1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21 
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT	1
24 
25 /*
26  * set when this rbio is sitting in the hash, but it is just a cache
27  * of past RMW
28  */
29 #define RBIO_CACHE_BIT		2
30 
31 /*
32  * set when it is safe to trust the stripe_pages for caching
33  */
34 #define RBIO_CACHE_READY_BIT	3
35 
36 #define RBIO_CACHE_SIZE 1024
37 
38 enum btrfs_rbio_ops {
39 	BTRFS_RBIO_WRITE,
40 	BTRFS_RBIO_READ_REBUILD,
41 	BTRFS_RBIO_PARITY_SCRUB,
42 	BTRFS_RBIO_REBUILD_MISSING,
43 };
44 
45 struct btrfs_raid_bio {
46 	struct btrfs_fs_info *fs_info;
47 	struct btrfs_bio *bbio;
48 
49 	/* while we're doing rmw on a stripe
50 	 * we put it into a hash table so we can
51 	 * lock the stripe and merge more rbios
52 	 * into it.
53 	 */
54 	struct list_head hash_list;
55 
56 	/*
57 	 * LRU list for the stripe cache
58 	 */
59 	struct list_head stripe_cache;
60 
61 	/*
62 	 * for scheduling work in the helper threads
63 	 */
64 	struct btrfs_work work;
65 
66 	/*
67 	 * bio list and bio_list_lock are used
68 	 * to add more bios into the stripe
69 	 * in hopes of avoiding the full rmw
70 	 */
71 	struct bio_list bio_list;
72 	spinlock_t bio_list_lock;
73 
74 	/* also protected by the bio_list_lock, the
75 	 * plug list is used by the plugging code
76 	 * to collect partial bios while plugged.  The
77 	 * stripe locking code also uses it to hand off
78 	 * the stripe lock to the next pending IO
79 	 */
80 	struct list_head plug_list;
81 
82 	/*
83 	 * flags that tell us if it is safe to
84 	 * merge with this bio
85 	 */
86 	unsigned long flags;
87 
88 	/* size of each individual stripe on disk */
89 	int stripe_len;
90 
91 	/* number of data stripes (no p/q) */
92 	int nr_data;
93 
94 	int real_stripes;
95 
96 	int stripe_npages;
97 	/*
98 	 * set if we're doing a parity rebuild
99 	 * for a read from higher up, which is handled
100 	 * differently from a parity rebuild as part of
101 	 * rmw
102 	 */
103 	enum btrfs_rbio_ops operation;
104 
105 	/* first bad stripe */
106 	int faila;
107 
108 	/* second bad stripe (for raid6 use) */
109 	int failb;
110 
111 	int scrubp;
112 	/*
113 	 * number of pages needed to represent the full
114 	 * stripe
115 	 */
116 	int nr_pages;
117 
118 	/*
119 	 * size of all the bios in the bio_list.  This
120 	 * helps us decide if the rbio maps to a full
121 	 * stripe or not
122 	 */
123 	int bio_list_bytes;
124 
125 	int generic_bio_cnt;
126 
127 	refcount_t refs;
128 
129 	atomic_t stripes_pending;
130 
131 	atomic_t error;
132 	/*
133 	 * these are two arrays of pointers.  We allocate the
134 	 * rbio big enough to hold them both and setup their
135 	 * locations when the rbio is allocated
136 	 */
137 
138 	/* pointers to pages that we allocated for
139 	 * reading/writing stripes directly from the disk (including P/Q)
140 	 */
141 	struct page **stripe_pages;
142 
143 	/*
144 	 * pointers to the pages in the bio_list.  Stored
145 	 * here for faster lookup
146 	 */
147 	struct page **bio_pages;
148 
149 	/*
150 	 * bitmap to record which horizontal stripe has data
151 	 */
152 	unsigned long *dbitmap;
153 
154 	/* allocated with real_stripes-many pointers for finish_*() calls */
155 	void **finish_pointers;
156 
157 	/* allocated with stripe_npages-many bits for finish_*() calls */
158 	unsigned long *finish_pbitmap;
159 };
160 
161 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
162 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
163 static void rmw_work(struct btrfs_work *work);
164 static void read_rebuild_work(struct btrfs_work *work);
165 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
166 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
167 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
168 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
169 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
170 
171 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
172 					 int need_check);
173 static void scrub_parity_work(struct btrfs_work *work);
174 
start_async_work(struct btrfs_raid_bio * rbio,btrfs_func_t work_func)175 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
176 {
177 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL);
178 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
179 }
180 
181 /*
182  * the stripe hash table is used for locking, and to collect
183  * bios in hopes of making a full stripe
184  */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)185 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
186 {
187 	struct btrfs_stripe_hash_table *table;
188 	struct btrfs_stripe_hash_table *x;
189 	struct btrfs_stripe_hash *cur;
190 	struct btrfs_stripe_hash *h;
191 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
192 	int i;
193 	int table_size;
194 
195 	if (info->stripe_hash_table)
196 		return 0;
197 
198 	/*
199 	 * The table is large, starting with order 4 and can go as high as
200 	 * order 7 in case lock debugging is turned on.
201 	 *
202 	 * Try harder to allocate and fallback to vmalloc to lower the chance
203 	 * of a failing mount.
204 	 */
205 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
206 	table = kvzalloc(table_size, GFP_KERNEL);
207 	if (!table)
208 		return -ENOMEM;
209 
210 	spin_lock_init(&table->cache_lock);
211 	INIT_LIST_HEAD(&table->stripe_cache);
212 
213 	h = table->table;
214 
215 	for (i = 0; i < num_entries; i++) {
216 		cur = h + i;
217 		INIT_LIST_HEAD(&cur->hash_list);
218 		spin_lock_init(&cur->lock);
219 	}
220 
221 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
222 	if (x)
223 		kvfree(x);
224 	return 0;
225 }
226 
227 /*
228  * caching an rbio means to copy anything from the
229  * bio_pages array into the stripe_pages array.  We
230  * use the page uptodate bit in the stripe cache array
231  * to indicate if it has valid data
232  *
233  * once the caching is done, we set the cache ready
234  * bit.
235  */
cache_rbio_pages(struct btrfs_raid_bio * rbio)236 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
237 {
238 	int i;
239 	char *s;
240 	char *d;
241 	int ret;
242 
243 	ret = alloc_rbio_pages(rbio);
244 	if (ret)
245 		return;
246 
247 	for (i = 0; i < rbio->nr_pages; i++) {
248 		if (!rbio->bio_pages[i])
249 			continue;
250 
251 		s = kmap(rbio->bio_pages[i]);
252 		d = kmap(rbio->stripe_pages[i]);
253 
254 		copy_page(d, s);
255 
256 		kunmap(rbio->bio_pages[i]);
257 		kunmap(rbio->stripe_pages[i]);
258 		SetPageUptodate(rbio->stripe_pages[i]);
259 	}
260 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
261 }
262 
263 /*
264  * we hash on the first logical address of the stripe
265  */
rbio_bucket(struct btrfs_raid_bio * rbio)266 static int rbio_bucket(struct btrfs_raid_bio *rbio)
267 {
268 	u64 num = rbio->bbio->raid_map[0];
269 
270 	/*
271 	 * we shift down quite a bit.  We're using byte
272 	 * addressing, and most of the lower bits are zeros.
273 	 * This tends to upset hash_64, and it consistently
274 	 * returns just one or two different values.
275 	 *
276 	 * shifting off the lower bits fixes things.
277 	 */
278 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
279 }
280 
281 /*
282  * stealing an rbio means taking all the uptodate pages from the stripe
283  * array in the source rbio and putting them into the destination rbio
284  */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)285 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
286 {
287 	int i;
288 	struct page *s;
289 	struct page *d;
290 
291 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
292 		return;
293 
294 	for (i = 0; i < dest->nr_pages; i++) {
295 		s = src->stripe_pages[i];
296 		if (!s || !PageUptodate(s)) {
297 			continue;
298 		}
299 
300 		d = dest->stripe_pages[i];
301 		if (d)
302 			__free_page(d);
303 
304 		dest->stripe_pages[i] = s;
305 		src->stripe_pages[i] = NULL;
306 	}
307 }
308 
309 /*
310  * merging means we take the bio_list from the victim and
311  * splice it into the destination.  The victim should
312  * be discarded afterwards.
313  *
314  * must be called with dest->rbio_list_lock held
315  */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)316 static void merge_rbio(struct btrfs_raid_bio *dest,
317 		       struct btrfs_raid_bio *victim)
318 {
319 	bio_list_merge(&dest->bio_list, &victim->bio_list);
320 	dest->bio_list_bytes += victim->bio_list_bytes;
321 	/* Also inherit the bitmaps from @victim. */
322 	bitmap_or(dest->dbitmap, victim->dbitmap, dest->dbitmap,
323 		  dest->stripe_npages);
324 	dest->generic_bio_cnt += victim->generic_bio_cnt;
325 	bio_list_init(&victim->bio_list);
326 }
327 
328 /*
329  * used to prune items that are in the cache.  The caller
330  * must hold the hash table lock.
331  */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)332 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
333 {
334 	int bucket = rbio_bucket(rbio);
335 	struct btrfs_stripe_hash_table *table;
336 	struct btrfs_stripe_hash *h;
337 	int freeit = 0;
338 
339 	/*
340 	 * check the bit again under the hash table lock.
341 	 */
342 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
343 		return;
344 
345 	table = rbio->fs_info->stripe_hash_table;
346 	h = table->table + bucket;
347 
348 	/* hold the lock for the bucket because we may be
349 	 * removing it from the hash table
350 	 */
351 	spin_lock(&h->lock);
352 
353 	/*
354 	 * hold the lock for the bio list because we need
355 	 * to make sure the bio list is empty
356 	 */
357 	spin_lock(&rbio->bio_list_lock);
358 
359 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
360 		list_del_init(&rbio->stripe_cache);
361 		table->cache_size -= 1;
362 		freeit = 1;
363 
364 		/* if the bio list isn't empty, this rbio is
365 		 * still involved in an IO.  We take it out
366 		 * of the cache list, and drop the ref that
367 		 * was held for the list.
368 		 *
369 		 * If the bio_list was empty, we also remove
370 		 * the rbio from the hash_table, and drop
371 		 * the corresponding ref
372 		 */
373 		if (bio_list_empty(&rbio->bio_list)) {
374 			if (!list_empty(&rbio->hash_list)) {
375 				list_del_init(&rbio->hash_list);
376 				refcount_dec(&rbio->refs);
377 				BUG_ON(!list_empty(&rbio->plug_list));
378 			}
379 		}
380 	}
381 
382 	spin_unlock(&rbio->bio_list_lock);
383 	spin_unlock(&h->lock);
384 
385 	if (freeit)
386 		__free_raid_bio(rbio);
387 }
388 
389 /*
390  * prune a given rbio from the cache
391  */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)392 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
393 {
394 	struct btrfs_stripe_hash_table *table;
395 	unsigned long flags;
396 
397 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
398 		return;
399 
400 	table = rbio->fs_info->stripe_hash_table;
401 
402 	spin_lock_irqsave(&table->cache_lock, flags);
403 	__remove_rbio_from_cache(rbio);
404 	spin_unlock_irqrestore(&table->cache_lock, flags);
405 }
406 
407 /*
408  * remove everything in the cache
409  */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)410 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
411 {
412 	struct btrfs_stripe_hash_table *table;
413 	unsigned long flags;
414 	struct btrfs_raid_bio *rbio;
415 
416 	table = info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	while (!list_empty(&table->stripe_cache)) {
420 		rbio = list_entry(table->stripe_cache.next,
421 				  struct btrfs_raid_bio,
422 				  stripe_cache);
423 		__remove_rbio_from_cache(rbio);
424 	}
425 	spin_unlock_irqrestore(&table->cache_lock, flags);
426 }
427 
428 /*
429  * remove all cached entries and free the hash table
430  * used by unmount
431  */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)432 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
433 {
434 	if (!info->stripe_hash_table)
435 		return;
436 	btrfs_clear_rbio_cache(info);
437 	kvfree(info->stripe_hash_table);
438 	info->stripe_hash_table = NULL;
439 }
440 
441 /*
442  * insert an rbio into the stripe cache.  It
443  * must have already been prepared by calling
444  * cache_rbio_pages
445  *
446  * If this rbio was already cached, it gets
447  * moved to the front of the lru.
448  *
449  * If the size of the rbio cache is too big, we
450  * prune an item.
451  */
cache_rbio(struct btrfs_raid_bio * rbio)452 static void cache_rbio(struct btrfs_raid_bio *rbio)
453 {
454 	struct btrfs_stripe_hash_table *table;
455 	unsigned long flags;
456 
457 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
458 		return;
459 
460 	table = rbio->fs_info->stripe_hash_table;
461 
462 	spin_lock_irqsave(&table->cache_lock, flags);
463 	spin_lock(&rbio->bio_list_lock);
464 
465 	/* bump our ref if we were not in the list before */
466 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
467 		refcount_inc(&rbio->refs);
468 
469 	if (!list_empty(&rbio->stripe_cache)){
470 		list_move(&rbio->stripe_cache, &table->stripe_cache);
471 	} else {
472 		list_add(&rbio->stripe_cache, &table->stripe_cache);
473 		table->cache_size += 1;
474 	}
475 
476 	spin_unlock(&rbio->bio_list_lock);
477 
478 	if (table->cache_size > RBIO_CACHE_SIZE) {
479 		struct btrfs_raid_bio *found;
480 
481 		found = list_entry(table->stripe_cache.prev,
482 				  struct btrfs_raid_bio,
483 				  stripe_cache);
484 
485 		if (found != rbio)
486 			__remove_rbio_from_cache(found);
487 	}
488 
489 	spin_unlock_irqrestore(&table->cache_lock, flags);
490 }
491 
492 /*
493  * helper function to run the xor_blocks api.  It is only
494  * able to do MAX_XOR_BLOCKS at a time, so we need to
495  * loop through.
496  */
run_xor(void ** pages,int src_cnt,ssize_t len)497 static void run_xor(void **pages, int src_cnt, ssize_t len)
498 {
499 	int src_off = 0;
500 	int xor_src_cnt = 0;
501 	void *dest = pages[src_cnt];
502 
503 	while(src_cnt > 0) {
504 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
505 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
506 
507 		src_cnt -= xor_src_cnt;
508 		src_off += xor_src_cnt;
509 	}
510 }
511 
512 /*
513  * Returns true if the bio list inside this rbio covers an entire stripe (no
514  * rmw required).
515  */
rbio_is_full(struct btrfs_raid_bio * rbio)516 static int rbio_is_full(struct btrfs_raid_bio *rbio)
517 {
518 	unsigned long flags;
519 	unsigned long size = rbio->bio_list_bytes;
520 	int ret = 1;
521 
522 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
523 	if (size != rbio->nr_data * rbio->stripe_len)
524 		ret = 0;
525 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
526 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
527 
528 	return ret;
529 }
530 
531 /*
532  * returns 1 if it is safe to merge two rbios together.
533  * The merging is safe if the two rbios correspond to
534  * the same stripe and if they are both going in the same
535  * direction (read vs write), and if neither one is
536  * locked for final IO
537  *
538  * The caller is responsible for locking such that
539  * rmw_locked is safe to test
540  */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)541 static int rbio_can_merge(struct btrfs_raid_bio *last,
542 			  struct btrfs_raid_bio *cur)
543 {
544 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
545 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
546 		return 0;
547 
548 	/*
549 	 * we can't merge with cached rbios, since the
550 	 * idea is that when we merge the destination
551 	 * rbio is going to run our IO for us.  We can
552 	 * steal from cached rbios though, other functions
553 	 * handle that.
554 	 */
555 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
556 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
557 		return 0;
558 
559 	if (last->bbio->raid_map[0] !=
560 	    cur->bbio->raid_map[0])
561 		return 0;
562 
563 	/* we can't merge with different operations */
564 	if (last->operation != cur->operation)
565 		return 0;
566 	/*
567 	 * We've need read the full stripe from the drive.
568 	 * check and repair the parity and write the new results.
569 	 *
570 	 * We're not allowed to add any new bios to the
571 	 * bio list here, anyone else that wants to
572 	 * change this stripe needs to do their own rmw.
573 	 */
574 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
575 		return 0;
576 
577 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
578 		return 0;
579 
580 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
581 		int fa = last->faila;
582 		int fb = last->failb;
583 		int cur_fa = cur->faila;
584 		int cur_fb = cur->failb;
585 
586 		if (last->faila >= last->failb) {
587 			fa = last->failb;
588 			fb = last->faila;
589 		}
590 
591 		if (cur->faila >= cur->failb) {
592 			cur_fa = cur->failb;
593 			cur_fb = cur->faila;
594 		}
595 
596 		if (fa != cur_fa || fb != cur_fb)
597 			return 0;
598 	}
599 	return 1;
600 }
601 
rbio_stripe_page_index(struct btrfs_raid_bio * rbio,int stripe,int index)602 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
603 				  int index)
604 {
605 	return stripe * rbio->stripe_npages + index;
606 }
607 
608 /*
609  * these are just the pages from the rbio array, not from anything
610  * the FS sent down to us
611  */
rbio_stripe_page(struct btrfs_raid_bio * rbio,int stripe,int index)612 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
613 				     int index)
614 {
615 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
616 }
617 
618 /*
619  * helper to index into the pstripe
620  */
rbio_pstripe_page(struct btrfs_raid_bio * rbio,int index)621 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
622 {
623 	return rbio_stripe_page(rbio, rbio->nr_data, index);
624 }
625 
626 /*
627  * helper to index into the qstripe, returns null
628  * if there is no qstripe
629  */
rbio_qstripe_page(struct btrfs_raid_bio * rbio,int index)630 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
631 {
632 	if (rbio->nr_data + 1 == rbio->real_stripes)
633 		return NULL;
634 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
635 }
636 
637 /*
638  * The first stripe in the table for a logical address
639  * has the lock.  rbios are added in one of three ways:
640  *
641  * 1) Nobody has the stripe locked yet.  The rbio is given
642  * the lock and 0 is returned.  The caller must start the IO
643  * themselves.
644  *
645  * 2) Someone has the stripe locked, but we're able to merge
646  * with the lock owner.  The rbio is freed and the IO will
647  * start automatically along with the existing rbio.  1 is returned.
648  *
649  * 3) Someone has the stripe locked, but we're not able to merge.
650  * The rbio is added to the lock owner's plug list, or merged into
651  * an rbio already on the plug list.  When the lock owner unlocks,
652  * the next rbio on the list is run and the IO is started automatically.
653  * 1 is returned
654  *
655  * If we return 0, the caller still owns the rbio and must continue with
656  * IO submission.  If we return 1, the caller must assume the rbio has
657  * already been freed.
658  */
lock_stripe_add(struct btrfs_raid_bio * rbio)659 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
660 {
661 	int bucket = rbio_bucket(rbio);
662 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
663 	struct btrfs_raid_bio *cur;
664 	struct btrfs_raid_bio *pending;
665 	unsigned long flags;
666 	struct btrfs_raid_bio *freeit = NULL;
667 	struct btrfs_raid_bio *cache_drop = NULL;
668 	int ret = 0;
669 
670 	spin_lock_irqsave(&h->lock, flags);
671 	list_for_each_entry(cur, &h->hash_list, hash_list) {
672 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
673 			spin_lock(&cur->bio_list_lock);
674 
675 			/* can we steal this cached rbio's pages? */
676 			if (bio_list_empty(&cur->bio_list) &&
677 			    list_empty(&cur->plug_list) &&
678 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
679 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
680 				list_del_init(&cur->hash_list);
681 				refcount_dec(&cur->refs);
682 
683 				steal_rbio(cur, rbio);
684 				cache_drop = cur;
685 				spin_unlock(&cur->bio_list_lock);
686 
687 				goto lockit;
688 			}
689 
690 			/* can we merge into the lock owner? */
691 			if (rbio_can_merge(cur, rbio)) {
692 				merge_rbio(cur, rbio);
693 				spin_unlock(&cur->bio_list_lock);
694 				freeit = rbio;
695 				ret = 1;
696 				goto out;
697 			}
698 
699 
700 			/*
701 			 * we couldn't merge with the running
702 			 * rbio, see if we can merge with the
703 			 * pending ones.  We don't have to
704 			 * check for rmw_locked because there
705 			 * is no way they are inside finish_rmw
706 			 * right now
707 			 */
708 			list_for_each_entry(pending, &cur->plug_list,
709 					    plug_list) {
710 				if (rbio_can_merge(pending, rbio)) {
711 					merge_rbio(pending, rbio);
712 					spin_unlock(&cur->bio_list_lock);
713 					freeit = rbio;
714 					ret = 1;
715 					goto out;
716 				}
717 			}
718 
719 			/* no merging, put us on the tail of the plug list,
720 			 * our rbio will be started with the currently
721 			 * running rbio unlocks
722 			 */
723 			list_add_tail(&rbio->plug_list, &cur->plug_list);
724 			spin_unlock(&cur->bio_list_lock);
725 			ret = 1;
726 			goto out;
727 		}
728 	}
729 lockit:
730 	refcount_inc(&rbio->refs);
731 	list_add(&rbio->hash_list, &h->hash_list);
732 out:
733 	spin_unlock_irqrestore(&h->lock, flags);
734 	if (cache_drop)
735 		remove_rbio_from_cache(cache_drop);
736 	if (freeit)
737 		__free_raid_bio(freeit);
738 	return ret;
739 }
740 
741 /*
742  * called as rmw or parity rebuild is completed.  If the plug list has more
743  * rbios waiting for this stripe, the next one on the list will be started
744  */
unlock_stripe(struct btrfs_raid_bio * rbio)745 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
746 {
747 	int bucket;
748 	struct btrfs_stripe_hash *h;
749 	unsigned long flags;
750 	int keep_cache = 0;
751 
752 	bucket = rbio_bucket(rbio);
753 	h = rbio->fs_info->stripe_hash_table->table + bucket;
754 
755 	if (list_empty(&rbio->plug_list))
756 		cache_rbio(rbio);
757 
758 	spin_lock_irqsave(&h->lock, flags);
759 	spin_lock(&rbio->bio_list_lock);
760 
761 	if (!list_empty(&rbio->hash_list)) {
762 		/*
763 		 * if we're still cached and there is no other IO
764 		 * to perform, just leave this rbio here for others
765 		 * to steal from later
766 		 */
767 		if (list_empty(&rbio->plug_list) &&
768 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
769 			keep_cache = 1;
770 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
771 			BUG_ON(!bio_list_empty(&rbio->bio_list));
772 			goto done;
773 		}
774 
775 		list_del_init(&rbio->hash_list);
776 		refcount_dec(&rbio->refs);
777 
778 		/*
779 		 * we use the plug list to hold all the rbios
780 		 * waiting for the chance to lock this stripe.
781 		 * hand the lock over to one of them.
782 		 */
783 		if (!list_empty(&rbio->plug_list)) {
784 			struct btrfs_raid_bio *next;
785 			struct list_head *head = rbio->plug_list.next;
786 
787 			next = list_entry(head, struct btrfs_raid_bio,
788 					  plug_list);
789 
790 			list_del_init(&rbio->plug_list);
791 
792 			list_add(&next->hash_list, &h->hash_list);
793 			refcount_inc(&next->refs);
794 			spin_unlock(&rbio->bio_list_lock);
795 			spin_unlock_irqrestore(&h->lock, flags);
796 
797 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
798 				start_async_work(next, read_rebuild_work);
799 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
800 				steal_rbio(rbio, next);
801 				start_async_work(next, read_rebuild_work);
802 			} else if (next->operation == BTRFS_RBIO_WRITE) {
803 				steal_rbio(rbio, next);
804 				start_async_work(next, rmw_work);
805 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
806 				steal_rbio(rbio, next);
807 				start_async_work(next, scrub_parity_work);
808 			}
809 
810 			goto done_nolock;
811 		}
812 	}
813 done:
814 	spin_unlock(&rbio->bio_list_lock);
815 	spin_unlock_irqrestore(&h->lock, flags);
816 
817 done_nolock:
818 	if (!keep_cache)
819 		remove_rbio_from_cache(rbio);
820 }
821 
__free_raid_bio(struct btrfs_raid_bio * rbio)822 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
823 {
824 	int i;
825 
826 	if (!refcount_dec_and_test(&rbio->refs))
827 		return;
828 
829 	WARN_ON(!list_empty(&rbio->stripe_cache));
830 	WARN_ON(!list_empty(&rbio->hash_list));
831 	WARN_ON(!bio_list_empty(&rbio->bio_list));
832 
833 	for (i = 0; i < rbio->nr_pages; i++) {
834 		if (rbio->stripe_pages[i]) {
835 			__free_page(rbio->stripe_pages[i]);
836 			rbio->stripe_pages[i] = NULL;
837 		}
838 	}
839 
840 	btrfs_put_bbio(rbio->bbio);
841 	kfree(rbio);
842 }
843 
rbio_endio_bio_list(struct bio * cur,blk_status_t err)844 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
845 {
846 	struct bio *next;
847 
848 	while (cur) {
849 		next = cur->bi_next;
850 		cur->bi_next = NULL;
851 		cur->bi_status = err;
852 		bio_endio(cur);
853 		cur = next;
854 	}
855 }
856 
857 /*
858  * this frees the rbio and runs through all the bios in the
859  * bio_list and calls end_io on them
860  */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t err)861 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
862 {
863 	struct bio *cur = bio_list_get(&rbio->bio_list);
864 	struct bio *extra;
865 
866 	if (rbio->generic_bio_cnt)
867 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
868 	/*
869 	 * Clear the data bitmap, as the rbio may be cached for later usage.
870 	 * do this before before unlock_stripe() so there will be no new bio
871 	 * for this bio.
872 	 */
873 	bitmap_clear(rbio->dbitmap, 0, rbio->stripe_npages);
874 
875 	/*
876 	 * At this moment, rbio->bio_list is empty, however since rbio does not
877 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
878 	 * hash list, rbio may be merged with others so that rbio->bio_list
879 	 * becomes non-empty.
880 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
881 	 * more and we can call bio_endio() on all queued bios.
882 	 */
883 	unlock_stripe(rbio);
884 	extra = bio_list_get(&rbio->bio_list);
885 	__free_raid_bio(rbio);
886 
887 	rbio_endio_bio_list(cur, err);
888 	if (extra)
889 		rbio_endio_bio_list(extra, err);
890 }
891 
892 /*
893  * end io function used by finish_rmw.  When we finally
894  * get here, we've written a full stripe
895  */
raid_write_end_io(struct bio * bio)896 static void raid_write_end_io(struct bio *bio)
897 {
898 	struct btrfs_raid_bio *rbio = bio->bi_private;
899 	blk_status_t err = bio->bi_status;
900 	int max_errors;
901 
902 	if (err)
903 		fail_bio_stripe(rbio, bio);
904 
905 	bio_put(bio);
906 
907 	if (!atomic_dec_and_test(&rbio->stripes_pending))
908 		return;
909 
910 	err = BLK_STS_OK;
911 
912 	/* OK, we have read all the stripes we need to. */
913 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
914 		     0 : rbio->bbio->max_errors;
915 	if (atomic_read(&rbio->error) > max_errors)
916 		err = BLK_STS_IOERR;
917 
918 	rbio_orig_end_io(rbio, err);
919 }
920 
921 /*
922  * the read/modify/write code wants to use the original bio for
923  * any pages it included, and then use the rbio for everything
924  * else.  This function decides if a given index (stripe number)
925  * and page number in that stripe fall inside the original bio
926  * or the rbio.
927  *
928  * if you set bio_list_only, you'll get a NULL back for any ranges
929  * that are outside the bio_list
930  *
931  * This doesn't take any refs on anything, you get a bare page pointer
932  * and the caller must bump refs as required.
933  *
934  * You must call index_rbio_pages once before you can trust
935  * the answers from this function.
936  */
page_in_rbio(struct btrfs_raid_bio * rbio,int index,int pagenr,int bio_list_only)937 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
938 				 int index, int pagenr, int bio_list_only)
939 {
940 	int chunk_page;
941 	struct page *p = NULL;
942 
943 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
944 
945 	spin_lock_irq(&rbio->bio_list_lock);
946 	p = rbio->bio_pages[chunk_page];
947 	spin_unlock_irq(&rbio->bio_list_lock);
948 
949 	if (p || bio_list_only)
950 		return p;
951 
952 	return rbio->stripe_pages[chunk_page];
953 }
954 
955 /*
956  * number of pages we need for the entire stripe across all the
957  * drives
958  */
rbio_nr_pages(unsigned long stripe_len,int nr_stripes)959 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
960 {
961 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
962 }
963 
964 /*
965  * allocation and initial setup for the btrfs_raid_bio.  Not
966  * this does not allocate any pages for rbio->pages.
967  */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_bio * bbio,u64 stripe_len)968 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
969 					 struct btrfs_bio *bbio,
970 					 u64 stripe_len)
971 {
972 	struct btrfs_raid_bio *rbio;
973 	int nr_data = 0;
974 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
975 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
976 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
977 	void *p;
978 
979 	rbio = kzalloc(sizeof(*rbio) +
980 		       sizeof(*rbio->stripe_pages) * num_pages +
981 		       sizeof(*rbio->bio_pages) * num_pages +
982 		       sizeof(*rbio->finish_pointers) * real_stripes +
983 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
984 		       sizeof(*rbio->finish_pbitmap) *
985 				BITS_TO_LONGS(stripe_npages),
986 		       GFP_NOFS);
987 	if (!rbio)
988 		return ERR_PTR(-ENOMEM);
989 
990 	bio_list_init(&rbio->bio_list);
991 	INIT_LIST_HEAD(&rbio->plug_list);
992 	spin_lock_init(&rbio->bio_list_lock);
993 	INIT_LIST_HEAD(&rbio->stripe_cache);
994 	INIT_LIST_HEAD(&rbio->hash_list);
995 	rbio->bbio = bbio;
996 	rbio->fs_info = fs_info;
997 	rbio->stripe_len = stripe_len;
998 	rbio->nr_pages = num_pages;
999 	rbio->real_stripes = real_stripes;
1000 	rbio->stripe_npages = stripe_npages;
1001 	rbio->faila = -1;
1002 	rbio->failb = -1;
1003 	refcount_set(&rbio->refs, 1);
1004 	atomic_set(&rbio->error, 0);
1005 	atomic_set(&rbio->stripes_pending, 0);
1006 
1007 	/*
1008 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1009 	 * memory we allocated past the end of the rbio
1010 	 */
1011 	p = rbio + 1;
1012 #define CONSUME_ALLOC(ptr, count)	do {				\
1013 		ptr = p;						\
1014 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1015 	} while (0)
1016 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1017 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1018 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1019 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1020 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1021 #undef  CONSUME_ALLOC
1022 
1023 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1024 		nr_data = real_stripes - 1;
1025 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1026 		nr_data = real_stripes - 2;
1027 	else
1028 		BUG();
1029 
1030 	rbio->nr_data = nr_data;
1031 	return rbio;
1032 }
1033 
1034 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)1035 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1036 {
1037 	int i;
1038 	struct page *page;
1039 
1040 	for (i = 0; i < rbio->nr_pages; i++) {
1041 		if (rbio->stripe_pages[i])
1042 			continue;
1043 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1044 		if (!page)
1045 			return -ENOMEM;
1046 		rbio->stripe_pages[i] = page;
1047 	}
1048 	return 0;
1049 }
1050 
1051 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)1052 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1053 {
1054 	int i;
1055 	struct page *page;
1056 
1057 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1058 
1059 	for (; i < rbio->nr_pages; i++) {
1060 		if (rbio->stripe_pages[i])
1061 			continue;
1062 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1063 		if (!page)
1064 			return -ENOMEM;
1065 		rbio->stripe_pages[i] = page;
1066 	}
1067 	return 0;
1068 }
1069 
1070 /*
1071  * add a single page from a specific stripe into our list of bios for IO
1072  * this will try to merge into existing bios if possible, and returns
1073  * zero if all went well.
1074  */
rbio_add_io_page(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,struct page * page,int stripe_nr,unsigned long page_index,unsigned long bio_max_len)1075 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1076 			    struct bio_list *bio_list,
1077 			    struct page *page,
1078 			    int stripe_nr,
1079 			    unsigned long page_index,
1080 			    unsigned long bio_max_len)
1081 {
1082 	struct bio *last = bio_list->tail;
1083 	u64 last_end = 0;
1084 	int ret;
1085 	struct bio *bio;
1086 	struct btrfs_bio_stripe *stripe;
1087 	u64 disk_start;
1088 
1089 	stripe = &rbio->bbio->stripes[stripe_nr];
1090 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1091 
1092 	/* if the device is missing, just fail this stripe */
1093 	if (!stripe->dev->bdev)
1094 		return fail_rbio_index(rbio, stripe_nr);
1095 
1096 	/* see if we can add this page onto our existing bio */
1097 	if (last) {
1098 		last_end = (u64)last->bi_iter.bi_sector << 9;
1099 		last_end += last->bi_iter.bi_size;
1100 
1101 		/*
1102 		 * we can't merge these if they are from different
1103 		 * devices or if they are not contiguous
1104 		 */
1105 		if (last_end == disk_start && stripe->dev->bdev &&
1106 		    !last->bi_status &&
1107 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1108 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1109 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1110 			if (ret == PAGE_SIZE)
1111 				return 0;
1112 		}
1113 	}
1114 
1115 	/* put a new bio on the list */
1116 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1117 	bio->bi_iter.bi_size = 0;
1118 	bio_set_dev(bio, stripe->dev->bdev);
1119 	bio->bi_iter.bi_sector = disk_start >> 9;
1120 
1121 	bio_add_page(bio, page, PAGE_SIZE, 0);
1122 	bio_list_add(bio_list, bio);
1123 	return 0;
1124 }
1125 
1126 /*
1127  * while we're doing the read/modify/write cycle, we could
1128  * have errors in reading pages off the disk.  This checks
1129  * for errors and if we're not able to read the page it'll
1130  * trigger parity reconstruction.  The rmw will be finished
1131  * after we've reconstructed the failed stripes
1132  */
validate_rbio_for_rmw(struct btrfs_raid_bio * rbio)1133 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1134 {
1135 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1136 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1137 		__raid56_parity_recover(rbio);
1138 	} else {
1139 		finish_rmw(rbio);
1140 	}
1141 }
1142 
1143 /*
1144  * helper function to walk our bio list and populate the bio_pages array with
1145  * the result.  This seems expensive, but it is faster than constantly
1146  * searching through the bio list as we setup the IO in finish_rmw or stripe
1147  * reconstruction.
1148  *
1149  * This must be called before you trust the answers from page_in_rbio
1150  */
index_rbio_pages(struct btrfs_raid_bio * rbio)1151 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1152 {
1153 	struct bio *bio;
1154 	u64 start;
1155 	unsigned long stripe_offset;
1156 	unsigned long page_index;
1157 
1158 	spin_lock_irq(&rbio->bio_list_lock);
1159 	bio_list_for_each(bio, &rbio->bio_list) {
1160 		struct bio_vec bvec;
1161 		struct bvec_iter iter;
1162 		int i = 0;
1163 
1164 		start = (u64)bio->bi_iter.bi_sector << 9;
1165 		stripe_offset = start - rbio->bbio->raid_map[0];
1166 		page_index = stripe_offset >> PAGE_SHIFT;
1167 
1168 		if (bio_flagged(bio, BIO_CLONED))
1169 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1170 
1171 		bio_for_each_segment(bvec, bio, iter) {
1172 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1173 			i++;
1174 		}
1175 	}
1176 	spin_unlock_irq(&rbio->bio_list_lock);
1177 }
1178 
1179 /*
1180  * this is called from one of two situations.  We either
1181  * have a full stripe from the higher layers, or we've read all
1182  * the missing bits off disk.
1183  *
1184  * This will calculate the parity and then send down any
1185  * changed blocks.
1186  */
finish_rmw(struct btrfs_raid_bio * rbio)1187 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1188 {
1189 	struct btrfs_bio *bbio = rbio->bbio;
1190 	void **pointers = rbio->finish_pointers;
1191 	int nr_data = rbio->nr_data;
1192 	int stripe;
1193 	int pagenr;
1194 	bool has_qstripe;
1195 	struct bio_list bio_list;
1196 	struct bio *bio;
1197 	int ret;
1198 
1199 	bio_list_init(&bio_list);
1200 
1201 	if (rbio->real_stripes - rbio->nr_data == 1)
1202 		has_qstripe = false;
1203 	else if (rbio->real_stripes - rbio->nr_data == 2)
1204 		has_qstripe = true;
1205 	else
1206 		BUG();
1207 
1208 	/* We should have at least one data sector. */
1209 	ASSERT(bitmap_weight(rbio->dbitmap, rbio->stripe_npages));
1210 
1211 	/* at this point we either have a full stripe,
1212 	 * or we've read the full stripe from the drive.
1213 	 * recalculate the parity and write the new results.
1214 	 *
1215 	 * We're not allowed to add any new bios to the
1216 	 * bio list here, anyone else that wants to
1217 	 * change this stripe needs to do their own rmw.
1218 	 */
1219 	spin_lock_irq(&rbio->bio_list_lock);
1220 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1221 	spin_unlock_irq(&rbio->bio_list_lock);
1222 
1223 	atomic_set(&rbio->error, 0);
1224 
1225 	/*
1226 	 * now that we've set rmw_locked, run through the
1227 	 * bio list one last time and map the page pointers
1228 	 *
1229 	 * We don't cache full rbios because we're assuming
1230 	 * the higher layers are unlikely to use this area of
1231 	 * the disk again soon.  If they do use it again,
1232 	 * hopefully they will send another full bio.
1233 	 */
1234 	index_rbio_pages(rbio);
1235 	if (!rbio_is_full(rbio))
1236 		cache_rbio_pages(rbio);
1237 	else
1238 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1239 
1240 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1241 		struct page *p;
1242 		/* first collect one page from each data stripe */
1243 		for (stripe = 0; stripe < nr_data; stripe++) {
1244 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1245 			pointers[stripe] = kmap(p);
1246 		}
1247 
1248 		/* then add the parity stripe */
1249 		p = rbio_pstripe_page(rbio, pagenr);
1250 		SetPageUptodate(p);
1251 		pointers[stripe++] = kmap(p);
1252 
1253 		if (has_qstripe) {
1254 
1255 			/*
1256 			 * raid6, add the qstripe and call the
1257 			 * library function to fill in our p/q
1258 			 */
1259 			p = rbio_qstripe_page(rbio, pagenr);
1260 			SetPageUptodate(p);
1261 			pointers[stripe++] = kmap(p);
1262 
1263 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1264 						pointers);
1265 		} else {
1266 			/* raid5 */
1267 			copy_page(pointers[nr_data], pointers[0]);
1268 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1269 		}
1270 
1271 
1272 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1273 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1274 	}
1275 
1276 	/*
1277 	 * time to start writing.  Make bios for everything from the
1278 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1279 	 * everything else.
1280 	 */
1281 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1282 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1283 			struct page *page;
1284 
1285 			/* This vertical stripe has no data, skip it. */
1286 			if (!test_bit(pagenr, rbio->dbitmap))
1287 				continue;
1288 
1289 			if (stripe < rbio->nr_data) {
1290 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1291 				if (!page)
1292 					continue;
1293 			} else {
1294 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1295 			}
1296 
1297 			ret = rbio_add_io_page(rbio, &bio_list,
1298 				       page, stripe, pagenr, rbio->stripe_len);
1299 			if (ret)
1300 				goto cleanup;
1301 		}
1302 	}
1303 
1304 	if (likely(!bbio->num_tgtdevs))
1305 		goto write_data;
1306 
1307 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1308 		if (!bbio->tgtdev_map[stripe])
1309 			continue;
1310 
1311 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1312 			struct page *page;
1313 
1314 			/* This vertical stripe has no data, skip it. */
1315 			if (!test_bit(pagenr, rbio->dbitmap))
1316 				continue;
1317 
1318 			if (stripe < rbio->nr_data) {
1319 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1320 				if (!page)
1321 					continue;
1322 			} else {
1323 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1324 			}
1325 
1326 			ret = rbio_add_io_page(rbio, &bio_list, page,
1327 					       rbio->bbio->tgtdev_map[stripe],
1328 					       pagenr, rbio->stripe_len);
1329 			if (ret)
1330 				goto cleanup;
1331 		}
1332 	}
1333 
1334 write_data:
1335 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1336 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1337 
1338 	while (1) {
1339 		bio = bio_list_pop(&bio_list);
1340 		if (!bio)
1341 			break;
1342 
1343 		bio->bi_private = rbio;
1344 		bio->bi_end_io = raid_write_end_io;
1345 		bio->bi_opf = REQ_OP_WRITE;
1346 
1347 		submit_bio(bio);
1348 	}
1349 	return;
1350 
1351 cleanup:
1352 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1353 
1354 	while ((bio = bio_list_pop(&bio_list)))
1355 		bio_put(bio);
1356 }
1357 
1358 /*
1359  * helper to find the stripe number for a given bio.  Used to figure out which
1360  * stripe has failed.  This expects the bio to correspond to a physical disk,
1361  * so it looks up based on physical sector numbers.
1362  */
find_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1363 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1364 			   struct bio *bio)
1365 {
1366 	u64 physical = bio->bi_iter.bi_sector;
1367 	u64 stripe_start;
1368 	int i;
1369 	struct btrfs_bio_stripe *stripe;
1370 
1371 	physical <<= 9;
1372 
1373 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1374 		stripe = &rbio->bbio->stripes[i];
1375 		stripe_start = stripe->physical;
1376 		if (physical >= stripe_start &&
1377 		    physical < stripe_start + rbio->stripe_len &&
1378 		    stripe->dev->bdev &&
1379 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1380 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1381 			return i;
1382 		}
1383 	}
1384 	return -1;
1385 }
1386 
1387 /*
1388  * helper to find the stripe number for a given
1389  * bio (before mapping).  Used to figure out which stripe has
1390  * failed.  This looks up based on logical block numbers.
1391  */
find_logical_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1392 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1393 				   struct bio *bio)
1394 {
1395 	u64 logical = bio->bi_iter.bi_sector;
1396 	u64 stripe_start;
1397 	int i;
1398 
1399 	logical <<= 9;
1400 
1401 	for (i = 0; i < rbio->nr_data; i++) {
1402 		stripe_start = rbio->bbio->raid_map[i];
1403 		if (logical >= stripe_start &&
1404 		    logical < stripe_start + rbio->stripe_len) {
1405 			return i;
1406 		}
1407 	}
1408 	return -1;
1409 }
1410 
1411 /*
1412  * returns -EIO if we had too many failures
1413  */
fail_rbio_index(struct btrfs_raid_bio * rbio,int failed)1414 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1415 {
1416 	unsigned long flags;
1417 	int ret = 0;
1418 
1419 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1420 
1421 	/* we already know this stripe is bad, move on */
1422 	if (rbio->faila == failed || rbio->failb == failed)
1423 		goto out;
1424 
1425 	if (rbio->faila == -1) {
1426 		/* first failure on this rbio */
1427 		rbio->faila = failed;
1428 		atomic_inc(&rbio->error);
1429 	} else if (rbio->failb == -1) {
1430 		/* second failure on this rbio */
1431 		rbio->failb = failed;
1432 		atomic_inc(&rbio->error);
1433 	} else {
1434 		ret = -EIO;
1435 	}
1436 out:
1437 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1438 
1439 	return ret;
1440 }
1441 
1442 /*
1443  * helper to fail a stripe based on a physical disk
1444  * bio.
1445  */
fail_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1446 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1447 			   struct bio *bio)
1448 {
1449 	int failed = find_bio_stripe(rbio, bio);
1450 
1451 	if (failed < 0)
1452 		return -EIO;
1453 
1454 	return fail_rbio_index(rbio, failed);
1455 }
1456 
1457 /*
1458  * this sets each page in the bio uptodate.  It should only be used on private
1459  * rbio pages, nothing that comes in from the higher layers
1460  */
set_bio_pages_uptodate(struct bio * bio)1461 static void set_bio_pages_uptodate(struct bio *bio)
1462 {
1463 	struct bio_vec *bvec;
1464 	int i;
1465 
1466 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1467 
1468 	bio_for_each_segment_all(bvec, bio, i)
1469 		SetPageUptodate(bvec->bv_page);
1470 }
1471 
1472 /*
1473  * end io for the read phase of the rmw cycle.  All the bios here are physical
1474  * stripe bios we've read from the disk so we can recalculate the parity of the
1475  * stripe.
1476  *
1477  * This will usually kick off finish_rmw once all the bios are read in, but it
1478  * may trigger parity reconstruction if we had any errors along the way
1479  */
raid_rmw_end_io(struct bio * bio)1480 static void raid_rmw_end_io(struct bio *bio)
1481 {
1482 	struct btrfs_raid_bio *rbio = bio->bi_private;
1483 
1484 	if (bio->bi_status)
1485 		fail_bio_stripe(rbio, bio);
1486 	else
1487 		set_bio_pages_uptodate(bio);
1488 
1489 	bio_put(bio);
1490 
1491 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1492 		return;
1493 
1494 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1495 		goto cleanup;
1496 
1497 	/*
1498 	 * this will normally call finish_rmw to start our write
1499 	 * but if there are any failed stripes we'll reconstruct
1500 	 * from parity first
1501 	 */
1502 	validate_rbio_for_rmw(rbio);
1503 	return;
1504 
1505 cleanup:
1506 
1507 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1508 }
1509 
1510 /*
1511  * the stripe must be locked by the caller.  It will
1512  * unlock after all the writes are done
1513  */
raid56_rmw_stripe(struct btrfs_raid_bio * rbio)1514 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1515 {
1516 	int bios_to_read = 0;
1517 	struct bio_list bio_list;
1518 	int ret;
1519 	int pagenr;
1520 	int stripe;
1521 	struct bio *bio;
1522 
1523 	bio_list_init(&bio_list);
1524 
1525 	ret = alloc_rbio_pages(rbio);
1526 	if (ret)
1527 		goto cleanup;
1528 
1529 	index_rbio_pages(rbio);
1530 
1531 	atomic_set(&rbio->error, 0);
1532 	/*
1533 	 * build a list of bios to read all the missing parts of this
1534 	 * stripe
1535 	 */
1536 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1537 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1538 			struct page *page;
1539 			/*
1540 			 * we want to find all the pages missing from
1541 			 * the rbio and read them from the disk.  If
1542 			 * page_in_rbio finds a page in the bio list
1543 			 * we don't need to read it off the stripe.
1544 			 */
1545 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1546 			if (page)
1547 				continue;
1548 
1549 			page = rbio_stripe_page(rbio, stripe, pagenr);
1550 			/*
1551 			 * the bio cache may have handed us an uptodate
1552 			 * page.  If so, be happy and use it
1553 			 */
1554 			if (PageUptodate(page))
1555 				continue;
1556 
1557 			ret = rbio_add_io_page(rbio, &bio_list, page,
1558 				       stripe, pagenr, rbio->stripe_len);
1559 			if (ret)
1560 				goto cleanup;
1561 		}
1562 	}
1563 
1564 	bios_to_read = bio_list_size(&bio_list);
1565 	if (!bios_to_read) {
1566 		/*
1567 		 * this can happen if others have merged with
1568 		 * us, it means there is nothing left to read.
1569 		 * But if there are missing devices it may not be
1570 		 * safe to do the full stripe write yet.
1571 		 */
1572 		goto finish;
1573 	}
1574 
1575 	/*
1576 	 * the bbio may be freed once we submit the last bio.  Make sure
1577 	 * not to touch it after that
1578 	 */
1579 	atomic_set(&rbio->stripes_pending, bios_to_read);
1580 	while (1) {
1581 		bio = bio_list_pop(&bio_list);
1582 		if (!bio)
1583 			break;
1584 
1585 		bio->bi_private = rbio;
1586 		bio->bi_end_io = raid_rmw_end_io;
1587 		bio->bi_opf = REQ_OP_READ;
1588 
1589 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1590 
1591 		submit_bio(bio);
1592 	}
1593 	/* the actual write will happen once the reads are done */
1594 	return 0;
1595 
1596 cleanup:
1597 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1598 
1599 	while ((bio = bio_list_pop(&bio_list)))
1600 		bio_put(bio);
1601 
1602 	return -EIO;
1603 
1604 finish:
1605 	validate_rbio_for_rmw(rbio);
1606 	return 0;
1607 }
1608 
1609 /*
1610  * if the upper layers pass in a full stripe, we thank them by only allocating
1611  * enough pages to hold the parity, and sending it all down quickly.
1612  */
full_stripe_write(struct btrfs_raid_bio * rbio)1613 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1614 {
1615 	int ret;
1616 
1617 	ret = alloc_rbio_parity_pages(rbio);
1618 	if (ret) {
1619 		__free_raid_bio(rbio);
1620 		return ret;
1621 	}
1622 
1623 	ret = lock_stripe_add(rbio);
1624 	if (ret == 0)
1625 		finish_rmw(rbio);
1626 	return 0;
1627 }
1628 
1629 /*
1630  * partial stripe writes get handed over to async helpers.
1631  * We're really hoping to merge a few more writes into this
1632  * rbio before calculating new parity
1633  */
partial_stripe_write(struct btrfs_raid_bio * rbio)1634 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1635 {
1636 	int ret;
1637 
1638 	ret = lock_stripe_add(rbio);
1639 	if (ret == 0)
1640 		start_async_work(rbio, rmw_work);
1641 	return 0;
1642 }
1643 
1644 /*
1645  * sometimes while we were reading from the drive to
1646  * recalculate parity, enough new bios come into create
1647  * a full stripe.  So we do a check here to see if we can
1648  * go directly to finish_rmw
1649  */
__raid56_parity_write(struct btrfs_raid_bio * rbio)1650 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1651 {
1652 	/* head off into rmw land if we don't have a full stripe */
1653 	if (!rbio_is_full(rbio))
1654 		return partial_stripe_write(rbio);
1655 	return full_stripe_write(rbio);
1656 }
1657 
1658 /*
1659  * We use plugging call backs to collect full stripes.
1660  * Any time we get a partial stripe write while plugged
1661  * we collect it into a list.  When the unplug comes down,
1662  * we sort the list by logical block number and merge
1663  * everything we can into the same rbios
1664  */
1665 struct btrfs_plug_cb {
1666 	struct blk_plug_cb cb;
1667 	struct btrfs_fs_info *info;
1668 	struct list_head rbio_list;
1669 	struct btrfs_work work;
1670 };
1671 
1672 /*
1673  * rbios on the plug list are sorted for easier merging.
1674  */
plug_cmp(void * priv,struct list_head * a,struct list_head * b)1675 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1676 {
1677 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1678 						 plug_list);
1679 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1680 						 plug_list);
1681 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1682 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1683 
1684 	if (a_sector < b_sector)
1685 		return -1;
1686 	if (a_sector > b_sector)
1687 		return 1;
1688 	return 0;
1689 }
1690 
run_plug(struct btrfs_plug_cb * plug)1691 static void run_plug(struct btrfs_plug_cb *plug)
1692 {
1693 	struct btrfs_raid_bio *cur;
1694 	struct btrfs_raid_bio *last = NULL;
1695 
1696 	/*
1697 	 * sort our plug list then try to merge
1698 	 * everything we can in hopes of creating full
1699 	 * stripes.
1700 	 */
1701 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1702 	while (!list_empty(&plug->rbio_list)) {
1703 		cur = list_entry(plug->rbio_list.next,
1704 				 struct btrfs_raid_bio, plug_list);
1705 		list_del_init(&cur->plug_list);
1706 
1707 		if (rbio_is_full(cur)) {
1708 			int ret;
1709 
1710 			/* we have a full stripe, send it down */
1711 			ret = full_stripe_write(cur);
1712 			BUG_ON(ret);
1713 			continue;
1714 		}
1715 		if (last) {
1716 			if (rbio_can_merge(last, cur)) {
1717 				merge_rbio(last, cur);
1718 				__free_raid_bio(cur);
1719 				continue;
1720 
1721 			}
1722 			__raid56_parity_write(last);
1723 		}
1724 		last = cur;
1725 	}
1726 	if (last) {
1727 		__raid56_parity_write(last);
1728 	}
1729 	kfree(plug);
1730 }
1731 
1732 /*
1733  * if the unplug comes from schedule, we have to push the
1734  * work off to a helper thread
1735  */
unplug_work(struct btrfs_work * work)1736 static void unplug_work(struct btrfs_work *work)
1737 {
1738 	struct btrfs_plug_cb *plug;
1739 	plug = container_of(work, struct btrfs_plug_cb, work);
1740 	run_plug(plug);
1741 }
1742 
btrfs_raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1743 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1744 {
1745 	struct btrfs_plug_cb *plug;
1746 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1747 
1748 	if (from_schedule) {
1749 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1750 				unplug_work, NULL, NULL);
1751 		btrfs_queue_work(plug->info->rmw_workers,
1752 				 &plug->work);
1753 		return;
1754 	}
1755 	run_plug(plug);
1756 }
1757 
1758 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
rbio_add_bio(struct btrfs_raid_bio * rbio,struct bio * orig_bio)1759 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1760 {
1761 	const struct btrfs_fs_info *fs_info = rbio->fs_info;
1762 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1763 	const u64 full_stripe_start = rbio->bbio->raid_map[0];
1764 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1765 	const u32 sectorsize = fs_info->sectorsize;
1766 	u64 cur_logical;
1767 
1768 	ASSERT(orig_logical >= full_stripe_start &&
1769 	       orig_logical + orig_len <= full_stripe_start +
1770 	       rbio->nr_data * rbio->stripe_len);
1771 
1772 	bio_list_add(&rbio->bio_list, orig_bio);
1773 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1774 
1775 	/* Update the dbitmap. */
1776 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1777 	     cur_logical += sectorsize) {
1778 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1779 			   PAGE_SHIFT) % rbio->stripe_npages;
1780 
1781 		set_bit(bit, rbio->dbitmap);
1782 	}
1783 }
1784 
1785 /*
1786  * our main entry point for writes from the rest of the FS.
1787  */
raid56_parity_write(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len)1788 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1789 			struct btrfs_bio *bbio, u64 stripe_len)
1790 {
1791 	struct btrfs_raid_bio *rbio;
1792 	struct btrfs_plug_cb *plug = NULL;
1793 	struct blk_plug_cb *cb;
1794 	int ret;
1795 
1796 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1797 	if (IS_ERR(rbio)) {
1798 		btrfs_put_bbio(bbio);
1799 		return PTR_ERR(rbio);
1800 	}
1801 	rbio->operation = BTRFS_RBIO_WRITE;
1802 	rbio_add_bio(rbio, bio);
1803 
1804 	btrfs_bio_counter_inc_noblocked(fs_info);
1805 	rbio->generic_bio_cnt = 1;
1806 
1807 	/*
1808 	 * don't plug on full rbios, just get them out the door
1809 	 * as quickly as we can
1810 	 */
1811 	if (rbio_is_full(rbio)) {
1812 		ret = full_stripe_write(rbio);
1813 		if (ret)
1814 			btrfs_bio_counter_dec(fs_info);
1815 		return ret;
1816 	}
1817 
1818 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1819 	if (cb) {
1820 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1821 		if (!plug->info) {
1822 			plug->info = fs_info;
1823 			INIT_LIST_HEAD(&plug->rbio_list);
1824 		}
1825 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1826 		ret = 0;
1827 	} else {
1828 		ret = __raid56_parity_write(rbio);
1829 		if (ret)
1830 			btrfs_bio_counter_dec(fs_info);
1831 	}
1832 	return ret;
1833 }
1834 
1835 /*
1836  * all parity reconstruction happens here.  We've read in everything
1837  * we can find from the drives and this does the heavy lifting of
1838  * sorting the good from the bad.
1839  */
__raid_recover_end_io(struct btrfs_raid_bio * rbio)1840 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1841 {
1842 	int pagenr, stripe;
1843 	void **pointers;
1844 	int faila = -1, failb = -1;
1845 	struct page *page;
1846 	blk_status_t err;
1847 	int i;
1848 
1849 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1850 	if (!pointers) {
1851 		err = BLK_STS_RESOURCE;
1852 		goto cleanup_io;
1853 	}
1854 
1855 	faila = rbio->faila;
1856 	failb = rbio->failb;
1857 
1858 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1859 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1860 		spin_lock_irq(&rbio->bio_list_lock);
1861 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1862 		spin_unlock_irq(&rbio->bio_list_lock);
1863 	}
1864 
1865 	index_rbio_pages(rbio);
1866 
1867 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1868 		/*
1869 		 * Now we just use bitmap to mark the horizontal stripes in
1870 		 * which we have data when doing parity scrub.
1871 		 */
1872 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1873 		    !test_bit(pagenr, rbio->dbitmap))
1874 			continue;
1875 
1876 		/* setup our array of pointers with pages
1877 		 * from each stripe
1878 		 */
1879 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1880 			/*
1881 			 * if we're rebuilding a read, we have to use
1882 			 * pages from the bio list
1883 			 */
1884 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1885 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1886 			    (stripe == faila || stripe == failb)) {
1887 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1888 			} else {
1889 				page = rbio_stripe_page(rbio, stripe, pagenr);
1890 			}
1891 			pointers[stripe] = kmap(page);
1892 		}
1893 
1894 		/* all raid6 handling here */
1895 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1896 			/*
1897 			 * single failure, rebuild from parity raid5
1898 			 * style
1899 			 */
1900 			if (failb < 0) {
1901 				if (faila == rbio->nr_data) {
1902 					/*
1903 					 * Just the P stripe has failed, without
1904 					 * a bad data or Q stripe.
1905 					 * TODO, we should redo the xor here.
1906 					 */
1907 					err = BLK_STS_IOERR;
1908 					goto cleanup;
1909 				}
1910 				/*
1911 				 * a single failure in raid6 is rebuilt
1912 				 * in the pstripe code below
1913 				 */
1914 				goto pstripe;
1915 			}
1916 
1917 			/* make sure our ps and qs are in order */
1918 			if (faila > failb) {
1919 				int tmp = failb;
1920 				failb = faila;
1921 				faila = tmp;
1922 			}
1923 
1924 			/* if the q stripe is failed, do a pstripe reconstruction
1925 			 * from the xors.
1926 			 * If both the q stripe and the P stripe are failed, we're
1927 			 * here due to a crc mismatch and we can't give them the
1928 			 * data they want
1929 			 */
1930 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1931 				if (rbio->bbio->raid_map[faila] ==
1932 				    RAID5_P_STRIPE) {
1933 					err = BLK_STS_IOERR;
1934 					goto cleanup;
1935 				}
1936 				/*
1937 				 * otherwise we have one bad data stripe and
1938 				 * a good P stripe.  raid5!
1939 				 */
1940 				goto pstripe;
1941 			}
1942 
1943 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1944 				raid6_datap_recov(rbio->real_stripes,
1945 						  PAGE_SIZE, faila, pointers);
1946 			} else {
1947 				raid6_2data_recov(rbio->real_stripes,
1948 						  PAGE_SIZE, faila, failb,
1949 						  pointers);
1950 			}
1951 		} else {
1952 			void *p;
1953 
1954 			/* rebuild from P stripe here (raid5 or raid6) */
1955 			BUG_ON(failb != -1);
1956 pstripe:
1957 			/* Copy parity block into failed block to start with */
1958 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1959 
1960 			/* rearrange the pointer array */
1961 			p = pointers[faila];
1962 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1963 				pointers[stripe] = pointers[stripe + 1];
1964 			pointers[rbio->nr_data - 1] = p;
1965 
1966 			/* xor in the rest */
1967 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1968 		}
1969 		/* if we're doing this rebuild as part of an rmw, go through
1970 		 * and set all of our private rbio pages in the
1971 		 * failed stripes as uptodate.  This way finish_rmw will
1972 		 * know they can be trusted.  If this was a read reconstruction,
1973 		 * other endio functions will fiddle the uptodate bits
1974 		 */
1975 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1976 			for (i = 0;  i < rbio->stripe_npages; i++) {
1977 				if (faila != -1) {
1978 					page = rbio_stripe_page(rbio, faila, i);
1979 					SetPageUptodate(page);
1980 				}
1981 				if (failb != -1) {
1982 					page = rbio_stripe_page(rbio, failb, i);
1983 					SetPageUptodate(page);
1984 				}
1985 			}
1986 		}
1987 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1988 			/*
1989 			 * if we're rebuilding a read, we have to use
1990 			 * pages from the bio list
1991 			 */
1992 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1993 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1994 			    (stripe == faila || stripe == failb)) {
1995 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1996 			} else {
1997 				page = rbio_stripe_page(rbio, stripe, pagenr);
1998 			}
1999 			kunmap(page);
2000 		}
2001 	}
2002 
2003 	err = BLK_STS_OK;
2004 cleanup:
2005 	kfree(pointers);
2006 
2007 cleanup_io:
2008 	/*
2009 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
2010 	 * valid rbio which is consistent with ondisk content, thus such a
2011 	 * valid rbio can be cached to avoid further disk reads.
2012 	 */
2013 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2014 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2015 		/*
2016 		 * - In case of two failures, where rbio->failb != -1:
2017 		 *
2018 		 *   Do not cache this rbio since the above read reconstruction
2019 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
2020 		 *   changed some content of stripes which are not identical to
2021 		 *   on-disk content any more, otherwise, a later write/recover
2022 		 *   may steal stripe_pages from this rbio and end up with
2023 		 *   corruptions or rebuild failures.
2024 		 *
2025 		 * - In case of single failure, where rbio->failb == -1:
2026 		 *
2027 		 *   Cache this rbio iff the above read reconstruction is
2028 		 *   excuted without problems.
2029 		 */
2030 		if (err == BLK_STS_OK && rbio->failb < 0)
2031 			cache_rbio_pages(rbio);
2032 		else
2033 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2034 
2035 		rbio_orig_end_io(rbio, err);
2036 	} else if (err == BLK_STS_OK) {
2037 		rbio->faila = -1;
2038 		rbio->failb = -1;
2039 
2040 		if (rbio->operation == BTRFS_RBIO_WRITE)
2041 			finish_rmw(rbio);
2042 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2043 			finish_parity_scrub(rbio, 0);
2044 		else
2045 			BUG();
2046 	} else {
2047 		rbio_orig_end_io(rbio, err);
2048 	}
2049 }
2050 
2051 /*
2052  * This is called only for stripes we've read from disk to
2053  * reconstruct the parity.
2054  */
raid_recover_end_io(struct bio * bio)2055 static void raid_recover_end_io(struct bio *bio)
2056 {
2057 	struct btrfs_raid_bio *rbio = bio->bi_private;
2058 
2059 	/*
2060 	 * we only read stripe pages off the disk, set them
2061 	 * up to date if there were no errors
2062 	 */
2063 	if (bio->bi_status)
2064 		fail_bio_stripe(rbio, bio);
2065 	else
2066 		set_bio_pages_uptodate(bio);
2067 	bio_put(bio);
2068 
2069 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2070 		return;
2071 
2072 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2073 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2074 	else
2075 		__raid_recover_end_io(rbio);
2076 }
2077 
2078 /*
2079  * reads everything we need off the disk to reconstruct
2080  * the parity. endio handlers trigger final reconstruction
2081  * when the IO is done.
2082  *
2083  * This is used both for reads from the higher layers and for
2084  * parity construction required to finish a rmw cycle.
2085  */
__raid56_parity_recover(struct btrfs_raid_bio * rbio)2086 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2087 {
2088 	int bios_to_read = 0;
2089 	struct bio_list bio_list;
2090 	int ret;
2091 	int pagenr;
2092 	int stripe;
2093 	struct bio *bio;
2094 
2095 	bio_list_init(&bio_list);
2096 
2097 	ret = alloc_rbio_pages(rbio);
2098 	if (ret)
2099 		goto cleanup;
2100 
2101 	atomic_set(&rbio->error, 0);
2102 
2103 	/*
2104 	 * Read everything that hasn't failed. However this time we will
2105 	 * not trust any cached sector.
2106 	 * As we may read out some stale data but higher layer is not reading
2107 	 * that stale part.
2108 	 *
2109 	 * So here we always re-read everything in recovery path.
2110 	 */
2111 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2112 		if (rbio->faila == stripe || rbio->failb == stripe) {
2113 			atomic_inc(&rbio->error);
2114 			continue;
2115 		}
2116 
2117 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2118 			ret = rbio_add_io_page(rbio, &bio_list,
2119 				       rbio_stripe_page(rbio, stripe, pagenr),
2120 				       stripe, pagenr, rbio->stripe_len);
2121 			if (ret < 0)
2122 				goto cleanup;
2123 		}
2124 	}
2125 
2126 	bios_to_read = bio_list_size(&bio_list);
2127 	if (!bios_to_read) {
2128 		/*
2129 		 * we might have no bios to read just because the pages
2130 		 * were up to date, or we might have no bios to read because
2131 		 * the devices were gone.
2132 		 */
2133 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2134 			__raid_recover_end_io(rbio);
2135 			goto out;
2136 		} else {
2137 			goto cleanup;
2138 		}
2139 	}
2140 
2141 	/*
2142 	 * the bbio may be freed once we submit the last bio.  Make sure
2143 	 * not to touch it after that
2144 	 */
2145 	atomic_set(&rbio->stripes_pending, bios_to_read);
2146 	while (1) {
2147 		bio = bio_list_pop(&bio_list);
2148 		if (!bio)
2149 			break;
2150 
2151 		bio->bi_private = rbio;
2152 		bio->bi_end_io = raid_recover_end_io;
2153 		bio->bi_opf = REQ_OP_READ;
2154 
2155 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2156 
2157 		submit_bio(bio);
2158 	}
2159 out:
2160 	return 0;
2161 
2162 cleanup:
2163 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2164 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2165 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2166 
2167 	while ((bio = bio_list_pop(&bio_list)))
2168 		bio_put(bio);
2169 
2170 	return -EIO;
2171 }
2172 
2173 /*
2174  * the main entry point for reads from the higher layers.  This
2175  * is really only called when the normal read path had a failure,
2176  * so we assume the bio they send down corresponds to a failed part
2177  * of the drive.
2178  */
raid56_parity_recover(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,int mirror_num,int generic_io)2179 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2180 			  struct btrfs_bio *bbio, u64 stripe_len,
2181 			  int mirror_num, int generic_io)
2182 {
2183 	struct btrfs_raid_bio *rbio;
2184 	int ret;
2185 
2186 	if (generic_io) {
2187 		ASSERT(bbio->mirror_num == mirror_num);
2188 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2189 	}
2190 
2191 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2192 	if (IS_ERR(rbio)) {
2193 		if (generic_io)
2194 			btrfs_put_bbio(bbio);
2195 		return PTR_ERR(rbio);
2196 	}
2197 
2198 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2199 	rbio_add_bio(rbio, bio);
2200 
2201 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2202 	if (rbio->faila == -1) {
2203 		btrfs_warn(fs_info,
2204 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2205 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2206 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2207 		if (generic_io)
2208 			btrfs_put_bbio(bbio);
2209 		kfree(rbio);
2210 		return -EIO;
2211 	}
2212 
2213 	if (generic_io) {
2214 		btrfs_bio_counter_inc_noblocked(fs_info);
2215 		rbio->generic_bio_cnt = 1;
2216 	} else {
2217 		btrfs_get_bbio(bbio);
2218 	}
2219 
2220 	/*
2221 	 * Loop retry:
2222 	 * for 'mirror == 2', reconstruct from all other stripes.
2223 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2224 	 */
2225 	if (mirror_num > 2) {
2226 		/*
2227 		 * 'mirror == 3' is to fail the p stripe and
2228 		 * reconstruct from the q stripe.  'mirror > 3' is to
2229 		 * fail a data stripe and reconstruct from p+q stripe.
2230 		 */
2231 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2232 		ASSERT(rbio->failb > 0);
2233 		if (rbio->failb <= rbio->faila)
2234 			rbio->failb--;
2235 	}
2236 
2237 	ret = lock_stripe_add(rbio);
2238 
2239 	/*
2240 	 * __raid56_parity_recover will end the bio with
2241 	 * any errors it hits.  We don't want to return
2242 	 * its error value up the stack because our caller
2243 	 * will end up calling bio_endio with any nonzero
2244 	 * return
2245 	 */
2246 	if (ret == 0)
2247 		__raid56_parity_recover(rbio);
2248 	/*
2249 	 * our rbio has been added to the list of
2250 	 * rbios that will be handled after the
2251 	 * currently lock owner is done
2252 	 */
2253 	return 0;
2254 
2255 }
2256 
rmw_work(struct btrfs_work * work)2257 static void rmw_work(struct btrfs_work *work)
2258 {
2259 	struct btrfs_raid_bio *rbio;
2260 
2261 	rbio = container_of(work, struct btrfs_raid_bio, work);
2262 	raid56_rmw_stripe(rbio);
2263 }
2264 
read_rebuild_work(struct btrfs_work * work)2265 static void read_rebuild_work(struct btrfs_work *work)
2266 {
2267 	struct btrfs_raid_bio *rbio;
2268 
2269 	rbio = container_of(work, struct btrfs_raid_bio, work);
2270 	__raid56_parity_recover(rbio);
2271 }
2272 
2273 /*
2274  * The following code is used to scrub/replace the parity stripe
2275  *
2276  * Caller must have already increased bio_counter for getting @bbio.
2277  *
2278  * Note: We need make sure all the pages that add into the scrub/replace
2279  * raid bio are correct and not be changed during the scrub/replace. That
2280  * is those pages just hold metadata or file data with checksum.
2281  */
2282 
2283 struct btrfs_raid_bio *
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2284 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2285 			       struct btrfs_bio *bbio, u64 stripe_len,
2286 			       struct btrfs_device *scrub_dev,
2287 			       unsigned long *dbitmap, int stripe_nsectors)
2288 {
2289 	struct btrfs_raid_bio *rbio;
2290 	int i;
2291 
2292 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2293 	if (IS_ERR(rbio))
2294 		return NULL;
2295 	bio_list_add(&rbio->bio_list, bio);
2296 	/*
2297 	 * This is a special bio which is used to hold the completion handler
2298 	 * and make the scrub rbio is similar to the other types
2299 	 */
2300 	ASSERT(!bio->bi_iter.bi_size);
2301 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2302 
2303 	/*
2304 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2305 	 * to the end position, so this search can start from the first parity
2306 	 * stripe.
2307 	 */
2308 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2309 		if (bbio->stripes[i].dev == scrub_dev) {
2310 			rbio->scrubp = i;
2311 			break;
2312 		}
2313 	}
2314 	ASSERT(i < rbio->real_stripes);
2315 
2316 	/* Now we just support the sectorsize equals to page size */
2317 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2318 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2319 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2320 
2321 	/*
2322 	 * We have already increased bio_counter when getting bbio, record it
2323 	 * so we can free it at rbio_orig_end_io().
2324 	 */
2325 	rbio->generic_bio_cnt = 1;
2326 
2327 	return rbio;
2328 }
2329 
2330 /* Used for both parity scrub and missing. */
raid56_add_scrub_pages(struct btrfs_raid_bio * rbio,struct page * page,u64 logical)2331 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2332 			    u64 logical)
2333 {
2334 	int stripe_offset;
2335 	int index;
2336 
2337 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2338 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2339 				rbio->stripe_len * rbio->nr_data);
2340 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2341 	index = stripe_offset >> PAGE_SHIFT;
2342 	rbio->bio_pages[index] = page;
2343 }
2344 
2345 /*
2346  * We just scrub the parity that we have correct data on the same horizontal,
2347  * so we needn't allocate all pages for all the stripes.
2348  */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2349 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2350 {
2351 	int i;
2352 	int bit;
2353 	int index;
2354 	struct page *page;
2355 
2356 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2357 		for (i = 0; i < rbio->real_stripes; i++) {
2358 			index = i * rbio->stripe_npages + bit;
2359 			if (rbio->stripe_pages[index])
2360 				continue;
2361 
2362 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2363 			if (!page)
2364 				return -ENOMEM;
2365 			rbio->stripe_pages[index] = page;
2366 		}
2367 	}
2368 	return 0;
2369 }
2370 
finish_parity_scrub(struct btrfs_raid_bio * rbio,int need_check)2371 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2372 					 int need_check)
2373 {
2374 	struct btrfs_bio *bbio = rbio->bbio;
2375 	void **pointers = rbio->finish_pointers;
2376 	unsigned long *pbitmap = rbio->finish_pbitmap;
2377 	int nr_data = rbio->nr_data;
2378 	int stripe;
2379 	int pagenr;
2380 	bool has_qstripe;
2381 	struct page *p_page = NULL;
2382 	struct page *q_page = NULL;
2383 	struct bio_list bio_list;
2384 	struct bio *bio;
2385 	int is_replace = 0;
2386 	int ret;
2387 
2388 	bio_list_init(&bio_list);
2389 
2390 	if (rbio->real_stripes - rbio->nr_data == 1)
2391 		has_qstripe = false;
2392 	else if (rbio->real_stripes - rbio->nr_data == 2)
2393 		has_qstripe = true;
2394 	else
2395 		BUG();
2396 
2397 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2398 		is_replace = 1;
2399 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2400 	}
2401 
2402 	/*
2403 	 * Because the higher layers(scrubber) are unlikely to
2404 	 * use this area of the disk again soon, so don't cache
2405 	 * it.
2406 	 */
2407 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2408 
2409 	if (!need_check)
2410 		goto writeback;
2411 
2412 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2413 	if (!p_page)
2414 		goto cleanup;
2415 	SetPageUptodate(p_page);
2416 
2417 	if (has_qstripe) {
2418 		/* RAID6, allocate and map temp space for the Q stripe */
2419 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2420 		if (!q_page) {
2421 			__free_page(p_page);
2422 			goto cleanup;
2423 		}
2424 		SetPageUptodate(q_page);
2425 		pointers[rbio->real_stripes - 1] = kmap(q_page);
2426 	}
2427 
2428 	atomic_set(&rbio->error, 0);
2429 
2430 	/* Map the parity stripe just once */
2431 	pointers[nr_data] = kmap(p_page);
2432 
2433 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2434 		struct page *p;
2435 		void *parity;
2436 		/* first collect one page from each data stripe */
2437 		for (stripe = 0; stripe < nr_data; stripe++) {
2438 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2439 			pointers[stripe] = kmap(p);
2440 		}
2441 
2442 		if (has_qstripe) {
2443 			/* RAID6, call the library function to fill in our P/Q */
2444 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2445 						pointers);
2446 		} else {
2447 			/* raid5 */
2448 			copy_page(pointers[nr_data], pointers[0]);
2449 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2450 		}
2451 
2452 		/* Check scrubbing parity and repair it */
2453 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2454 		parity = kmap(p);
2455 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2456 			copy_page(parity, pointers[rbio->scrubp]);
2457 		else
2458 			/* Parity is right, needn't writeback */
2459 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2460 		kunmap(p);
2461 
2462 		for (stripe = 0; stripe < nr_data; stripe++)
2463 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2464 	}
2465 
2466 	kunmap(p_page);
2467 	__free_page(p_page);
2468 	if (q_page) {
2469 		kunmap(q_page);
2470 		__free_page(q_page);
2471 	}
2472 
2473 writeback:
2474 	/*
2475 	 * time to start writing.  Make bios for everything from the
2476 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2477 	 * everything else.
2478 	 */
2479 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2480 		struct page *page;
2481 
2482 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2483 		ret = rbio_add_io_page(rbio, &bio_list,
2484 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2485 		if (ret)
2486 			goto cleanup;
2487 	}
2488 
2489 	if (!is_replace)
2490 		goto submit_write;
2491 
2492 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2493 		struct page *page;
2494 
2495 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2496 		ret = rbio_add_io_page(rbio, &bio_list, page,
2497 				       bbio->tgtdev_map[rbio->scrubp],
2498 				       pagenr, rbio->stripe_len);
2499 		if (ret)
2500 			goto cleanup;
2501 	}
2502 
2503 submit_write:
2504 	nr_data = bio_list_size(&bio_list);
2505 	if (!nr_data) {
2506 		/* Every parity is right */
2507 		rbio_orig_end_io(rbio, BLK_STS_OK);
2508 		return;
2509 	}
2510 
2511 	atomic_set(&rbio->stripes_pending, nr_data);
2512 
2513 	while (1) {
2514 		bio = bio_list_pop(&bio_list);
2515 		if (!bio)
2516 			break;
2517 
2518 		bio->bi_private = rbio;
2519 		bio->bi_end_io = raid_write_end_io;
2520 		bio->bi_opf = REQ_OP_WRITE;
2521 
2522 		submit_bio(bio);
2523 	}
2524 	return;
2525 
2526 cleanup:
2527 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2528 
2529 	while ((bio = bio_list_pop(&bio_list)))
2530 		bio_put(bio);
2531 }
2532 
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2533 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2534 {
2535 	if (stripe >= 0 && stripe < rbio->nr_data)
2536 		return 1;
2537 	return 0;
2538 }
2539 
2540 /*
2541  * While we're doing the parity check and repair, we could have errors
2542  * in reading pages off the disk.  This checks for errors and if we're
2543  * not able to read the page it'll trigger parity reconstruction.  The
2544  * parity scrub will be finished after we've reconstructed the failed
2545  * stripes
2546  */
validate_rbio_for_parity_scrub(struct btrfs_raid_bio * rbio)2547 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2548 {
2549 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2550 		goto cleanup;
2551 
2552 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2553 		int dfail = 0, failp = -1;
2554 
2555 		if (is_data_stripe(rbio, rbio->faila))
2556 			dfail++;
2557 		else if (is_parity_stripe(rbio->faila))
2558 			failp = rbio->faila;
2559 
2560 		if (is_data_stripe(rbio, rbio->failb))
2561 			dfail++;
2562 		else if (is_parity_stripe(rbio->failb))
2563 			failp = rbio->failb;
2564 
2565 		/*
2566 		 * Because we can not use a scrubbing parity to repair
2567 		 * the data, so the capability of the repair is declined.
2568 		 * (In the case of RAID5, we can not repair anything)
2569 		 */
2570 		if (dfail > rbio->bbio->max_errors - 1)
2571 			goto cleanup;
2572 
2573 		/*
2574 		 * If all data is good, only parity is correctly, just
2575 		 * repair the parity.
2576 		 */
2577 		if (dfail == 0) {
2578 			finish_parity_scrub(rbio, 0);
2579 			return;
2580 		}
2581 
2582 		/*
2583 		 * Here means we got one corrupted data stripe and one
2584 		 * corrupted parity on RAID6, if the corrupted parity
2585 		 * is scrubbing parity, luckily, use the other one to repair
2586 		 * the data, or we can not repair the data stripe.
2587 		 */
2588 		if (failp != rbio->scrubp)
2589 			goto cleanup;
2590 
2591 		__raid_recover_end_io(rbio);
2592 	} else {
2593 		finish_parity_scrub(rbio, 1);
2594 	}
2595 	return;
2596 
2597 cleanup:
2598 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2599 }
2600 
2601 /*
2602  * end io for the read phase of the rmw cycle.  All the bios here are physical
2603  * stripe bios we've read from the disk so we can recalculate the parity of the
2604  * stripe.
2605  *
2606  * This will usually kick off finish_rmw once all the bios are read in, but it
2607  * may trigger parity reconstruction if we had any errors along the way
2608  */
raid56_parity_scrub_end_io(struct bio * bio)2609 static void raid56_parity_scrub_end_io(struct bio *bio)
2610 {
2611 	struct btrfs_raid_bio *rbio = bio->bi_private;
2612 
2613 	if (bio->bi_status)
2614 		fail_bio_stripe(rbio, bio);
2615 	else
2616 		set_bio_pages_uptodate(bio);
2617 
2618 	bio_put(bio);
2619 
2620 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2621 		return;
2622 
2623 	/*
2624 	 * this will normally call finish_rmw to start our write
2625 	 * but if there are any failed stripes we'll reconstruct
2626 	 * from parity first
2627 	 */
2628 	validate_rbio_for_parity_scrub(rbio);
2629 }
2630 
raid56_parity_scrub_stripe(struct btrfs_raid_bio * rbio)2631 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2632 {
2633 	int bios_to_read = 0;
2634 	struct bio_list bio_list;
2635 	int ret;
2636 	int pagenr;
2637 	int stripe;
2638 	struct bio *bio;
2639 
2640 	bio_list_init(&bio_list);
2641 
2642 	ret = alloc_rbio_essential_pages(rbio);
2643 	if (ret)
2644 		goto cleanup;
2645 
2646 	atomic_set(&rbio->error, 0);
2647 	/*
2648 	 * build a list of bios to read all the missing parts of this
2649 	 * stripe
2650 	 */
2651 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2652 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2653 			struct page *page;
2654 			/*
2655 			 * we want to find all the pages missing from
2656 			 * the rbio and read them from the disk.  If
2657 			 * page_in_rbio finds a page in the bio list
2658 			 * we don't need to read it off the stripe.
2659 			 */
2660 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2661 			if (page)
2662 				continue;
2663 
2664 			page = rbio_stripe_page(rbio, stripe, pagenr);
2665 			/*
2666 			 * the bio cache may have handed us an uptodate
2667 			 * page.  If so, be happy and use it
2668 			 */
2669 			if (PageUptodate(page))
2670 				continue;
2671 
2672 			ret = rbio_add_io_page(rbio, &bio_list, page,
2673 				       stripe, pagenr, rbio->stripe_len);
2674 			if (ret)
2675 				goto cleanup;
2676 		}
2677 	}
2678 
2679 	bios_to_read = bio_list_size(&bio_list);
2680 	if (!bios_to_read) {
2681 		/*
2682 		 * this can happen if others have merged with
2683 		 * us, it means there is nothing left to read.
2684 		 * But if there are missing devices it may not be
2685 		 * safe to do the full stripe write yet.
2686 		 */
2687 		goto finish;
2688 	}
2689 
2690 	/*
2691 	 * the bbio may be freed once we submit the last bio.  Make sure
2692 	 * not to touch it after that
2693 	 */
2694 	atomic_set(&rbio->stripes_pending, bios_to_read);
2695 	while (1) {
2696 		bio = bio_list_pop(&bio_list);
2697 		if (!bio)
2698 			break;
2699 
2700 		bio->bi_private = rbio;
2701 		bio->bi_end_io = raid56_parity_scrub_end_io;
2702 		bio->bi_opf = REQ_OP_READ;
2703 
2704 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2705 
2706 		submit_bio(bio);
2707 	}
2708 	/* the actual write will happen once the reads are done */
2709 	return;
2710 
2711 cleanup:
2712 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2713 
2714 	while ((bio = bio_list_pop(&bio_list)))
2715 		bio_put(bio);
2716 
2717 	return;
2718 
2719 finish:
2720 	validate_rbio_for_parity_scrub(rbio);
2721 }
2722 
scrub_parity_work(struct btrfs_work * work)2723 static void scrub_parity_work(struct btrfs_work *work)
2724 {
2725 	struct btrfs_raid_bio *rbio;
2726 
2727 	rbio = container_of(work, struct btrfs_raid_bio, work);
2728 	raid56_parity_scrub_stripe(rbio);
2729 }
2730 
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2731 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2732 {
2733 	if (!lock_stripe_add(rbio))
2734 		start_async_work(rbio, scrub_parity_work);
2735 }
2736 
2737 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2738 
2739 struct btrfs_raid_bio *
raid56_alloc_missing_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 length)2740 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2741 			  struct btrfs_bio *bbio, u64 length)
2742 {
2743 	struct btrfs_raid_bio *rbio;
2744 
2745 	rbio = alloc_rbio(fs_info, bbio, length);
2746 	if (IS_ERR(rbio))
2747 		return NULL;
2748 
2749 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2750 	bio_list_add(&rbio->bio_list, bio);
2751 	/*
2752 	 * This is a special bio which is used to hold the completion handler
2753 	 * and make the scrub rbio is similar to the other types
2754 	 */
2755 	ASSERT(!bio->bi_iter.bi_size);
2756 
2757 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2758 	if (rbio->faila == -1) {
2759 		BUG();
2760 		kfree(rbio);
2761 		return NULL;
2762 	}
2763 
2764 	/*
2765 	 * When we get bbio, we have already increased bio_counter, record it
2766 	 * so we can free it at rbio_orig_end_io()
2767 	 */
2768 	rbio->generic_bio_cnt = 1;
2769 
2770 	return rbio;
2771 }
2772 
raid56_submit_missing_rbio(struct btrfs_raid_bio * rbio)2773 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2774 {
2775 	if (!lock_stripe_add(rbio))
2776 		start_async_work(rbio, read_rebuild_work);
2777 }
2778