1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
touch_buffer(struct buffer_head * bh)56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 	trace_block_touch_buffer(bh);
59 	mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62 
__lock_buffer(struct buffer_head * bh)63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68 
unlock_buffer(struct buffer_head * bh)69 void unlock_buffer(struct buffer_head *bh)
70 {
71 	clear_bit_unlock(BH_Lock, &bh->b_state);
72 	smp_mb__after_atomic();
73 	wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76 
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
buffer_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)82 void buffer_check_dirty_writeback(struct page *page,
83 				     bool *dirty, bool *writeback)
84 {
85 	struct buffer_head *head, *bh;
86 	*dirty = false;
87 	*writeback = false;
88 
89 	BUG_ON(!PageLocked(page));
90 
91 	if (!page_has_buffers(page))
92 		return;
93 
94 	if (PageWriteback(page))
95 		*writeback = true;
96 
97 	head = page_buffers(page);
98 	bh = head;
99 	do {
100 		if (buffer_locked(bh))
101 			*writeback = true;
102 
103 		if (buffer_dirty(bh))
104 			*dirty = true;
105 
106 		bh = bh->b_this_page;
107 	} while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110 
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
__wait_on_buffer(struct buffer_head * bh)116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121 
122 static void
__clear_page_buffers(struct page * page)123 __clear_page_buffers(struct page *page)
124 {
125 	ClearPagePrivate(page);
126 	set_page_private(page, 0);
127 	put_page(page);
128 }
129 
buffer_io_error(struct buffer_head * bh,char * msg)130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 	if (!test_bit(BH_Quiet, &bh->b_state))
133 		printk_ratelimited(KERN_ERR
134 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
135 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137 
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		/* This happens, due to failed read-ahead attempts. */
152 		clear_buffer_uptodate(bh);
153 	}
154 	unlock_buffer(bh);
155 }
156 
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 	__end_buffer_read_notouch(bh, uptodate);
164 	put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 	if (uptodate) {
171 		set_buffer_uptodate(bh);
172 	} else {
173 		buffer_io_error(bh, ", lost sync page write");
174 		mark_buffer_write_io_error(bh);
175 		clear_buffer_uptodate(bh);
176 	}
177 	unlock_buffer(bh);
178 	put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181 
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195 	struct inode *bd_inode = bdev->bd_inode;
196 	struct address_space *bd_mapping = bd_inode->i_mapping;
197 	struct buffer_head *ret = NULL;
198 	pgoff_t index;
199 	struct buffer_head *bh;
200 	struct buffer_head *head;
201 	struct page *page;
202 	int all_mapped = 1;
203 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
204 
205 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207 	if (!page)
208 		goto out;
209 
210 	spin_lock(&bd_mapping->private_lock);
211 	if (!page_has_buffers(page))
212 		goto out_unlock;
213 	head = page_buffers(page);
214 	bh = head;
215 	do {
216 		if (!buffer_mapped(bh))
217 			all_mapped = 0;
218 		else if (bh->b_blocknr == block) {
219 			ret = bh;
220 			get_bh(bh);
221 			goto out_unlock;
222 		}
223 		bh = bh->b_this_page;
224 	} while (bh != head);
225 
226 	/* we might be here because some of the buffers on this page are
227 	 * not mapped.  This is due to various races between
228 	 * file io on the block device and getblk.  It gets dealt with
229 	 * elsewhere, don't buffer_error if we had some unmapped buffers
230 	 */
231 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
232 	if (all_mapped && __ratelimit(&last_warned)) {
233 		printk("__find_get_block_slow() failed. block=%llu, "
234 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
235 		       "device %pg blocksize: %d\n",
236 		       (unsigned long long)block,
237 		       (unsigned long long)bh->b_blocknr,
238 		       bh->b_state, bh->b_size, bdev,
239 		       1 << bd_inode->i_blkbits);
240 	}
241 out_unlock:
242 	spin_unlock(&bd_mapping->private_lock);
243 	put_page(page);
244 out:
245 	return ret;
246 }
247 
248 /*
249  * I/O completion handler for block_read_full_page() - pages
250  * which come unlocked at the end of I/O.
251  */
end_buffer_async_read(struct buffer_head * bh,int uptodate)252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 	unsigned long flags;
255 	struct buffer_head *first;
256 	struct buffer_head *tmp;
257 	struct page *page;
258 	int page_uptodate = 1;
259 
260 	BUG_ON(!buffer_async_read(bh));
261 
262 	page = bh->b_page;
263 	if (uptodate) {
264 		set_buffer_uptodate(bh);
265 	} else {
266 		clear_buffer_uptodate(bh);
267 		buffer_io_error(bh, ", async page read");
268 		SetPageError(page);
269 	}
270 
271 	/*
272 	 * Be _very_ careful from here on. Bad things can happen if
273 	 * two buffer heads end IO at almost the same time and both
274 	 * decide that the page is now completely done.
275 	 */
276 	first = page_buffers(page);
277 	local_irq_save(flags);
278 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 	clear_buffer_async_read(bh);
280 	unlock_buffer(bh);
281 	tmp = bh;
282 	do {
283 		if (!buffer_uptodate(tmp))
284 			page_uptodate = 0;
285 		if (buffer_async_read(tmp)) {
286 			BUG_ON(!buffer_locked(tmp));
287 			goto still_busy;
288 		}
289 		tmp = tmp->b_this_page;
290 	} while (tmp != bh);
291 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 	local_irq_restore(flags);
293 
294 	/*
295 	 * If none of the buffers had errors and they are all
296 	 * uptodate then we can set the page uptodate.
297 	 */
298 	if (page_uptodate && !PageError(page))
299 		SetPageUptodate(page);
300 	unlock_page(page);
301 	return;
302 
303 still_busy:
304 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 	local_irq_restore(flags);
306 	return;
307 }
308 
309 /*
310  * Completion handler for block_write_full_page() - pages which are unlocked
311  * during I/O, and which have PageWriteback cleared upon I/O completion.
312  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315 	unsigned long flags;
316 	struct buffer_head *first;
317 	struct buffer_head *tmp;
318 	struct page *page;
319 
320 	BUG_ON(!buffer_async_write(bh));
321 
322 	page = bh->b_page;
323 	if (uptodate) {
324 		set_buffer_uptodate(bh);
325 	} else {
326 		buffer_io_error(bh, ", lost async page write");
327 		mark_buffer_write_io_error(bh);
328 		clear_buffer_uptodate(bh);
329 		SetPageError(page);
330 	}
331 
332 	first = page_buffers(page);
333 	local_irq_save(flags);
334 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335 
336 	clear_buffer_async_write(bh);
337 	unlock_buffer(bh);
338 	tmp = bh->b_this_page;
339 	while (tmp != bh) {
340 		if (buffer_async_write(tmp)) {
341 			BUG_ON(!buffer_locked(tmp));
342 			goto still_busy;
343 		}
344 		tmp = tmp->b_this_page;
345 	}
346 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347 	local_irq_restore(flags);
348 	end_page_writeback(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357 
358 /*
359  * If a page's buffers are under async readin (end_buffer_async_read
360  * completion) then there is a possibility that another thread of
361  * control could lock one of the buffers after it has completed
362  * but while some of the other buffers have not completed.  This
363  * locked buffer would confuse end_buffer_async_read() into not unlocking
364  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
365  * that this buffer is not under async I/O.
366  *
367  * The page comes unlocked when it has no locked buffer_async buffers
368  * left.
369  *
370  * PageLocked prevents anyone starting new async I/O reads any of
371  * the buffers.
372  *
373  * PageWriteback is used to prevent simultaneous writeout of the same
374  * page.
375  *
376  * PageLocked prevents anyone from starting writeback of a page which is
377  * under read I/O (PageWriteback is only ever set against a locked page).
378  */
mark_buffer_async_read(struct buffer_head * bh)379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381 	bh->b_end_io = end_buffer_async_read;
382 	set_buffer_async_read(bh);
383 }
384 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386 					  bh_end_io_t *handler)
387 {
388 	bh->b_end_io = handler;
389 	set_buffer_async_write(bh);
390 }
391 
mark_buffer_async_write(struct buffer_head * bh)392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397 
398 
399 /*
400  * fs/buffer.c contains helper functions for buffer-backed address space's
401  * fsync functions.  A common requirement for buffer-based filesystems is
402  * that certain data from the backing blockdev needs to be written out for
403  * a successful fsync().  For example, ext2 indirect blocks need to be
404  * written back and waited upon before fsync() returns.
405  *
406  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408  * management of a list of dependent buffers at ->i_mapping->private_list.
409  *
410  * Locking is a little subtle: try_to_free_buffers() will remove buffers
411  * from their controlling inode's queue when they are being freed.  But
412  * try_to_free_buffers() will be operating against the *blockdev* mapping
413  * at the time, not against the S_ISREG file which depends on those buffers.
414  * So the locking for private_list is via the private_lock in the address_space
415  * which backs the buffers.  Which is different from the address_space
416  * against which the buffers are listed.  So for a particular address_space,
417  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
418  * mapping->private_list will always be protected by the backing blockdev's
419  * ->private_lock.
420  *
421  * Which introduces a requirement: all buffers on an address_space's
422  * ->private_list must be from the same address_space: the blockdev's.
423  *
424  * address_spaces which do not place buffers at ->private_list via these
425  * utility functions are free to use private_lock and private_list for
426  * whatever they want.  The only requirement is that list_empty(private_list)
427  * be true at clear_inode() time.
428  *
429  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
430  * filesystems should do that.  invalidate_inode_buffers() should just go
431  * BUG_ON(!list_empty).
432  *
433  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
434  * take an address_space, not an inode.  And it should be called
435  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436  * queued up.
437  *
438  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439  * list if it is already on a list.  Because if the buffer is on a list,
440  * it *must* already be on the right one.  If not, the filesystem is being
441  * silly.  This will save a ton of locking.  But first we have to ensure
442  * that buffers are taken *off* the old inode's list when they are freed
443  * (presumably in truncate).  That requires careful auditing of all
444  * filesystems (do it inside bforget()).  It could also be done by bringing
445  * b_inode back.
446  */
447 
448 /*
449  * The buffer's backing address_space's private_lock must be held
450  */
__remove_assoc_queue(struct buffer_head * bh)451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453 	list_del_init(&bh->b_assoc_buffers);
454 	WARN_ON(!bh->b_assoc_map);
455 	bh->b_assoc_map = NULL;
456 }
457 
inode_has_buffers(struct inode * inode)458 int inode_has_buffers(struct inode *inode)
459 {
460 	return !list_empty(&inode->i_data.private_list);
461 }
462 
463 /*
464  * osync is designed to support O_SYNC io.  It waits synchronously for
465  * all already-submitted IO to complete, but does not queue any new
466  * writes to the disk.
467  *
468  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469  * you dirty the buffers, and then use osync_inode_buffers to wait for
470  * completion.  Any other dirty buffers which are not yet queued for
471  * write will not be flushed to disk by the osync.
472  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475 	struct buffer_head *bh;
476 	struct list_head *p;
477 	int err = 0;
478 
479 	spin_lock(lock);
480 repeat:
481 	list_for_each_prev(p, list) {
482 		bh = BH_ENTRY(p);
483 		if (buffer_locked(bh)) {
484 			get_bh(bh);
485 			spin_unlock(lock);
486 			wait_on_buffer(bh);
487 			if (!buffer_uptodate(bh))
488 				err = -EIO;
489 			brelse(bh);
490 			spin_lock(lock);
491 			goto repeat;
492 		}
493 	}
494 	spin_unlock(lock);
495 	return err;
496 }
497 
emergency_thaw_bdev(struct super_block * sb)498 void emergency_thaw_bdev(struct super_block *sb)
499 {
500 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503 
504 /**
505  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
506  * @mapping: the mapping which wants those buffers written
507  *
508  * Starts I/O against the buffers at mapping->private_list, and waits upon
509  * that I/O.
510  *
511  * Basically, this is a convenience function for fsync().
512  * @mapping is a file or directory which needs those buffers to be written for
513  * a successful fsync().
514  */
sync_mapping_buffers(struct address_space * mapping)515 int sync_mapping_buffers(struct address_space *mapping)
516 {
517 	struct address_space *buffer_mapping = mapping->private_data;
518 
519 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
520 		return 0;
521 
522 	return fsync_buffers_list(&buffer_mapping->private_lock,
523 					&mapping->private_list);
524 }
525 EXPORT_SYMBOL(sync_mapping_buffers);
526 
527 /*
528  * Called when we've recently written block `bblock', and it is known that
529  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
530  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
531  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
532  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)533 void write_boundary_block(struct block_device *bdev,
534 			sector_t bblock, unsigned blocksize)
535 {
536 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
537 	if (bh) {
538 		if (buffer_dirty(bh))
539 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
540 		put_bh(bh);
541 	}
542 }
543 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)544 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
545 {
546 	struct address_space *mapping = inode->i_mapping;
547 	struct address_space *buffer_mapping = bh->b_page->mapping;
548 
549 	mark_buffer_dirty(bh);
550 	if (!mapping->private_data) {
551 		mapping->private_data = buffer_mapping;
552 	} else {
553 		BUG_ON(mapping->private_data != buffer_mapping);
554 	}
555 	if (!bh->b_assoc_map) {
556 		spin_lock(&buffer_mapping->private_lock);
557 		list_move_tail(&bh->b_assoc_buffers,
558 				&mapping->private_list);
559 		bh->b_assoc_map = mapping;
560 		spin_unlock(&buffer_mapping->private_lock);
561 	}
562 }
563 EXPORT_SYMBOL(mark_buffer_dirty_inode);
564 
565 /*
566  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
567  * dirty.
568  *
569  * If warn is true, then emit a warning if the page is not uptodate and has
570  * not been truncated.
571  *
572  * The caller must hold lock_page_memcg().
573  */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)574 void __set_page_dirty(struct page *page, struct address_space *mapping,
575 			     int warn)
576 {
577 	unsigned long flags;
578 
579 	xa_lock_irqsave(&mapping->i_pages, flags);
580 	if (page->mapping) {	/* Race with truncate? */
581 		WARN_ON_ONCE(warn && !PageUptodate(page));
582 		account_page_dirtied(page, mapping);
583 		radix_tree_tag_set(&mapping->i_pages,
584 				page_index(page), PAGECACHE_TAG_DIRTY);
585 	}
586 	xa_unlock_irqrestore(&mapping->i_pages, flags);
587 }
588 EXPORT_SYMBOL_GPL(__set_page_dirty);
589 
590 /*
591  * Add a page to the dirty page list.
592  *
593  * It is a sad fact of life that this function is called from several places
594  * deeply under spinlocking.  It may not sleep.
595  *
596  * If the page has buffers, the uptodate buffers are set dirty, to preserve
597  * dirty-state coherency between the page and the buffers.  It the page does
598  * not have buffers then when they are later attached they will all be set
599  * dirty.
600  *
601  * The buffers are dirtied before the page is dirtied.  There's a small race
602  * window in which a writepage caller may see the page cleanness but not the
603  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
604  * before the buffers, a concurrent writepage caller could clear the page dirty
605  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
606  * page on the dirty page list.
607  *
608  * We use private_lock to lock against try_to_free_buffers while using the
609  * page's buffer list.  Also use this to protect against clean buffers being
610  * added to the page after it was set dirty.
611  *
612  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
613  * address_space though.
614  */
__set_page_dirty_buffers(struct page * page)615 int __set_page_dirty_buffers(struct page *page)
616 {
617 	int newly_dirty;
618 	struct address_space *mapping = page_mapping(page);
619 
620 	if (unlikely(!mapping))
621 		return !TestSetPageDirty(page);
622 
623 	spin_lock(&mapping->private_lock);
624 	if (page_has_buffers(page)) {
625 		struct buffer_head *head = page_buffers(page);
626 		struct buffer_head *bh = head;
627 
628 		do {
629 			set_buffer_dirty(bh);
630 			bh = bh->b_this_page;
631 		} while (bh != head);
632 	}
633 	/*
634 	 * Lock out page->mem_cgroup migration to keep PageDirty
635 	 * synchronized with per-memcg dirty page counters.
636 	 */
637 	lock_page_memcg(page);
638 	newly_dirty = !TestSetPageDirty(page);
639 	spin_unlock(&mapping->private_lock);
640 
641 	if (newly_dirty)
642 		__set_page_dirty(page, mapping, 1);
643 
644 	unlock_page_memcg(page);
645 
646 	if (newly_dirty)
647 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
648 
649 	return newly_dirty;
650 }
651 EXPORT_SYMBOL(__set_page_dirty_buffers);
652 
653 /*
654  * Write out and wait upon a list of buffers.
655  *
656  * We have conflicting pressures: we want to make sure that all
657  * initially dirty buffers get waited on, but that any subsequently
658  * dirtied buffers don't.  After all, we don't want fsync to last
659  * forever if somebody is actively writing to the file.
660  *
661  * Do this in two main stages: first we copy dirty buffers to a
662  * temporary inode list, queueing the writes as we go.  Then we clean
663  * up, waiting for those writes to complete.
664  *
665  * During this second stage, any subsequent updates to the file may end
666  * up refiling the buffer on the original inode's dirty list again, so
667  * there is a chance we will end up with a buffer queued for write but
668  * not yet completed on that list.  So, as a final cleanup we go through
669  * the osync code to catch these locked, dirty buffers without requeuing
670  * any newly dirty buffers for write.
671  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)672 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
673 {
674 	struct buffer_head *bh;
675 	struct list_head tmp;
676 	struct address_space *mapping;
677 	int err = 0, err2;
678 	struct blk_plug plug;
679 
680 	INIT_LIST_HEAD(&tmp);
681 	blk_start_plug(&plug);
682 
683 	spin_lock(lock);
684 	while (!list_empty(list)) {
685 		bh = BH_ENTRY(list->next);
686 		mapping = bh->b_assoc_map;
687 		__remove_assoc_queue(bh);
688 		/* Avoid race with mark_buffer_dirty_inode() which does
689 		 * a lockless check and we rely on seeing the dirty bit */
690 		smp_mb();
691 		if (buffer_dirty(bh) || buffer_locked(bh)) {
692 			list_add(&bh->b_assoc_buffers, &tmp);
693 			bh->b_assoc_map = mapping;
694 			if (buffer_dirty(bh)) {
695 				get_bh(bh);
696 				spin_unlock(lock);
697 				/*
698 				 * Ensure any pending I/O completes so that
699 				 * write_dirty_buffer() actually writes the
700 				 * current contents - it is a noop if I/O is
701 				 * still in flight on potentially older
702 				 * contents.
703 				 */
704 				write_dirty_buffer(bh, REQ_SYNC);
705 
706 				/*
707 				 * Kick off IO for the previous mapping. Note
708 				 * that we will not run the very last mapping,
709 				 * wait_on_buffer() will do that for us
710 				 * through sync_buffer().
711 				 */
712 				brelse(bh);
713 				spin_lock(lock);
714 			}
715 		}
716 	}
717 
718 	spin_unlock(lock);
719 	blk_finish_plug(&plug);
720 	spin_lock(lock);
721 
722 	while (!list_empty(&tmp)) {
723 		bh = BH_ENTRY(tmp.prev);
724 		get_bh(bh);
725 		mapping = bh->b_assoc_map;
726 		__remove_assoc_queue(bh);
727 		/* Avoid race with mark_buffer_dirty_inode() which does
728 		 * a lockless check and we rely on seeing the dirty bit */
729 		smp_mb();
730 		if (buffer_dirty(bh)) {
731 			list_add(&bh->b_assoc_buffers,
732 				 &mapping->private_list);
733 			bh->b_assoc_map = mapping;
734 		}
735 		spin_unlock(lock);
736 		wait_on_buffer(bh);
737 		if (!buffer_uptodate(bh))
738 			err = -EIO;
739 		brelse(bh);
740 		spin_lock(lock);
741 	}
742 
743 	spin_unlock(lock);
744 	err2 = osync_buffers_list(lock, list);
745 	if (err)
746 		return err;
747 	else
748 		return err2;
749 }
750 
751 /*
752  * Invalidate any and all dirty buffers on a given inode.  We are
753  * probably unmounting the fs, but that doesn't mean we have already
754  * done a sync().  Just drop the buffers from the inode list.
755  *
756  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
757  * assumes that all the buffers are against the blockdev.  Not true
758  * for reiserfs.
759  */
invalidate_inode_buffers(struct inode * inode)760 void invalidate_inode_buffers(struct inode *inode)
761 {
762 	if (inode_has_buffers(inode)) {
763 		struct address_space *mapping = &inode->i_data;
764 		struct list_head *list = &mapping->private_list;
765 		struct address_space *buffer_mapping = mapping->private_data;
766 
767 		spin_lock(&buffer_mapping->private_lock);
768 		while (!list_empty(list))
769 			__remove_assoc_queue(BH_ENTRY(list->next));
770 		spin_unlock(&buffer_mapping->private_lock);
771 	}
772 }
773 EXPORT_SYMBOL(invalidate_inode_buffers);
774 
775 /*
776  * Remove any clean buffers from the inode's buffer list.  This is called
777  * when we're trying to free the inode itself.  Those buffers can pin it.
778  *
779  * Returns true if all buffers were removed.
780  */
remove_inode_buffers(struct inode * inode)781 int remove_inode_buffers(struct inode *inode)
782 {
783 	int ret = 1;
784 
785 	if (inode_has_buffers(inode)) {
786 		struct address_space *mapping = &inode->i_data;
787 		struct list_head *list = &mapping->private_list;
788 		struct address_space *buffer_mapping = mapping->private_data;
789 
790 		spin_lock(&buffer_mapping->private_lock);
791 		while (!list_empty(list)) {
792 			struct buffer_head *bh = BH_ENTRY(list->next);
793 			if (buffer_dirty(bh)) {
794 				ret = 0;
795 				break;
796 			}
797 			__remove_assoc_queue(bh);
798 		}
799 		spin_unlock(&buffer_mapping->private_lock);
800 	}
801 	return ret;
802 }
803 
804 /*
805  * Create the appropriate buffers when given a page for data area and
806  * the size of each buffer.. Use the bh->b_this_page linked list to
807  * follow the buffers created.  Return NULL if unable to create more
808  * buffers.
809  *
810  * The retry flag is used to differentiate async IO (paging, swapping)
811  * which may not fail from ordinary buffer allocations.
812  */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)813 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
814 		bool retry)
815 {
816 	struct buffer_head *bh, *head;
817 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
818 	long offset;
819 	struct mem_cgroup *memcg;
820 
821 	if (retry)
822 		gfp |= __GFP_NOFAIL;
823 
824 	memcg = get_mem_cgroup_from_page(page);
825 	memalloc_use_memcg(memcg);
826 
827 	head = NULL;
828 	offset = PAGE_SIZE;
829 	while ((offset -= size) >= 0) {
830 		bh = alloc_buffer_head(gfp);
831 		if (!bh)
832 			goto no_grow;
833 
834 		bh->b_this_page = head;
835 		bh->b_blocknr = -1;
836 		head = bh;
837 
838 		bh->b_size = size;
839 
840 		/* Link the buffer to its page */
841 		set_bh_page(bh, page, offset);
842 	}
843 out:
844 	memalloc_unuse_memcg();
845 	mem_cgroup_put(memcg);
846 	return head;
847 /*
848  * In case anything failed, we just free everything we got.
849  */
850 no_grow:
851 	if (head) {
852 		do {
853 			bh = head;
854 			head = head->b_this_page;
855 			free_buffer_head(bh);
856 		} while (head);
857 	}
858 
859 	goto out;
860 }
861 EXPORT_SYMBOL_GPL(alloc_page_buffers);
862 
863 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)864 link_dev_buffers(struct page *page, struct buffer_head *head)
865 {
866 	struct buffer_head *bh, *tail;
867 
868 	bh = head;
869 	do {
870 		tail = bh;
871 		bh = bh->b_this_page;
872 	} while (bh);
873 	tail->b_this_page = head;
874 	attach_page_buffers(page, head);
875 }
876 
blkdev_max_block(struct block_device * bdev,unsigned int size)877 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
878 {
879 	sector_t retval = ~((sector_t)0);
880 	loff_t sz = i_size_read(bdev->bd_inode);
881 
882 	if (sz) {
883 		unsigned int sizebits = blksize_bits(size);
884 		retval = (sz >> sizebits);
885 	}
886 	return retval;
887 }
888 
889 /*
890  * Initialise the state of a blockdev page's buffers.
891  */
892 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)893 init_page_buffers(struct page *page, struct block_device *bdev,
894 			sector_t block, int size)
895 {
896 	struct buffer_head *head = page_buffers(page);
897 	struct buffer_head *bh = head;
898 	int uptodate = PageUptodate(page);
899 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
900 
901 	do {
902 		if (!buffer_mapped(bh)) {
903 			bh->b_end_io = NULL;
904 			bh->b_private = NULL;
905 			bh->b_bdev = bdev;
906 			bh->b_blocknr = block;
907 			if (uptodate)
908 				set_buffer_uptodate(bh);
909 			if (block < end_block)
910 				set_buffer_mapped(bh);
911 		}
912 		block++;
913 		bh = bh->b_this_page;
914 	} while (bh != head);
915 
916 	/*
917 	 * Caller needs to validate requested block against end of device.
918 	 */
919 	return end_block;
920 }
921 
922 /*
923  * Create the page-cache page that contains the requested block.
924  *
925  * This is used purely for blockdev mappings.
926  */
927 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)928 grow_dev_page(struct block_device *bdev, sector_t block,
929 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
930 {
931 	struct inode *inode = bdev->bd_inode;
932 	struct page *page;
933 	struct buffer_head *bh;
934 	sector_t end_block;
935 	int ret = 0;		/* Will call free_more_memory() */
936 	gfp_t gfp_mask;
937 
938 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
939 
940 	/*
941 	 * XXX: __getblk_slow() can not really deal with failure and
942 	 * will endlessly loop on improvised global reclaim.  Prefer
943 	 * looping in the allocator rather than here, at least that
944 	 * code knows what it's doing.
945 	 */
946 	gfp_mask |= __GFP_NOFAIL;
947 
948 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
949 
950 	BUG_ON(!PageLocked(page));
951 
952 	if (page_has_buffers(page)) {
953 		bh = page_buffers(page);
954 		if (bh->b_size == size) {
955 			end_block = init_page_buffers(page, bdev,
956 						(sector_t)index << sizebits,
957 						size);
958 			goto done;
959 		}
960 		if (!try_to_free_buffers(page))
961 			goto failed;
962 	}
963 
964 	/*
965 	 * Allocate some buffers for this page
966 	 */
967 	bh = alloc_page_buffers(page, size, true);
968 
969 	/*
970 	 * Link the page to the buffers and initialise them.  Take the
971 	 * lock to be atomic wrt __find_get_block(), which does not
972 	 * run under the page lock.
973 	 */
974 	spin_lock(&inode->i_mapping->private_lock);
975 	link_dev_buffers(page, bh);
976 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
977 			size);
978 	spin_unlock(&inode->i_mapping->private_lock);
979 done:
980 	ret = (block < end_block) ? 1 : -ENXIO;
981 failed:
982 	unlock_page(page);
983 	put_page(page);
984 	return ret;
985 }
986 
987 /*
988  * Create buffers for the specified block device block's page.  If
989  * that page was dirty, the buffers are set dirty also.
990  */
991 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)992 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
993 {
994 	pgoff_t index;
995 	int sizebits;
996 
997 	sizebits = -1;
998 	do {
999 		sizebits++;
1000 	} while ((size << sizebits) < PAGE_SIZE);
1001 
1002 	index = block >> sizebits;
1003 
1004 	/*
1005 	 * Check for a block which wants to lie outside our maximum possible
1006 	 * pagecache index.  (this comparison is done using sector_t types).
1007 	 */
1008 	if (unlikely(index != block >> sizebits)) {
1009 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1010 			"device %pg\n",
1011 			__func__, (unsigned long long)block,
1012 			bdev);
1013 		return -EIO;
1014 	}
1015 
1016 	/* Create a page with the proper size buffers.. */
1017 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1018 }
1019 
1020 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1021 __getblk_slow(struct block_device *bdev, sector_t block,
1022 	     unsigned size, gfp_t gfp)
1023 {
1024 	/* Size must be multiple of hard sectorsize */
1025 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1026 			(size < 512 || size > PAGE_SIZE))) {
1027 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1028 					size);
1029 		printk(KERN_ERR "logical block size: %d\n",
1030 					bdev_logical_block_size(bdev));
1031 
1032 		dump_stack();
1033 		return NULL;
1034 	}
1035 
1036 	for (;;) {
1037 		struct buffer_head *bh;
1038 		int ret;
1039 
1040 		bh = __find_get_block(bdev, block, size);
1041 		if (bh)
1042 			return bh;
1043 
1044 		ret = grow_buffers(bdev, block, size, gfp);
1045 		if (ret < 0)
1046 			return NULL;
1047 	}
1048 }
1049 
1050 /*
1051  * The relationship between dirty buffers and dirty pages:
1052  *
1053  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1054  * the page is tagged dirty in its radix tree.
1055  *
1056  * At all times, the dirtiness of the buffers represents the dirtiness of
1057  * subsections of the page.  If the page has buffers, the page dirty bit is
1058  * merely a hint about the true dirty state.
1059  *
1060  * When a page is set dirty in its entirety, all its buffers are marked dirty
1061  * (if the page has buffers).
1062  *
1063  * When a buffer is marked dirty, its page is dirtied, but the page's other
1064  * buffers are not.
1065  *
1066  * Also.  When blockdev buffers are explicitly read with bread(), they
1067  * individually become uptodate.  But their backing page remains not
1068  * uptodate - even if all of its buffers are uptodate.  A subsequent
1069  * block_read_full_page() against that page will discover all the uptodate
1070  * buffers, will set the page uptodate and will perform no I/O.
1071  */
1072 
1073 /**
1074  * mark_buffer_dirty - mark a buffer_head as needing writeout
1075  * @bh: the buffer_head to mark dirty
1076  *
1077  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1078  * backing page dirty, then tag the page as dirty in its address_space's radix
1079  * tree and then attach the address_space's inode to its superblock's dirty
1080  * inode list.
1081  *
1082  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1083  * i_pages lock and mapping->host->i_lock.
1084  */
mark_buffer_dirty(struct buffer_head * bh)1085 void mark_buffer_dirty(struct buffer_head *bh)
1086 {
1087 	WARN_ON_ONCE(!buffer_uptodate(bh));
1088 
1089 	trace_block_dirty_buffer(bh);
1090 
1091 	/*
1092 	 * Very *carefully* optimize the it-is-already-dirty case.
1093 	 *
1094 	 * Don't let the final "is it dirty" escape to before we
1095 	 * perhaps modified the buffer.
1096 	 */
1097 	if (buffer_dirty(bh)) {
1098 		smp_mb();
1099 		if (buffer_dirty(bh))
1100 			return;
1101 	}
1102 
1103 	if (!test_set_buffer_dirty(bh)) {
1104 		struct page *page = bh->b_page;
1105 		struct address_space *mapping = NULL;
1106 
1107 		lock_page_memcg(page);
1108 		if (!TestSetPageDirty(page)) {
1109 			mapping = page_mapping(page);
1110 			if (mapping)
1111 				__set_page_dirty(page, mapping, 0);
1112 		}
1113 		unlock_page_memcg(page);
1114 		if (mapping)
1115 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1116 	}
1117 }
1118 EXPORT_SYMBOL(mark_buffer_dirty);
1119 
mark_buffer_write_io_error(struct buffer_head * bh)1120 void mark_buffer_write_io_error(struct buffer_head *bh)
1121 {
1122 	set_buffer_write_io_error(bh);
1123 	/* FIXME: do we need to set this in both places? */
1124 	if (bh->b_page && bh->b_page->mapping)
1125 		mapping_set_error(bh->b_page->mapping, -EIO);
1126 	if (bh->b_assoc_map)
1127 		mapping_set_error(bh->b_assoc_map, -EIO);
1128 }
1129 EXPORT_SYMBOL(mark_buffer_write_io_error);
1130 
1131 /*
1132  * Decrement a buffer_head's reference count.  If all buffers against a page
1133  * have zero reference count, are clean and unlocked, and if the page is clean
1134  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136  * a page but it ends up not being freed, and buffers may later be reattached).
1137  */
__brelse(struct buffer_head * buf)1138 void __brelse(struct buffer_head * buf)
1139 {
1140 	if (atomic_read(&buf->b_count)) {
1141 		put_bh(buf);
1142 		return;
1143 	}
1144 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1145 }
1146 EXPORT_SYMBOL(__brelse);
1147 
1148 /*
1149  * bforget() is like brelse(), except it discards any
1150  * potentially dirty data.
1151  */
__bforget(struct buffer_head * bh)1152 void __bforget(struct buffer_head *bh)
1153 {
1154 	clear_buffer_dirty(bh);
1155 	if (bh->b_assoc_map) {
1156 		struct address_space *buffer_mapping = bh->b_page->mapping;
1157 
1158 		spin_lock(&buffer_mapping->private_lock);
1159 		list_del_init(&bh->b_assoc_buffers);
1160 		bh->b_assoc_map = NULL;
1161 		spin_unlock(&buffer_mapping->private_lock);
1162 	}
1163 	__brelse(bh);
1164 }
1165 EXPORT_SYMBOL(__bforget);
1166 
__bread_slow(struct buffer_head * bh)1167 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168 {
1169 	lock_buffer(bh);
1170 	if (buffer_uptodate(bh)) {
1171 		unlock_buffer(bh);
1172 		return bh;
1173 	} else {
1174 		get_bh(bh);
1175 		bh->b_end_io = end_buffer_read_sync;
1176 		submit_bh(REQ_OP_READ, 0, bh);
1177 		wait_on_buffer(bh);
1178 		if (buffer_uptodate(bh))
1179 			return bh;
1180 	}
1181 	brelse(bh);
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1187  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1188  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1189  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1190  * CPU's LRUs at the same time.
1191  *
1192  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193  * sb_find_get_block().
1194  *
1195  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1196  * a local interrupt disable for that.
1197  */
1198 
1199 #define BH_LRU_SIZE	16
1200 
1201 struct bh_lru {
1202 	struct buffer_head *bhs[BH_LRU_SIZE];
1203 };
1204 
1205 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206 
1207 #ifdef CONFIG_SMP
1208 #define bh_lru_lock()	local_irq_disable()
1209 #define bh_lru_unlock()	local_irq_enable()
1210 #else
1211 #define bh_lru_lock()	preempt_disable()
1212 #define bh_lru_unlock()	preempt_enable()
1213 #endif
1214 
check_irqs_on(void)1215 static inline void check_irqs_on(void)
1216 {
1217 #ifdef irqs_disabled
1218 	BUG_ON(irqs_disabled());
1219 #endif
1220 }
1221 
1222 /*
1223  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1224  * inserted at the front, and the buffer_head at the back if any is evicted.
1225  * Or, if already in the LRU it is moved to the front.
1226  */
bh_lru_install(struct buffer_head * bh)1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229 	struct buffer_head *evictee = bh;
1230 	struct bh_lru *b;
1231 	int i;
1232 
1233 	check_irqs_on();
1234 	bh_lru_lock();
1235 
1236 	b = this_cpu_ptr(&bh_lrus);
1237 	for (i = 0; i < BH_LRU_SIZE; i++) {
1238 		swap(evictee, b->bhs[i]);
1239 		if (evictee == bh) {
1240 			bh_lru_unlock();
1241 			return;
1242 		}
1243 	}
1244 
1245 	get_bh(bh);
1246 	bh_lru_unlock();
1247 	brelse(evictee);
1248 }
1249 
1250 /*
1251  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1252  */
1253 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1254 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1255 {
1256 	struct buffer_head *ret = NULL;
1257 	unsigned int i;
1258 
1259 	check_irqs_on();
1260 	bh_lru_lock();
1261 	for (i = 0; i < BH_LRU_SIZE; i++) {
1262 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1263 
1264 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1265 		    bh->b_size == size) {
1266 			if (i) {
1267 				while (i) {
1268 					__this_cpu_write(bh_lrus.bhs[i],
1269 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1270 					i--;
1271 				}
1272 				__this_cpu_write(bh_lrus.bhs[0], bh);
1273 			}
1274 			get_bh(bh);
1275 			ret = bh;
1276 			break;
1277 		}
1278 	}
1279 	bh_lru_unlock();
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1285  * it in the LRU and mark it as accessed.  If it is not present then return
1286  * NULL
1287  */
1288 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1289 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1292 
1293 	if (bh == NULL) {
1294 		/* __find_get_block_slow will mark the page accessed */
1295 		bh = __find_get_block_slow(bdev, block);
1296 		if (bh)
1297 			bh_lru_install(bh);
1298 	} else
1299 		touch_buffer(bh);
1300 
1301 	return bh;
1302 }
1303 EXPORT_SYMBOL(__find_get_block);
1304 
1305 /*
1306  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1307  * which corresponds to the passed block_device, block and size. The
1308  * returned buffer has its reference count incremented.
1309  *
1310  * __getblk_gfp() will lock up the machine if grow_dev_page's
1311  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1312  */
1313 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1314 __getblk_gfp(struct block_device *bdev, sector_t block,
1315 	     unsigned size, gfp_t gfp)
1316 {
1317 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1318 
1319 	might_sleep();
1320 	if (bh == NULL)
1321 		bh = __getblk_slow(bdev, block, size, gfp);
1322 	return bh;
1323 }
1324 EXPORT_SYMBOL(__getblk_gfp);
1325 
1326 /*
1327  * Do async read-ahead on a buffer..
1328  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1329 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1330 {
1331 	struct buffer_head *bh = __getblk(bdev, block, size);
1332 	if (likely(bh)) {
1333 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1334 		brelse(bh);
1335 	}
1336 }
1337 EXPORT_SYMBOL(__breadahead);
1338 
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1339 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1340 		      gfp_t gfp)
1341 {
1342 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1343 	if (likely(bh)) {
1344 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1345 		brelse(bh);
1346 	}
1347 }
1348 EXPORT_SYMBOL(__breadahead_gfp);
1349 
1350 /**
1351  *  __bread_gfp() - reads a specified block and returns the bh
1352  *  @bdev: the block_device to read from
1353  *  @block: number of block
1354  *  @size: size (in bytes) to read
1355  *  @gfp: page allocation flag
1356  *
1357  *  Reads a specified block, and returns buffer head that contains it.
1358  *  The page cache can be allocated from non-movable area
1359  *  not to prevent page migration if you set gfp to zero.
1360  *  It returns NULL if the block was unreadable.
1361  */
1362 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1363 __bread_gfp(struct block_device *bdev, sector_t block,
1364 		   unsigned size, gfp_t gfp)
1365 {
1366 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1367 
1368 	if (likely(bh) && !buffer_uptodate(bh))
1369 		bh = __bread_slow(bh);
1370 	return bh;
1371 }
1372 EXPORT_SYMBOL(__bread_gfp);
1373 
1374 /*
1375  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1376  * This doesn't race because it runs in each cpu either in irq
1377  * or with preempt disabled.
1378  */
invalidate_bh_lru(void * arg)1379 static void invalidate_bh_lru(void *arg)
1380 {
1381 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1382 	int i;
1383 
1384 	for (i = 0; i < BH_LRU_SIZE; i++) {
1385 		brelse(b->bhs[i]);
1386 		b->bhs[i] = NULL;
1387 	}
1388 	put_cpu_var(bh_lrus);
1389 }
1390 
has_bh_in_lru(int cpu,void * dummy)1391 static bool has_bh_in_lru(int cpu, void *dummy)
1392 {
1393 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1394 	int i;
1395 
1396 	for (i = 0; i < BH_LRU_SIZE; i++) {
1397 		if (b->bhs[i])
1398 			return 1;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
invalidate_bh_lrus(void)1404 void invalidate_bh_lrus(void)
1405 {
1406 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1407 }
1408 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1409 
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1410 void set_bh_page(struct buffer_head *bh,
1411 		struct page *page, unsigned long offset)
1412 {
1413 	bh->b_page = page;
1414 	BUG_ON(offset >= PAGE_SIZE);
1415 	if (PageHighMem(page))
1416 		/*
1417 		 * This catches illegal uses and preserves the offset:
1418 		 */
1419 		bh->b_data = (char *)(0 + offset);
1420 	else
1421 		bh->b_data = page_address(page) + offset;
1422 }
1423 EXPORT_SYMBOL(set_bh_page);
1424 
1425 /*
1426  * Called when truncating a buffer on a page completely.
1427  */
1428 
1429 /* Bits that are cleared during an invalidate */
1430 #define BUFFER_FLAGS_DISCARD \
1431 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1432 	 1 << BH_Delay | 1 << BH_Unwritten)
1433 
discard_buffer(struct buffer_head * bh)1434 static void discard_buffer(struct buffer_head * bh)
1435 {
1436 	unsigned long b_state, b_state_old;
1437 
1438 	lock_buffer(bh);
1439 	clear_buffer_dirty(bh);
1440 	bh->b_bdev = NULL;
1441 	b_state = bh->b_state;
1442 	for (;;) {
1443 		b_state_old = cmpxchg(&bh->b_state, b_state,
1444 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1445 		if (b_state_old == b_state)
1446 			break;
1447 		b_state = b_state_old;
1448 	}
1449 	unlock_buffer(bh);
1450 }
1451 
1452 /**
1453  * block_invalidatepage - invalidate part or all of a buffer-backed page
1454  *
1455  * @page: the page which is affected
1456  * @offset: start of the range to invalidate
1457  * @length: length of the range to invalidate
1458  *
1459  * block_invalidatepage() is called when all or part of the page has become
1460  * invalidated by a truncate operation.
1461  *
1462  * block_invalidatepage() does not have to release all buffers, but it must
1463  * ensure that no dirty buffer is left outside @offset and that no I/O
1464  * is underway against any of the blocks which are outside the truncation
1465  * point.  Because the caller is about to free (and possibly reuse) those
1466  * blocks on-disk.
1467  */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1468 void block_invalidatepage(struct page *page, unsigned int offset,
1469 			  unsigned int length)
1470 {
1471 	struct buffer_head *head, *bh, *next;
1472 	unsigned int curr_off = 0;
1473 	unsigned int stop = length + offset;
1474 
1475 	BUG_ON(!PageLocked(page));
1476 	if (!page_has_buffers(page))
1477 		goto out;
1478 
1479 	/*
1480 	 * Check for overflow
1481 	 */
1482 	BUG_ON(stop > PAGE_SIZE || stop < length);
1483 
1484 	head = page_buffers(page);
1485 	bh = head;
1486 	do {
1487 		unsigned int next_off = curr_off + bh->b_size;
1488 		next = bh->b_this_page;
1489 
1490 		/*
1491 		 * Are we still fully in range ?
1492 		 */
1493 		if (next_off > stop)
1494 			goto out;
1495 
1496 		/*
1497 		 * is this block fully invalidated?
1498 		 */
1499 		if (offset <= curr_off)
1500 			discard_buffer(bh);
1501 		curr_off = next_off;
1502 		bh = next;
1503 	} while (bh != head);
1504 
1505 	/*
1506 	 * We release buffers only if the entire page is being invalidated.
1507 	 * The get_block cached value has been unconditionally invalidated,
1508 	 * so real IO is not possible anymore.
1509 	 */
1510 	if (length == PAGE_SIZE)
1511 		try_to_release_page(page, 0);
1512 out:
1513 	return;
1514 }
1515 EXPORT_SYMBOL(block_invalidatepage);
1516 
1517 
1518 /*
1519  * We attach and possibly dirty the buffers atomically wrt
1520  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1521  * is already excluded via the page lock.
1522  */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1523 void create_empty_buffers(struct page *page,
1524 			unsigned long blocksize, unsigned long b_state)
1525 {
1526 	struct buffer_head *bh, *head, *tail;
1527 
1528 	head = alloc_page_buffers(page, blocksize, true);
1529 	bh = head;
1530 	do {
1531 		bh->b_state |= b_state;
1532 		tail = bh;
1533 		bh = bh->b_this_page;
1534 	} while (bh);
1535 	tail->b_this_page = head;
1536 
1537 	spin_lock(&page->mapping->private_lock);
1538 	if (PageUptodate(page) || PageDirty(page)) {
1539 		bh = head;
1540 		do {
1541 			if (PageDirty(page))
1542 				set_buffer_dirty(bh);
1543 			if (PageUptodate(page))
1544 				set_buffer_uptodate(bh);
1545 			bh = bh->b_this_page;
1546 		} while (bh != head);
1547 	}
1548 	attach_page_buffers(page, head);
1549 	spin_unlock(&page->mapping->private_lock);
1550 }
1551 EXPORT_SYMBOL(create_empty_buffers);
1552 
1553 /**
1554  * clean_bdev_aliases: clean a range of buffers in block device
1555  * @bdev: Block device to clean buffers in
1556  * @block: Start of a range of blocks to clean
1557  * @len: Number of blocks to clean
1558  *
1559  * We are taking a range of blocks for data and we don't want writeback of any
1560  * buffer-cache aliases starting from return from this function and until the
1561  * moment when something will explicitly mark the buffer dirty (hopefully that
1562  * will not happen until we will free that block ;-) We don't even need to mark
1563  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1564  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1565  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1566  * would confuse anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1569  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1570  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1571  * need to.  That happens here.
1572  */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1573 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1574 {
1575 	struct inode *bd_inode = bdev->bd_inode;
1576 	struct address_space *bd_mapping = bd_inode->i_mapping;
1577 	struct pagevec pvec;
1578 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1579 	pgoff_t end;
1580 	int i, count;
1581 	struct buffer_head *bh;
1582 	struct buffer_head *head;
1583 
1584 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1585 	pagevec_init(&pvec);
1586 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1587 		count = pagevec_count(&pvec);
1588 		for (i = 0; i < count; i++) {
1589 			struct page *page = pvec.pages[i];
1590 
1591 			if (!page_has_buffers(page))
1592 				continue;
1593 			/*
1594 			 * We use page lock instead of bd_mapping->private_lock
1595 			 * to pin buffers here since we can afford to sleep and
1596 			 * it scales better than a global spinlock lock.
1597 			 */
1598 			lock_page(page);
1599 			/* Recheck when the page is locked which pins bhs */
1600 			if (!page_has_buffers(page))
1601 				goto unlock_page;
1602 			head = page_buffers(page);
1603 			bh = head;
1604 			do {
1605 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1606 					goto next;
1607 				if (bh->b_blocknr >= block + len)
1608 					break;
1609 				clear_buffer_dirty(bh);
1610 				wait_on_buffer(bh);
1611 				clear_buffer_req(bh);
1612 next:
1613 				bh = bh->b_this_page;
1614 			} while (bh != head);
1615 unlock_page:
1616 			unlock_page(page);
1617 		}
1618 		pagevec_release(&pvec);
1619 		cond_resched();
1620 		/* End of range already reached? */
1621 		if (index > end || !index)
1622 			break;
1623 	}
1624 }
1625 EXPORT_SYMBOL(clean_bdev_aliases);
1626 
1627 /*
1628  * Size is a power-of-two in the range 512..PAGE_SIZE,
1629  * and the case we care about most is PAGE_SIZE.
1630  *
1631  * So this *could* possibly be written with those
1632  * constraints in mind (relevant mostly if some
1633  * architecture has a slow bit-scan instruction)
1634  */
block_size_bits(unsigned int blocksize)1635 static inline int block_size_bits(unsigned int blocksize)
1636 {
1637 	return ilog2(blocksize);
1638 }
1639 
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1640 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1641 {
1642 	BUG_ON(!PageLocked(page));
1643 
1644 	if (!page_has_buffers(page))
1645 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1646 				     b_state);
1647 	return page_buffers(page);
1648 }
1649 
1650 /*
1651  * NOTE! All mapped/uptodate combinations are valid:
1652  *
1653  *	Mapped	Uptodate	Meaning
1654  *
1655  *	No	No		"unknown" - must do get_block()
1656  *	No	Yes		"hole" - zero-filled
1657  *	Yes	No		"allocated" - allocated on disk, not read in
1658  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1659  *
1660  * "Dirty" is valid only with the last case (mapped+uptodate).
1661  */
1662 
1663 /*
1664  * While block_write_full_page is writing back the dirty buffers under
1665  * the page lock, whoever dirtied the buffers may decide to clean them
1666  * again at any time.  We handle that by only looking at the buffer
1667  * state inside lock_buffer().
1668  *
1669  * If block_write_full_page() is called for regular writeback
1670  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1671  * locked buffer.   This only can happen if someone has written the buffer
1672  * directly, with submit_bh().  At the address_space level PageWriteback
1673  * prevents this contention from occurring.
1674  *
1675  * If block_write_full_page() is called with wbc->sync_mode ==
1676  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1677  * causes the writes to be flagged as synchronous writes.
1678  */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1679 int __block_write_full_page(struct inode *inode, struct page *page,
1680 			get_block_t *get_block, struct writeback_control *wbc,
1681 			bh_end_io_t *handler)
1682 {
1683 	int err;
1684 	sector_t block;
1685 	sector_t last_block;
1686 	struct buffer_head *bh, *head;
1687 	unsigned int blocksize, bbits;
1688 	int nr_underway = 0;
1689 	int write_flags = wbc_to_write_flags(wbc);
1690 
1691 	head = create_page_buffers(page, inode,
1692 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1693 
1694 	/*
1695 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1696 	 * here, and the (potentially unmapped) buffers may become dirty at
1697 	 * any time.  If a buffer becomes dirty here after we've inspected it
1698 	 * then we just miss that fact, and the page stays dirty.
1699 	 *
1700 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1701 	 * handle that here by just cleaning them.
1702 	 */
1703 
1704 	bh = head;
1705 	blocksize = bh->b_size;
1706 	bbits = block_size_bits(blocksize);
1707 
1708 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1709 	last_block = (i_size_read(inode) - 1) >> bbits;
1710 
1711 	/*
1712 	 * Get all the dirty buffers mapped to disk addresses and
1713 	 * handle any aliases from the underlying blockdev's mapping.
1714 	 */
1715 	do {
1716 		if (block > last_block) {
1717 			/*
1718 			 * mapped buffers outside i_size will occur, because
1719 			 * this page can be outside i_size when there is a
1720 			 * truncate in progress.
1721 			 */
1722 			/*
1723 			 * The buffer was zeroed by block_write_full_page()
1724 			 */
1725 			clear_buffer_dirty(bh);
1726 			set_buffer_uptodate(bh);
1727 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1728 			   buffer_dirty(bh)) {
1729 			WARN_ON(bh->b_size != blocksize);
1730 			err = get_block(inode, block, bh, 1);
1731 			if (err)
1732 				goto recover;
1733 			clear_buffer_delay(bh);
1734 			if (buffer_new(bh)) {
1735 				/* blockdev mappings never come here */
1736 				clear_buffer_new(bh);
1737 				clean_bdev_bh_alias(bh);
1738 			}
1739 		}
1740 		bh = bh->b_this_page;
1741 		block++;
1742 	} while (bh != head);
1743 
1744 	do {
1745 		if (!buffer_mapped(bh))
1746 			continue;
1747 		/*
1748 		 * If it's a fully non-blocking write attempt and we cannot
1749 		 * lock the buffer then redirty the page.  Note that this can
1750 		 * potentially cause a busy-wait loop from writeback threads
1751 		 * and kswapd activity, but those code paths have their own
1752 		 * higher-level throttling.
1753 		 */
1754 		if (wbc->sync_mode != WB_SYNC_NONE) {
1755 			lock_buffer(bh);
1756 		} else if (!trylock_buffer(bh)) {
1757 			redirty_page_for_writepage(wbc, page);
1758 			continue;
1759 		}
1760 		if (test_clear_buffer_dirty(bh)) {
1761 			mark_buffer_async_write_endio(bh, handler);
1762 		} else {
1763 			unlock_buffer(bh);
1764 		}
1765 	} while ((bh = bh->b_this_page) != head);
1766 
1767 	/*
1768 	 * The page and its buffers are protected by PageWriteback(), so we can
1769 	 * drop the bh refcounts early.
1770 	 */
1771 	BUG_ON(PageWriteback(page));
1772 	set_page_writeback(page);
1773 
1774 	do {
1775 		struct buffer_head *next = bh->b_this_page;
1776 		if (buffer_async_write(bh)) {
1777 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1778 					inode->i_write_hint, wbc);
1779 			nr_underway++;
1780 		}
1781 		bh = next;
1782 	} while (bh != head);
1783 	unlock_page(page);
1784 
1785 	err = 0;
1786 done:
1787 	if (nr_underway == 0) {
1788 		/*
1789 		 * The page was marked dirty, but the buffers were
1790 		 * clean.  Someone wrote them back by hand with
1791 		 * ll_rw_block/submit_bh.  A rare case.
1792 		 */
1793 		end_page_writeback(page);
1794 
1795 		/*
1796 		 * The page and buffer_heads can be released at any time from
1797 		 * here on.
1798 		 */
1799 	}
1800 	return err;
1801 
1802 recover:
1803 	/*
1804 	 * ENOSPC, or some other error.  We may already have added some
1805 	 * blocks to the file, so we need to write these out to avoid
1806 	 * exposing stale data.
1807 	 * The page is currently locked and not marked for writeback
1808 	 */
1809 	bh = head;
1810 	/* Recovery: lock and submit the mapped buffers */
1811 	do {
1812 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1813 		    !buffer_delay(bh)) {
1814 			lock_buffer(bh);
1815 			mark_buffer_async_write_endio(bh, handler);
1816 		} else {
1817 			/*
1818 			 * The buffer may have been set dirty during
1819 			 * attachment to a dirty page.
1820 			 */
1821 			clear_buffer_dirty(bh);
1822 		}
1823 	} while ((bh = bh->b_this_page) != head);
1824 	SetPageError(page);
1825 	BUG_ON(PageWriteback(page));
1826 	mapping_set_error(page->mapping, err);
1827 	set_page_writeback(page);
1828 	do {
1829 		struct buffer_head *next = bh->b_this_page;
1830 		if (buffer_async_write(bh)) {
1831 			clear_buffer_dirty(bh);
1832 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1833 					inode->i_write_hint, wbc);
1834 			nr_underway++;
1835 		}
1836 		bh = next;
1837 	} while (bh != head);
1838 	unlock_page(page);
1839 	goto done;
1840 }
1841 EXPORT_SYMBOL(__block_write_full_page);
1842 
1843 /*
1844  * If a page has any new buffers, zero them out here, and mark them uptodate
1845  * and dirty so they'll be written out (in order to prevent uninitialised
1846  * block data from leaking). And clear the new bit.
1847  */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1848 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1849 {
1850 	unsigned int block_start, block_end;
1851 	struct buffer_head *head, *bh;
1852 
1853 	BUG_ON(!PageLocked(page));
1854 	if (!page_has_buffers(page))
1855 		return;
1856 
1857 	bh = head = page_buffers(page);
1858 	block_start = 0;
1859 	do {
1860 		block_end = block_start + bh->b_size;
1861 
1862 		if (buffer_new(bh)) {
1863 			if (block_end > from && block_start < to) {
1864 				if (!PageUptodate(page)) {
1865 					unsigned start, size;
1866 
1867 					start = max(from, block_start);
1868 					size = min(to, block_end) - start;
1869 
1870 					zero_user(page, start, size);
1871 					set_buffer_uptodate(bh);
1872 				}
1873 
1874 				clear_buffer_new(bh);
1875 				mark_buffer_dirty(bh);
1876 			}
1877 		}
1878 
1879 		block_start = block_end;
1880 		bh = bh->b_this_page;
1881 	} while (bh != head);
1882 }
1883 EXPORT_SYMBOL(page_zero_new_buffers);
1884 
1885 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,struct iomap * iomap)1886 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1887 		struct iomap *iomap)
1888 {
1889 	loff_t offset = block << inode->i_blkbits;
1890 
1891 	bh->b_bdev = iomap->bdev;
1892 
1893 	/*
1894 	 * Block points to offset in file we need to map, iomap contains
1895 	 * the offset at which the map starts. If the map ends before the
1896 	 * current block, then do not map the buffer and let the caller
1897 	 * handle it.
1898 	 */
1899 	BUG_ON(offset >= iomap->offset + iomap->length);
1900 
1901 	switch (iomap->type) {
1902 	case IOMAP_HOLE:
1903 		/*
1904 		 * If the buffer is not up to date or beyond the current EOF,
1905 		 * we need to mark it as new to ensure sub-block zeroing is
1906 		 * executed if necessary.
1907 		 */
1908 		if (!buffer_uptodate(bh) ||
1909 		    (offset >= i_size_read(inode)))
1910 			set_buffer_new(bh);
1911 		break;
1912 	case IOMAP_DELALLOC:
1913 		if (!buffer_uptodate(bh) ||
1914 		    (offset >= i_size_read(inode)))
1915 			set_buffer_new(bh);
1916 		set_buffer_uptodate(bh);
1917 		set_buffer_mapped(bh);
1918 		set_buffer_delay(bh);
1919 		break;
1920 	case IOMAP_UNWRITTEN:
1921 		/*
1922 		 * For unwritten regions, we always need to ensure that regions
1923 		 * in the block we are not writing to are zeroed. Mark the
1924 		 * buffer as new to ensure this.
1925 		 */
1926 		set_buffer_new(bh);
1927 		set_buffer_unwritten(bh);
1928 		/* FALLTHRU */
1929 	case IOMAP_MAPPED:
1930 		if ((iomap->flags & IOMAP_F_NEW) ||
1931 		    offset >= i_size_read(inode))
1932 			set_buffer_new(bh);
1933 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1934 				inode->i_blkbits;
1935 		set_buffer_mapped(bh);
1936 		break;
1937 	}
1938 }
1939 
__block_write_begin_int(struct page * page,loff_t pos,unsigned len,get_block_t * get_block,struct iomap * iomap)1940 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1941 		get_block_t *get_block, struct iomap *iomap)
1942 {
1943 	unsigned from = pos & (PAGE_SIZE - 1);
1944 	unsigned to = from + len;
1945 	struct inode *inode = page->mapping->host;
1946 	unsigned block_start, block_end;
1947 	sector_t block;
1948 	int err = 0;
1949 	unsigned blocksize, bbits;
1950 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1951 
1952 	BUG_ON(!PageLocked(page));
1953 	BUG_ON(from > PAGE_SIZE);
1954 	BUG_ON(to > PAGE_SIZE);
1955 	BUG_ON(from > to);
1956 
1957 	head = create_page_buffers(page, inode, 0);
1958 	blocksize = head->b_size;
1959 	bbits = block_size_bits(blocksize);
1960 
1961 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1962 
1963 	for(bh = head, block_start = 0; bh != head || !block_start;
1964 	    block++, block_start=block_end, bh = bh->b_this_page) {
1965 		block_end = block_start + blocksize;
1966 		if (block_end <= from || block_start >= to) {
1967 			if (PageUptodate(page)) {
1968 				if (!buffer_uptodate(bh))
1969 					set_buffer_uptodate(bh);
1970 			}
1971 			continue;
1972 		}
1973 		if (buffer_new(bh))
1974 			clear_buffer_new(bh);
1975 		if (!buffer_mapped(bh)) {
1976 			WARN_ON(bh->b_size != blocksize);
1977 			if (get_block) {
1978 				err = get_block(inode, block, bh, 1);
1979 				if (err)
1980 					break;
1981 			} else {
1982 				iomap_to_bh(inode, block, bh, iomap);
1983 			}
1984 
1985 			if (buffer_new(bh)) {
1986 				clean_bdev_bh_alias(bh);
1987 				if (PageUptodate(page)) {
1988 					clear_buffer_new(bh);
1989 					set_buffer_uptodate(bh);
1990 					mark_buffer_dirty(bh);
1991 					continue;
1992 				}
1993 				if (block_end > to || block_start < from)
1994 					zero_user_segments(page,
1995 						to, block_end,
1996 						block_start, from);
1997 				continue;
1998 			}
1999 		}
2000 		if (PageUptodate(page)) {
2001 			if (!buffer_uptodate(bh))
2002 				set_buffer_uptodate(bh);
2003 			continue;
2004 		}
2005 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2006 		    !buffer_unwritten(bh) &&
2007 		     (block_start < from || block_end > to)) {
2008 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2009 			*wait_bh++=bh;
2010 		}
2011 	}
2012 	/*
2013 	 * If we issued read requests - let them complete.
2014 	 */
2015 	while(wait_bh > wait) {
2016 		wait_on_buffer(*--wait_bh);
2017 		if (!buffer_uptodate(*wait_bh))
2018 			err = -EIO;
2019 	}
2020 	if (unlikely(err))
2021 		page_zero_new_buffers(page, from, to);
2022 	return err;
2023 }
2024 
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2025 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2026 		get_block_t *get_block)
2027 {
2028 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2029 }
2030 EXPORT_SYMBOL(__block_write_begin);
2031 
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2032 static int __block_commit_write(struct inode *inode, struct page *page,
2033 		unsigned from, unsigned to)
2034 {
2035 	unsigned block_start, block_end;
2036 	int partial = 0;
2037 	unsigned blocksize;
2038 	struct buffer_head *bh, *head;
2039 
2040 	bh = head = page_buffers(page);
2041 	blocksize = bh->b_size;
2042 
2043 	block_start = 0;
2044 	do {
2045 		block_end = block_start + blocksize;
2046 		if (block_end <= from || block_start >= to) {
2047 			if (!buffer_uptodate(bh))
2048 				partial = 1;
2049 		} else {
2050 			set_buffer_uptodate(bh);
2051 			mark_buffer_dirty(bh);
2052 		}
2053 		clear_buffer_new(bh);
2054 
2055 		block_start = block_end;
2056 		bh = bh->b_this_page;
2057 	} while (bh != head);
2058 
2059 	/*
2060 	 * If this is a partial write which happened to make all buffers
2061 	 * uptodate then we can optimize away a bogus readpage() for
2062 	 * the next read(). Here we 'discover' whether the page went
2063 	 * uptodate as a result of this (potentially partial) write.
2064 	 */
2065 	if (!partial)
2066 		SetPageUptodate(page);
2067 	return 0;
2068 }
2069 
2070 /*
2071  * block_write_begin takes care of the basic task of block allocation and
2072  * bringing partial write blocks uptodate first.
2073  *
2074  * The filesystem needs to handle block truncation upon failure.
2075  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)2076 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2077 		unsigned flags, struct page **pagep, get_block_t *get_block)
2078 {
2079 	pgoff_t index = pos >> PAGE_SHIFT;
2080 	struct page *page;
2081 	int status;
2082 
2083 	page = grab_cache_page_write_begin(mapping, index, flags);
2084 	if (!page)
2085 		return -ENOMEM;
2086 
2087 	status = __block_write_begin(page, pos, len, get_block);
2088 	if (unlikely(status)) {
2089 		unlock_page(page);
2090 		put_page(page);
2091 		page = NULL;
2092 	}
2093 
2094 	*pagep = page;
2095 	return status;
2096 }
2097 EXPORT_SYMBOL(block_write_begin);
2098 
__generic_write_end(struct inode * inode,loff_t pos,unsigned copied,struct page * page)2099 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2100 		struct page *page)
2101 {
2102 	loff_t old_size = inode->i_size;
2103 	bool i_size_changed = false;
2104 
2105 	/*
2106 	 * No need to use i_size_read() here, the i_size cannot change under us
2107 	 * because we hold i_rwsem.
2108 	 *
2109 	 * But it's important to update i_size while still holding page lock:
2110 	 * page writeout could otherwise come in and zero beyond i_size.
2111 	 */
2112 	if (pos + copied > inode->i_size) {
2113 		i_size_write(inode, pos + copied);
2114 		i_size_changed = true;
2115 	}
2116 
2117 	unlock_page(page);
2118 	put_page(page);
2119 
2120 	if (old_size < pos)
2121 		pagecache_isize_extended(inode, old_size, pos);
2122 	/*
2123 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2124 	 * makes the holding time of page lock longer. Second, it forces lock
2125 	 * ordering of page lock and transaction start for journaling
2126 	 * filesystems.
2127 	 */
2128 	if (i_size_changed)
2129 		mark_inode_dirty(inode);
2130 	return copied;
2131 }
2132 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2133 int block_write_end(struct file *file, struct address_space *mapping,
2134 			loff_t pos, unsigned len, unsigned copied,
2135 			struct page *page, void *fsdata)
2136 {
2137 	struct inode *inode = mapping->host;
2138 	unsigned start;
2139 
2140 	start = pos & (PAGE_SIZE - 1);
2141 
2142 	if (unlikely(copied < len)) {
2143 		/*
2144 		 * The buffers that were written will now be uptodate, so we
2145 		 * don't have to worry about a readpage reading them and
2146 		 * overwriting a partial write. However if we have encountered
2147 		 * a short write and only partially written into a buffer, it
2148 		 * will not be marked uptodate, so a readpage might come in and
2149 		 * destroy our partial write.
2150 		 *
2151 		 * Do the simplest thing, and just treat any short write to a
2152 		 * non uptodate page as a zero-length write, and force the
2153 		 * caller to redo the whole thing.
2154 		 */
2155 		if (!PageUptodate(page))
2156 			copied = 0;
2157 
2158 		page_zero_new_buffers(page, start+copied, start+len);
2159 	}
2160 	flush_dcache_page(page);
2161 
2162 	/* This could be a short (even 0-length) commit */
2163 	__block_commit_write(inode, page, start, start+copied);
2164 
2165 	return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170 			loff_t pos, unsigned len, unsigned copied,
2171 			struct page *page, void *fsdata)
2172 {
2173 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174 	return __generic_write_end(mapping->host, pos, copied, page);
2175 }
2176 EXPORT_SYMBOL(generic_write_end);
2177 
2178 /*
2179  * block_is_partially_uptodate checks whether buffers within a page are
2180  * uptodate or not.
2181  *
2182  * Returns true if all buffers which correspond to a file portion
2183  * we want to read are uptodate.
2184  */
block_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)2185 int block_is_partially_uptodate(struct page *page, unsigned long from,
2186 					unsigned long count)
2187 {
2188 	unsigned block_start, block_end, blocksize;
2189 	unsigned to;
2190 	struct buffer_head *bh, *head;
2191 	int ret = 1;
2192 
2193 	if (!page_has_buffers(page))
2194 		return 0;
2195 
2196 	head = page_buffers(page);
2197 	blocksize = head->b_size;
2198 	to = min_t(unsigned, PAGE_SIZE - from, count);
2199 	to = from + to;
2200 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2201 		return 0;
2202 
2203 	bh = head;
2204 	block_start = 0;
2205 	do {
2206 		block_end = block_start + blocksize;
2207 		if (block_end > from && block_start < to) {
2208 			if (!buffer_uptodate(bh)) {
2209 				ret = 0;
2210 				break;
2211 			}
2212 			if (block_end >= to)
2213 				break;
2214 		}
2215 		block_start = block_end;
2216 		bh = bh->b_this_page;
2217 	} while (bh != head);
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL(block_is_partially_uptodate);
2222 
2223 /*
2224  * Generic "read page" function for block devices that have the normal
2225  * get_block functionality. This is most of the block device filesystems.
2226  * Reads the page asynchronously --- the unlock_buffer() and
2227  * set/clear_buffer_uptodate() functions propagate buffer state into the
2228  * page struct once IO has completed.
2229  */
block_read_full_page(struct page * page,get_block_t * get_block)2230 int block_read_full_page(struct page *page, get_block_t *get_block)
2231 {
2232 	struct inode *inode = page->mapping->host;
2233 	sector_t iblock, lblock;
2234 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2235 	unsigned int blocksize, bbits;
2236 	int nr, i;
2237 	int fully_mapped = 1;
2238 
2239 	head = create_page_buffers(page, inode, 0);
2240 	blocksize = head->b_size;
2241 	bbits = block_size_bits(blocksize);
2242 
2243 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2244 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2245 	bh = head;
2246 	nr = 0;
2247 	i = 0;
2248 
2249 	do {
2250 		if (buffer_uptodate(bh))
2251 			continue;
2252 
2253 		if (!buffer_mapped(bh)) {
2254 			int err = 0;
2255 
2256 			fully_mapped = 0;
2257 			if (iblock < lblock) {
2258 				WARN_ON(bh->b_size != blocksize);
2259 				err = get_block(inode, iblock, bh, 0);
2260 				if (err)
2261 					SetPageError(page);
2262 			}
2263 			if (!buffer_mapped(bh)) {
2264 				zero_user(page, i * blocksize, blocksize);
2265 				if (!err)
2266 					set_buffer_uptodate(bh);
2267 				continue;
2268 			}
2269 			/*
2270 			 * get_block() might have updated the buffer
2271 			 * synchronously
2272 			 */
2273 			if (buffer_uptodate(bh))
2274 				continue;
2275 		}
2276 		arr[nr++] = bh;
2277 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2278 
2279 	if (fully_mapped)
2280 		SetPageMappedToDisk(page);
2281 
2282 	if (!nr) {
2283 		/*
2284 		 * All buffers are uptodate - we can set the page uptodate
2285 		 * as well. But not if get_block() returned an error.
2286 		 */
2287 		if (!PageError(page))
2288 			SetPageUptodate(page);
2289 		unlock_page(page);
2290 		return 0;
2291 	}
2292 
2293 	/* Stage two: lock the buffers */
2294 	for (i = 0; i < nr; i++) {
2295 		bh = arr[i];
2296 		lock_buffer(bh);
2297 		mark_buffer_async_read(bh);
2298 	}
2299 
2300 	/*
2301 	 * Stage 3: start the IO.  Check for uptodateness
2302 	 * inside the buffer lock in case another process reading
2303 	 * the underlying blockdev brought it uptodate (the sct fix).
2304 	 */
2305 	for (i = 0; i < nr; i++) {
2306 		bh = arr[i];
2307 		if (buffer_uptodate(bh))
2308 			end_buffer_async_read(bh, 1);
2309 		else
2310 			submit_bh(REQ_OP_READ, 0, bh);
2311 	}
2312 	return 0;
2313 }
2314 EXPORT_SYMBOL(block_read_full_page);
2315 
2316 /* utility function for filesystems that need to do work on expanding
2317  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2318  * deal with the hole.
2319  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2320 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2321 {
2322 	struct address_space *mapping = inode->i_mapping;
2323 	struct page *page;
2324 	void *fsdata = NULL;
2325 	int err;
2326 
2327 	err = inode_newsize_ok(inode, size);
2328 	if (err)
2329 		goto out;
2330 
2331 	err = pagecache_write_begin(NULL, mapping, size, 0,
2332 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2333 	if (err)
2334 		goto out;
2335 
2336 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337 	BUG_ON(err > 0);
2338 
2339 out:
2340 	return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345 			    loff_t pos, loff_t *bytes)
2346 {
2347 	struct inode *inode = mapping->host;
2348 	unsigned int blocksize = i_blocksize(inode);
2349 	struct page *page;
2350 	void *fsdata = NULL;
2351 	pgoff_t index, curidx;
2352 	loff_t curpos;
2353 	unsigned zerofrom, offset, len;
2354 	int err = 0;
2355 
2356 	index = pos >> PAGE_SHIFT;
2357 	offset = pos & ~PAGE_MASK;
2358 
2359 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360 		zerofrom = curpos & ~PAGE_MASK;
2361 		if (zerofrom & (blocksize-1)) {
2362 			*bytes |= (blocksize-1);
2363 			(*bytes)++;
2364 		}
2365 		len = PAGE_SIZE - zerofrom;
2366 
2367 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2368 					    &page, &fsdata);
2369 		if (err)
2370 			goto out;
2371 		zero_user(page, zerofrom, len);
2372 		err = pagecache_write_end(file, mapping, curpos, len, len,
2373 						page, fsdata);
2374 		if (err < 0)
2375 			goto out;
2376 		BUG_ON(err != len);
2377 		err = 0;
2378 
2379 		balance_dirty_pages_ratelimited(mapping);
2380 
2381 		if (unlikely(fatal_signal_pending(current))) {
2382 			err = -EINTR;
2383 			goto out;
2384 		}
2385 	}
2386 
2387 	/* page covers the boundary, find the boundary offset */
2388 	if (index == curidx) {
2389 		zerofrom = curpos & ~PAGE_MASK;
2390 		/* if we will expand the thing last block will be filled */
2391 		if (offset <= zerofrom) {
2392 			goto out;
2393 		}
2394 		if (zerofrom & (blocksize-1)) {
2395 			*bytes |= (blocksize-1);
2396 			(*bytes)++;
2397 		}
2398 		len = offset - zerofrom;
2399 
2400 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2401 					    &page, &fsdata);
2402 		if (err)
2403 			goto out;
2404 		zero_user(page, zerofrom, len);
2405 		err = pagecache_write_end(file, mapping, curpos, len, len,
2406 						page, fsdata);
2407 		if (err < 0)
2408 			goto out;
2409 		BUG_ON(err != len);
2410 		err = 0;
2411 	}
2412 out:
2413 	return err;
2414 }
2415 
2416 /*
2417  * For moronic filesystems that do not allow holes in file.
2418  * We may have to extend the file.
2419  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2420 int cont_write_begin(struct file *file, struct address_space *mapping,
2421 			loff_t pos, unsigned len, unsigned flags,
2422 			struct page **pagep, void **fsdata,
2423 			get_block_t *get_block, loff_t *bytes)
2424 {
2425 	struct inode *inode = mapping->host;
2426 	unsigned int blocksize = i_blocksize(inode);
2427 	unsigned int zerofrom;
2428 	int err;
2429 
2430 	err = cont_expand_zero(file, mapping, pos, bytes);
2431 	if (err)
2432 		return err;
2433 
2434 	zerofrom = *bytes & ~PAGE_MASK;
2435 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2436 		*bytes |= (blocksize-1);
2437 		(*bytes)++;
2438 	}
2439 
2440 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2441 }
2442 EXPORT_SYMBOL(cont_write_begin);
2443 
block_commit_write(struct page * page,unsigned from,unsigned to)2444 int block_commit_write(struct page *page, unsigned from, unsigned to)
2445 {
2446 	struct inode *inode = page->mapping->host;
2447 	__block_commit_write(inode,page,from,to);
2448 	return 0;
2449 }
2450 EXPORT_SYMBOL(block_commit_write);
2451 
2452 /*
2453  * block_page_mkwrite() is not allowed to change the file size as it gets
2454  * called from a page fault handler when a page is first dirtied. Hence we must
2455  * be careful to check for EOF conditions here. We set the page up correctly
2456  * for a written page which means we get ENOSPC checking when writing into
2457  * holes and correct delalloc and unwritten extent mapping on filesystems that
2458  * support these features.
2459  *
2460  * We are not allowed to take the i_mutex here so we have to play games to
2461  * protect against truncate races as the page could now be beyond EOF.  Because
2462  * truncate writes the inode size before removing pages, once we have the
2463  * page lock we can determine safely if the page is beyond EOF. If it is not
2464  * beyond EOF, then the page is guaranteed safe against truncation until we
2465  * unlock the page.
2466  *
2467  * Direct callers of this function should protect against filesystem freezing
2468  * using sb_start_pagefault() - sb_end_pagefault() functions.
2469  */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2471 			 get_block_t get_block)
2472 {
2473 	struct page *page = vmf->page;
2474 	struct inode *inode = file_inode(vma->vm_file);
2475 	unsigned long end;
2476 	loff_t size;
2477 	int ret;
2478 
2479 	lock_page(page);
2480 	size = i_size_read(inode);
2481 	if ((page->mapping != inode->i_mapping) ||
2482 	    (page_offset(page) > size)) {
2483 		/* We overload EFAULT to mean page got truncated */
2484 		ret = -EFAULT;
2485 		goto out_unlock;
2486 	}
2487 
2488 	/* page is wholly or partially inside EOF */
2489 	if (((page->index + 1) << PAGE_SHIFT) > size)
2490 		end = size & ~PAGE_MASK;
2491 	else
2492 		end = PAGE_SIZE;
2493 
2494 	ret = __block_write_begin(page, 0, end, get_block);
2495 	if (!ret)
2496 		ret = block_commit_write(page, 0, end);
2497 
2498 	if (unlikely(ret < 0))
2499 		goto out_unlock;
2500 	set_page_dirty(page);
2501 	wait_for_stable_page(page);
2502 	return 0;
2503 out_unlock:
2504 	unlock_page(page);
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL(block_page_mkwrite);
2508 
2509 /*
2510  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511  * immediately, while under the page lock.  So it needs a special end_io
2512  * handler which does not touch the bh after unlocking it.
2513  */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2515 {
2516 	__end_buffer_read_notouch(bh, uptodate);
2517 }
2518 
2519 /*
2520  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521  * the page (converting it to circular linked list and taking care of page
2522  * dirty races).
2523  */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2525 {
2526 	struct buffer_head *bh;
2527 
2528 	BUG_ON(!PageLocked(page));
2529 
2530 	spin_lock(&page->mapping->private_lock);
2531 	bh = head;
2532 	do {
2533 		if (PageDirty(page))
2534 			set_buffer_dirty(bh);
2535 		if (!bh->b_this_page)
2536 			bh->b_this_page = head;
2537 		bh = bh->b_this_page;
2538 	} while (bh != head);
2539 	attach_page_buffers(page, head);
2540 	spin_unlock(&page->mapping->private_lock);
2541 }
2542 
2543 /*
2544  * On entry, the page is fully not uptodate.
2545  * On exit the page is fully uptodate in the areas outside (from,to)
2546  * The filesystem needs to handle block truncation upon failure.
2547  */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2548 int nobh_write_begin(struct address_space *mapping,
2549 			loff_t pos, unsigned len, unsigned flags,
2550 			struct page **pagep, void **fsdata,
2551 			get_block_t *get_block)
2552 {
2553 	struct inode *inode = mapping->host;
2554 	const unsigned blkbits = inode->i_blkbits;
2555 	const unsigned blocksize = 1 << blkbits;
2556 	struct buffer_head *head, *bh;
2557 	struct page *page;
2558 	pgoff_t index;
2559 	unsigned from, to;
2560 	unsigned block_in_page;
2561 	unsigned block_start, block_end;
2562 	sector_t block_in_file;
2563 	int nr_reads = 0;
2564 	int ret = 0;
2565 	int is_mapped_to_disk = 1;
2566 
2567 	index = pos >> PAGE_SHIFT;
2568 	from = pos & (PAGE_SIZE - 1);
2569 	to = from + len;
2570 
2571 	page = grab_cache_page_write_begin(mapping, index, flags);
2572 	if (!page)
2573 		return -ENOMEM;
2574 	*pagep = page;
2575 	*fsdata = NULL;
2576 
2577 	if (page_has_buffers(page)) {
2578 		ret = __block_write_begin(page, pos, len, get_block);
2579 		if (unlikely(ret))
2580 			goto out_release;
2581 		return ret;
2582 	}
2583 
2584 	if (PageMappedToDisk(page))
2585 		return 0;
2586 
2587 	/*
2588 	 * Allocate buffers so that we can keep track of state, and potentially
2589 	 * attach them to the page if an error occurs. In the common case of
2590 	 * no error, they will just be freed again without ever being attached
2591 	 * to the page (which is all OK, because we're under the page lock).
2592 	 *
2593 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2594 	 * than the circular one we're used to.
2595 	 */
2596 	head = alloc_page_buffers(page, blocksize, false);
2597 	if (!head) {
2598 		ret = -ENOMEM;
2599 		goto out_release;
2600 	}
2601 
2602 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2603 
2604 	/*
2605 	 * We loop across all blocks in the page, whether or not they are
2606 	 * part of the affected region.  This is so we can discover if the
2607 	 * page is fully mapped-to-disk.
2608 	 */
2609 	for (block_start = 0, block_in_page = 0, bh = head;
2610 		  block_start < PAGE_SIZE;
2611 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2612 		int create;
2613 
2614 		block_end = block_start + blocksize;
2615 		bh->b_state = 0;
2616 		create = 1;
2617 		if (block_start >= to)
2618 			create = 0;
2619 		ret = get_block(inode, block_in_file + block_in_page,
2620 					bh, create);
2621 		if (ret)
2622 			goto failed;
2623 		if (!buffer_mapped(bh))
2624 			is_mapped_to_disk = 0;
2625 		if (buffer_new(bh))
2626 			clean_bdev_bh_alias(bh);
2627 		if (PageUptodate(page)) {
2628 			set_buffer_uptodate(bh);
2629 			continue;
2630 		}
2631 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2632 			zero_user_segments(page, block_start, from,
2633 							to, block_end);
2634 			continue;
2635 		}
2636 		if (buffer_uptodate(bh))
2637 			continue;	/* reiserfs does this */
2638 		if (block_start < from || block_end > to) {
2639 			lock_buffer(bh);
2640 			bh->b_end_io = end_buffer_read_nobh;
2641 			submit_bh(REQ_OP_READ, 0, bh);
2642 			nr_reads++;
2643 		}
2644 	}
2645 
2646 	if (nr_reads) {
2647 		/*
2648 		 * The page is locked, so these buffers are protected from
2649 		 * any VM or truncate activity.  Hence we don't need to care
2650 		 * for the buffer_head refcounts.
2651 		 */
2652 		for (bh = head; bh; bh = bh->b_this_page) {
2653 			wait_on_buffer(bh);
2654 			if (!buffer_uptodate(bh))
2655 				ret = -EIO;
2656 		}
2657 		if (ret)
2658 			goto failed;
2659 	}
2660 
2661 	if (is_mapped_to_disk)
2662 		SetPageMappedToDisk(page);
2663 
2664 	*fsdata = head; /* to be released by nobh_write_end */
2665 
2666 	return 0;
2667 
2668 failed:
2669 	BUG_ON(!ret);
2670 	/*
2671 	 * Error recovery is a bit difficult. We need to zero out blocks that
2672 	 * were newly allocated, and dirty them to ensure they get written out.
2673 	 * Buffers need to be attached to the page at this point, otherwise
2674 	 * the handling of potential IO errors during writeout would be hard
2675 	 * (could try doing synchronous writeout, but what if that fails too?)
2676 	 */
2677 	attach_nobh_buffers(page, head);
2678 	page_zero_new_buffers(page, from, to);
2679 
2680 out_release:
2681 	unlock_page(page);
2682 	put_page(page);
2683 	*pagep = NULL;
2684 
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL(nobh_write_begin);
2688 
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2689 int nobh_write_end(struct file *file, struct address_space *mapping,
2690 			loff_t pos, unsigned len, unsigned copied,
2691 			struct page *page, void *fsdata)
2692 {
2693 	struct inode *inode = page->mapping->host;
2694 	struct buffer_head *head = fsdata;
2695 	struct buffer_head *bh;
2696 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2697 
2698 	if (unlikely(copied < len) && head)
2699 		attach_nobh_buffers(page, head);
2700 	if (page_has_buffers(page))
2701 		return generic_write_end(file, mapping, pos, len,
2702 					copied, page, fsdata);
2703 
2704 	SetPageUptodate(page);
2705 	set_page_dirty(page);
2706 	if (pos+copied > inode->i_size) {
2707 		i_size_write(inode, pos+copied);
2708 		mark_inode_dirty(inode);
2709 	}
2710 
2711 	unlock_page(page);
2712 	put_page(page);
2713 
2714 	while (head) {
2715 		bh = head;
2716 		head = head->b_this_page;
2717 		free_buffer_head(bh);
2718 	}
2719 
2720 	return copied;
2721 }
2722 EXPORT_SYMBOL(nobh_write_end);
2723 
2724 /*
2725  * nobh_writepage() - based on block_full_write_page() except
2726  * that it tries to operate without attaching bufferheads to
2727  * the page.
2728  */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2729 int nobh_writepage(struct page *page, get_block_t *get_block,
2730 			struct writeback_control *wbc)
2731 {
2732 	struct inode * const inode = page->mapping->host;
2733 	loff_t i_size = i_size_read(inode);
2734 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2735 	unsigned offset;
2736 	int ret;
2737 
2738 	/* Is the page fully inside i_size? */
2739 	if (page->index < end_index)
2740 		goto out;
2741 
2742 	/* Is the page fully outside i_size? (truncate in progress) */
2743 	offset = i_size & (PAGE_SIZE-1);
2744 	if (page->index >= end_index+1 || !offset) {
2745 		unlock_page(page);
2746 		return 0; /* don't care */
2747 	}
2748 
2749 	/*
2750 	 * The page straddles i_size.  It must be zeroed out on each and every
2751 	 * writepage invocation because it may be mmapped.  "A file is mapped
2752 	 * in multiples of the page size.  For a file that is not a multiple of
2753 	 * the  page size, the remaining memory is zeroed when mapped, and
2754 	 * writes to that region are not written out to the file."
2755 	 */
2756 	zero_user_segment(page, offset, PAGE_SIZE);
2757 out:
2758 	ret = mpage_writepage(page, get_block, wbc);
2759 	if (ret == -EAGAIN)
2760 		ret = __block_write_full_page(inode, page, get_block, wbc,
2761 					      end_buffer_async_write);
2762 	return ret;
2763 }
2764 EXPORT_SYMBOL(nobh_writepage);
2765 
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2766 int nobh_truncate_page(struct address_space *mapping,
2767 			loff_t from, get_block_t *get_block)
2768 {
2769 	pgoff_t index = from >> PAGE_SHIFT;
2770 	unsigned offset = from & (PAGE_SIZE-1);
2771 	unsigned blocksize;
2772 	sector_t iblock;
2773 	unsigned length, pos;
2774 	struct inode *inode = mapping->host;
2775 	struct page *page;
2776 	struct buffer_head map_bh;
2777 	int err;
2778 
2779 	blocksize = i_blocksize(inode);
2780 	length = offset & (blocksize - 1);
2781 
2782 	/* Block boundary? Nothing to do */
2783 	if (!length)
2784 		return 0;
2785 
2786 	length = blocksize - length;
2787 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2788 
2789 	page = grab_cache_page(mapping, index);
2790 	err = -ENOMEM;
2791 	if (!page)
2792 		goto out;
2793 
2794 	if (page_has_buffers(page)) {
2795 has_buffers:
2796 		unlock_page(page);
2797 		put_page(page);
2798 		return block_truncate_page(mapping, from, get_block);
2799 	}
2800 
2801 	/* Find the buffer that contains "offset" */
2802 	pos = blocksize;
2803 	while (offset >= pos) {
2804 		iblock++;
2805 		pos += blocksize;
2806 	}
2807 
2808 	map_bh.b_size = blocksize;
2809 	map_bh.b_state = 0;
2810 	err = get_block(inode, iblock, &map_bh, 0);
2811 	if (err)
2812 		goto unlock;
2813 	/* unmapped? It's a hole - nothing to do */
2814 	if (!buffer_mapped(&map_bh))
2815 		goto unlock;
2816 
2817 	/* Ok, it's mapped. Make sure it's up-to-date */
2818 	if (!PageUptodate(page)) {
2819 		err = mapping->a_ops->readpage(NULL, page);
2820 		if (err) {
2821 			put_page(page);
2822 			goto out;
2823 		}
2824 		lock_page(page);
2825 		if (!PageUptodate(page)) {
2826 			err = -EIO;
2827 			goto unlock;
2828 		}
2829 		if (page_has_buffers(page))
2830 			goto has_buffers;
2831 	}
2832 	zero_user(page, offset, length);
2833 	set_page_dirty(page);
2834 	err = 0;
2835 
2836 unlock:
2837 	unlock_page(page);
2838 	put_page(page);
2839 out:
2840 	return err;
2841 }
2842 EXPORT_SYMBOL(nobh_truncate_page);
2843 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2844 int block_truncate_page(struct address_space *mapping,
2845 			loff_t from, get_block_t *get_block)
2846 {
2847 	pgoff_t index = from >> PAGE_SHIFT;
2848 	unsigned offset = from & (PAGE_SIZE-1);
2849 	unsigned blocksize;
2850 	sector_t iblock;
2851 	unsigned length, pos;
2852 	struct inode *inode = mapping->host;
2853 	struct page *page;
2854 	struct buffer_head *bh;
2855 	int err;
2856 
2857 	blocksize = i_blocksize(inode);
2858 	length = offset & (blocksize - 1);
2859 
2860 	/* Block boundary? Nothing to do */
2861 	if (!length)
2862 		return 0;
2863 
2864 	length = blocksize - length;
2865 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2866 
2867 	page = grab_cache_page(mapping, index);
2868 	err = -ENOMEM;
2869 	if (!page)
2870 		goto out;
2871 
2872 	if (!page_has_buffers(page))
2873 		create_empty_buffers(page, blocksize, 0);
2874 
2875 	/* Find the buffer that contains "offset" */
2876 	bh = page_buffers(page);
2877 	pos = blocksize;
2878 	while (offset >= pos) {
2879 		bh = bh->b_this_page;
2880 		iblock++;
2881 		pos += blocksize;
2882 	}
2883 
2884 	err = 0;
2885 	if (!buffer_mapped(bh)) {
2886 		WARN_ON(bh->b_size != blocksize);
2887 		err = get_block(inode, iblock, bh, 0);
2888 		if (err)
2889 			goto unlock;
2890 		/* unmapped? It's a hole - nothing to do */
2891 		if (!buffer_mapped(bh))
2892 			goto unlock;
2893 	}
2894 
2895 	/* Ok, it's mapped. Make sure it's up-to-date */
2896 	if (PageUptodate(page))
2897 		set_buffer_uptodate(bh);
2898 
2899 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900 		err = -EIO;
2901 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2902 		wait_on_buffer(bh);
2903 		/* Uhhuh. Read error. Complain and punt. */
2904 		if (!buffer_uptodate(bh))
2905 			goto unlock;
2906 	}
2907 
2908 	zero_user(page, offset, length);
2909 	mark_buffer_dirty(bh);
2910 	err = 0;
2911 
2912 unlock:
2913 	unlock_page(page);
2914 	put_page(page);
2915 out:
2916 	return err;
2917 }
2918 EXPORT_SYMBOL(block_truncate_page);
2919 
2920 /*
2921  * The generic ->writepage function for buffer-backed address_spaces
2922  */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2923 int block_write_full_page(struct page *page, get_block_t *get_block,
2924 			struct writeback_control *wbc)
2925 {
2926 	struct inode * const inode = page->mapping->host;
2927 	loff_t i_size = i_size_read(inode);
2928 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2929 	unsigned offset;
2930 
2931 	/* Is the page fully inside i_size? */
2932 	if (page->index < end_index)
2933 		return __block_write_full_page(inode, page, get_block, wbc,
2934 					       end_buffer_async_write);
2935 
2936 	/* Is the page fully outside i_size? (truncate in progress) */
2937 	offset = i_size & (PAGE_SIZE-1);
2938 	if (page->index >= end_index+1 || !offset) {
2939 		unlock_page(page);
2940 		return 0; /* don't care */
2941 	}
2942 
2943 	/*
2944 	 * The page straddles i_size.  It must be zeroed out on each and every
2945 	 * writepage invocation because it may be mmapped.  "A file is mapped
2946 	 * in multiples of the page size.  For a file that is not a multiple of
2947 	 * the  page size, the remaining memory is zeroed when mapped, and
2948 	 * writes to that region are not written out to the file."
2949 	 */
2950 	zero_user_segment(page, offset, PAGE_SIZE);
2951 	return __block_write_full_page(inode, page, get_block, wbc,
2952 							end_buffer_async_write);
2953 }
2954 EXPORT_SYMBOL(block_write_full_page);
2955 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2956 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2957 			    get_block_t *get_block)
2958 {
2959 	struct inode *inode = mapping->host;
2960 	struct buffer_head tmp = {
2961 		.b_size = i_blocksize(inode),
2962 	};
2963 
2964 	get_block(inode, block, &tmp, 0);
2965 	return tmp.b_blocknr;
2966 }
2967 EXPORT_SYMBOL(generic_block_bmap);
2968 
end_bio_bh_io_sync(struct bio * bio)2969 static void end_bio_bh_io_sync(struct bio *bio)
2970 {
2971 	struct buffer_head *bh = bio->bi_private;
2972 
2973 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2974 		set_bit(BH_Quiet, &bh->b_state);
2975 
2976 	bh->b_end_io(bh, !bio->bi_status);
2977 	bio_put(bio);
2978 }
2979 
2980 /*
2981  * This allows us to do IO even on the odd last sectors
2982  * of a device, even if the block size is some multiple
2983  * of the physical sector size.
2984  *
2985  * We'll just truncate the bio to the size of the device,
2986  * and clear the end of the buffer head manually.
2987  *
2988  * Truly out-of-range accesses will turn into actual IO
2989  * errors, this only handles the "we need to be able to
2990  * do IO at the final sector" case.
2991  */
guard_bio_eod(int op,struct bio * bio)2992 void guard_bio_eod(int op, struct bio *bio)
2993 {
2994 	sector_t maxsector;
2995 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2996 	unsigned truncated_bytes;
2997 	struct hd_struct *part;
2998 
2999 	rcu_read_lock();
3000 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3001 	if (part)
3002 		maxsector = part_nr_sects_read(part);
3003 	else
3004 		maxsector = get_capacity(bio->bi_disk);
3005 	rcu_read_unlock();
3006 
3007 	if (!maxsector)
3008 		return;
3009 
3010 	/*
3011 	 * If the *whole* IO is past the end of the device,
3012 	 * let it through, and the IO layer will turn it into
3013 	 * an EIO.
3014 	 */
3015 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3016 		return;
3017 
3018 	maxsector -= bio->bi_iter.bi_sector;
3019 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3020 		return;
3021 
3022 	/* Uhhuh. We've got a bio that straddles the device size! */
3023 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3024 
3025 	/*
3026 	 * The bio contains more than one segment which spans EOD, just return
3027 	 * and let IO layer turn it into an EIO
3028 	 */
3029 	if (truncated_bytes > bvec->bv_len)
3030 		return;
3031 
3032 	/* Truncate the bio.. */
3033 	bio->bi_iter.bi_size -= truncated_bytes;
3034 	bvec->bv_len -= truncated_bytes;
3035 
3036 	/* ..and clear the end of the buffer for reads */
3037 	if (op == REQ_OP_READ) {
3038 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3039 				truncated_bytes);
3040 	}
3041 }
3042 
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)3043 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3044 			 enum rw_hint write_hint, struct writeback_control *wbc)
3045 {
3046 	struct bio *bio;
3047 
3048 	BUG_ON(!buffer_locked(bh));
3049 	BUG_ON(!buffer_mapped(bh));
3050 	BUG_ON(!bh->b_end_io);
3051 	BUG_ON(buffer_delay(bh));
3052 	BUG_ON(buffer_unwritten(bh));
3053 
3054 	/*
3055 	 * Only clear out a write error when rewriting
3056 	 */
3057 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3058 		clear_buffer_write_io_error(bh);
3059 
3060 	/*
3061 	 * from here on down, it's all bio -- do the initial mapping,
3062 	 * submit_bio -> generic_make_request may further map this bio around
3063 	 */
3064 	bio = bio_alloc(GFP_NOIO, 1);
3065 
3066 	if (wbc) {
3067 		wbc_init_bio(wbc, bio);
3068 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3069 	}
3070 
3071 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3072 	bio_set_dev(bio, bh->b_bdev);
3073 	bio->bi_write_hint = write_hint;
3074 
3075 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3076 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3077 
3078 	bio->bi_end_io = end_bio_bh_io_sync;
3079 	bio->bi_private = bh;
3080 
3081 	/* Take care of bh's that straddle the end of the device */
3082 	guard_bio_eod(op, bio);
3083 
3084 	if (buffer_meta(bh))
3085 		op_flags |= REQ_META;
3086 	if (buffer_prio(bh))
3087 		op_flags |= REQ_PRIO;
3088 	bio_set_op_attrs(bio, op, op_flags);
3089 
3090 	submit_bio(bio);
3091 	return 0;
3092 }
3093 
submit_bh(int op,int op_flags,struct buffer_head * bh)3094 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3095 {
3096 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3097 }
3098 EXPORT_SYMBOL(submit_bh);
3099 
3100 /**
3101  * ll_rw_block: low-level access to block devices (DEPRECATED)
3102  * @op: whether to %READ or %WRITE
3103  * @op_flags: req_flag_bits
3104  * @nr: number of &struct buffer_heads in the array
3105  * @bhs: array of pointers to &struct buffer_head
3106  *
3107  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3108  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3109  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3110  * %REQ_RAHEAD.
3111  *
3112  * This function drops any buffer that it cannot get a lock on (with the
3113  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3114  * request, and any buffer that appears to be up-to-date when doing read
3115  * request.  Further it marks as clean buffers that are processed for
3116  * writing (the buffer cache won't assume that they are actually clean
3117  * until the buffer gets unlocked).
3118  *
3119  * ll_rw_block sets b_end_io to simple completion handler that marks
3120  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3121  * any waiters.
3122  *
3123  * All of the buffers must be for the same device, and must also be a
3124  * multiple of the current approved size for the device.
3125  */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3126 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3127 {
3128 	int i;
3129 
3130 	for (i = 0; i < nr; i++) {
3131 		struct buffer_head *bh = bhs[i];
3132 
3133 		if (!trylock_buffer(bh))
3134 			continue;
3135 		if (op == WRITE) {
3136 			if (test_clear_buffer_dirty(bh)) {
3137 				bh->b_end_io = end_buffer_write_sync;
3138 				get_bh(bh);
3139 				submit_bh(op, op_flags, bh);
3140 				continue;
3141 			}
3142 		} else {
3143 			if (!buffer_uptodate(bh)) {
3144 				bh->b_end_io = end_buffer_read_sync;
3145 				get_bh(bh);
3146 				submit_bh(op, op_flags, bh);
3147 				continue;
3148 			}
3149 		}
3150 		unlock_buffer(bh);
3151 	}
3152 }
3153 EXPORT_SYMBOL(ll_rw_block);
3154 
write_dirty_buffer(struct buffer_head * bh,int op_flags)3155 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3156 {
3157 	lock_buffer(bh);
3158 	if (!test_clear_buffer_dirty(bh)) {
3159 		unlock_buffer(bh);
3160 		return;
3161 	}
3162 	bh->b_end_io = end_buffer_write_sync;
3163 	get_bh(bh);
3164 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3165 }
3166 EXPORT_SYMBOL(write_dirty_buffer);
3167 
3168 /*
3169  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3170  * and then start new I/O and then wait upon it.  The caller must have a ref on
3171  * the buffer_head.
3172  */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3173 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3174 {
3175 	int ret = 0;
3176 
3177 	WARN_ON(atomic_read(&bh->b_count) < 1);
3178 	lock_buffer(bh);
3179 	if (test_clear_buffer_dirty(bh)) {
3180 		/*
3181 		 * The bh should be mapped, but it might not be if the
3182 		 * device was hot-removed. Not much we can do but fail the I/O.
3183 		 */
3184 		if (!buffer_mapped(bh)) {
3185 			unlock_buffer(bh);
3186 			return -EIO;
3187 		}
3188 
3189 		get_bh(bh);
3190 		bh->b_end_io = end_buffer_write_sync;
3191 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192 		wait_on_buffer(bh);
3193 		if (!ret && !buffer_uptodate(bh))
3194 			ret = -EIO;
3195 	} else {
3196 		unlock_buffer(bh);
3197 	}
3198 	return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201 
sync_dirty_buffer(struct buffer_head * bh)3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204 	return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207 
3208 /*
3209  * try_to_free_buffers() checks if all the buffers on this particular page
3210  * are unused, and releases them if so.
3211  *
3212  * Exclusion against try_to_free_buffers may be obtained by either
3213  * locking the page or by holding its mapping's private_lock.
3214  *
3215  * If the page is dirty but all the buffers are clean then we need to
3216  * be sure to mark the page clean as well.  This is because the page
3217  * may be against a block device, and a later reattachment of buffers
3218  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3219  * filesystem data on the same device.
3220  *
3221  * The same applies to regular filesystem pages: if all the buffers are
3222  * clean then we set the page clean and proceed.  To do that, we require
3223  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3224  * private_lock.
3225  *
3226  * try_to_free_buffers() is non-blocking.
3227  */
buffer_busy(struct buffer_head * bh)3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230 	return atomic_read(&bh->b_count) |
3231 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233 
3234 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237 	struct buffer_head *head = page_buffers(page);
3238 	struct buffer_head *bh;
3239 
3240 	bh = head;
3241 	do {
3242 		if (buffer_busy(bh))
3243 			goto failed;
3244 		bh = bh->b_this_page;
3245 	} while (bh != head);
3246 
3247 	do {
3248 		struct buffer_head *next = bh->b_this_page;
3249 
3250 		if (bh->b_assoc_map)
3251 			__remove_assoc_queue(bh);
3252 		bh = next;
3253 	} while (bh != head);
3254 	*buffers_to_free = head;
3255 	__clear_page_buffers(page);
3256 	return 1;
3257 failed:
3258 	return 0;
3259 }
3260 
try_to_free_buffers(struct page * page)3261 int try_to_free_buffers(struct page *page)
3262 {
3263 	struct address_space * const mapping = page->mapping;
3264 	struct buffer_head *buffers_to_free = NULL;
3265 	int ret = 0;
3266 
3267 	BUG_ON(!PageLocked(page));
3268 	if (PageWriteback(page))
3269 		return 0;
3270 
3271 	if (mapping == NULL) {		/* can this still happen? */
3272 		ret = drop_buffers(page, &buffers_to_free);
3273 		goto out;
3274 	}
3275 
3276 	spin_lock(&mapping->private_lock);
3277 	ret = drop_buffers(page, &buffers_to_free);
3278 
3279 	/*
3280 	 * If the filesystem writes its buffers by hand (eg ext3)
3281 	 * then we can have clean buffers against a dirty page.  We
3282 	 * clean the page here; otherwise the VM will never notice
3283 	 * that the filesystem did any IO at all.
3284 	 *
3285 	 * Also, during truncate, discard_buffer will have marked all
3286 	 * the page's buffers clean.  We discover that here and clean
3287 	 * the page also.
3288 	 *
3289 	 * private_lock must be held over this entire operation in order
3290 	 * to synchronise against __set_page_dirty_buffers and prevent the
3291 	 * dirty bit from being lost.
3292 	 */
3293 	if (ret)
3294 		cancel_dirty_page(page);
3295 	spin_unlock(&mapping->private_lock);
3296 out:
3297 	if (buffers_to_free) {
3298 		struct buffer_head *bh = buffers_to_free;
3299 
3300 		do {
3301 			struct buffer_head *next = bh->b_this_page;
3302 			free_buffer_head(bh);
3303 			bh = next;
3304 		} while (bh != buffers_to_free);
3305 	}
3306 	return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309 
3310 /*
3311  * There are no bdflush tunables left.  But distributions are
3312  * still running obsolete flush daemons, so we terminate them here.
3313  *
3314  * Use of bdflush() is deprecated and will be removed in a future kernel.
3315  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316  */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319 	static int msg_count;
3320 
3321 	if (!capable(CAP_SYS_ADMIN))
3322 		return -EPERM;
3323 
3324 	if (msg_count < 5) {
3325 		msg_count++;
3326 		printk(KERN_INFO
3327 			"warning: process `%s' used the obsolete bdflush"
3328 			" system call\n", current->comm);
3329 		printk(KERN_INFO "Fix your initscripts?\n");
3330 	}
3331 
3332 	if (func == 1)
3333 		do_exit(0);
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Buffer-head allocation
3339  */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341 
3342 /*
3343  * Once the number of bh's in the machine exceeds this level, we start
3344  * stripping them in writeback.
3345  */
3346 static unsigned long max_buffer_heads;
3347 
3348 int buffer_heads_over_limit;
3349 
3350 struct bh_accounting {
3351 	int nr;			/* Number of live bh's */
3352 	int ratelimit;		/* Limit cacheline bouncing */
3353 };
3354 
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356 
recalc_bh_state(void)3357 static void recalc_bh_state(void)
3358 {
3359 	int i;
3360 	int tot = 0;
3361 
3362 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363 		return;
3364 	__this_cpu_write(bh_accounting.ratelimit, 0);
3365 	for_each_online_cpu(i)
3366 		tot += per_cpu(bh_accounting, i).nr;
3367 	buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369 
alloc_buffer_head(gfp_t gfp_flags)3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373 	if (ret) {
3374 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375 		preempt_disable();
3376 		__this_cpu_inc(bh_accounting.nr);
3377 		recalc_bh_state();
3378 		preempt_enable();
3379 	}
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383 
free_buffer_head(struct buffer_head * bh)3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387 	kmem_cache_free(bh_cachep, bh);
3388 	preempt_disable();
3389 	__this_cpu_dec(bh_accounting.nr);
3390 	recalc_bh_state();
3391 	preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394 
buffer_exit_cpu_dead(unsigned int cpu)3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397 	int i;
3398 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399 
3400 	for (i = 0; i < BH_LRU_SIZE; i++) {
3401 		brelse(b->bhs[i]);
3402 		b->bhs[i] = NULL;
3403 	}
3404 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405 	per_cpu(bh_accounting, cpu).nr = 0;
3406 	return 0;
3407 }
3408 
3409 /**
3410  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411  * @bh: struct buffer_head
3412  *
3413  * Return true if the buffer is up-to-date and false,
3414  * with the buffer locked, if not.
3415  */
bh_uptodate_or_lock(struct buffer_head * bh)3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418 	if (!buffer_uptodate(bh)) {
3419 		lock_buffer(bh);
3420 		if (!buffer_uptodate(bh))
3421 			return 0;
3422 		unlock_buffer(bh);
3423 	}
3424 	return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427 
3428 /**
3429  * bh_submit_read - Submit a locked buffer for reading
3430  * @bh: struct buffer_head
3431  *
3432  * Returns zero on success and -EIO on error.
3433  */
bh_submit_read(struct buffer_head * bh)3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436 	BUG_ON(!buffer_locked(bh));
3437 
3438 	if (buffer_uptodate(bh)) {
3439 		unlock_buffer(bh);
3440 		return 0;
3441 	}
3442 
3443 	get_bh(bh);
3444 	bh->b_end_io = end_buffer_read_sync;
3445 	submit_bh(REQ_OP_READ, 0, bh);
3446 	wait_on_buffer(bh);
3447 	if (buffer_uptodate(bh))
3448 		return 0;
3449 	return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452 
buffer_init(void)3453 void __init buffer_init(void)
3454 {
3455 	unsigned long nrpages;
3456 	int ret;
3457 
3458 	bh_cachep = kmem_cache_create("buffer_head",
3459 			sizeof(struct buffer_head), 0,
3460 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3461 				SLAB_MEM_SPREAD),
3462 				NULL);
3463 
3464 	/*
3465 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3466 	 */
3467 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3468 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3469 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3470 					NULL, buffer_exit_cpu_dead);
3471 	WARN_ON(ret < 0);
3472 }
3473