objectid = key->objectid;
2104 		sh.offset = key->offset;
2105 		sh.type = key->type;
2106 		sh.len = item_len;
2107 		sh.transid = found_transid;
2108 
2109 		/*
2110 		 * Copy search result header. If we fault then loop again so we
2111 		 * can fault in the pages and -EFAULT there if there's a
2112 		 * problem. Otherwise we'll fault and then copy the buffer in
2113 		 * properly this next time through
2114 		 */
2115 		if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2116 			ret = 0;
2117 			goto out;
2118 		}
2119 
2120 		*sk_offset += sizeof(sh);
2121 
2122 		if (item_len) {
2123 			char __user *up = ubuf + *sk_offset;
2124 			/*
2125 			 * Copy the item, same behavior as above, but reset the
2126 			 * * sk_offset so we copy the full thing again.
2127 			 */
2128 			if (read_extent_buffer_to_user_nofault(leaf, up,
2129 						item_off, item_len)) {
2130 				ret = 0;
2131 				*sk_offset -= sizeof(sh);
2132 				goto out;
2133 			}
2134 
2135 			*sk_offset += item_len;
2136 		}
2137 		(*num_found)++;
2138 
2139 		if (ret) /* -EOVERFLOW from above */
2140 			goto out;
2141 
2142 		if (*num_found >= sk->nr_items) {
2143 			ret = 1;
2144 			goto out;
2145 		}
2146 	}
2147 advance_key:
2148 	ret = 0;
2149 	test.objectid = sk->max_objectid;
2150 	test.type = sk->max_type;
2151 	test.offset = sk->max_offset;
2152 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2153 		ret = 1;
2154 	else if (key->offset < (u64)-1)
2155 		key->offset++;
2156 	else if (key->type < (u8)-1) {
2157 		key->offset = 0;
2158 		key->type++;
2159 	} else if (key->objectid < (u64)-1) {
2160 		key->offset = 0;
2161 		key->type = 0;
2162 		key->objectid++;
2163 	} else
2164 		ret = 1;
2165 out:
2166 	/*
2167 	 *  0: all items from this leaf copied, continue with next
2168 	 *  1: * more items can be copied, but unused buffer is too small
2169 	 *     * all items were found
2170 	 *     Either way, it will stops the loop which iterates to the next
2171 	 *     leaf
2172 	 *  -EOVERFLOW: item was to large for buffer
2173 	 *  -EFAULT: could not copy extent buffer back to userspace
2174 	 */
2175 	return ret;
2176 }
2177 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2178 static noinline int search_ioctl(struct inode *inode,
2179 				 struct btrfs_ioctl_search_key *sk,
2180 				 size_t *buf_size,
2181 				 char __user *ubuf)
2182 {
2183 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2184 	struct btrfs_root *root;
2185 	struct btrfs_key key;
2186 	struct btrfs_path *path;
2187 	int ret;
2188 	int num_found = 0;
2189 	unsigned long sk_offset = 0;
2190 
2191 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2192 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2193 		return -EOVERFLOW;
2194 	}
2195 
2196 	path = btrfs_alloc_path();
2197 	if (!path)
2198 		return -ENOMEM;
2199 
2200 	if (sk->tree_id == 0) {
2201 		/* search the root of the inode that was passed */
2202 		root = BTRFS_I(inode)->root;
2203 	} else {
2204 		key.objectid = sk->tree_id;
2205 		key.type = BTRFS_ROOT_ITEM_KEY;
2206 		key.offset = (u64)-1;
2207 		root = btrfs_read_fs_root_no_name(info, &key);
2208 		if (IS_ERR(root)) {
2209 			btrfs_free_path(path);
2210 			return PTR_ERR(root);
2211 		}
2212 	}
2213 
2214 	key.objectid = sk->min_objectid;
2215 	key.type = sk->min_type;
2216 	key.offset = sk->min_offset;
2217 
2218 	while (1) {
2219 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2220 					       *buf_size - sk_offset);
2221 		if (ret)
2222 			break;
2223 
2224 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2225 		if (ret != 0) {
2226 			if (ret > 0)
2227 				ret = 0;
2228 			goto err;
2229 		}
2230 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2231 				 &sk_offset, &num_found);
2232 		btrfs_release_path(path);
2233 		if (ret)
2234 			break;
2235 
2236 	}
2237 	if (ret > 0)
2238 		ret = 0;
2239 err:
2240 	sk->nr_items = num_found;
2241 	btrfs_free_path(path);
2242 	return ret;
2243 }
2244 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2245 static noinline int btrfs_ioctl_tree_search(struct file *file,
2246 					   void __user *argp)
2247 {
2248 	struct btrfs_ioctl_search_args __user *uargs;
2249 	struct btrfs_ioctl_search_key sk;
2250 	struct inode *inode;
2251 	int ret;
2252 	size_t buf_size;
2253 
2254 	if (!capable(CAP_SYS_ADMIN))
2255 		return -EPERM;
2256 
2257 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2258 
2259 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2260 		return -EFAULT;
2261 
2262 	buf_size = sizeof(uargs->buf);
2263 
2264 	inode = file_inode(file);
2265 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2266 
2267 	/*
2268 	 * In the origin implementation an overflow is handled by returning a
2269 	 * search header with a len of zero, so reset ret.
2270 	 */
2271 	if (ret == -EOVERFLOW)
2272 		ret = 0;
2273 
2274 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2275 		ret = -EFAULT;
2276 	return ret;
2277 }
2278 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2279 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2280 					       void __user *argp)
2281 {
2282 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2283 	struct btrfs_ioctl_search_args_v2 args;
2284 	struct inode *inode;
2285 	int ret;
2286 	size_t buf_size;
2287 	const size_t buf_limit = SZ_16M;
2288 
2289 	if (!capable(CAP_SYS_ADMIN))
2290 		return -EPERM;
2291 
2292 	/* copy search header and buffer size */
2293 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2294 	if (copy_from_user(&args, uarg, sizeof(args)))
2295 		return -EFAULT;
2296 
2297 	buf_size = args.buf_size;
2298 
2299 	/* limit result size to 16MB */
2300 	if (buf_size > buf_limit)
2301 		buf_size = buf_limit;
2302 
2303 	inode = file_inode(file);
2304 	ret = search_ioctl(inode, &args.key, &buf_size,
2305 			   (char __user *)(&uarg->buf[0]));
2306 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2307 		ret = -EFAULT;
2308 	else if (ret == -EOVERFLOW &&
2309 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2310 		ret = -EFAULT;
2311 
2312 	return ret;
2313 }
2314 
2315 /*
2316  * Search INODE_REFs to identify path name of 'dirid' directory
2317  * in a 'tree_id' tree. and sets path name to 'name'.
2318  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2319 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2320 				u64 tree_id, u64 dirid, char *name)
2321 {
2322 	struct btrfs_root *root;
2323 	struct btrfs_key key;
2324 	char *ptr;
2325 	int ret = -1;
2326 	int slot;
2327 	int len;
2328 	int total_len = 0;
2329 	struct btrfs_inode_ref *iref;
2330 	struct extent_buffer *l;
2331 	struct btrfs_path *path;
2332 
2333 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2334 		name[0]='\0';
2335 		return 0;
2336 	}
2337 
2338 	path = btrfs_alloc_path();
2339 	if (!path)
2340 		return -ENOMEM;
2341 
2342 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2343 
2344 	key.objectid = tree_id;
2345 	key.type = BTRFS_ROOT_ITEM_KEY;
2346 	key.offset = (u64)-1;
2347 	root = btrfs_read_fs_root_no_name(info, &key);
2348 	if (IS_ERR(root)) {
2349 		ret = PTR_ERR(root);
2350 		goto out;
2351 	}
2352 
2353 	key.objectid = dirid;
2354 	key.type = BTRFS_INODE_REF_KEY;
2355 	key.offset = (u64)-1;
2356 
2357 	while (1) {
2358 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2359 		if (ret < 0)
2360 			goto out;
2361 		else if (ret > 0) {
2362 			ret = btrfs_previous_item(root, path, dirid,
2363 						  BTRFS_INODE_REF_KEY);
2364 			if (ret < 0)
2365 				goto out;
2366 			else if (ret > 0) {
2367 				ret = -ENOENT;
2368 				goto out;
2369 			}
2370 		}
2371 
2372 		l = path->nodes[0];
2373 		slot = path->slots[0];
2374 		btrfs_item_key_to_cpu(l, &key, slot);
2375 
2376 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2377 		len = btrfs_inode_ref_name_len(l, iref);
2378 		ptr -= len + 1;
2379 		total_len += len + 1;
2380 		if (ptr < name) {
2381 			ret = -ENAMETOOLONG;
2382 			goto out;
2383 		}
2384 
2385 		*(ptr + len) = '/';
2386 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2387 
2388 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2389 			break;
2390 
2391 		btrfs_release_path(path);
2392 		key.objectid = key.offset;
2393 		key.offset = (u64)-1;
2394 		dirid = key.objectid;
2395 	}
2396 	memmove(name, ptr, total_len);
2397 	name[total_len] = '\0';
2398 	ret = 0;
2399 out:
2400 	btrfs_free_path(path);
2401 	return ret;
2402 }
2403 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2404 static int btrfs_search_path_in_tree_user(struct inode *inode,
2405 				struct btrfs_ioctl_ino_lookup_user_args *args)
2406 {
2407 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2408 	struct super_block *sb = inode->i_sb;
2409 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2410 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2411 	u64 dirid = args->dirid;
2412 	unsigned long item_off;
2413 	unsigned long item_len;
2414 	struct btrfs_inode_ref *iref;
2415 	struct btrfs_root_ref *rref;
2416 	struct btrfs_root *root;
2417 	struct btrfs_path *path;
2418 	struct btrfs_key key, key2;
2419 	struct extent_buffer *leaf;
2420 	struct inode *temp_inode;
2421 	char *ptr;
2422 	int slot;
2423 	int len;
2424 	int total_len = 0;
2425 	int ret;
2426 
2427 	path = btrfs_alloc_path();
2428 	if (!path)
2429 		return -ENOMEM;
2430 
2431 	/*
2432 	 * If the bottom subvolume does not exist directly under upper_limit,
2433 	 * construct the path in from the bottom up.
2434 	 */
2435 	if (dirid != upper_limit.objectid) {
2436 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2437 
2438 		key.objectid = treeid;
2439 		key.type = BTRFS_ROOT_ITEM_KEY;
2440 		key.offset = (u64)-1;
2441 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2442 		if (IS_ERR(root)) {
2443 			ret = PTR_ERR(root);
2444 			goto out;
2445 		}
2446 
2447 		key.objectid = dirid;
2448 		key.type = BTRFS_INODE_REF_KEY;
2449 		key.offset = (u64)-1;
2450 		while (1) {
2451 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2452 			if (ret < 0) {
2453 				goto out;
2454 			} else if (ret > 0) {
2455 				ret = btrfs_previous_item(root, path, dirid,
2456 							  BTRFS_INODE_REF_KEY);
2457 				if (ret < 0) {
2458 					goto out;
2459 				} else if (ret > 0) {
2460 					ret = -ENOENT;
2461 					goto out;
2462 				}
2463 			}
2464 
2465 			leaf = path->nodes[0];
2466 			slot = path->slots[0];
2467 			btrfs_item_key_to_cpu(leaf, &key, slot);
2468 
2469 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2470 			len = btrfs_inode_ref_name_len(leaf, iref);
2471 			ptr -= len + 1;
2472 			total_len += len + 1;
2473 			if (ptr < args->path) {
2474 				ret = -ENAMETOOLONG;
2475 				goto out;
2476 			}
2477 
2478 			*(ptr + len) = '/';
2479 			read_extent_buffer(leaf, ptr,
2480 					(unsigned long)(iref + 1), len);
2481 
2482 			/* Check the read+exec permission of this directory */
2483 			ret = btrfs_previous_item(root, path, dirid,
2484 						  BTRFS_INODE_ITEM_KEY);
2485 			if (ret < 0) {
2486 				goto out;
2487 			} else if (ret > 0) {
2488 				ret = -ENOENT;
2489 				goto out;
2490 			}
2491 
2492 			leaf = path->nodes[0];
2493 			slot = path->slots[0];
2494 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2495 			if (key2.objectid != dirid) {
2496 				ret = -ENOENT;
2497 				goto out;
2498 			}
2499 
2500 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2501 			if (IS_ERR(temp_inode)) {
2502 				ret = PTR_ERR(temp_inode);
2503 				goto out;
2504 			}
2505 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2506 			iput(temp_inode);
2507 			if (ret) {
2508 				ret = -EACCES;
2509 				goto out;
2510 			}
2511 
2512 			if (key.offset == upper_limit.objectid)
2513 				break;
2514 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2515 				ret = -EACCES;
2516 				goto out;
2517 			}
2518 
2519 			btrfs_release_path(path);
2520 			key.objectid = key.offset;
2521 			key.offset = (u64)-1;
2522 			dirid = key.objectid;
2523 		}
2524 
2525 		memmove(args->path, ptr, total_len);
2526 		args->path[total_len] = '\0';
2527 		btrfs_release_path(path);
2528 	}
2529 
2530 	/* Get the bottom subvolume's name from ROOT_REF */
2531 	root = fs_info->tree_root;
2532 	key.objectid = treeid;
2533 	key.type = BTRFS_ROOT_REF_KEY;
2534 	key.offset = args->treeid;
2535 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2536 	if (ret < 0) {
2537 		goto out;
2538 	} else if (ret > 0) {
2539 		ret = -ENOENT;
2540 		goto out;
2541 	}
2542 
2543 	leaf = path->nodes[0];
2544 	slot = path->slots[0];
2545 	btrfs_item_key_to_cpu(leaf, &key, slot);
2546 
2547 	item_off = btrfs_item_ptr_offset(leaf, slot);
2548 	item_len = btrfs_item_size_nr(leaf, slot);
2549 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2550 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2551 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2552 		ret = -EINVAL;
2553 		goto out;
2554 	}
2555 
2556 	/* Copy subvolume's name */
2557 	item_off += sizeof(struct btrfs_root_ref);
2558 	item_len -= sizeof(struct btrfs_root_ref);
2559 	read_extent_buffer(leaf, args->name, item_off, item_len);
2560 	args->name[item_len] = 0;
2561 
2562 out:
2563 	btrfs_free_path(path);
2564 	return ret;
2565 }
2566 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2567 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2568 					   void __user *argp)
2569 {
2570 	struct btrfs_ioctl_ino_lookup_args *args;
2571 	struct inode *inode;
2572 	int ret = 0;
2573 
2574 	args = memdup_user(argp, sizeof(*args));
2575 	if (IS_ERR(args))
2576 		return PTR_ERR(args);
2577 
2578 	inode = file_inode(file);
2579 
2580 	/*
2581 	 * Unprivileged query to obtain the containing subvolume root id. The
2582 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2583 	 */
2584 	if (args->treeid == 0)
2585 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2586 
2587 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2588 		args->name[0] = 0;
2589 		goto out;
2590 	}
2591 
2592 	if (!capable(CAP_SYS_ADMIN)) {
2593 		ret = -EPERM;
2594 		goto out;
2595 	}
2596 
2597 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2598 					args->treeid, args->objectid,
2599 					args->name);
2600 
2601 out:
2602 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2603 		ret = -EFAULT;
2604 
2605 	kfree(args);
2606 	return ret;
2607 }
2608 
2609 /*
2610  * Version of ino_lookup ioctl (unprivileged)
2611  *
2612  * The main differences from ino_lookup ioctl are:
2613  *
2614  *   1. Read + Exec permission will be checked using inode_permission() during
2615  *      path construction. -EACCES will be returned in case of failure.
2616  *   2. Path construction will be stopped at the inode number which corresponds
2617  *      to the fd with which this ioctl is called. If constructed path does not
2618  *      exist under fd's inode, -EACCES will be returned.
2619  *   3. The name of bottom subvolume is also searched and filled.
2620  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2621 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2622 {
2623 	struct btrfs_ioctl_ino_lookup_user_args *args;
2624 	struct inode *inode;
2625 	int ret;
2626 
2627 	args = memdup_user(argp, sizeof(*args));
2628 	if (IS_ERR(args))
2629 		return PTR_ERR(args);
2630 
2631 	inode = file_inode(file);
2632 
2633 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2634 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2635 		/*
2636 		 * The subvolume does not exist under fd with which this is
2637 		 * called
2638 		 */
2639 		kfree(args);
2640 		return -EACCES;
2641 	}
2642 
2643 	ret = btrfs_search_path_in_tree_user(inode, args);
2644 
2645 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2646 		ret = -EFAULT;
2647 
2648 	kfree(args);
2649 	return ret;
2650 }
2651 
2652 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2653 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2654 {
2655 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2656 	struct btrfs_fs_info *fs_info;
2657 	struct btrfs_root *root;
2658 	struct btrfs_path *path;
2659 	struct btrfs_key key;
2660 	struct btrfs_root_item *root_item;
2661 	struct btrfs_root_ref *rref;
2662 	struct extent_buffer *leaf;
2663 	unsigned long item_off;
2664 	unsigned long item_len;
2665 	struct inode *inode;
2666 	int slot;
2667 	int ret = 0;
2668 
2669 	path = btrfs_alloc_path();
2670 	if (!path)
2671 		return -ENOMEM;
2672 
2673 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2674 	if (!subvol_info) {
2675 		btrfs_free_path(path);
2676 		return -ENOMEM;
2677 	}
2678 
2679 	inode = file_inode(file);
2680 	fs_info = BTRFS_I(inode)->root->fs_info;
2681 
2682 	/* Get root_item of inode's subvolume */
2683 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2684 	key.type = BTRFS_ROOT_ITEM_KEY;
2685 	key.offset = (u64)-1;
2686 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2687 	if (IS_ERR(root)) {
2688 		ret = PTR_ERR(root);
2689 		goto out;
2690 	}
2691 	root_item = &root->root_item;
2692 
2693 	subvol_info->treeid = key.objectid;
2694 
2695 	subvol_info->generation = btrfs_root_generation(root_item);
2696 	subvol_info->flags = btrfs_root_flags(root_item);
2697 
2698 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2699 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2700 						    BTRFS_UUID_SIZE);
2701 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2702 						    BTRFS_UUID_SIZE);
2703 
2704 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2705 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2706 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2707 
2708 	subvol_info->otransid = btrfs_root_otransid(root_item);
2709 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2710 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2711 
2712 	subvol_info->stransid = btrfs_root_stransid(root_item);
2713 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2714 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2715 
2716 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2717 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2718 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2719 
2720 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2721 		/* Search root tree for ROOT_BACKREF of this subvolume */
2722 		root = fs_info->tree_root;
2723 
2724 		key.type = BTRFS_ROOT_BACKREF_KEY;
2725 		key.offset = 0;
2726 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2727 		if (ret < 0) {
2728 			goto out;
2729 		} else if (path->slots[0] >=
2730 			   btrfs_header_nritems(path->nodes[0])) {
2731 			ret = btrfs_next_leaf(root, path);
2732 			if (ret < 0) {
2733 				goto out;
2734 			} else if (ret > 0) {
2735 				ret = -EUCLEAN;
2736 				goto out;
2737 			}
2738 		}
2739 
2740 		leaf = path->nodes[0];
2741 		slot = path->slots[0];
2742 		btrfs_item_key_to_cpu(leaf, &key, slot);
2743 		if (key.objectid == subvol_info->treeid &&
2744 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2745 			subvol_info->parent_id = key.offset;
2746 
2747 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2748 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2749 
2750 			item_off = btrfs_item_ptr_offset(leaf, slot)
2751 					+ sizeof(struct btrfs_root_ref);
2752 			item_len = btrfs_item_size_nr(leaf, slot)
2753 					- sizeof(struct btrfs_root_ref);
2754 			read_extent_buffer(leaf, subvol_info->name,
2755 					   item_off, item_len);
2756 		} else {
2757 			ret = -ENOENT;
2758 			goto out;
2759 		}
2760 	}
2761 
2762 	btrfs_free_path(path);
2763 	path = NULL;
2764 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2765 		ret = -EFAULT;
2766 
2767 out:
2768 	btrfs_free_path(path);
2769 	kzfree(subvol_info);
2770 	return ret;
2771 }
2772 
2773 /*
2774  * Return ROOT_REF information of the subvolume containing this inode
2775  * except the subvolume name.
2776  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2777 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2778 {
2779 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2780 	struct btrfs_root_ref *rref;
2781 	struct btrfs_root *root;
2782 	struct btrfs_path *path;
2783 	struct btrfs_key key;
2784 	struct extent_buffer *leaf;
2785 	struct inode *inode;
2786 	u64 objectid;
2787 	int slot;
2788 	int ret;
2789 	u8 found;
2790 
2791 	path = btrfs_alloc_path();
2792 	if (!path)
2793 		return -ENOMEM;
2794 
2795 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2796 	if (IS_ERR(rootrefs)) {
2797 		btrfs_free_path(path);
2798 		return PTR_ERR(rootrefs);
2799 	}
2800 
2801 	inode = file_inode(file);
2802 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2803 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2804 
2805 	key.objectid = objectid;
2806 	key.type = BTRFS_ROOT_REF_KEY;
2807 	key.offset = rootrefs->min_treeid;
2808 	found = 0;
2809 
2810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 	if (ret < 0) {
2812 		goto out;
2813 	} else if (path->slots[0] >=
2814 		   btrfs_header_nritems(path->nodes[0])) {
2815 		ret = btrfs_next_leaf(root, path);
2816 		if (ret < 0) {
2817 			goto out;
2818 		} else if (ret > 0) {
2819 			ret = -EUCLEAN;
2820 			goto out;
2821 		}
2822 	}
2823 	while (1) {
2824 		leaf = path->nodes[0];
2825 		slot = path->slots[0];
2826 
2827 		btrfs_item_key_to_cpu(leaf, &key, slot);
2828 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2829 			ret = 0;
2830 			goto out;
2831 		}
2832 
2833 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2834 			ret = -EOVERFLOW;
2835 			goto out;
2836 		}
2837 
2838 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2839 		rootrefs->rootref[found].treeid = key.offset;
2840 		rootrefs->rootref[found].dirid =
2841 				  btrfs_root_ref_dirid(leaf, rref);
2842 		found++;
2843 
2844 		ret = btrfs_next_item(root, path);
2845 		if (ret < 0) {
2846 			goto out;
2847 		} else if (ret > 0) {
2848 			ret = -EUCLEAN;
2849 			goto out;
2850 		}
2851 	}
2852 
2853 out:
2854 	btrfs_free_path(path);
2855 
2856 	if (!ret || ret == -EOVERFLOW) {
2857 		rootrefs->num_items = found;
2858 		/* update min_treeid for next search */
2859 		if (found)
2860 			rootrefs->min_treeid =
2861 				rootrefs->rootref[found - 1].treeid + 1;
2862 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2863 			ret = -EFAULT;
2864 	}
2865 
2866 	kfree(rootrefs);
2867 
2868 	return ret;
2869 }
2870 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2871 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2872 					     void __user *arg)
2873 {
2874 	struct dentry *parent = file->f_path.dentry;
2875 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2876 	struct dentry *dentry;
2877 	struct inode *dir = d_inode(parent);
2878 	struct inode *inode;
2879 	struct btrfs_root *root = BTRFS_I(dir)->root;
2880 	struct btrfs_root *dest = NULL;
2881 	struct btrfs_ioctl_vol_args *vol_args;
2882 	int namelen;
2883 	int err = 0;
2884 
2885 	if (!S_ISDIR(dir->i_mode))
2886 		return -ENOTDIR;
2887 
2888 	vol_args = memdup_user(arg, sizeof(*vol_args));
2889 	if (IS_ERR(vol_args))
2890 		return PTR_ERR(vol_args);
2891 
2892 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2893 	namelen = strlen(vol_args->name);
2894 	if (strchr(vol_args->name, '/') ||
2895 	    strncmp(vol_args->name, "..", namelen) == 0) {
2896 		err = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	err = mnt_want_write_file(file);
2901 	if (err)
2902 		goto out;
2903 
2904 
2905 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2906 	if (err == -EINTR)
2907 		goto out_drop_write;
2908 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2909 	if (IS_ERR(dentry)) {
2910 		err = PTR_ERR(dentry);
2911 		goto out_unlock_dir;
2912 	}
2913 
2914 	if (d_really_is_negative(dentry)) {
2915 		err = -ENOENT;
2916 		goto out_dput;
2917 	}
2918 
2919 	inode = d_inode(dentry);
2920 	dest = BTRFS_I(inode)->root;
2921 	if (!capable(CAP_SYS_ADMIN)) {
2922 		/*
2923 		 * Regular user.  Only allow this with a special mount
2924 		 * option, when the user has write+exec access to the
2925 		 * subvol root, and when rmdir(2) would have been
2926 		 * allowed.
2927 		 *
2928 		 * Note that this is _not_ check that the subvol is
2929 		 * empty or doesn't contain data that we wouldn't
2930 		 * otherwise be able to delete.
2931 		 *
2932 		 * Users who want to delete empty subvols should try
2933 		 * rmdir(2).
2934 		 */
2935 		err = -EPERM;
2936 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2937 			goto out_dput;
2938 
2939 		/*
2940 		 * Do not allow deletion if the parent dir is the same
2941 		 * as the dir to be deleted.  That means the ioctl
2942 		 * must be called on the dentry referencing the root
2943 		 * of the subvol, not a random directory contained
2944 		 * within it.
2945 		 */
2946 		err = -EINVAL;
2947 		if (root == dest)
2948 			goto out_dput;
2949 
2950 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2951 		if (err)
2952 			goto out_dput;
2953 	}
2954 
2955 	/* check if subvolume may be deleted by a user */
2956 	err = btrfs_may_delete(dir, dentry, 1);
2957 	if (err)
2958 		goto out_dput;
2959 
2960 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2961 		err = -EINVAL;
2962 		goto out_dput;
2963 	}
2964 
2965 	inode_lock(inode);
2966 	err = btrfs_delete_subvolume(dir, dentry);
2967 	inode_unlock(inode);
2968 	if (!err)
2969 		d_delete(dentry);
2970 
2971 out_dput:
2972 	dput(dentry);
2973 out_unlock_dir:
2974 	inode_unlock(dir);
2975 out_drop_write:
2976 	mnt_drop_write_file(file);
2977 out:
2978 	kfree(vol_args);
2979 	return err;
2980 }
2981 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2982 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2983 {
2984 	struct inode *inode = file_inode(file);
2985 	struct btrfs_root *root = BTRFS_I(inode)->root;
2986 	struct btrfs_ioctl_defrag_range_args *range;
2987 	int ret;
2988 
2989 	ret = mnt_want_write_file(file);
2990 	if (ret)
2991 		return ret;
2992 
2993 	if (btrfs_root_readonly(root)) {
2994 		ret = -EROFS;
2995 		goto out;
2996 	}
2997 
2998 	switch (inode->i_mode & S_IFMT) {
2999 	case S_IFDIR:
3000 		if (!capable(CAP_SYS_ADMIN)) {
3001 			ret = -EPERM;
3002 			goto out;
3003 		}
3004 		ret = btrfs_defrag_root(root);
3005 		break;
3006 	case S_IFREG:
3007 		/*
3008 		 * Note that this does not check the file descriptor for write
3009 		 * access. This prevents defragmenting executables that are
3010 		 * running and allows defrag on files open in read-only mode.
3011 		 */
3012 		if (!capable(CAP_SYS_ADMIN) &&
3013 		    inode_permission(inode, MAY_WRITE)) {
3014 			ret = -EPERM;
3015 			goto out;
3016 		}
3017 
3018 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3019 		if (!range) {
3020 			ret = -ENOMEM;
3021 			goto out;
3022 		}
3023 
3024 		if (argp) {
3025 			if (copy_from_user(range, argp,
3026 					   sizeof(*range))) {
3027 				ret = -EFAULT;
3028 				kfree(range);
3029 				goto out;
3030 			}
3031 			/* compression requires us to start the IO */
3032 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3033 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3034 				range->extent_thresh = (u32)-1;
3035 			}
3036 		} else {
3037 			/* the rest are all set to zero by kzalloc */
3038 			range->len = (u64)-1;
3039 		}
3040 		ret = btrfs_defrag_file(file_inode(file), file,
3041 					range, BTRFS_OLDEST_GENERATION, 0);
3042 		if (ret > 0)
3043 			ret = 0;
3044 		kfree(range);
3045 		break;
3046 	default:
3047 		ret = -EINVAL;
3048 	}
3049 out:
3050 	mnt_drop_write_file(file);
3051 	return ret;
3052 }
3053 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3054 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3055 {
3056 	struct btrfs_ioctl_vol_args *vol_args;
3057 	int ret;
3058 
3059 	if (!capable(CAP_SYS_ADMIN))
3060 		return -EPERM;
3061 
3062 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3063 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3064 
3065 	vol_args = memdup_user(arg, sizeof(*vol_args));
3066 	if (IS_ERR(vol_args)) {
3067 		ret = PTR_ERR(vol_args);
3068 		goto out;
3069 	}
3070 
3071 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3072 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3073 
3074 	if (!ret)
3075 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3076 
3077 	kfree(vol_args);
3078 out:
3079 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3080 	return ret;
3081 }
3082 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3083 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3084 {
3085 	struct inode *inode = file_inode(file);
3086 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3087 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3088 	int ret;
3089 
3090 	if (!capable(CAP_SYS_ADMIN))
3091 		return -EPERM;
3092 
3093 	ret = mnt_want_write_file(file);
3094 	if (ret)
3095 		return ret;
3096 
3097 	vol_args = memdup_user(arg, sizeof(*vol_args));
3098 	if (IS_ERR(vol_args)) {
3099 		ret = PTR_ERR(vol_args);
3100 		goto err_drop;
3101 	}
3102 
3103 	/* Check for compatibility reject unknown flags */
3104 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3105 		ret = -EOPNOTSUPP;
3106 		goto out;
3107 	}
3108 
3109 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3110 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3111 		goto out;
3112 	}
3113 
3114 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3115 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3116 	} else {
3117 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3118 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3119 	}
3120 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3121 
3122 	if (!ret) {
3123 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3124 			btrfs_info(fs_info, "device deleted: id %llu",
3125 					vol_args->devid);
3126 		else
3127 			btrfs_info(fs_info, "device deleted: %s",
3128 					vol_args->name);
3129 	}
3130 out:
3131 	kfree(vol_args);
3132 err_drop:
3133 	mnt_drop_write_file(file);
3134 	return ret;
3135 }
3136 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3137 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3138 {
3139 	struct inode *inode = file_inode(file);
3140 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3141 	struct btrfs_ioctl_vol_args *vol_args;
3142 	int ret;
3143 
3144 	if (!capable(CAP_SYS_ADMIN))
3145 		return -EPERM;
3146 
3147 	ret = mnt_want_write_file(file);
3148 	if (ret)
3149 		return ret;
3150 
3151 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3152 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3153 		goto out_drop_write;
3154 	}
3155 
3156 	vol_args = memdup_user(arg, sizeof(*vol_args));
3157 	if (IS_ERR(vol_args)) {
3158 		ret = PTR_ERR(vol_args);
3159 		goto out;
3160 	}
3161 
3162 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3163 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3164 
3165 	if (!ret)
3166 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3167 	kfree(vol_args);
3168 out:
3169 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3170 out_drop_write:
3171 	mnt_drop_write_file(file);
3172 
3173 	return ret;
3174 }
3175 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3176 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3177 				void __user *arg)
3178 {
3179 	struct btrfs_ioctl_fs_info_args *fi_args;
3180 	struct btrfs_device *device;
3181 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3182 	int ret = 0;
3183 
3184 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3185 	if (!fi_args)
3186 		return -ENOMEM;
3187 
3188 	rcu_read_lock();
3189 	fi_args->num_devices = fs_devices->num_devices;
3190 
3191 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3192 		if (device->devid > fi_args->max_id)
3193 			fi_args->max_id = device->devid;
3194 	}
3195 	rcu_read_unlock();
3196 
3197 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3198 	fi_args->nodesize = fs_info->nodesize;
3199 	fi_args->sectorsize = fs_info->sectorsize;
3200 	fi_args->clone_alignment = fs_info->sectorsize;
3201 
3202 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3203 		ret = -EFAULT;
3204 
3205 	kfree(fi_args);
3206 	return ret;
3207 }
3208 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3209 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3210 				 void __user *arg)
3211 {
3212 	struct btrfs_ioctl_dev_info_args *di_args;
3213 	struct btrfs_device *dev;
3214 	int ret = 0;
3215 	char *s_uuid = NULL;
3216 
3217 	di_args = memdup_user(arg, sizeof(*di_args));
3218 	if (IS_ERR(di_args))
3219 		return PTR_ERR(di_args);
3220 
3221 	if (!btrfs_is_empty_uuid(di_args->uuid))
3222 		s_uuid = di_args->uuid;
3223 
3224 	rcu_read_lock();
3225 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3226 				NULL, true);
3227 
3228 	if (!dev) {
3229 		ret = -ENODEV;
3230 		goto out;
3231 	}
3232 
3233 	di_args->devid = dev->devid;
3234 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3235 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3236 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3237 	if (dev->name)
3238 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3239 	else
3240 		di_args->path[0] = '\0';
3241 
3242 out:
3243 	rcu_read_unlock();
3244 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3245 		ret = -EFAULT;
3246 
3247 	kfree(di_args);
3248 	return ret;
3249 }
3250 
extent_same_get_page(struct inode * inode,pgoff_t index)3251 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3252 {
3253 	struct page *page;
3254 
3255 	page = grab_cache_page(inode->i_mapping, index);
3256 	if (!page)
3257 		return ERR_PTR(-ENOMEM);
3258 
3259 	if (!PageUptodate(page)) {
3260 		int ret;
3261 
3262 		ret = btrfs_readpage(NULL, page);
3263 		if (ret)
3264 			return ERR_PTR(ret);
3265 		lock_page(page);
3266 		if (!PageUptodate(page)) {
3267 			unlock_page(page);
3268 			put_page(page);
3269 			return ERR_PTR(-EIO);
3270 		}
3271 		if (page->mapping != inode->i_mapping) {
3272 			unlock_page(page);
3273 			put_page(page);
3274 			return ERR_PTR(-EAGAIN);
3275 		}
3276 	}
3277 
3278 	return page;
3279 }
3280 
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)3281 static int gather_extent_pages(struct inode *inode, struct page **pages,
3282 			       int num_pages, u64 off)
3283 {
3284 	int i;
3285 	pgoff_t index = off >> PAGE_SHIFT;
3286 
3287 	for (i = 0; i < num_pages; i++) {
3288 again:
3289 		pages[i] = extent_same_get_page(inode, index + i);
3290 		if (IS_ERR(pages[i])) {
3291 			int err = PTR_ERR(pages[i]);
3292 
3293 			if (err == -EAGAIN)
3294 				goto again;
3295 			pages[i] = NULL;
3296 			return err;
3297 		}
3298 	}
3299 	return 0;
3300 }
3301 
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)3302 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3303 			     bool retry_range_locking)
3304 {
3305 	/*
3306 	 * Do any pending delalloc/csum calculations on inode, one way or
3307 	 * another, and lock file content.
3308 	 * The locking order is:
3309 	 *
3310 	 *   1) pages
3311 	 *   2) range in the inode's io tree
3312 	 */
3313 	while (1) {
3314 		struct btrfs_ordered_extent *ordered;
3315 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3316 		ordered = btrfs_lookup_first_ordered_extent(inode,
3317 							    off + len - 1);
3318 		if ((!ordered ||
3319 		     ordered->file_offset + ordered->len <= off ||
3320 		     ordered->file_offset >= off + len) &&
3321 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3322 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3323 			if (ordered)
3324 				btrfs_put_ordered_extent(ordered);
3325 			break;
3326 		}
3327 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3328 		if (ordered)
3329 			btrfs_put_ordered_extent(ordered);
3330 		if (!retry_range_locking)
3331 			return -EAGAIN;
3332 		btrfs_wait_ordered_range(inode, off, len);
3333 	}
3334 	return 0;
3335 }
3336 
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)3337 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3338 {
3339 	inode_unlock(inode1);
3340 	inode_unlock(inode2);
3341 }
3342 
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)3343 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3344 {
3345 	if (inode1 < inode2)
3346 		swap(inode1, inode2);
3347 
3348 	inode_lock_nested(inode1, I_MUTEX_PARENT);
3349 	inode_lock_nested(inode2, I_MUTEX_CHILD);
3350 }
3351 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3352 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3353 				      struct inode *inode2, u64 loff2, u64 len)
3354 {
3355 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3356 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3357 }
3358 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)3359 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3360 				    struct inode *inode2, u64 loff2, u64 len,
3361 				    bool retry_range_locking)
3362 {
3363 	int ret;
3364 
3365 	if (inode1 < inode2) {
3366 		swap(inode1, inode2);
3367 		swap(loff1, loff2);
3368 	}
3369 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3370 	if (ret)
3371 		return ret;
3372 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3373 	if (ret)
3374 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3375 			      loff1 + len - 1);
3376 	return ret;
3377 }
3378 
3379 struct cmp_pages {
3380 	int		num_pages;
3381 	struct page	**src_pages;
3382 	struct page	**dst_pages;
3383 };
3384 
btrfs_cmp_data_free(struct cmp_pages * cmp)3385 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3386 {
3387 	int i;
3388 	struct page *pg;
3389 
3390 	for (i = 0; i < cmp->num_pages; i++) {
3391 		pg = cmp->src_pages[i];
3392 		if (pg) {
3393 			unlock_page(pg);
3394 			put_page(pg);
3395 			cmp->src_pages[i] = NULL;
3396 		}
3397 		pg = cmp->dst_pages[i];
3398 		if (pg) {
3399 			unlock_page(pg);
3400 			put_page(pg);
3401 			cmp->dst_pages[i] = NULL;
3402 		}
3403 	}
3404 }
3405 
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3406 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3407 				  struct inode *dst, u64 dst_loff,
3408 				  u64 len, struct cmp_pages *cmp)
3409 {
3410 	int ret;
3411 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3412 
3413 	cmp->num_pages = num_pages;
3414 
3415 	ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3416 	if (ret)
3417 		goto out;
3418 
3419 	ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3420 
3421 out:
3422 	if (ret)
3423 		btrfs_cmp_data_free(cmp);
3424 	return ret;
3425 }
3426 
btrfs_cmp_data(u64 len,struct cmp_pages * cmp)3427 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3428 {
3429 	int ret = 0;
3430 	int i;
3431 	struct page *src_page, *dst_page;
3432 	unsigned int cmp_len = PAGE_SIZE;
3433 	void *addr, *dst_addr;
3434 
3435 	i = 0;
3436 	while (len) {
3437 		if (len < PAGE_SIZE)
3438 			cmp_len = len;
3439 
3440 		BUG_ON(i >= cmp->num_pages);
3441 
3442 		src_page = cmp->src_pages[i];
3443 		dst_page = cmp->dst_pages[i];
3444 		ASSERT(PageLocked(src_page));
3445 		ASSERT(PageLocked(dst_page));
3446 
3447 		addr = kmap_atomic(src_page);
3448 		dst_addr = kmap_atomic(dst_page);
3449 
3450 		flush_dcache_page(src_page);
3451 		flush_dcache_page(dst_page);
3452 
3453 		if (memcmp(addr, dst_addr, cmp_len))
3454 			ret = -EBADE;
3455 
3456 		kunmap_atomic(addr);
3457 		kunmap_atomic(dst_addr);
3458 
3459 		if (ret)
3460 			break;
3461 
3462 		len -= cmp_len;
3463 		i++;
3464 	}
3465 
3466 	return ret;
3467 }
3468 
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3469 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3470 				     u64 olen)
3471 {
3472 	u64 len = *plen;
3473 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3474 
3475 	if (off + olen > inode->i_size || off + olen < off)
3476 		return -EINVAL;
3477 
3478 	/* if we extend to eof, continue to block boundary */
3479 	if (off + len == inode->i_size)
3480 		*plen = len = ALIGN(inode->i_size, bs) - off;
3481 
3482 	/* Check that we are block aligned - btrfs_clone() requires this */
3483 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3484 		return -EINVAL;
3485 
3486 	return 0;
3487 }
3488 
btrfs_extent_same_range(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff,struct cmp_pages * cmp)3489 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3490 				   struct inode *dst, u64 dst_loff,
3491 				   struct cmp_pages *cmp)
3492 {
3493 	int ret;
3494 	u64 len = olen;
3495 	bool same_inode = (src == dst);
3496 	u64 same_lock_start = 0;
3497 	u64 same_lock_len = 0;
3498 
3499 	ret = extent_same_check_offsets(src, loff, &len, olen);
3500 	if (ret)
3501 		return ret;
3502 
3503 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3504 	if (ret)
3505 		return ret;
3506 
3507 	if (same_inode) {
3508 		/*
3509 		 * Single inode case wants the same checks, except we
3510 		 * don't want our length pushed out past i_size as
3511 		 * comparing that data range makes no sense.
3512 		 *
3513 		 * extent_same_check_offsets() will do this for an
3514 		 * unaligned length at i_size, so catch it here and
3515 		 * reject the request.
3516 		 *
3517 		 * This effectively means we require aligned extents
3518 		 * for the single-inode case, whereas the other cases
3519 		 * allow an unaligned length so long as it ends at
3520 		 * i_size.
3521 		 */
3522 		if (len != olen)
3523 			return -EINVAL;
3524 
3525 		/* Check for overlapping ranges */
3526 		if (dst_loff + len > loff && dst_loff < loff + len)
3527 			return -EINVAL;
3528 
3529 		same_lock_start = min_t(u64, loff, dst_loff);
3530 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3531 	} else {
3532 		/*
3533 		 * If the source and destination inodes are different, the
3534 		 * source's range end offset matches the source's i_size, that
3535 		 * i_size is not a multiple of the sector size, and the
3536 		 * destination range does not go past the destination's i_size,
3537 		 * we must round down the length to the nearest sector size
3538 		 * multiple. If we don't do this adjustment we end replacing
3539 		 * with zeroes the bytes in the range that starts at the
3540 		 * deduplication range's end offset and ends at the next sector
3541 		 * size multiple.
3542 		 */
3543 		if (loff + olen == i_size_read(src) &&
3544 		    dst_loff + len < i_size_read(dst)) {
3545 			const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3546 
3547 			len = round_down(i_size_read(src), sz) - loff;
3548 			if (len == 0)
3549 				return 0;
3550 			olen = len;
3551 		}
3552 	}
3553 
3554 again:
3555 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3556 	if (ret)
3557 		return ret;
3558 
3559 	if (same_inode)
3560 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3561 					false);
3562 	else
3563 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3564 					       false);
3565 	/*
3566 	 * If one of the inodes has dirty pages in the respective range or
3567 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3568 	 * extents in the range. We must unlock the pages and the ranges in the
3569 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3570 	 * pages) and when waiting for ordered extents to complete (they require
3571 	 * range locking).
3572 	 */
3573 	if (ret == -EAGAIN) {
3574 		/*
3575 		 * Ranges in the io trees already unlocked. Now unlock all
3576 		 * pages before waiting for all IO to complete.
3577 		 */
3578 		btrfs_cmp_data_free(cmp);
3579 		if (same_inode) {
3580 			btrfs_wait_ordered_range(src, same_lock_start,
3581 						 same_lock_len);
3582 		} else {
3583 			btrfs_wait_ordered_range(src, loff, len);
3584 			btrfs_wait_ordered_range(dst, dst_loff, len);
3585 		}
3586 		goto again;
3587 	}
3588 	ASSERT(ret == 0);
3589 	if (WARN_ON(ret)) {
3590 		/* ranges in the io trees already unlocked */
3591 		btrfs_cmp_data_free(cmp);
3592 		return ret;
3593 	}
3594 
3595 	/* pass original length for comparison so we stay within i_size */
3596 	ret = btrfs_cmp_data(olen, cmp);
3597 	if (ret == 0)
3598 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3599 
3600 	if (same_inode)
3601 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3602 			      same_lock_start + same_lock_len - 1);
3603 	else
3604 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3605 
3606 	btrfs_cmp_data_free(cmp);
3607 
3608 	return ret;
3609 }
3610 
3611 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3612 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3613 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3614 			     struct inode *dst, u64 dst_loff)
3615 {
3616 	int ret;
3617 	struct cmp_pages cmp;
3618 	int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3619 	bool same_inode = (src == dst);
3620 	u64 i, tail_len, chunk_count;
3621 
3622 	if (olen == 0)
3623 		return 0;
3624 
3625 	if (same_inode)
3626 		inode_lock(src);
3627 	else
3628 		btrfs_double_inode_lock(src, dst);
3629 
3630 	/* don't make the dst file partly checksummed */
3631 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3632 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3633 		ret = -EINVAL;
3634 		goto out_unlock;
3635 	}
3636 
3637 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3638 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3639 	if (chunk_count == 0)
3640 		num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3641 
3642 	/*
3643 	 * If deduping ranges in the same inode, locking rules make it
3644 	 * mandatory to always lock pages in ascending order to avoid deadlocks
3645 	 * with concurrent tasks (such as starting writeback/delalloc).
3646 	 */
3647 	if (same_inode && dst_loff < loff)
3648 		swap(loff, dst_loff);
3649 
3650 	/*
3651 	 * We must gather up all the pages before we initiate our extent
3652 	 * locking. We use an array for the page pointers. Size of the array is
3653 	 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3654 	 */
3655 	cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3656 				       GFP_KERNEL | __GFP_ZERO);
3657 	cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3658 				       GFP_KERNEL | __GFP_ZERO);
3659 	if (!cmp.src_pages || !cmp.dst_pages) {
3660 		ret = -ENOMEM;
3661 		goto out_free;
3662 	}
3663 
3664 	for (i = 0; i < chunk_count; i++) {
3665 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3666 					      dst, dst_loff, &cmp);
3667 		if (ret)
3668 			goto out_free;
3669 
3670 		loff += BTRFS_MAX_DEDUPE_LEN;
3671 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3672 	}
3673 
3674 	if (tail_len > 0)
3675 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3676 					      dst_loff, &cmp);
3677 
3678 out_free:
3679 	kvfree(cmp.src_pages);
3680 	kvfree(cmp.dst_pages);
3681 
3682 out_unlock:
3683 	if (same_inode)
3684 		inode_unlock(src);
3685 	else
3686 		btrfs_double_inode_unlock(src, dst);
3687 
3688 	return ret;
3689 }
3690 
btrfs_dedupe_file_range(struct file * src_file,loff_t src_loff,struct file * dst_file,loff_t dst_loff,u64 olen)3691 int btrfs_dedupe_file_range(struct file *src_file, loff_t src_loff,
3692 			    struct file *dst_file, loff_t dst_loff,
3693 			    u64 olen)
3694 {
3695 	struct inode *src = file_inode(src_file);
3696 	struct inode *dst = file_inode(dst_file);
3697 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3698 
3699 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3700 		/*
3701 		 * Btrfs does not support blocksize < page_size. As a
3702 		 * result, btrfs_cmp_data() won't correctly handle
3703 		 * this situation without an update.
3704 		 */
3705 		return -EINVAL;
3706 	}
3707 
3708 	return btrfs_extent_same(src, src_loff, olen, dst, dst_loff);
3709 }
3710 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3711 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3712 				     struct inode *inode,
3713 				     u64 endoff,
3714 				     const u64 destoff,
3715 				     const u64 olen,
3716 				     int no_time_update)
3717 {
3718 	struct btrfs_root *root = BTRFS_I(inode)->root;
3719 	int ret;
3720 
3721 	inode_inc_iversion(inode);
3722 	if (!no_time_update)
3723 		inode->i_mtime = inode->i_ctime = current_time(inode);
3724 	/*
3725 	 * We round up to the block size at eof when determining which
3726 	 * extents to clone above, but shouldn't round up the file size.
3727 	 */
3728 	if (endoff > destoff + olen)
3729 		endoff = destoff + olen;
3730 	if (endoff > inode->i_size)
3731 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3732 
3733 	ret = btrfs_update_inode(trans, root, inode);
3734 	if (ret) {
3735 		btrfs_abort_transaction(trans, ret);
3736 		btrfs_end_transaction(trans);
3737 		goto out;
3738 	}
3739 	ret = btrfs_end_transaction(trans);
3740 out:
3741 	return ret;
3742 }
3743 
clone_update_extent_map(struct btrfs_inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3744 static void clone_update_extent_map(struct btrfs_inode *inode,
3745 				    const struct btrfs_trans_handle *trans,
3746 				    const struct btrfs_path *path,
3747 				    const u64 hole_offset,
3748 				    const u64 hole_len)
3749 {
3750 	struct extent_map_tree *em_tree = &inode->extent_tree;
3751 	struct extent_map *em;
3752 	int ret;
3753 
3754 	em = alloc_extent_map();
3755 	if (!em) {
3756 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3757 		return;
3758 	}
3759 
3760 	if (path) {
3761 		struct btrfs_file_extent_item *fi;
3762 
3763 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3764 				    struct btrfs_file_extent_item);
3765 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3766 		em->generation = -1;
3767 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3768 		    BTRFS_FILE_EXTENT_INLINE)
3769 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3770 					&inode->runtime_flags);
3771 	} else {
3772 		em->start = hole_offset;
3773 		em->len = hole_len;
3774 		em->ram_bytes = em->len;
3775 		em->orig_start = hole_offset;
3776 		em->block_start = EXTENT_MAP_HOLE;
3777 		em->block_len = 0;
3778 		em->orig_block_len = 0;
3779 		em->compress_type = BTRFS_COMPRESS_NONE;
3780 		em->generation = trans->transid;
3781 	}
3782 
3783 	while (1) {
3784 		write_lock(&em_tree->lock);
3785 		ret = add_extent_mapping(em_tree, em, 1);
3786 		write_unlock(&em_tree->lock);
3787 		if (ret != -EEXIST) {
3788 			free_extent_map(em);
3789 			break;
3790 		}
3791 		btrfs_drop_extent_cache(inode, em->start,
3792 					em->start + em->len - 1, 0);
3793 	}
3794 
3795 	if (ret)
3796 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3797 }
3798 
3799 /*
3800  * Make sure we do not end up inserting an inline extent into a file that has
3801  * already other (non-inline) extents. If a file has an inline extent it can
3802  * not have any other extents and the (single) inline extent must start at the
3803  * file offset 0. Failing to respect these rules will lead to file corruption,
3804  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3805  *
3806  * We can have extents that have been already written to disk or we can have
3807  * dirty ranges still in delalloc, in which case the extent maps and items are
3808  * created only when we run delalloc, and the delalloc ranges might fall outside
3809  * the range we are currently locking in the inode's io tree. So we check the
3810  * inode's i_size because of that (i_size updates are done while holding the
3811  * i_mutex, which we are holding here).
3812  * We also check to see if the inode has a size not greater than "datal" but has
3813  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3814  * protected against such concurrent fallocate calls by the i_mutex).
3815  *
3816  * If the file has no extents but a size greater than datal, do not allow the
3817  * copy because we would need turn the inline extent into a non-inline one (even
3818  * with NO_HOLES enabled). If we find our destination inode only has one inline
3819  * extent, just overwrite it with the source inline extent if its size is less
3820  * than the source extent's size, or we could copy the source inline extent's
3821  * data into the destination inode's inline extent if the later is greater then
3822  * the former.
3823  */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3824 static int clone_copy_inline_extent(struct inode *dst,
3825 				    struct btrfs_trans_handle *trans,
3826 				    struct btrfs_path *path,
3827 				    struct btrfs_key *new_key,
3828 				    const u64 drop_start,
3829 				    const u64 datal,
3830 				    const u64 skip,
3831 				    const u64 size,
3832 				    char *inline_data)
3833 {
3834 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3835 	struct btrfs_root *root = BTRFS_I(dst)->root;
3836 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3837 				      fs_info->sectorsize);
3838 	int ret;
3839 	struct btrfs_key key;
3840 
3841 	if (new_key->offset > 0)
3842 		return -EOPNOTSUPP;
3843 
3844 	key.objectid = btrfs_ino(BTRFS_I(dst));
3845 	key.type = BTRFS_EXTENT_DATA_KEY;
3846 	key.offset = 0;
3847 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3848 	if (ret < 0) {
3849 		return ret;
3850 	} else if (ret > 0) {
3851 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3852 			ret = btrfs_next_leaf(root, path);
3853 			if (ret < 0)
3854 				return ret;
3855 			else if (ret > 0)
3856 				goto copy_inline_extent;
3857 		}
3858 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3859 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3860 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3861 			ASSERT(key.offset > 0);
3862 			return -EOPNOTSUPP;
3863 		}
3864 	} else if (i_size_read(dst) <= datal) {
3865 		struct btrfs_file_extent_item *ei;
3866 		u64 ext_len;
3867 
3868 		/*
3869 		 * If the file size is <= datal, make sure there are no other
3870 		 * extents following (can happen do to an fallocate call with
3871 		 * the flag FALLOC_FL_KEEP_SIZE).
3872 		 */
3873 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3874 				    struct btrfs_file_extent_item);
3875 		/*
3876 		 * If it's an inline extent, it can not have other extents
3877 		 * following it.
3878 		 */
3879 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3880 		    BTRFS_FILE_EXTENT_INLINE)
3881 			goto copy_inline_extent;
3882 
3883 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3884 		if (ext_len > aligned_end)
3885 			return -EOPNOTSUPP;
3886 
3887 		ret = btrfs_next_item(root, path);
3888 		if (ret < 0) {
3889 			return ret;
3890 		} else if (ret == 0) {
3891 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3892 					      path->slots[0]);
3893 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3894 			    key.type == BTRFS_EXTENT_DATA_KEY)
3895 				return -EOPNOTSUPP;
3896 		}
3897 	}
3898 
3899 copy_inline_extent:
3900 	/*
3901 	 * We have no extent items, or we have an extent at offset 0 which may
3902 	 * or may not be inlined. All these cases are dealt the same way.
3903 	 */
3904 	if (i_size_read(dst) > datal) {
3905 		/*
3906 		 * If the destination inode has an inline extent...
3907 		 * This would require copying the data from the source inline
3908 		 * extent into the beginning of the destination's inline extent.
3909 		 * But this is really complex, both extents can be compressed
3910 		 * or just one of them, which would require decompressing and
3911 		 * re-compressing data (which could increase the new compressed
3912 		 * size, not allowing the compressed data to fit anymore in an
3913 		 * inline extent).
3914 		 * So just don't support this case for now (it should be rare,
3915 		 * we are not really saving space when cloning inline extents).
3916 		 */
3917 		return -EOPNOTSUPP;
3918 	}
3919 
3920 	btrfs_release_path(path);
3921 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3922 	if (ret)
3923 		return ret;
3924 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3925 	if (ret)
3926 		return ret;
3927 
3928 	if (skip) {
3929 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3930 
3931 		memmove(inline_data + start, inline_data + start + skip, datal);
3932 	}
3933 
3934 	write_extent_buffer(path->nodes[0], inline_data,
3935 			    btrfs_item_ptr_offset(path->nodes[0],
3936 						  path->slots[0]),
3937 			    size);
3938 	inode_add_bytes(dst, datal);
3939 
3940 	return 0;
3941 }
3942 
3943 /**
3944  * btrfs_clone() - clone a range from inode file to another
3945  *
3946  * @src: Inode to clone from
3947  * @inode: Inode to clone to
3948  * @off: Offset within source to start clone from
3949  * @olen: Original length, passed by user, of range to clone
3950  * @olen_aligned: Block-aligned value of olen
3951  * @destoff: Offset within @inode to start clone
3952  * @no_time_update: Whether to update mtime/ctime on the target inode
3953  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3954 static int btrfs_clone(struct inode *src, struct inode *inode,
3955 		       const u64 off, const u64 olen, const u64 olen_aligned,
3956 		       const u64 destoff, int no_time_update)
3957 {
3958 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3959 	struct btrfs_root *root = BTRFS_I(inode)->root;
3960 	struct btrfs_path *path = NULL;
3961 	struct extent_buffer *leaf;
3962 	struct btrfs_trans_handle *trans;
3963 	char *buf = NULL;
3964 	struct btrfs_key key;
3965 	u32 nritems;
3966 	int slot;
3967 	int ret;
3968 	const u64 len = olen_aligned;
3969 	u64 last_dest_end = destoff;
3970 
3971 	ret = -ENOMEM;
3972 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3973 	if (!buf)
3974 		return ret;
3975 
3976 	path = btrfs_alloc_path();
3977 	if (!path) {
3978 		kvfree(buf);
3979 		return ret;
3980 	}
3981 
3982 	path->reada = READA_FORWARD;
3983 	/* clone data */
3984 	key.objectid = btrfs_ino(BTRFS_I(src));
3985 	key.type = BTRFS_EXTENT_DATA_KEY;
3986 	key.offset = off;
3987 
3988 	while (1) {
3989 		u64 next_key_min_offset = key.offset + 1;
3990 
3991 		/*
3992 		 * note the key will change type as we walk through the
3993 		 * tree.
3994 		 */
3995 		path->leave_spinning = 1;
3996 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3997 				0, 0);
3998 		if (ret < 0)
3999 			goto out;
4000 		/*
4001 		 * First search, if no extent item that starts at offset off was
4002 		 * found but the previous item is an extent item, it's possible
4003 		 * it might overlap our target range, therefore process it.
4004 		 */
4005 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
4006 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4007 					      path->slots[0] - 1);
4008 			if (key.type == BTRFS_EXTENT_DATA_KEY)
4009 				path->slots[0]--;
4010 		}
4011 
4012 		nritems = btrfs_header_nritems(path->nodes[0]);
4013 process_slot:
4014 		if (path->slots[0] >= nritems) {
4015 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
4016 			if (ret < 0)
4017 				goto out;
4018 			if (ret > 0)
4019 				break;
4020 			nritems = btrfs_header_nritems(path->nodes[0]);
4021 		}
4022 		leaf = path->nodes[0];
4023 		slot = path->slots[0];
4024 
4025 		btrfs_item_key_to_cpu(leaf, &key, slot);
4026 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
4027 		    key.objectid != btrfs_ino(BTRFS_I(src)))
4028 			break;
4029 
4030 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
4031 			struct btrfs_file_extent_item *extent;
4032 			int type;
4033 			u32 size;
4034 			struct btrfs_key new_key;
4035 			u64 disko = 0, diskl = 0;
4036 			u64 datao = 0, datal = 0;
4037 			u8 comp;
4038 			u64 drop_start;
4039 
4040 			extent = btrfs_item_ptr(leaf, slot,
4041 						struct btrfs_file_extent_item);
4042 			comp = btrfs_file_extent_compression(leaf, extent);
4043 			type = btrfs_file_extent_type(leaf, extent);
4044 			if (type == BTRFS_FILE_EXTENT_REG ||
4045 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
4046 				disko = btrfs_file_extent_disk_bytenr(leaf,
4047 								      extent);
4048 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
4049 								 extent);
4050 				datao = btrfs_file_extent_offset(leaf, extent);
4051 				datal = btrfs_file_extent_num_bytes(leaf,
4052 								    extent);
4053 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
4054 				/* take upper bound, may be compressed */
4055 				datal = btrfs_file_extent_ram_bytes(leaf,
4056 								    extent);
4057 			}
4058 
4059 			/*
4060 			 * The first search might have left us at an extent
4061 			 * item that ends before our target range's start, can
4062 			 * happen if we have holes and NO_HOLES feature enabled.
4063 			 */
4064 			if (key.offset + datal <= off) {
4065 				path->slots[0]++;
4066 				goto process_slot;
4067 			} else if (key.offset >= off + len) {
4068 				break;
4069 			}
4070 			next_key_min_offset = key.offset + datal;
4071 			size = btrfs_item_size_nr(leaf, slot);
4072 			read_extent_buffer(leaf, buf,
4073 					   btrfs_item_ptr_offset(leaf, slot),
4074 					   size);
4075 
4076 			btrfs_release_path(path);
4077 			path->leave_spinning = 0;
4078 
4079 			memcpy(&new_key, &key, sizeof(new_key));
4080 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
4081 			if (off <= key.offset)
4082 				new_key.offset = key.offset + destoff - off;
4083 			else
4084 				new_key.offset = destoff;
4085 
4086 			/*
4087 			 * Deal with a hole that doesn't have an extent item
4088 			 * that represents it (NO_HOLES feature enabled).
4089 			 * This hole is either in the middle of the cloning
4090 			 * range or at the beginning (fully overlaps it or
4091 			 * partially overlaps it).
4092 			 */
4093 			if (new_key.offset != last_dest_end)
4094 				drop_start = last_dest_end;
4095 			else
4096 				drop_start = new_key.offset;
4097 
4098 			/*
4099 			 * 1 - adjusting old extent (we may have to split it)
4100 			 * 1 - add new extent
4101 			 * 1 - inode update
4102 			 */
4103 			trans = btrfs_start_transaction(root, 3);
4104 			if (IS_ERR(trans)) {
4105 				ret = PTR_ERR(trans);
4106 				goto out;
4107 			}
4108 
4109 			if (type == BTRFS_FILE_EXTENT_REG ||
4110 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
4111 				/*
4112 				 *    a  | --- range to clone ---|  b
4113 				 * | ------------- extent ------------- |
4114 				 */
4115 
4116 				/* subtract range b */
4117 				if (key.offset + datal > off + len)
4118 					datal = off + len - key.offset;
4119 
4120 				/* subtract range a */
4121 				if (off > key.offset) {
4122 					datao += off - key.offset;
4123 					datal -= off - key.offset;
4124 				}
4125 
4126 				ret = btrfs_drop_extents(trans, root, inode,
4127 							 drop_start,
4128 							 new_key.offset + datal,
4129 							 1);
4130 				if (ret) {
4131 					if (ret != -EOPNOTSUPP)
4132 						btrfs_abort_transaction(trans,
4133 									ret);
4134 					btrfs_end_transaction(trans);
4135 					goto out;
4136 				}
4137 
4138 				ret = btrfs_insert_empty_item(trans, root, path,
4139 							      &new_key, size);
4140 				if (ret) {
4141 					btrfs_abort_transaction(trans, ret);
4142 					btrfs_end_transaction(trans);
4143 					goto out;
4144 				}
4145 
4146 				leaf = path->nodes[0];
4147 				slot = path->slots[0];
4148 				write_extent_buffer(leaf, buf,
4149 					    btrfs_item_ptr_offset(leaf, slot),
4150 					    size);
4151 
4152 				extent = btrfs_item_ptr(leaf, slot,
4153 						struct btrfs_file_extent_item);
4154 
4155 				/* disko == 0 means it's a hole */
4156 				if (!disko)
4157 					datao = 0;
4158 
4159 				btrfs_set_file_extent_offset(leaf, extent,
4160 							     datao);
4161 				btrfs_set_file_extent_num_bytes(leaf, extent,
4162 								datal);
4163 
4164 				if (disko) {
4165 					inode_add_bytes(inode, datal);
4166 					ret = btrfs_inc_extent_ref(trans,
4167 							root,
4168 							disko, diskl, 0,
4169 							root->root_key.objectid,
4170 							btrfs_ino(BTRFS_I(inode)),
4171 							new_key.offset - datao);
4172 					if (ret) {
4173 						btrfs_abort_transaction(trans,
4174 									ret);
4175 						btrfs_end_transaction(trans);
4176 						goto out;
4177 
4178 					}
4179 				}
4180 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
4181 				u64 skip = 0;
4182 				u64 trim = 0;
4183 
4184 				if (off > key.offset) {
4185 					skip = off - key.offset;
4186 					new_key.offset += skip;
4187 				}
4188 
4189 				if (key.offset + datal > off + len)
4190 					trim = key.offset + datal - (off + len);
4191 
4192 				if (comp && (skip || trim)) {
4193 					ret = -EINVAL;
4194 					btrfs_end_transaction(trans);
4195 					goto out;
4196 				}
4197 				size -= skip + trim;
4198 				datal -= skip + trim;
4199 
4200 				ret = clone_copy_inline_extent(inode,
4201 							       trans, path,
4202 							       &new_key,
4203 							       drop_start,
4204 							       datal,
4205 							       skip, size, buf);
4206 				if (ret) {
4207 					if (ret != -EOPNOTSUPP)
4208 						btrfs_abort_transaction(trans,
4209 									ret);
4210 					btrfs_end_transaction(trans);
4211 					goto out;
4212 				}
4213 				leaf = path->nodes[0];
4214 				slot = path->slots[0];
4215 			}
4216 
4217 			/* If we have an implicit hole (NO_HOLES feature). */
4218 			if (drop_start < new_key.offset)
4219 				clone_update_extent_map(BTRFS_I(inode), trans,
4220 						NULL, drop_start,
4221 						new_key.offset - drop_start);
4222 
4223 			clone_update_extent_map(BTRFS_I(inode), trans,
4224 					path, 0, 0);
4225 
4226 			btrfs_mark_buffer_dirty(leaf);
4227 			btrfs_release_path(path);
4228 
4229 			last_dest_end = ALIGN(new_key.offset + datal,
4230 					      fs_info->sectorsize);
4231 			ret = clone_finish_inode_update(trans, inode,
4232 							last_dest_end,
4233 							destoff, olen,
4234 							no_time_update);
4235 			if (ret)
4236 				goto out;
4237 			if (new_key.offset + datal >= destoff + len)
4238 				break;
4239 		}
4240 		btrfs_release_path(path);
4241 		key.offset = next_key_min_offset;
4242 
4243 		if (fatal_signal_pending(current)) {
4244 			ret = -EINTR;
4245 			goto out;
4246 		}
4247 
4248 		cond_resched();
4249 	}
4250 	ret = 0;
4251 
4252 	if (last_dest_end < destoff + len) {
4253 		/*
4254 		 * We have an implicit hole (NO_HOLES feature is enabled) that
4255 		 * fully or partially overlaps our cloning range at its end.
4256 		 */
4257 		btrfs_release_path(path);
4258 
4259 		/*
4260 		 * 1 - remove extent(s)
4261 		 * 1 - inode update
4262 		 */
4263 		trans = btrfs_start_transaction(root, 2);
4264 		if (IS_ERR(trans)) {
4265 			ret = PTR_ERR(trans);
4266 			goto out;
4267 		}
4268 		ret = btrfs_drop_extents(trans, root, inode,
4269 					 last_dest_end, destoff + len, 1);
4270 		if (ret) {
4271 			if (ret != -EOPNOTSUPP)
4272 				btrfs_abort_transaction(trans, ret);
4273 			btrfs_end_transaction(trans);
4274 			goto out;
4275 		}
4276 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
4277 				last_dest_end,
4278 				destoff + len - last_dest_end);
4279 		ret = clone_finish_inode_update(trans, inode, destoff + len,
4280 						destoff, olen, no_time_update);
4281 	}
4282 
4283 out:
4284 	btrfs_free_path(path);
4285 	kvfree(buf);
4286 	return ret;
4287 }
4288 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)4289 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
4290 					u64 off, u64 olen, u64 destoff)
4291 {
4292 	struct inode *inode = file_inode(file);
4293 	struct inode *src = file_inode(file_src);
4294 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4295 	struct btrfs_root *root = BTRFS_I(inode)->root;
4296 	int ret;
4297 	u64 len = olen;
4298 	u64 bs = fs_info->sb->s_blocksize;
4299 	int same_inode = src == inode;
4300 
4301 	/*
4302 	 * TODO:
4303 	 * - split compressed inline extents.  annoying: we need to
4304 	 *   decompress into destination's address_space (the file offset
4305 	 *   may change, so source mapping won't do), then recompress (or
4306 	 *   otherwise reinsert) a subrange.
4307 	 *
4308 	 * - split destination inode's inline extents.  The inline extents can
4309 	 *   be either compressed or non-compressed.
4310 	 */
4311 
4312 	if (btrfs_root_readonly(root))
4313 		return -EROFS;
4314 
4315 	if (file_src->f_path.mnt != file->f_path.mnt ||
4316 	    src->i_sb != inode->i_sb)
4317 		return -EXDEV;
4318 
4319 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
4320 		return -EISDIR;
4321 
4322 	if (!same_inode) {
4323 		btrfs_double_inode_lock(src, inode);
4324 	} else {
4325 		inode_lock(src);
4326 	}
4327 
4328 	/* don't make the dst file partly checksummed */
4329 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
4330 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
4331 		ret = -EINVAL;
4332 		goto out_unlock;
4333 	}
4334 
4335 	/* determine range to clone */
4336 	ret = -EINVAL;
4337 	if (off + len > src->i_size || off + len < off)
4338 		goto out_unlock;
4339 	if (len == 0)
4340 		olen = len = src->i_size - off;
4341 	/*
4342 	 * If we extend to eof, continue to block boundary if and only if the
4343 	 * destination end offset matches the destination file's size, otherwise
4344 	 * we would be corrupting data by placing the eof block into the middle
4345 	 * of a file.
4346 	 */
4347 	if (off + len == src->i_size) {
4348 		if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
4349 			goto out_unlock;
4350 		len = ALIGN(src->i_size, bs) - off;
4351 	}
4352 
4353 	if (len == 0) {
4354 		ret = 0;
4355 		goto out_unlock;
4356 	}
4357 
4358 	/* verify the end result is block aligned */
4359 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4360 	    !IS_ALIGNED(destoff, bs))
4361 		goto out_unlock;
4362 
4363 	/* verify if ranges are overlapped within the same file */
4364 	if (same_inode) {
4365 		if (destoff + len > off && destoff < off + len)
4366 			goto out_unlock;
4367 	}
4368 
4369 	if (destoff > inode->i_size) {
4370 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4371 		if (ret)
4372 			goto out_unlock;
4373 	}
4374 
4375 	/*
4376 	 * Lock the target range too. Right after we replace the file extent
4377 	 * items in the fs tree (which now point to the cloned data), we might
4378 	 * have a worker replace them with extent items relative to a write
4379 	 * operation that was issued before this clone operation (i.e. confront
4380 	 * with inode.c:btrfs_finish_ordered_io).
4381 	 */
4382 	if (same_inode) {
4383 		u64 lock_start = min_t(u64, off, destoff);
4384 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4385 
4386 		ret = lock_extent_range(src, lock_start, lock_len, true);
4387 	} else {
4388 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4389 					       true);
4390 	}
4391 	ASSERT(ret == 0);
4392 	if (WARN_ON(ret)) {
4393 		/* ranges in the io trees already unlocked */
4394 		goto out_unlock;
4395 	}
4396 
4397 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4398 
4399 	if (same_inode) {
4400 		u64 lock_start = min_t(u64, off, destoff);
4401 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
4402 
4403 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4404 	} else {
4405 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
4406 	}
4407 	/*
4408 	 * Truncate page cache pages so that future reads will see the cloned
4409 	 * data immediately and not the previous data.
4410 	 */
4411 	truncate_inode_pages_range(&inode->i_data,
4412 				round_down(destoff, PAGE_SIZE),
4413 				round_up(destoff + len, PAGE_SIZE) - 1);
4414 out_unlock:
4415 	if (!same_inode)
4416 		btrfs_double_inode_unlock(src, inode);
4417 	else
4418 		inode_unlock(src);
4419 	return ret;
4420 }
4421 
btrfs_clone_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,u64 len)4422 int btrfs_clone_file_range(struct file *src_file, loff_t off,
4423 		struct file *dst_file, loff_t destoff, u64 len)
4424 {
4425 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
4426 }
4427 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4428 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4429 {
4430 	struct inode *inode = file_inode(file);
4431 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4432 	struct btrfs_root *root = BTRFS_I(inode)->root;
4433 	struct btrfs_root *new_root;
4434 	struct btrfs_dir_item *di;
4435 	struct btrfs_trans_handle *trans;
4436 	struct btrfs_path *path;
4437 	struct btrfs_key location;
4438 	struct btrfs_disk_key disk_key;
4439 	u64 objectid = 0;
4440 	u64 dir_id;
4441 	int ret;
4442 
4443 	if (!capable(CAP_SYS_ADMIN))
4444 		return -EPERM;
4445 
4446 	ret = mnt_want_write_file(file);
4447 	if (ret)
4448 		return ret;
4449 
4450 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4451 		ret = -EFAULT;
4452 		goto out;
4453 	}
4454 
4455 	if (!objectid)
4456 		objectid = BTRFS_FS_TREE_OBJECTID;
4457 
4458 	location.objectid = objectid;
4459 	location.type = BTRFS_ROOT_ITEM_KEY;
4460 	location.offset = (u64)-1;
4461 
4462 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4463 	if (IS_ERR(new_root)) {
4464 		ret = PTR_ERR(new_root);
4465 		goto out;
4466 	}
4467 	if (!is_fstree(new_root->objectid)) {
4468 		ret = -ENOENT;
4469 		goto out;
4470 	}
4471 
4472 	path = btrfs_alloc_path();
4473 	if (!path) {
4474 		ret = -ENOMEM;
4475 		goto out;
4476 	}
4477 	path->leave_spinning = 1;
4478 
4479 	trans = btrfs_start_transaction(root, 1);
4480 	if (IS_ERR(trans)) {
4481 		btrfs_free_path(path);
4482 		ret = PTR_ERR(trans);
4483 		goto out;
4484 	}
4485 
4486 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4487 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4488 				   dir_id, "default", 7, 1);
4489 	if (IS_ERR_OR_NULL(di)) {
4490 		btrfs_free_path(path);
4491 		btrfs_end_transaction(trans);
4492 		btrfs_err(fs_info,
4493 			  "Umm, you don't have the default diritem, this isn't going to work");
4494 		ret = -ENOENT;
4495 		goto out;
4496 	}
4497 
4498 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4499 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4500 	btrfs_mark_buffer_dirty(path->nodes[0]);
4501 	btrfs_free_path(path);
4502 
4503 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4504 	btrfs_end_transaction(trans);
4505 out:
4506 	mnt_drop_write_file(file);
4507 	return ret;
4508 }
4509 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4510 static void get_block_group_info(struct list_head *groups_list,
4511 				 struct btrfs_ioctl_space_info *space)
4512 {
4513 	struct btrfs_block_group_cache *block_group;
4514 
4515 	space->total_bytes = 0;
4516 	space->used_bytes = 0;
4517 	space->flags = 0;
4518 	list_for_each_entry(block_group, groups_list, list) {
4519 		space->flags = block_group->flags;
4520 		space->total_bytes += block_group->key.offset;
4521 		space->used_bytes +=
4522 			btrfs_block_group_used(&block_group->item);
4523 	}
4524 }
4525 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4526 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4527 				   void __user *arg)
4528 {
4529 	struct btrfs_ioctl_space_args space_args;
4530 	struct btrfs_ioctl_space_info space;
4531 	struct btrfs_ioctl_space_info *dest;
4532 	struct btrfs_ioctl_space_info *dest_orig;
4533 	struct btrfs_ioctl_space_info __user *user_dest;
4534 	struct btrfs_space_info *info;
4535 	static const u64 types[] = {
4536 		BTRFS_BLOCK_GROUP_DATA,
4537 		BTRFS_BLOCK_GROUP_SYSTEM,
4538 		BTRFS_BLOCK_GROUP_METADATA,
4539 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4540 	};
4541 	int num_types = 4;
4542 	int alloc_size;
4543 	int ret = 0;
4544 	u64 slot_count = 0;
4545 	int i, c;
4546 
4547 	if (copy_from_user(&space_args,
4548 			   (struct btrfs_ioctl_space_args __user *)arg,
4549 			   sizeof(space_args)))
4550 		return -EFAULT;
4551 
4552 	for (i = 0; i < num_types; i++) {
4553 		struct btrfs_space_info *tmp;
4554 
4555 		info = NULL;
4556 		rcu_read_lock();
4557 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4558 					list) {
4559 			if (tmp->flags == types[i]) {
4560 				info = tmp;
4561 				break;
4562 			}
4563 		}
4564 		rcu_read_unlock();
4565 
4566 		if (!info)
4567 			continue;
4568 
4569 		down_read(&info->groups_sem);
4570 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4571 			if (!list_empty(&info->block_groups[c]))
4572 				slot_count++;
4573 		}
4574 		up_read(&info->groups_sem);
4575 	}
4576 
4577 	/*
4578 	 * Global block reserve, exported as a space_info
4579 	 */
4580 	slot_count++;
4581 
4582 	/* space_slots == 0 means they are asking for a count */
4583 	if (space_args.space_slots == 0) {
4584 		space_args.total_spaces = slot_count;
4585 		goto out;
4586 	}
4587 
4588 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4589 
4590 	alloc_size = sizeof(*dest) * slot_count;
4591 
4592 	/* we generally have at most 6 or so space infos, one for each raid
4593 	 * level.  So, a whole page should be more than enough for everyone
4594 	 */
4595 	if (alloc_size > PAGE_SIZE)
4596 		return -ENOMEM;
4597 
4598 	space_args.total_spaces = 0;
4599 	dest = kmalloc(alloc_size, GFP_KERNEL);
4600 	if (!dest)
4601 		return -ENOMEM;
4602 	dest_orig = dest;
4603 
4604 	/* now we have a buffer to copy into */
4605 	for (i = 0; i < num_types; i++) {
4606 		struct btrfs_space_info *tmp;
4607 
4608 		if (!slot_count)
4609 			break;
4610 
4611 		info = NULL;
4612 		rcu_read_lock();
4613 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4614 					list) {
4615 			if (tmp->flags == types[i]) {
4616 				info = tmp;
4617 				break;
4618 			}
4619 		}
4620 		rcu_read_unlock();
4621 
4622 		if (!info)
4623 			continue;
4624 		down_read(&info->groups_sem);
4625 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4626 			if (!list_empty(&info->block_groups[c])) {
4627 				get_block_group_info(&info->block_groups[c],
4628 						     &space);
4629 				memcpy(dest, &space, sizeof(space));
4630 				dest++;
4631 				space_args.total_spaces++;
4632 				slot_count--;
4633 			}
4634 			if (!slot_count)
4635 				break;
4636 		}
4637 		up_read(&info->groups_sem);
4638 	}
4639 
4640 	/*
4641 	 * Add global block reserve
4642 	 */
4643 	if (slot_count) {
4644 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4645 
4646 		spin_lock(&block_rsv->lock);
4647 		space.total_bytes = block_rsv->size;
4648 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4649 		spin_unlock(&block_rsv->lock);
4650 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4651 		memcpy(dest, &space, sizeof(space));
4652 		space_args.total_spaces++;
4653 	}
4654 
4655 	user_dest = (struct btrfs_ioctl_space_info __user *)
4656 		(arg + sizeof(struct btrfs_ioctl_space_args));
4657 
4658 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4659 		ret = -EFAULT;
4660 
4661 	kfree(dest_orig);
4662 out:
4663 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4664 		ret = -EFAULT;
4665 
4666 	return ret;
4667 }
4668 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4669 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4670 					    void __user *argp)
4671 {
4672 	struct btrfs_trans_handle *trans;
4673 	u64 transid;
4674 	int ret;
4675 
4676 	trans = btrfs_attach_transaction_barrier(root);
4677 	if (IS_ERR(trans)) {
4678 		if (PTR_ERR(trans) != -ENOENT)
4679 			return PTR_ERR(trans);
4680 
4681 		/* No running transaction, don't bother */
4682 		transid = root->fs_info->last_trans_committed;
4683 		goto out;
4684 	}
4685 	transid = trans->transid;
4686 	ret = btrfs_commit_transaction_async(trans, 0);
4687 	if (ret) {
4688 		btrfs_end_transaction(trans);
4689 		return ret;
4690 	}
4691 out:
4692 	if (argp)
4693 		if (copy_to_user(argp, &transid, sizeof(transid)))
4694 			return -EFAULT;
4695 	return 0;
4696 }
4697 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4698 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4699 					   void __user *argp)
4700 {
4701 	u64 transid;
4702 
4703 	if (argp) {
4704 		if (copy_from_user(&transid, argp, sizeof(transid)))
4705 			return -EFAULT;
4706 	} else {
4707 		transid = 0;  /* current trans */
4708 	}
4709 	return btrfs_wait_for_commit(fs_info, transid);
4710 }
4711 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4712 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4713 {
4714 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4715 	struct btrfs_ioctl_scrub_args *sa;
4716 	int ret;
4717 
4718 	if (!capable(CAP_SYS_ADMIN))
4719 		return -EPERM;
4720 
4721 	sa = memdup_user(arg, sizeof(*sa));
4722 	if (IS_ERR(sa))
4723 		return PTR_ERR(sa);
4724 
4725 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
4726 		ret = -EOPNOTSUPP;
4727 		goto out;
4728 	}
4729 
4730 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4731 		ret = mnt_want_write_file(file);
4732 		if (ret)
4733 			goto out;
4734 	}
4735 
4736 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4737 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4738 			      0);
4739 
4740 	if (copy_to_user(arg, sa, sizeof(*sa)))
4741 		ret = -EFAULT;
4742 
4743 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4744 		mnt_drop_write_file(file);
4745 out:
4746 	kfree(sa);
4747 	return ret;
4748 }
4749 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4750 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4751 {
4752 	if (!capable(CAP_SYS_ADMIN))
4753 		return -EPERM;
4754 
4755 	return btrfs_scrub_cancel(fs_info);
4756 }
4757 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4758 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4759 				       void __user *arg)
4760 {
4761 	struct btrfs_ioctl_scrub_args *sa;
4762 	int ret;
4763 
4764 	if (!capable(CAP_SYS_ADMIN))
4765 		return -EPERM;
4766 
4767 	sa = memdup_user(arg, sizeof(*sa));
4768 	if (IS_ERR(sa))
4769 		return PTR_ERR(sa);
4770 
4771 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4772 
4773 	if (copy_to_user(arg, sa, sizeof(*sa)))
4774 		ret = -EFAULT;
4775 
4776 	kfree(sa);
4777 	return ret;
4778 }
4779 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4780 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4781 				      void __user *arg)
4782 {
4783 	struct btrfs_ioctl_get_dev_stats *sa;
4784 	int ret;
4785 
4786 	sa = memdup_user(arg, sizeof(*sa));
4787 	if (IS_ERR(sa))
4788 		return PTR_ERR(sa);
4789 
4790 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4791 		kfree(sa);
4792 		return -EPERM;
4793 	}
4794 
4795 	ret = btrfs_get_dev_stats(fs_info, sa);
4796 
4797 	if (copy_to_user(arg, sa, sizeof(*sa)))
4798 		ret = -EFAULT;
4799 
4800 	kfree(sa);
4801 	return ret;
4802 }
4803 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4804 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4805 				    void __user *arg)
4806 {
4807 	struct btrfs_ioctl_dev_replace_args *p;
4808 	int ret;
4809 
4810 	if (!capable(CAP_SYS_ADMIN))
4811 		return -EPERM;
4812 
4813 	p = memdup_user(arg, sizeof(*p));
4814 	if (IS_ERR(p))
4815 		return PTR_ERR(p);
4816 
4817 	switch (p->cmd) {
4818 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4819 		if (sb_rdonly(fs_info->sb)) {
4820 			ret = -EROFS;
4821 			goto out;
4822 		}
4823 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4824 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4825 		} else {
4826 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4827 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4828 		}
4829 		break;
4830 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4831 		btrfs_dev_replace_status(fs_info, p);
4832 		ret = 0;
4833 		break;
4834 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4835 		p->result = btrfs_dev_replace_cancel(fs_info);
4836 		ret = 0;
4837 		break;
4838 	default:
4839 		ret = -EINVAL;
4840 		break;
4841 	}
4842 
4843 	if (copy_to_user(arg, p, sizeof(*p)))
4844 		ret = -EFAULT;
4845 out:
4846 	kfree(p);
4847 	return ret;
4848 }
4849 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4850 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4851 {
4852 	int ret = 0;
4853 	int i;
4854 	u64 rel_ptr;
4855 	int size;
4856 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4857 	struct inode_fs_paths *ipath = NULL;
4858 	struct btrfs_path *path;
4859 
4860 	if (!capable(CAP_DAC_READ_SEARCH))
4861 		return -EPERM;
4862 
4863 	path = btrfs_alloc_path();
4864 	if (!path) {
4865 		ret = -ENOMEM;
4866 		goto out;
4867 	}
4868 
4869 	ipa = memdup_user(arg, sizeof(*ipa));
4870 	if (IS_ERR(ipa)) {
4871 		ret = PTR_ERR(ipa);
4872 		ipa = NULL;
4873 		goto out;
4874 	}
4875 
4876 	size = min_t(u32, ipa->size, 4096);
4877 	ipath = init_ipath(size, root, path);
4878 	if (IS_ERR(ipath)) {
4879 		ret = PTR_ERR(ipath);
4880 		ipath = NULL;
4881 		goto out;
4882 	}
4883 
4884 	ret = paths_from_inode(ipa->inum, ipath);
4885 	if (ret < 0)
4886 		goto out;
4887 
4888 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4889 		rel_ptr = ipath->fspath->val[i] -
4890 			  (u64)(unsigned long)ipath->fspath->val;
4891 		ipath->fspath->val[i] = rel_ptr;
4892 	}
4893 
4894 	btrfs_free_path(path);
4895 	path = NULL;
4896 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4897 			   ipath->fspath, size);
4898 	if (ret) {
4899 		ret = -EFAULT;
4900 		goto out;
4901 	}
4902 
4903 out:
4904 	btrfs_free_path(path);
4905 	free_ipath(ipath);
4906 	kfree(ipa);
4907 
4908 	return ret;
4909 }
4910 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4911 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4912 {
4913 	struct btrfs_data_container *inodes = ctx;
4914 	const size_t c = 3 * sizeof(u64);
4915 
4916 	if (inodes->bytes_left >= c) {
4917 		inodes->bytes_left -= c;
4918 		inodes->val[inodes->elem_cnt] = inum;
4919 		inodes->val[inodes->elem_cnt + 1] = offset;
4920 		inodes->val[inodes->elem_cnt + 2] = root;
4921 		inodes->elem_cnt += 3;
4922 	} else {
4923 		inodes->bytes_missing += c - inodes->bytes_left;
4924 		inodes->bytes_left = 0;
4925 		inodes->elem_missed += 3;
4926 	}
4927 
4928 	return 0;
4929 }
4930 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4931 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4932 					void __user *arg, int version)
4933 {
4934 	int ret = 0;
4935 	int size;
4936 	struct btrfs_ioctl_logical_ino_args *loi;
4937 	struct btrfs_data_container *inodes = NULL;
4938 	struct btrfs_path *path = NULL;
4939 	bool ignore_offset;
4940 
4941 	if (!capable(CAP_SYS_ADMIN))
4942 		return -EPERM;
4943 
4944 	loi = memdup_user(arg, sizeof(*loi));
4945 	if (IS_ERR(loi))
4946 		return PTR_ERR(loi);
4947 
4948 	if (version == 1) {
4949 		ignore_offset = false;
4950 		size = min_t(u32, loi->size, SZ_64K);
4951 	} else {
4952 		/* All reserved bits must be 0 for now */
4953 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4954 			ret = -EINVAL;
4955 			goto out_loi;
4956 		}
4957 		/* Only accept flags we have defined so far */
4958 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4959 			ret = -EINVAL;
4960 			goto out_loi;
4961 		}
4962 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4963 		size = min_t(u32, loi->size, SZ_16M);
4964 	}
4965 
4966 	inodes = init_data_container(size);
4967 	if (IS_ERR(inodes)) {
4968 		ret = PTR_ERR(inodes);
4969 		goto out_loi;
4970 	}
4971 
4972 	path = btrfs_alloc_path();
4973 	if (!path) {
4974 		ret = -ENOMEM;
4975 		goto out;
4976 	}
4977 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4978 					  build_ino_list, inodes, ignore_offset);
4979 	btrfs_free_path(path);
4980 	if (ret == -EINVAL)
4981 		ret = -ENOENT;
4982 	if (ret < 0)
4983 		goto out;
4984 
4985 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4986 			   size);
4987 	if (ret)
4988 		ret = -EFAULT;
4989 
4990 out:
4991 	kvfree(inodes);
4992 out_loi:
4993 	kfree(loi);
4994 
4995 	return ret;
4996 }
4997 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4998 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4999 			       struct btrfs_ioctl_balance_args *bargs)
5000 {
5001 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
5002 
5003 	bargs->flags = bctl->flags;
5004 
5005 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
5006 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
5007 	if (atomic_read(&fs_info->balance_pause_req))
5008 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
5009 	if (atomic_read(&fs_info->balance_cancel_req))
5010 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
5011 
5012 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
5013 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
5014 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
5015 
5016 	spin_lock(&fs_info->balance_lock);
5017 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
5018 	spin_unlock(&fs_info->balance_lock);
5019 }
5020 
btrfs_ioctl_balance(struct file * file,void __user * arg)5021 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
5022 {
5023 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5024 	struct btrfs_fs_info *fs_info = root->fs_info;
5025 	struct btrfs_ioctl_balance_args *bargs;
5026 	struct btrfs_balance_control *bctl;
5027 	bool need_unlock; /* for mut. excl. ops lock */
5028 	int ret;
5029 
5030 	if (!capable(CAP_SYS_ADMIN))
5031 		return -EPERM;
5032 
5033 	ret = mnt_want_write_file(file);
5034 	if (ret)
5035 		return ret;
5036 
5037 again:
5038 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
5039 		mutex_lock(&fs_info->balance_mutex);
5040 		need_unlock = true;
5041 		goto locked;
5042 	}
5043 
5044 	/*
5045 	 * mut. excl. ops lock is locked.  Three possibilities:
5046 	 *   (1) some other op is running
5047 	 *   (2) balance is running
5048 	 *   (3) balance is paused -- special case (think resume)
5049 	 */
5050 	mutex_lock(&fs_info->balance_mutex);
5051 	if (fs_info->balance_ctl) {
5052 		/* this is either (2) or (3) */
5053 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5054 			mutex_unlock(&fs_info->balance_mutex);
5055 			/*
5056 			 * Lock released to allow other waiters to continue,
5057 			 * we'll reexamine the status again.
5058 			 */
5059 			mutex_lock(&fs_info->balance_mutex);
5060 
5061 			if (fs_info->balance_ctl &&
5062 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5063 				/* this is (3) */
5064 				need_unlock = false;
5065 				goto locked;
5066 			}
5067 
5068 			mutex_unlock(&fs_info->balance_mutex);
5069 			goto again;
5070 		} else {
5071 			/* this is (2) */
5072 			mutex_unlock(&fs_info->balance_mutex);
5073 			ret = -EINPROGRESS;
5074 			goto out;
5075 		}
5076 	} else {
5077 		/* this is (1) */
5078 		mutex_unlock(&fs_info->balance_mutex);
5079 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
5080 		goto out;
5081 	}
5082 
5083 locked:
5084 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
5085 
5086 	if (arg) {
5087 		bargs = memdup_user(arg, sizeof(*bargs));
5088 		if (IS_ERR(bargs)) {
5089 			ret = PTR_ERR(bargs);
5090 			goto out_unlock;
5091 		}
5092 
5093 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
5094 			if (!fs_info->balance_ctl) {
5095 				ret = -ENOTCONN;
5096 				goto out_bargs;
5097 			}
5098 
5099 			bctl = fs_info->balance_ctl;
5100 			spin_lock(&fs_info->balance_lock);
5101 			bctl->flags |= BTRFS_BALANCE_RESUME;
5102 			spin_unlock(&fs_info->balance_lock);
5103 
5104 			goto do_balance;
5105 		}
5106 	} else {
5107 		bargs = NULL;
5108 	}
5109 
5110 	if (fs_info->balance_ctl) {
5111 		ret = -EINPROGRESS;
5112 		goto out_bargs;
5113 	}
5114 
5115 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
5116 	if (!bctl) {
5117 		ret = -ENOMEM;
5118 		goto out_bargs;
5119 	}
5120 
5121 	if (arg) {
5122 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
5123 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
5124 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
5125 
5126 		bctl->flags = bargs->flags;
5127 	} else {
5128 		/* balance everything - no filters */
5129 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
5130 	}
5131 
5132 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
5133 		ret = -EINVAL;
5134 		goto out_bctl;
5135 	}
5136 
5137 do_balance:
5138 	/*
5139 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
5140 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
5141 	 * restriper was paused all the way until unmount, in free_fs_info.
5142 	 * The flag should be cleared after reset_balance_state.
5143 	 */
5144 	need_unlock = false;
5145 
5146 	ret = btrfs_balance(fs_info, bctl, bargs);
5147 	bctl = NULL;
5148 
5149 	if (arg) {
5150 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
5151 			ret = -EFAULT;
5152 	}
5153 
5154 out_bctl:
5155 	kfree(bctl);
5156 out_bargs:
5157 	kfree(bargs);
5158 out_unlock:
5159 	mutex_unlock(&fs_info->balance_mutex);
5160 	if (need_unlock)
5161 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
5162 out:
5163 	mnt_drop_write_file(file);
5164 	return ret;
5165 }
5166 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)5167 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
5168 {
5169 	if (!capable(CAP_SYS_ADMIN))
5170 		return -EPERM;
5171 
5172 	switch (cmd) {
5173 	case BTRFS_BALANCE_CTL_PAUSE:
5174 		return btrfs_pause_balance(fs_info);
5175 	case BTRFS_BALANCE_CTL_CANCEL:
5176 		return btrfs_cancel_balance(fs_info);
5177 	}
5178 
5179 	return -EINVAL;
5180 }
5181 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)5182 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
5183 					 void __user *arg)
5184 {
5185 	struct btrfs_ioctl_balance_args *bargs;
5186 	int ret = 0;
5187 
5188 	if (!capable(CAP_SYS_ADMIN))
5189 		return -EPERM;
5190 
5191 	mutex_lock(&fs_info->balance_mutex);
5192 	if (!fs_info->balance_ctl) {
5193 		ret = -ENOTCONN;
5194 		goto out;
5195 	}
5196 
5197 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
5198 	if (!bargs) {
5199 		ret = -ENOMEM;
5200 		goto out;
5201 	}
5202 
5203 	btrfs_update_ioctl_balance_args(fs_info, bargs);
5204 
5205 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
5206 		ret = -EFAULT;
5207 
5208 	kfree(bargs);
5209 out:
5210 	mutex_unlock(&fs_info->balance_mutex);
5211 	return ret;
5212 }
5213 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)5214 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
5215 {
5216 	struct inode *inode = file_inode(file);
5217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5218 	struct btrfs_ioctl_quota_ctl_args *sa;
5219 	int ret;
5220 
5221 	if (!capable(CAP_SYS_ADMIN))
5222 		return -EPERM;
5223 
5224 	ret = mnt_want_write_file(file);
5225 	if (ret)
5226 		return ret;
5227 
5228 	sa = memdup_user(arg, sizeof(*sa));
5229 	if (IS_ERR(sa)) {
5230 		ret = PTR_ERR(sa);
5231 		goto drop_write;
5232 	}
5233 
5234 	down_write(&fs_info->subvol_sem);
5235 
5236 	switch (sa->cmd) {
5237 	case BTRFS_QUOTA_CTL_ENABLE:
5238 		ret = btrfs_quota_enable(fs_info);
5239 		break;
5240 	case BTRFS_QUOTA_CTL_DISABLE:
5241 		ret = btrfs_quota_disable(fs_info);
5242 		break;
5243 	default:
5244 		ret = -EINVAL;
5245 		break;
5246 	}
5247 
5248 	kfree(sa);
5249 	up_write(&fs_info->subvol_sem);
5250 drop_write:
5251 	mnt_drop_write_file(file);
5252 	return ret;
5253 }
5254 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)5255 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
5256 {
5257 	struct inode *inode = file_inode(file);
5258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5259 	struct btrfs_root *root = BTRFS_I(inode)->root;
5260 	struct btrfs_ioctl_qgroup_assign_args *sa;
5261 	struct btrfs_trans_handle *trans;
5262 	int ret;
5263 	int err;
5264 
5265 	if (!capable(CAP_SYS_ADMIN))
5266 		return -EPERM;
5267 
5268 	ret = mnt_want_write_file(file);
5269 	if (ret)
5270 		return ret;
5271 
5272 	sa = memdup_user(arg, sizeof(*sa));
5273 	if (IS_ERR(sa)) {
5274 		ret = PTR_ERR(sa);
5275 		goto drop_write;
5276 	}
5277 
5278 	trans = btrfs_join_transaction(root);
5279 	if (IS_ERR(trans)) {
5280 		ret = PTR_ERR(trans);
5281 		goto out;
5282 	}
5283 
5284 	if (sa->assign) {
5285 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
5286 	} else {
5287 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
5288 	}
5289 
5290 	/* update qgroup status and info */
5291 	err = btrfs_run_qgroups(trans);
5292 	if (err < 0)
5293 		btrfs_handle_fs_error(fs_info, err,
5294 				      "failed to update qgroup status and info");
5295 	err = btrfs_end_transaction(trans);
5296 	if (err && !ret)
5297 		ret = err;
5298 
5299 out:
5300 	kfree(sa);
5301 drop_write:
5302 	mnt_drop_write_file(file);
5303 	return ret;
5304 }
5305 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)5306 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5307 {
5308 	struct inode *inode = file_inode(file);
5309 	struct btrfs_root *root = BTRFS_I(inode)->root;
5310 	struct btrfs_ioctl_qgroup_create_args *sa;
5311 	struct btrfs_trans_handle *trans;
5312 	int ret;
5313 	int err;
5314 
5315 	if (!capable(CAP_SYS_ADMIN))
5316 		return -EPERM;
5317 
5318 	ret = mnt_want_write_file(file);
5319 	if (ret)
5320 		return ret;
5321 
5322 	sa = memdup_user(arg, sizeof(*sa));
5323 	if (IS_ERR(sa)) {
5324 		ret = PTR_ERR(sa);
5325 		goto drop_write;
5326 	}
5327 
5328 	if (!sa->qgroupid) {
5329 		ret = -EINVAL;
5330 		goto out;
5331 	}
5332 
5333 	trans = btrfs_join_transaction(root);
5334 	if (IS_ERR(trans)) {
5335 		ret = PTR_ERR(trans);
5336 		goto out;
5337 	}
5338 
5339 	if (sa->create) {
5340 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
5341 	} else {
5342 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
5343 	}
5344 
5345 	err = btrfs_end_transaction(trans);
5346 	if (err && !ret)
5347 		ret = err;
5348 
5349 out:
5350 	kfree(sa);
5351 drop_write:
5352 	mnt_drop_write_file(file);
5353 	return ret;
5354 }
5355 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5356 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5357 {
5358 	struct inode *inode = file_inode(file);
5359 	struct btrfs_root *root = BTRFS_I(inode)->root;
5360 	struct btrfs_ioctl_qgroup_limit_args *sa;
5361 	struct btrfs_trans_handle *trans;
5362 	int ret;
5363 	int err;
5364 	u64 qgroupid;
5365 
5366 	if (!capable(CAP_SYS_ADMIN))
5367 		return -EPERM;
5368 
5369 	ret = mnt_want_write_file(file);
5370 	if (ret)
5371 		return ret;
5372 
5373 	sa = memdup_user(arg, sizeof(*sa));
5374 	if (IS_ERR(sa)) {
5375 		ret = PTR_ERR(sa);
5376 		goto drop_write;
5377 	}
5378 
5379 	trans = btrfs_join_transaction(root);
5380 	if (IS_ERR(trans)) {
5381 		ret = PTR_ERR(trans);
5382 		goto out;
5383 	}
5384 
5385 	qgroupid = sa->qgroupid;
5386 	if (!qgroupid) {
5387 		/* take the current subvol as qgroup */
5388 		qgroupid = root->root_key.objectid;
5389 	}
5390 
5391 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5392 
5393 	err = btrfs_end_transaction(trans);
5394 	if (err && !ret)
5395 		ret = err;
5396 
5397 out:
5398 	kfree(sa);
5399 drop_write:
5400 	mnt_drop_write_file(file);
5401 	return ret;
5402 }
5403 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5404 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5405 {
5406 	struct inode *inode = file_inode(file);
5407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5408 	struct btrfs_ioctl_quota_rescan_args *qsa;
5409 	int ret;
5410 
5411 	if (!capable(CAP_SYS_ADMIN))
5412 		return -EPERM;
5413 
5414 	ret = mnt_want_write_file(file);
5415 	if (ret)
5416 		return ret;
5417 
5418 	qsa = memdup_user(arg, sizeof(*qsa));
5419 	if (IS_ERR(qsa)) {
5420 		ret = PTR_ERR(qsa);
5421 		goto drop_write;
5422 	}
5423 
5424 	if (qsa->flags) {
5425 		ret = -EINVAL;
5426 		goto out;
5427 	}
5428 
5429 	ret = btrfs_qgroup_rescan(fs_info);
5430 
5431 out:
5432 	kfree(qsa);
5433 drop_write:
5434 	mnt_drop_write_file(file);
5435 	return ret;
5436 }
5437 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5438 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5439 {
5440 	struct inode *inode = file_inode(file);
5441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5442 	struct btrfs_ioctl_quota_rescan_args *qsa;
5443 	int ret = 0;
5444 
5445 	if (!capable(CAP_SYS_ADMIN))
5446 		return -EPERM;
5447 
5448 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5449 	if (!qsa)
5450 		return -ENOMEM;
5451 
5452 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5453 		qsa->flags = 1;
5454 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5455 	}
5456 
5457 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5458 		ret = -EFAULT;
5459 
5460 	kfree(qsa);
5461 	return ret;
5462 }
5463 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5464 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5465 {
5466 	struct inode *inode = file_inode(file);
5467 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5468 
5469 	if (!capable(CAP_SYS_ADMIN))
5470 		return -EPERM;
5471 
5472 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5473 }
5474 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5475 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5476 					    struct btrfs_ioctl_received_subvol_args *sa)
5477 {
5478 	struct inode *inode = file_inode(file);
5479 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5480 	struct btrfs_root *root = BTRFS_I(inode)->root;
5481 	struct btrfs_root_item *root_item = &root->root_item;
5482 	struct btrfs_trans_handle *trans;
5483 	struct timespec64 ct = current_time(inode);
5484 	int ret = 0;
5485 	int received_uuid_changed;
5486 
5487 	if (!inode_owner_or_capable(inode))
5488 		return -EPERM;
5489 
5490 	ret = mnt_want_write_file(file);
5491 	if (ret < 0)
5492 		return ret;
5493 
5494 	down_write(&fs_info->subvol_sem);
5495 
5496 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5497 		ret = -EINVAL;
5498 		goto out;
5499 	}
5500 
5501 	if (btrfs_root_readonly(root)) {
5502 		ret = -EROFS;
5503 		goto out;
5504 	}
5505 
5506 	/*
5507 	 * 1 - root item
5508 	 * 2 - uuid items (received uuid + subvol uuid)
5509 	 */
5510 	trans = btrfs_start_transaction(root, 3);
5511 	if (IS_ERR(trans)) {
5512 		ret = PTR_ERR(trans);
5513 		trans = NULL;
5514 		goto out;
5515 	}
5516 
5517 	sa->rtransid = trans->transid;
5518 	sa->rtime.sec = ct.tv_sec;
5519 	sa->rtime.nsec = ct.tv_nsec;
5520 
5521 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5522 				       BTRFS_UUID_SIZE);
5523 	if (received_uuid_changed &&
5524 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5525 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5526 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5527 					  root->root_key.objectid);
5528 		if (ret && ret != -ENOENT) {
5529 		        btrfs_abort_transaction(trans, ret);
5530 		        btrfs_end_transaction(trans);
5531 		        goto out;
5532 		}
5533 	}
5534 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5535 	btrfs_set_root_stransid(root_item, sa->stransid);
5536 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5537 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5538 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5539 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5540 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5541 
5542 	ret = btrfs_update_root(trans, fs_info->tree_root,
5543 				&root->root_key, &root->root_item);
5544 	if (ret < 0) {
5545 		btrfs_end_transaction(trans);
5546 		goto out;
5547 	}
5548 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5549 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5550 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5551 					  root->root_key.objectid);
5552 		if (ret < 0 && ret != -EEXIST) {
5553 			btrfs_abort_transaction(trans, ret);
5554 			btrfs_end_transaction(trans);
5555 			goto out;
5556 		}
5557 	}
5558 	ret = btrfs_commit_transaction(trans);
5559 out:
5560 	up_write(&fs_info->subvol_sem);
5561 	mnt_drop_write_file(file);
5562 	return ret;
5563 }
5564 
5565 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5566 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5567 						void __user *arg)
5568 {
5569 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5570 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5571 	int ret = 0;
5572 
5573 	args32 = memdup_user(arg, sizeof(*args32));
5574 	if (IS_ERR(args32))
5575 		return PTR_ERR(args32);
5576 
5577 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5578 	if (!args64) {
5579 		ret = -ENOMEM;
5580 		goto out;
5581 	}
5582 
5583 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5584 	args64->stransid = args32->stransid;
5585 	args64->rtransid = args32->rtransid;
5586 	args64->stime.sec = args32->stime.sec;
5587 	args64->stime.nsec = args32->stime.nsec;
5588 	args64->rtime.sec = args32->rtime.sec;
5589 	args64->rtime.nsec = args32->rtime.nsec;
5590 	args64->flags = args32->flags;
5591 
5592 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5593 	if (ret)
5594 		goto out;
5595 
5596 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5597 	args32->stransid = args64->stransid;
5598 	args32->rtransid = args64->rtransid;
5599 	args32->stime.sec = args64->stime.sec;
5600 	args32->stime.nsec = args64->stime.nsec;
5601 	args32->rtime.sec = args64->rtime.sec;
5602 	args32->rtime.nsec = args64->rtime.nsec;
5603 	args32->flags = args64->flags;
5604 
5605 	ret = copy_to_user(arg, args32, sizeof(*args32));
5606 	if (ret)
5607 		ret = -EFAULT;
5608 
5609 out:
5610 	kfree(args32);
5611 	kfree(args64);
5612 	return ret;
5613 }
5614 #endif
5615 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5616 static long btrfs_ioctl_set_received_subvol(struct file *file,
5617 					    void __user *arg)
5618 {
5619 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5620 	int ret = 0;
5621 
5622 	sa = memdup_user(arg, sizeof(*sa));
5623 	if (IS_ERR(sa))
5624 		return PTR_ERR(sa);
5625 
5626 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5627 
5628 	if (ret)
5629 		goto out;
5630 
5631 	ret = copy_to_user(arg, sa, sizeof(*sa));
5632 	if (ret)
5633 		ret = -EFAULT;
5634 
5635 out:
5636 	kfree(sa);
5637 	return ret;
5638 }
5639 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5640 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5641 {
5642 	struct inode *inode = file_inode(file);
5643 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5644 	size_t len;
5645 	int ret;
5646 	char label[BTRFS_LABEL_SIZE];
5647 
5648 	spin_lock(&fs_info->super_lock);
5649 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5650 	spin_unlock(&fs_info->super_lock);
5651 
5652 	len = strnlen(label, BTRFS_LABEL_SIZE);
5653 
5654 	if (len == BTRFS_LABEL_SIZE) {
5655 		btrfs_warn(fs_info,
5656 			   "label is too long, return the first %zu bytes",
5657 			   --len);
5658 	}
5659 
5660 	ret = copy_to_user(arg, label, len);
5661 
5662 	return ret ? -EFAULT : 0;
5663 }
5664 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5665 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5666 {
5667 	struct inode *inode = file_inode(file);
5668 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5669 	struct btrfs_root *root = BTRFS_I(inode)->root;
5670 	struct btrfs_super_block *super_block = fs_info->super_copy;
5671 	struct btrfs_trans_handle *trans;
5672 	char label[BTRFS_LABEL_SIZE];
5673 	int ret;
5674 
5675 	if (!capable(CAP_SYS_ADMIN))
5676 		return -EPERM;
5677 
5678 	if (copy_from_user(label, arg, sizeof(label)))
5679 		return -EFAULT;
5680 
5681 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5682 		btrfs_err(fs_info,
5683 			  "unable to set label with more than %d bytes",
5684 			  BTRFS_LABEL_SIZE - 1);
5685 		return -EINVAL;
5686 	}
5687 
5688 	ret = mnt_want_write_file(file);
5689 	if (ret)
5690 		return ret;
5691 
5692 	trans = btrfs_start_transaction(root, 0);
5693 	if (IS_ERR(trans)) {
5694 		ret = PTR_ERR(trans);
5695 		goto out_unlock;
5696 	}
5697 
5698 	spin_lock(&fs_info->super_lock);
5699 	strcpy(super_block->label, label);
5700 	spin_unlock(&fs_info->super_lock);
5701 	ret = btrfs_commit_transaction(trans);
5702 
5703 out_unlock:
5704 	mnt_drop_write_file(file);
5705 	return ret;
5706 }
5707 
5708 #define INIT_FEATURE_FLAGS(suffix) \
5709 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5710 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5711 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5712 
btrfs_ioctl_get_supported_features(void __user * arg)5713 int btrfs_ioctl_get_supported_features(void __user *arg)
5714 {
5715 	static const struct btrfs_ioctl_feature_flags features[3] = {
5716 		INIT_FEATURE_FLAGS(SUPP),
5717 		INIT_FEATURE_FLAGS(SAFE_SET),
5718 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5719 	};
5720 
5721 	if (copy_to_user(arg, &features, sizeof(features)))
5722 		return -EFAULT;
5723 
5724 	return 0;
5725 }
5726 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5727 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5728 {
5729 	struct inode *inode = file_inode(file);
5730 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5731 	struct btrfs_super_block *super_block = fs_info->super_copy;
5732 	struct btrfs_ioctl_feature_flags features;
5733 
5734 	features.compat_flags = btrfs_super_compat_flags(super_block);
5735 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5736 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5737 
5738 	if (copy_to_user(arg, &features, sizeof(features)))
5739 		return -EFAULT;
5740 
5741 	return 0;
5742 }
5743 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5744 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5745 			      enum btrfs_feature_set set,
5746 			      u64 change_mask, u64 flags, u64 supported_flags,
5747 			      u64 safe_set, u64 safe_clear)
5748 {
5749 	const char *type = btrfs_feature_set_names[set];
5750 	char *names;
5751 	u64 disallowed, unsupported;
5752 	u64 set_mask = flags & change_mask;
5753 	u64 clear_mask = ~flags & change_mask;
5754 
5755 	unsupported = set_mask & ~supported_flags;
5756 	if (unsupported) {
5757 		names = btrfs_printable_features(set, unsupported);
5758 		if (names) {
5759 			btrfs_warn(fs_info,
5760 				   "this kernel does not support the %s feature bit%s",
5761 				   names, strchr(names, ',') ? "s" : "");
5762 			kfree(names);
5763 		} else
5764 			btrfs_warn(fs_info,
5765 				   "this kernel does not support %s bits 0x%llx",
5766 				   type, unsupported);
5767 		return -EOPNOTSUPP;
5768 	}
5769 
5770 	disallowed = set_mask & ~safe_set;
5771 	if (disallowed) {
5772 		names = btrfs_printable_features(set, disallowed);
5773 		if (names) {
5774 			btrfs_warn(fs_info,
5775 				   "can't set the %s feature bit%s while mounted",
5776 				   names, strchr(names, ',') ? "s" : "");
5777 			kfree(names);
5778 		} else
5779 			btrfs_warn(fs_info,
5780 				   "can't set %s bits 0x%llx while mounted",
5781 				   type, disallowed);
5782 		return -EPERM;
5783 	}
5784 
5785 	disallowed = clear_mask & ~safe_clear;
5786 	if (disallowed) {
5787 		names = btrfs_printable_features(set, disallowed);
5788 		if (names) {
5789 			btrfs_warn(fs_info,
5790 				   "can't clear the %s feature bit%s while mounted",
5791 				   names, strchr(names, ',') ? "s" : "");
5792 			kfree(names);
5793 		} else
5794 			btrfs_warn(fs_info,
5795 				   "can't clear %s bits 0x%llx while mounted",
5796 				   type, disallowed);
5797 		return -EPERM;
5798 	}
5799 
5800 	return 0;
5801 }
5802 
5803 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5804 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5805 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5806 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5807 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5808 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5809 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5810 {
5811 	struct inode *inode = file_inode(file);
5812 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5813 	struct btrfs_root *root = BTRFS_I(inode)->root;
5814 	struct btrfs_super_block *super_block = fs_info->super_copy;
5815 	struct btrfs_ioctl_feature_flags flags[2];
5816 	struct btrfs_trans_handle *trans;
5817 	u64 newflags;
5818 	int ret;
5819 
5820 	if (!capable(CAP_SYS_ADMIN))
5821 		return -EPERM;
5822 
5823 	if (copy_from_user(flags, arg, sizeof(flags)))
5824 		return -EFAULT;
5825 
5826 	/* Nothing to do */
5827 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5828 	    !flags[0].incompat_flags)
5829 		return 0;
5830 
5831 	ret = check_feature(fs_info, flags[0].compat_flags,
5832 			    flags[1].compat_flags, COMPAT);
5833 	if (ret)
5834 		return ret;
5835 
5836 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5837 			    flags[1].compat_ro_flags, COMPAT_RO);
5838 	if (ret)
5839 		return ret;
5840 
5841 	ret = check_feature(fs_info, flags[0].incompat_flags,
5842 			    flags[1].incompat_flags, INCOMPAT);
5843 	if (ret)
5844 		return ret;
5845 
5846 	ret = mnt_want_write_file(file);
5847 	if (ret)
5848 		return ret;
5849 
5850 	trans = btrfs_start_transaction(root, 0);
5851 	if (IS_ERR(trans)) {
5852 		ret = PTR_ERR(trans);
5853 		goto out_drop_write;
5854 	}
5855 
5856 	spin_lock(&fs_info->super_lock);
5857 	newflags = btrfs_super_compat_flags(super_block);
5858 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5859 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5860 	btrfs_set_super_compat_flags(super_block, newflags);
5861 
5862 	newflags = btrfs_super_compat_ro_flags(super_block);
5863 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5864 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5865 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5866 
5867 	newflags = btrfs_super_incompat_flags(super_block);
5868 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5869 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5870 	btrfs_set_super_incompat_flags(super_block, newflags);
5871 	spin_unlock(&fs_info->super_lock);
5872 
5873 	ret = btrfs_commit_transaction(trans);
5874 out_drop_write:
5875 	mnt_drop_write_file(file);
5876 
5877 	return ret;
5878 }
5879 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)5880 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5881 {
5882 	struct btrfs_ioctl_send_args *arg;
5883 	int ret;
5884 
5885 	if (compat) {
5886 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5887 		struct btrfs_ioctl_send_args_32 args32;
5888 
5889 		ret = copy_from_user(&args32, argp, sizeof(args32));
5890 		if (ret)
5891 			return -EFAULT;
5892 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5893 		if (!arg)
5894 			return -ENOMEM;
5895 		arg->send_fd = args32.send_fd;
5896 		arg->clone_sources_count = args32.clone_sources_count;
5897 		arg->clone_sources = compat_ptr(args32.clone_sources);
5898 		arg->parent_root = args32.parent_root;
5899 		arg->flags = args32.flags;
5900 		memcpy(arg->reserved, args32.reserved,
5901 		       sizeof(args32.reserved));
5902 #else
5903 		return -ENOTTY;
5904 #endif
5905 	} else {
5906 		arg = memdup_user(argp, sizeof(*arg));
5907 		if (IS_ERR(arg))
5908 			return PTR_ERR(arg);
5909 	}
5910 	ret = btrfs_ioctl_send(file, arg);
5911 	kfree(arg);
5912 	return ret;
5913 }
5914 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5915 long btrfs_ioctl(struct file *file, unsigned int
5916 		cmd, unsigned long arg)
5917 {
5918 	struct inode *inode = file_inode(file);
5919 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5920 	struct btrfs_root *root = BTRFS_I(inode)->root;
5921 	void __user *argp = (void __user *)arg;
5922 
5923 	switch (cmd) {
5924 	case FS_IOC_GETFLAGS:
5925 		return btrfs_ioctl_getflags(file, argp);
5926 	case FS_IOC_SETFLAGS:
5927 		return btrfs_ioctl_setflags(file, argp);
5928 	case FS_IOC_GETVERSION:
5929 		return btrfs_ioctl_getversion(file, argp);
5930 	case FITRIM:
5931 		return btrfs_ioctl_fitrim(file, argp);
5932 	case BTRFS_IOC_SNAP_CREATE:
5933 		return btrfs_ioctl_snap_create(file, argp, 0);
5934 	case BTRFS_IOC_SNAP_CREATE_V2:
5935 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5936 	case BTRFS_IOC_SUBVOL_CREATE:
5937 		return btrfs_ioctl_snap_create(file, argp, 1);
5938 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5939 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5940 	case BTRFS_IOC_SNAP_DESTROY:
5941 		return btrfs_ioctl_snap_destroy(file, argp);
5942 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5943 		return btrfs_ioctl_subvol_getflags(file, argp);
5944 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5945 		return btrfs_ioctl_subvol_setflags(file, argp);
5946 	case BTRFS_IOC_DEFAULT_SUBVOL:
5947 		return btrfs_ioctl_default_subvol(file, argp);
5948 	case BTRFS_IOC_DEFRAG:
5949 		return btrfs_ioctl_defrag(file, NULL);
5950 	case BTRFS_IOC_DEFRAG_RANGE:
5951 		return btrfs_ioctl_defrag(file, argp);
5952 	case BTRFS_IOC_RESIZE:
5953 		return btrfs_ioctl_resize(file, argp);
5954 	case BTRFS_IOC_ADD_DEV:
5955 		return btrfs_ioctl_add_dev(fs_info, argp);
5956 	case BTRFS_IOC_RM_DEV:
5957 		return btrfs_ioctl_rm_dev(file, argp);
5958 	case BTRFS_IOC_RM_DEV_V2:
5959 		return btrfs_ioctl_rm_dev_v2(file, argp);
5960 	case BTRFS_IOC_FS_INFO:
5961 		return btrfs_ioctl_fs_info(fs_info, argp);
5962 	case BTRFS_IOC_DEV_INFO:
5963 		return btrfs_ioctl_dev_info(fs_info, argp);
5964 	case BTRFS_IOC_BALANCE:
5965 		return btrfs_ioctl_balance(file, NULL);
5966 	case BTRFS_IOC_TREE_SEARCH:
5967 		return btrfs_ioctl_tree_search(file, argp);
5968 	case BTRFS_IOC_TREE_SEARCH_V2:
5969 		return btrfs_ioctl_tree_search_v2(file, argp);
5970 	case BTRFS_IOC_INO_LOOKUP:
5971 		return btrfs_ioctl_ino_lookup(file, argp);
5972 	case BTRFS_IOC_INO_PATHS:
5973 		return btrfs_ioctl_ino_to_path(root, argp);
5974 	case BTRFS_IOC_LOGICAL_INO:
5975 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5976 	case BTRFS_IOC_LOGICAL_INO_V2:
5977 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5978 	case BTRFS_IOC_SPACE_INFO:
5979 		return btrfs_ioctl_space_info(fs_info, argp);
5980 	case BTRFS_IOC_SYNC: {
5981 		int ret;
5982 
5983 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5984 		if (ret)
5985 			return ret;
5986 		ret = btrfs_sync_fs(inode->i_sb, 1);
5987 		/*
5988 		 * The transaction thread may want to do more work,
5989 		 * namely it pokes the cleaner kthread that will start
5990 		 * processing uncleaned subvols.
5991 		 */
5992 		wake_up_process(fs_info->transaction_kthread);
5993 		return ret;
5994 	}
5995 	case BTRFS_IOC_START_SYNC:
5996 		return btrfs_ioctl_start_sync(root, argp);
5997 	case BTRFS_IOC_WAIT_SYNC:
5998 		return btrfs_ioctl_wait_sync(fs_info, argp);
5999 	case BTRFS_IOC_SCRUB:
6000 		return btrfs_ioctl_scrub(file, argp);
6001 	case BTRFS_IOC_SCRUB_CANCEL:
6002 		return btrfs_ioctl_scrub_cancel(fs_info);
6003 	case BTRFS_IOC_SCRUB_PROGRESS:
6004 		return btrfs_ioctl_scrub_progress(fs_info, argp);
6005 	case BTRFS_IOC_BALANCE_V2:
6006 		return btrfs_ioctl_balance(file, argp);
6007 	case BTRFS_IOC_BALANCE_CTL:
6008 		return btrfs_ioctl_balance_ctl(fs_info, arg);
6009 	case BTRFS_IOC_BALANCE_PROGRESS:
6010 		return btrfs_ioctl_balance_progress(fs_info, argp);
6011 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
6012 		return btrfs_ioctl_set_received_subvol(file, argp);
6013 #ifdef CONFIG_64BIT
6014 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
6015 		return btrfs_ioctl_set_received_subvol_32(file, argp);
6016 #endif
6017 	case BTRFS_IOC_SEND:
6018 		return _btrfs_ioctl_send(file, argp, false);
6019 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
6020 	case BTRFS_IOC_SEND_32:
6021 		return _btrfs_ioctl_send(file, argp, true);
6022 #endif
6023 	case BTRFS_IOC_GET_DEV_STATS:
6024 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
6025 	case BTRFS_IOC_QUOTA_CTL:
6026 		return btrfs_ioctl_quota_ctl(file, argp);
6027 	case BTRFS_IOC_QGROUP_ASSIGN:
6028 		return btrfs_ioctl_qgroup_assign(file, argp);
6029 	case BTRFS_IOC_QGROUP_CREATE:
6030 		return btrfs_ioctl_qgroup_create(file, argp);
6031 	case BTRFS_IOC_QGROUP_LIMIT:
6032 		return btrfs_ioctl_qgroup_limit(file, argp);
6033 	case BTRFS_IOC_QUOTA_RESCAN:
6034 		return btrfs_ioctl_quota_rescan(file, argp);
6035 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
6036 		return btrfs_ioctl_quota_rescan_status(file, argp);
6037 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
6038 		return btrfs_ioctl_quota_rescan_wait(file, argp);
6039 	case BTRFS_IOC_DEV_REPLACE:
6040 		return btrfs_ioctl_dev_replace(fs_info, argp);
6041 	case BTRFS_IOC_GET_FSLABEL:
6042 		return btrfs_ioctl_get_fslabel(file, argp);
6043 	case BTRFS_IOC_SET_FSLABEL:
6044 		return btrfs_ioctl_set_fslabel(file, argp);
6045 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
6046 		return btrfs_ioctl_get_supported_features(argp);
6047 	case BTRFS_IOC_GET_FEATURES:
6048 		return btrfs_ioctl_get_features(file, argp);
6049 	case BTRFS_IOC_SET_FEATURES:
6050 		return btrfs_ioctl_set_features(file, argp);
6051 	case FS_IOC_FSGETXATTR:
6052 		return btrfs_ioctl_fsgetxattr(file, argp);
6053 	case FS_IOC_FSSETXATTR:
6054 		return btrfs_ioctl_fssetxattr(file, argp);
6055 	case BTRFS_IOC_GET_SUBVOL_INFO:
6056 		return btrfs_ioctl_get_subvol_info(file, argp);
6057 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
6058 		return btrfs_ioctl_get_subvol_rootref(file, argp);
6059 	case BTRFS_IOC_INO_LOOKUP_USER:
6060 		return btrfs_ioctl_ino_lookup_user(file, argp);
6061 	}
6062 
6063 	return -ENOTTY;
6064 }
6065 
6066 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6067 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6068 {
6069 	/*
6070 	 * These all access 32-bit values anyway so no further
6071 	 * handling is necessary.
6072 	 */
6073 	switch (cmd) {
6074 	case FS_IOC32_GETFLAGS:
6075 		cmd = FS_IOC_GETFLAGS;
6076 		break;
6077 	case FS_IOC32_SETFLAGS:
6078 		cmd = FS_IOC_SETFLAGS;
6079 		break;
6080 	case FS_IOC32_GETVERSION:
6081 		cmd = FS_IOC_GETVERSION;
6082 		break;
6083 	}
6084 
6085 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
6086 }
6087 #endif
6088