1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6 #include <linux/init.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
15 #include "ctree.h"
16 #include "btrfs_inode.h"
17 #include "transaction.h"
18 #include "xattr.h"
19 #include "disk-io.h"
20 #include "props.h"
21 #include "locking.h"
22
btrfs_getxattr(struct inode * inode,const char * name,void * buffer,size_t size)23 int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
25 {
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
30 int ret = 0;
31 unsigned long data_ptr;
32
33 path = btrfs_alloc_path();
34 if (!path)
35 return -ENOMEM;
36
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
40 if (!di) {
41 ret = -ENODATA;
42 goto out;
43 } else if (IS_ERR(di)) {
44 ret = PTR_ERR(di);
45 goto out;
46 }
47
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
50 if (!size) {
51 ret = btrfs_dir_data_len(leaf, di);
52 goto out;
53 }
54
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
57 ret = -ERANGE;
58 goto out;
59 }
60
61 /*
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
67 */
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
73
74 out:
75 btrfs_free_path(path);
76 return ret;
77 }
78
do_setxattr(struct btrfs_trans_handle * trans,struct inode * inode,const char * name,const void * value,size_t size,int flags)79 static int do_setxattr(struct btrfs_trans_handle *trans,
80 struct inode *inode, const char *name,
81 const void *value, size_t size, int flags)
82 {
83 struct btrfs_dir_item *di = NULL;
84 struct btrfs_root *root = BTRFS_I(inode)->root;
85 struct btrfs_fs_info *fs_info = root->fs_info;
86 struct btrfs_path *path;
87 size_t name_len = strlen(name);
88 int ret = 0;
89
90 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
91 return -ENOSPC;
92
93 path = btrfs_alloc_path();
94 if (!path)
95 return -ENOMEM;
96 path->skip_release_on_error = 1;
97
98 if (!value) {
99 di = btrfs_lookup_xattr(trans, root, path,
100 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
101 if (!di && (flags & XATTR_REPLACE))
102 ret = -ENODATA;
103 else if (IS_ERR(di))
104 ret = PTR_ERR(di);
105 else if (di)
106 ret = btrfs_delete_one_dir_name(trans, root, path, di);
107 goto out;
108 }
109
110 /*
111 * For a replace we can't just do the insert blindly.
112 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
113 * doesn't exist. If it exists, fall down below to the insert/replace
114 * path - we can't race with a concurrent xattr delete, because the VFS
115 * locks the inode's i_mutex before calling setxattr or removexattr.
116 */
117 if (flags & XATTR_REPLACE) {
118 ASSERT(inode_is_locked(inode));
119 di = btrfs_lookup_xattr(NULL, root, path,
120 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
121 if (!di)
122 ret = -ENODATA;
123 else if (IS_ERR(di))
124 ret = PTR_ERR(di);
125 if (ret)
126 goto out;
127 btrfs_release_path(path);
128 di = NULL;
129 }
130
131 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
132 name, name_len, value, size);
133 if (ret == -EOVERFLOW) {
134 /*
135 * We have an existing item in a leaf, split_leaf couldn't
136 * expand it. That item might have or not a dir_item that
137 * matches our target xattr, so lets check.
138 */
139 ret = 0;
140 btrfs_assert_tree_locked(path->nodes[0]);
141 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
142 if (!di && !(flags & XATTR_REPLACE)) {
143 ret = -ENOSPC;
144 goto out;
145 }
146 } else if (ret == -EEXIST) {
147 ret = 0;
148 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
149 ASSERT(di); /* logic error */
150 } else if (ret) {
151 goto out;
152 }
153
154 if (di && (flags & XATTR_CREATE)) {
155 ret = -EEXIST;
156 goto out;
157 }
158
159 if (di) {
160 /*
161 * We're doing a replace, and it must be atomic, that is, at
162 * any point in time we have either the old or the new xattr
163 * value in the tree. We don't want readers (getxattr and
164 * listxattrs) to miss a value, this is specially important
165 * for ACLs.
166 */
167 const int slot = path->slots[0];
168 struct extent_buffer *leaf = path->nodes[0];
169 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
170 const u32 item_size = btrfs_item_size_nr(leaf, slot);
171 const u32 data_size = sizeof(*di) + name_len + size;
172 struct btrfs_item *item;
173 unsigned long data_ptr;
174 char *ptr;
175
176 if (size > old_data_len) {
177 if (btrfs_leaf_free_space(fs_info, leaf) <
178 (size - old_data_len)) {
179 ret = -ENOSPC;
180 goto out;
181 }
182 }
183
184 if (old_data_len + name_len + sizeof(*di) == item_size) {
185 /* No other xattrs packed in the same leaf item. */
186 if (size > old_data_len)
187 btrfs_extend_item(fs_info, path,
188 size - old_data_len);
189 else if (size < old_data_len)
190 btrfs_truncate_item(fs_info, path,
191 data_size, 1);
192 } else {
193 /* There are other xattrs packed in the same item. */
194 ret = btrfs_delete_one_dir_name(trans, root, path, di);
195 if (ret)
196 goto out;
197 btrfs_extend_item(fs_info, path, data_size);
198 }
199
200 item = btrfs_item_nr(slot);
201 ptr = btrfs_item_ptr(leaf, slot, char);
202 ptr += btrfs_item_size(leaf, item) - data_size;
203 di = (struct btrfs_dir_item *)ptr;
204 btrfs_set_dir_data_len(leaf, di, size);
205 data_ptr = ((unsigned long)(di + 1)) + name_len;
206 write_extent_buffer(leaf, value, data_ptr, size);
207 btrfs_mark_buffer_dirty(leaf);
208 } else {
209 /*
210 * Insert, and we had space for the xattr, so path->slots[0] is
211 * where our xattr dir_item is and btrfs_insert_xattr_item()
212 * filled it.
213 */
214 }
215 out:
216 btrfs_free_path(path);
217 return ret;
218 }
219
220 /*
221 * @value: "" makes the attribute to empty, NULL removes it
222 */
btrfs_setxattr(struct btrfs_trans_handle * trans,struct inode * inode,const char * name,const void * value,size_t size,int flags)223 int btrfs_setxattr(struct btrfs_trans_handle *trans,
224 struct inode *inode, const char *name,
225 const void *value, size_t size, int flags)
226 {
227 struct btrfs_root *root = BTRFS_I(inode)->root;
228 int ret;
229
230 if (btrfs_root_readonly(root))
231 return -EROFS;
232
233 if (trans)
234 return do_setxattr(trans, inode, name, value, size, flags);
235
236 trans = btrfs_start_transaction(root, 2);
237 if (IS_ERR(trans))
238 return PTR_ERR(trans);
239
240 ret = do_setxattr(trans, inode, name, value, size, flags);
241 if (ret)
242 goto out;
243
244 inode_inc_iversion(inode);
245 inode->i_ctime = current_time(inode);
246 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
247 ret = btrfs_update_inode(trans, root, inode);
248 BUG_ON(ret);
249 out:
250 btrfs_end_transaction(trans);
251 return ret;
252 }
253
btrfs_listxattr(struct dentry * dentry,char * buffer,size_t size)254 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
255 {
256 struct btrfs_key key;
257 struct inode *inode = d_inode(dentry);
258 struct btrfs_root *root = BTRFS_I(inode)->root;
259 struct btrfs_path *path;
260 int ret = 0;
261 size_t total_size = 0, size_left = size;
262
263 /*
264 * ok we want all objects associated with this id.
265 * NOTE: we set key.offset = 0; because we want to start with the
266 * first xattr that we find and walk forward
267 */
268 key.objectid = btrfs_ino(BTRFS_I(inode));
269 key.type = BTRFS_XATTR_ITEM_KEY;
270 key.offset = 0;
271
272 path = btrfs_alloc_path();
273 if (!path)
274 return -ENOMEM;
275 path->reada = READA_FORWARD;
276
277 /* search for our xattrs */
278 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
279 if (ret < 0)
280 goto err;
281
282 while (1) {
283 struct extent_buffer *leaf;
284 int slot;
285 struct btrfs_dir_item *di;
286 struct btrfs_key found_key;
287 u32 item_size;
288 u32 cur;
289
290 leaf = path->nodes[0];
291 slot = path->slots[0];
292
293 /* this is where we start walking through the path */
294 if (slot >= btrfs_header_nritems(leaf)) {
295 /*
296 * if we've reached the last slot in this leaf we need
297 * to go to the next leaf and reset everything
298 */
299 ret = btrfs_next_leaf(root, path);
300 if (ret < 0)
301 goto err;
302 else if (ret > 0)
303 break;
304 continue;
305 }
306
307 btrfs_item_key_to_cpu(leaf, &found_key, slot);
308
309 /* check to make sure this item is what we want */
310 if (found_key.objectid != key.objectid)
311 break;
312 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
313 break;
314 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
315 goto next_item;
316
317 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
318 item_size = btrfs_item_size_nr(leaf, slot);
319 cur = 0;
320 while (cur < item_size) {
321 u16 name_len = btrfs_dir_name_len(leaf, di);
322 u16 data_len = btrfs_dir_data_len(leaf, di);
323 u32 this_len = sizeof(*di) + name_len + data_len;
324 unsigned long name_ptr = (unsigned long)(di + 1);
325
326 total_size += name_len + 1;
327 /*
328 * We are just looking for how big our buffer needs to
329 * be.
330 */
331 if (!size)
332 goto next;
333
334 if (!buffer || (name_len + 1) > size_left) {
335 ret = -ERANGE;
336 goto err;
337 }
338
339 read_extent_buffer(leaf, buffer, name_ptr, name_len);
340 buffer[name_len] = '\0';
341
342 size_left -= name_len + 1;
343 buffer += name_len + 1;
344 next:
345 cur += this_len;
346 di = (struct btrfs_dir_item *)((char *)di + this_len);
347 }
348 next_item:
349 path->slots[0]++;
350 }
351 ret = total_size;
352
353 err:
354 btrfs_free_path(path);
355
356 return ret;
357 }
358
btrfs_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)359 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
360 struct dentry *unused, struct inode *inode,
361 const char *name, void *buffer, size_t size)
362 {
363 name = xattr_full_name(handler, name);
364 return btrfs_getxattr(inode, name, buffer, size);
365 }
366
btrfs_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * buffer,size_t size,int flags)367 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
368 struct dentry *unused, struct inode *inode,
369 const char *name, const void *buffer,
370 size_t size, int flags)
371 {
372 if (btrfs_root_readonly(BTRFS_I(inode)->root))
373 return -EROFS;
374
375 name = xattr_full_name(handler, name);
376 return btrfs_setxattr(NULL, inode, name, buffer, size, flags);
377 }
378
btrfs_xattr_handler_set_prop(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)379 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
380 struct dentry *unused, struct inode *inode,
381 const char *name, const void *value,
382 size_t size, int flags)
383 {
384 name = xattr_full_name(handler, name);
385 return btrfs_set_prop(inode, name, value, size, flags);
386 }
387
388 static const struct xattr_handler btrfs_security_xattr_handler = {
389 .prefix = XATTR_SECURITY_PREFIX,
390 .get = btrfs_xattr_handler_get,
391 .set = btrfs_xattr_handler_set,
392 };
393
394 static const struct xattr_handler btrfs_trusted_xattr_handler = {
395 .prefix = XATTR_TRUSTED_PREFIX,
396 .get = btrfs_xattr_handler_get,
397 .set = btrfs_xattr_handler_set,
398 };
399
400 static const struct xattr_handler btrfs_user_xattr_handler = {
401 .prefix = XATTR_USER_PREFIX,
402 .get = btrfs_xattr_handler_get,
403 .set = btrfs_xattr_handler_set,
404 };
405
406 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
407 .prefix = XATTR_BTRFS_PREFIX,
408 .get = btrfs_xattr_handler_get,
409 .set = btrfs_xattr_handler_set_prop,
410 };
411
412 const struct xattr_handler *btrfs_xattr_handlers[] = {
413 &btrfs_security_xattr_handler,
414 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
415 &posix_acl_access_xattr_handler,
416 &posix_acl_default_xattr_handler,
417 #endif
418 &btrfs_trusted_xattr_handler,
419 &btrfs_user_xattr_handler,
420 &btrfs_btrfs_xattr_handler,
421 NULL,
422 };
423
btrfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)424 static int btrfs_initxattrs(struct inode *inode,
425 const struct xattr *xattr_array, void *fs_info)
426 {
427 const struct xattr *xattr;
428 struct btrfs_trans_handle *trans = fs_info;
429 unsigned int nofs_flag;
430 char *name;
431 int err = 0;
432
433 /*
434 * We're holding a transaction handle, so use a NOFS memory allocation
435 * context to avoid deadlock if reclaim happens.
436 */
437 nofs_flag = memalloc_nofs_save();
438 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
439 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
440 strlen(xattr->name) + 1, GFP_KERNEL);
441 if (!name) {
442 err = -ENOMEM;
443 break;
444 }
445 strcpy(name, XATTR_SECURITY_PREFIX);
446 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
447 err = btrfs_setxattr(trans, inode, name, xattr->value,
448 xattr->value_len, 0);
449 kfree(name);
450 if (err < 0)
451 break;
452 }
453 memalloc_nofs_restore(nofs_flag);
454 return err;
455 }
456
btrfs_xattr_security_init(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)457 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
458 struct inode *inode, struct inode *dir,
459 const struct qstr *qstr)
460 {
461 return security_inode_init_security(inode, dir, qstr,
462 &btrfs_initxattrs, trans);
463 }
464