1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
init_dax_wait_table(void)51 static int __init init_dax_wait_table(void)
52 {
53 int i;
54
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
65 *
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
69 */
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
dax_radix_pfn(void * entry)76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
dax_radix_locked_entry(unsigned long pfn,unsigned long flags)81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
dax_radix_order(void * entry)87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
dax_is_pmd_entry(void * entry)94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
dax_is_pte_entry(void * entry)99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
dax_is_zero_entry(void * entry)104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
dax_is_empty_entry(void * entry)109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
dax_entry_waitqueue(struct address_space * mapping,pgoff_t index,void * entry,struct exceptional_entry_key * key)127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
164 */
dax_wake_mapping_entry_waiter(struct address_space * mapping,pgoff_t index,void * entry,bool wake_all)165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 pgoff_t index, void *entry, bool wake_all)
167 {
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
170
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173 /*
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
178 */
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
186 */
slot_locked(struct address_space * mapping,void ** slot)187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 unsigned long entry = (unsigned long)
190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
196 */
lock_slot(struct address_space * mapping,void ** slot)197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 return (void *)entry;
205 }
206
207 /*
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
209 */
unlock_slot(struct address_space * mapping,void ** slot)210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 unsigned long entry = (unsigned long)
213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 return (void *)entry;
218 }
219
220 static void put_unlocked_mapping_entry(struct address_space *mapping,
221 pgoff_t index, void *entry);
222
223 /*
224 * Lookup entry in radix tree, wait for it to become unlocked if it is
225 * exceptional entry and return it. The caller must call
226 * put_unlocked_mapping_entry() when he decided not to lock the entry or
227 * put_locked_mapping_entry() when he locked the entry and now wants to
228 * unlock it.
229 *
230 * Must be called with the i_pages lock held.
231 */
get_unlocked_mapping_entry(struct address_space * mapping,pgoff_t index,void *** slotp)232 static void *get_unlocked_mapping_entry(struct address_space *mapping,
233 pgoff_t index, void ***slotp)
234 {
235 void *entry, **slot;
236 struct wait_exceptional_entry_queue ewait;
237 wait_queue_head_t *wq;
238
239 init_wait(&ewait.wait);
240 ewait.wait.func = wake_exceptional_entry_func;
241
242 for (;;) {
243 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
244 &slot);
245 if (!entry ||
246 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
247 !slot_locked(mapping, slot)) {
248 if (slotp)
249 *slotp = slot;
250 return entry;
251 }
252
253 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
254 prepare_to_wait_exclusive(wq, &ewait.wait,
255 TASK_UNINTERRUPTIBLE);
256 xa_unlock_irq(&mapping->i_pages);
257 schedule();
258 finish_wait(wq, &ewait.wait);
259 xa_lock_irq(&mapping->i_pages);
260 }
261 }
262
263 /*
264 * The only thing keeping the address space around is the i_pages lock
265 * (it's cycled in clear_inode() after removing the entries from i_pages)
266 * After we call xas_unlock_irq(), we cannot touch xas->xa.
267 */
wait_entry_unlocked(struct address_space * mapping,pgoff_t index,void *** slotp,void * entry)268 static void wait_entry_unlocked(struct address_space *mapping, pgoff_t index,
269 void ***slotp, void *entry)
270 {
271 struct wait_exceptional_entry_queue ewait;
272 wait_queue_head_t *wq;
273
274 init_wait(&ewait.wait);
275 ewait.wait.func = wake_exceptional_entry_func;
276
277 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
278 /*
279 * Unlike get_unlocked_entry() there is no guarantee that this
280 * path ever successfully retrieves an unlocked entry before an
281 * inode dies. Perform a non-exclusive wait in case this path
282 * never successfully performs its own wake up.
283 */
284 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
285 xa_unlock_irq(&mapping->i_pages);
286 schedule();
287 finish_wait(wq, &ewait.wait);
288 }
289
unlock_mapping_entry(struct address_space * mapping,pgoff_t index)290 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
291 {
292 void *entry, **slot;
293
294 xa_lock_irq(&mapping->i_pages);
295 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
296 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
297 !slot_locked(mapping, slot))) {
298 xa_unlock_irq(&mapping->i_pages);
299 return;
300 }
301 unlock_slot(mapping, slot);
302 xa_unlock_irq(&mapping->i_pages);
303 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
304 }
305
put_locked_mapping_entry(struct address_space * mapping,pgoff_t index)306 static void put_locked_mapping_entry(struct address_space *mapping,
307 pgoff_t index)
308 {
309 unlock_mapping_entry(mapping, index);
310 }
311
312 /*
313 * Called when we are done with radix tree entry we looked up via
314 * get_unlocked_mapping_entry() and which we didn't lock in the end.
315 */
put_unlocked_mapping_entry(struct address_space * mapping,pgoff_t index,void * entry)316 static void put_unlocked_mapping_entry(struct address_space *mapping,
317 pgoff_t index, void *entry)
318 {
319 if (!entry)
320 return;
321
322 /* We have to wake up next waiter for the radix tree entry lock */
323 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
324 }
325
dax_entry_size(void * entry)326 static unsigned long dax_entry_size(void *entry)
327 {
328 if (dax_is_zero_entry(entry))
329 return 0;
330 else if (dax_is_empty_entry(entry))
331 return 0;
332 else if (dax_is_pmd_entry(entry))
333 return PMD_SIZE;
334 else
335 return PAGE_SIZE;
336 }
337
dax_radix_end_pfn(void * entry)338 static unsigned long dax_radix_end_pfn(void *entry)
339 {
340 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
341 }
342
343 /*
344 * Iterate through all mapped pfns represented by an entry, i.e. skip
345 * 'empty' and 'zero' entries.
346 */
347 #define for_each_mapped_pfn(entry, pfn) \
348 for (pfn = dax_radix_pfn(entry); \
349 pfn < dax_radix_end_pfn(entry); pfn++)
350
351 /*
352 * TODO: for reflink+dax we need a way to associate a single page with
353 * multiple address_space instances at different linear_page_index()
354 * offsets.
355 */
dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address)356 static void dax_associate_entry(void *entry, struct address_space *mapping,
357 struct vm_area_struct *vma, unsigned long address)
358 {
359 unsigned long size = dax_entry_size(entry), pfn, index;
360 int i = 0;
361
362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
363 return;
364
365 index = linear_page_index(vma, address & ~(size - 1));
366 for_each_mapped_pfn(entry, pfn) {
367 struct page *page = pfn_to_page(pfn);
368
369 WARN_ON_ONCE(page->mapping);
370 page->mapping = mapping;
371 page->index = index + i++;
372 }
373 }
374
dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)375 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
376 bool trunc)
377 {
378 unsigned long pfn;
379
380 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
381 return;
382
383 for_each_mapped_pfn(entry, pfn) {
384 struct page *page = pfn_to_page(pfn);
385
386 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
387 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
388 page->mapping = NULL;
389 page->index = 0;
390 }
391 }
392
dax_busy_page(void * entry)393 static struct page *dax_busy_page(void *entry)
394 {
395 unsigned long pfn;
396
397 for_each_mapped_pfn(entry, pfn) {
398 struct page *page = pfn_to_page(pfn);
399
400 if (page_ref_count(page) > 1)
401 return page;
402 }
403 return NULL;
404 }
405
dax_lock_mapping_entry(struct page * page)406 bool dax_lock_mapping_entry(struct page *page)
407 {
408 pgoff_t index;
409 struct inode *inode;
410 bool did_lock = false;
411 void *entry = NULL, **slot;
412 struct address_space *mapping;
413
414 rcu_read_lock();
415 for (;;) {
416 mapping = READ_ONCE(page->mapping);
417
418 if (!mapping || !dax_mapping(mapping))
419 break;
420
421 /*
422 * In the device-dax case there's no need to lock, a
423 * struct dev_pagemap pin is sufficient to keep the
424 * inode alive, and we assume we have dev_pagemap pin
425 * otherwise we would not have a valid pfn_to_page()
426 * translation.
427 */
428 inode = mapping->host;
429 if (S_ISCHR(inode->i_mode)) {
430 did_lock = true;
431 break;
432 }
433
434 xa_lock_irq(&mapping->i_pages);
435 if (mapping != page->mapping) {
436 xa_unlock_irq(&mapping->i_pages);
437 continue;
438 }
439 index = page->index;
440
441 entry = __radix_tree_lookup(&mapping->i_pages, index,
442 NULL, &slot);
443 if (!entry) {
444 xa_unlock_irq(&mapping->i_pages);
445 break;
446 } else if (slot_locked(mapping, slot)) {
447 rcu_read_unlock();
448 wait_entry_unlocked(mapping, index, &slot, entry);
449 rcu_read_lock();
450 continue;
451 }
452 lock_slot(mapping, slot);
453 did_lock = true;
454 xa_unlock_irq(&mapping->i_pages);
455 break;
456 }
457 rcu_read_unlock();
458
459 return did_lock;
460 }
461
dax_unlock_mapping_entry(struct page * page)462 void dax_unlock_mapping_entry(struct page *page)
463 {
464 struct address_space *mapping = page->mapping;
465 struct inode *inode = mapping->host;
466
467 if (S_ISCHR(inode->i_mode))
468 return;
469
470 unlock_mapping_entry(mapping, page->index);
471 }
472
473 /*
474 * Find radix tree entry at given index. If it points to an exceptional entry,
475 * return it with the radix tree entry locked. If the radix tree doesn't
476 * contain given index, create an empty exceptional entry for the index and
477 * return with it locked.
478 *
479 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
480 * either return that locked entry or will return an error. This error will
481 * happen if there are any 4k entries within the 2MiB range that we are
482 * requesting.
483 *
484 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
485 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
486 * insertion will fail if it finds any 4k entries already in the tree, and a
487 * 4k insertion will cause an existing 2MiB entry to be unmapped and
488 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
489 * well as 2MiB empty entries.
490 *
491 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
492 * real storage backing them. We will leave these real 2MiB DAX entries in
493 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
494 *
495 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
496 * persistent memory the benefit is doubtful. We can add that later if we can
497 * show it helps.
498 */
grab_mapping_entry(struct address_space * mapping,pgoff_t index,unsigned long size_flag)499 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
500 unsigned long size_flag)
501 {
502 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
503 void *entry, **slot;
504
505 restart:
506 xa_lock_irq(&mapping->i_pages);
507 entry = get_unlocked_mapping_entry(mapping, index, &slot);
508
509 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
510 entry = ERR_PTR(-EIO);
511 goto out_unlock;
512 }
513
514 if (entry) {
515 if (size_flag & RADIX_DAX_PMD) {
516 if (dax_is_pte_entry(entry)) {
517 put_unlocked_mapping_entry(mapping, index,
518 entry);
519 entry = ERR_PTR(-EEXIST);
520 goto out_unlock;
521 }
522 } else { /* trying to grab a PTE entry */
523 if (dax_is_pmd_entry(entry) &&
524 (dax_is_zero_entry(entry) ||
525 dax_is_empty_entry(entry))) {
526 pmd_downgrade = true;
527 }
528 }
529 }
530
531 /* No entry for given index? Make sure radix tree is big enough. */
532 if (!entry || pmd_downgrade) {
533 int err;
534
535 if (pmd_downgrade) {
536 /*
537 * Make sure 'entry' remains valid while we drop
538 * the i_pages lock.
539 */
540 entry = lock_slot(mapping, slot);
541 }
542
543 xa_unlock_irq(&mapping->i_pages);
544 /*
545 * Besides huge zero pages the only other thing that gets
546 * downgraded are empty entries which don't need to be
547 * unmapped.
548 */
549 if (pmd_downgrade && dax_is_zero_entry(entry))
550 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
551 PG_PMD_NR, false);
552
553 err = radix_tree_preload(
554 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
555 if (err) {
556 if (pmd_downgrade)
557 put_locked_mapping_entry(mapping, index);
558 return ERR_PTR(err);
559 }
560 xa_lock_irq(&mapping->i_pages);
561
562 if (!entry) {
563 /*
564 * We needed to drop the i_pages lock while calling
565 * radix_tree_preload() and we didn't have an entry to
566 * lock. See if another thread inserted an entry at
567 * our index during this time.
568 */
569 entry = __radix_tree_lookup(&mapping->i_pages, index,
570 NULL, &slot);
571 if (entry) {
572 radix_tree_preload_end();
573 xa_unlock_irq(&mapping->i_pages);
574 goto restart;
575 }
576 }
577
578 if (pmd_downgrade) {
579 dax_disassociate_entry(entry, mapping, false);
580 radix_tree_delete(&mapping->i_pages, index);
581 mapping->nrexceptional--;
582 dax_wake_mapping_entry_waiter(mapping, index, entry,
583 true);
584 }
585
586 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
587
588 err = __radix_tree_insert(&mapping->i_pages, index,
589 dax_radix_order(entry), entry);
590 radix_tree_preload_end();
591 if (err) {
592 xa_unlock_irq(&mapping->i_pages);
593 /*
594 * Our insertion of a DAX entry failed, most likely
595 * because we were inserting a PMD entry and it
596 * collided with a PTE sized entry at a different
597 * index in the PMD range. We haven't inserted
598 * anything into the radix tree and have no waiters to
599 * wake.
600 */
601 return ERR_PTR(err);
602 }
603 /* Good, we have inserted empty locked entry into the tree. */
604 mapping->nrexceptional++;
605 xa_unlock_irq(&mapping->i_pages);
606 return entry;
607 }
608 entry = lock_slot(mapping, slot);
609 out_unlock:
610 xa_unlock_irq(&mapping->i_pages);
611 return entry;
612 }
613
614 /**
615 * dax_layout_busy_page - find first pinned page in @mapping
616 * @mapping: address space to scan for a page with ref count > 1
617 *
618 * DAX requires ZONE_DEVICE mapped pages. These pages are never
619 * 'onlined' to the page allocator so they are considered idle when
620 * page->count == 1. A filesystem uses this interface to determine if
621 * any page in the mapping is busy, i.e. for DMA, or other
622 * get_user_pages() usages.
623 *
624 * It is expected that the filesystem is holding locks to block the
625 * establishment of new mappings in this address_space. I.e. it expects
626 * to be able to run unmap_mapping_range() and subsequently not race
627 * mapping_mapped() becoming true.
628 */
dax_layout_busy_page(struct address_space * mapping)629 struct page *dax_layout_busy_page(struct address_space *mapping)
630 {
631 pgoff_t indices[PAGEVEC_SIZE];
632 struct page *page = NULL;
633 struct pagevec pvec;
634 pgoff_t index, end;
635 unsigned i;
636
637 /*
638 * In the 'limited' case get_user_pages() for dax is disabled.
639 */
640 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
641 return NULL;
642
643 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
644 return NULL;
645
646 pagevec_init(&pvec);
647 index = 0;
648 end = -1;
649
650 /*
651 * If we race get_user_pages_fast() here either we'll see the
652 * elevated page count in the pagevec_lookup and wait, or
653 * get_user_pages_fast() will see that the page it took a reference
654 * against is no longer mapped in the page tables and bail to the
655 * get_user_pages() slow path. The slow path is protected by
656 * pte_lock() and pmd_lock(). New references are not taken without
657 * holding those locks, and unmap_mapping_range() will not zero the
658 * pte or pmd without holding the respective lock, so we are
659 * guaranteed to either see new references or prevent new
660 * references from being established.
661 */
662 unmap_mapping_range(mapping, 0, 0, 0);
663
664 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
665 min(end - index, (pgoff_t)PAGEVEC_SIZE),
666 indices)) {
667 pgoff_t nr_pages = 1;
668
669 for (i = 0; i < pagevec_count(&pvec); i++) {
670 struct page *pvec_ent = pvec.pages[i];
671 void *entry;
672
673 index = indices[i];
674 if (index >= end)
675 break;
676
677 if (WARN_ON_ONCE(
678 !radix_tree_exceptional_entry(pvec_ent)))
679 continue;
680
681 xa_lock_irq(&mapping->i_pages);
682 entry = get_unlocked_mapping_entry(mapping, index, NULL);
683 if (entry) {
684 page = dax_busy_page(entry);
685 /*
686 * Account for multi-order entries at
687 * the end of the pagevec.
688 */
689 if (i + 1 >= pagevec_count(&pvec))
690 nr_pages = 1UL << dax_radix_order(entry);
691 }
692 put_unlocked_mapping_entry(mapping, index, entry);
693 xa_unlock_irq(&mapping->i_pages);
694 if (page)
695 break;
696 }
697
698 /*
699 * We don't expect normal struct page entries to exist in our
700 * tree, but we keep these pagevec calls so that this code is
701 * consistent with the common pattern for handling pagevecs
702 * throughout the kernel.
703 */
704 pagevec_remove_exceptionals(&pvec);
705 pagevec_release(&pvec);
706 index += nr_pages;
707
708 if (page)
709 break;
710 }
711 return page;
712 }
713 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
714
__dax_invalidate_mapping_entry(struct address_space * mapping,pgoff_t index,bool trunc)715 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
716 pgoff_t index, bool trunc)
717 {
718 int ret = 0;
719 void *entry;
720 struct radix_tree_root *pages = &mapping->i_pages;
721
722 xa_lock_irq(pages);
723 entry = get_unlocked_mapping_entry(mapping, index, NULL);
724 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
725 goto out;
726 if (!trunc &&
727 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
728 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
729 goto out;
730 dax_disassociate_entry(entry, mapping, trunc);
731 radix_tree_delete(pages, index);
732 mapping->nrexceptional--;
733 ret = 1;
734 out:
735 put_unlocked_mapping_entry(mapping, index, entry);
736 xa_unlock_irq(pages);
737 return ret;
738 }
739 /*
740 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
741 * entry to get unlocked before deleting it.
742 */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)743 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
744 {
745 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
746
747 /*
748 * This gets called from truncate / punch_hole path. As such, the caller
749 * must hold locks protecting against concurrent modifications of the
750 * radix tree (usually fs-private i_mmap_sem for writing). Since the
751 * caller has seen exceptional entry for this index, we better find it
752 * at that index as well...
753 */
754 WARN_ON_ONCE(!ret);
755 return ret;
756 }
757
758 /*
759 * Invalidate exceptional DAX entry if it is clean.
760 */
dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)761 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
762 pgoff_t index)
763 {
764 return __dax_invalidate_mapping_entry(mapping, index, false);
765 }
766
copy_user_dax(struct block_device * bdev,struct dax_device * dax_dev,sector_t sector,size_t size,struct page * to,unsigned long vaddr)767 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
768 sector_t sector, size_t size, struct page *to,
769 unsigned long vaddr)
770 {
771 void *vto, *kaddr;
772 pgoff_t pgoff;
773 long rc;
774 int id;
775
776 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
777 if (rc)
778 return rc;
779
780 id = dax_read_lock();
781 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
782 if (rc < 0) {
783 dax_read_unlock(id);
784 return rc;
785 }
786 vto = kmap_atomic(to);
787 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
788 kunmap_atomic(vto);
789 dax_read_unlock(id);
790 return 0;
791 }
792
793 /*
794 * By this point grab_mapping_entry() has ensured that we have a locked entry
795 * of the appropriate size so we don't have to worry about downgrading PMDs to
796 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
797 * already in the tree, we will skip the insertion and just dirty the PMD as
798 * appropriate.
799 */
dax_insert_mapping_entry(struct address_space * mapping,struct vm_fault * vmf,void * entry,pfn_t pfn_t,unsigned long flags,bool dirty)800 static void *dax_insert_mapping_entry(struct address_space *mapping,
801 struct vm_fault *vmf,
802 void *entry, pfn_t pfn_t,
803 unsigned long flags, bool dirty)
804 {
805 struct radix_tree_root *pages = &mapping->i_pages;
806 unsigned long pfn = pfn_t_to_pfn(pfn_t);
807 pgoff_t index = vmf->pgoff;
808 void *new_entry;
809
810 if (dirty)
811 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
812
813 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
814 /* we are replacing a zero page with block mapping */
815 if (dax_is_pmd_entry(entry))
816 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
817 PG_PMD_NR, false);
818 else /* pte entry */
819 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
820 }
821
822 xa_lock_irq(pages);
823 new_entry = dax_radix_locked_entry(pfn, flags);
824 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
825 dax_disassociate_entry(entry, mapping, false);
826 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
827 }
828
829 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
830 /*
831 * Only swap our new entry into the radix tree if the current
832 * entry is a zero page or an empty entry. If a normal PTE or
833 * PMD entry is already in the tree, we leave it alone. This
834 * means that if we are trying to insert a PTE and the
835 * existing entry is a PMD, we will just leave the PMD in the
836 * tree and dirty it if necessary.
837 */
838 struct radix_tree_node *node;
839 void **slot;
840 void *ret;
841
842 ret = __radix_tree_lookup(pages, index, &node, &slot);
843 WARN_ON_ONCE(ret != entry);
844 __radix_tree_replace(pages, node, slot,
845 new_entry, NULL);
846 entry = new_entry;
847 }
848
849 if (dirty)
850 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
851
852 xa_unlock_irq(pages);
853 return entry;
854 }
855
856 static inline unsigned long
pgoff_address(pgoff_t pgoff,struct vm_area_struct * vma)857 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
858 {
859 unsigned long address;
860
861 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
862 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
863 return address;
864 }
865
866 /* Walk all mappings of a given index of a file and writeprotect them */
dax_mapping_entry_mkclean(struct address_space * mapping,pgoff_t index,unsigned long pfn)867 static void dax_mapping_entry_mkclean(struct address_space *mapping,
868 pgoff_t index, unsigned long pfn)
869 {
870 struct vm_area_struct *vma;
871 pte_t pte, *ptep = NULL;
872 pmd_t *pmdp = NULL;
873 spinlock_t *ptl;
874
875 i_mmap_lock_read(mapping);
876 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
877 unsigned long address, start, end;
878
879 cond_resched();
880
881 if (!(vma->vm_flags & VM_SHARED))
882 continue;
883
884 address = pgoff_address(index, vma);
885
886 /*
887 * Note because we provide start/end to follow_pte_pmd it will
888 * call mmu_notifier_invalidate_range_start() on our behalf
889 * before taking any lock.
890 */
891 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
892 continue;
893
894 /*
895 * No need to call mmu_notifier_invalidate_range() as we are
896 * downgrading page table protection not changing it to point
897 * to a new page.
898 *
899 * See Documentation/vm/mmu_notifier.rst
900 */
901 if (pmdp) {
902 #ifdef CONFIG_FS_DAX_PMD
903 pmd_t pmd;
904
905 if (pfn != pmd_pfn(*pmdp))
906 goto unlock_pmd;
907 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
908 goto unlock_pmd;
909
910 flush_cache_range(vma, address,
911 address + HPAGE_PMD_SIZE);
912 pmd = pmdp_invalidate(vma, address, pmdp);
913 pmd = pmd_wrprotect(pmd);
914 pmd = pmd_mkclean(pmd);
915 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
916 unlock_pmd:
917 #endif
918 spin_unlock(ptl);
919 } else {
920 if (pfn != pte_pfn(*ptep))
921 goto unlock_pte;
922 if (!pte_dirty(*ptep) && !pte_write(*ptep))
923 goto unlock_pte;
924
925 flush_cache_page(vma, address, pfn);
926 pte = ptep_clear_flush(vma, address, ptep);
927 pte = pte_wrprotect(pte);
928 pte = pte_mkclean(pte);
929 set_pte_at(vma->vm_mm, address, ptep, pte);
930 unlock_pte:
931 pte_unmap_unlock(ptep, ptl);
932 }
933
934 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
935 }
936 i_mmap_unlock_read(mapping);
937 }
938
dax_writeback_one(struct dax_device * dax_dev,struct address_space * mapping,pgoff_t index,void * entry)939 static int dax_writeback_one(struct dax_device *dax_dev,
940 struct address_space *mapping, pgoff_t index, void *entry)
941 {
942 struct radix_tree_root *pages = &mapping->i_pages;
943 void *entry2, **slot;
944 unsigned long pfn;
945 long ret = 0;
946 size_t size;
947
948 /*
949 * A page got tagged dirty in DAX mapping? Something is seriously
950 * wrong.
951 */
952 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
953 return -EIO;
954
955 xa_lock_irq(pages);
956 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
957 /* Entry got punched out / reallocated? */
958 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
959 goto put_unlocked;
960 /*
961 * Entry got reallocated elsewhere? No need to writeback. We have to
962 * compare pfns as we must not bail out due to difference in lockbit
963 * or entry type.
964 */
965 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
966 goto put_unlocked;
967 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
968 dax_is_zero_entry(entry))) {
969 ret = -EIO;
970 goto put_unlocked;
971 }
972
973 /* Another fsync thread may have already written back this entry */
974 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
975 goto put_unlocked;
976 /* Lock the entry to serialize with page faults */
977 entry = lock_slot(mapping, slot);
978 /*
979 * We can clear the tag now but we have to be careful so that concurrent
980 * dax_writeback_one() calls for the same index cannot finish before we
981 * actually flush the caches. This is achieved as the calls will look
982 * at the entry only under the i_pages lock and once they do that
983 * they will see the entry locked and wait for it to unlock.
984 */
985 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
986 xa_unlock_irq(pages);
987
988 /*
989 * Even if dax_writeback_mapping_range() was given a wbc->range_start
990 * in the middle of a PMD, the 'index' we are given will be aligned to
991 * the start index of the PMD, as will the pfn we pull from 'entry'.
992 * This allows us to flush for PMD_SIZE and not have to worry about
993 * partial PMD writebacks.
994 */
995 pfn = dax_radix_pfn(entry);
996 size = PAGE_SIZE << dax_radix_order(entry);
997
998 dax_mapping_entry_mkclean(mapping, index, pfn);
999 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
1000 /*
1001 * After we have flushed the cache, we can clear the dirty tag. There
1002 * cannot be new dirty data in the pfn after the flush has completed as
1003 * the pfn mappings are writeprotected and fault waits for mapping
1004 * entry lock.
1005 */
1006 xa_lock_irq(pages);
1007 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1008 xa_unlock_irq(pages);
1009 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1010 put_locked_mapping_entry(mapping, index);
1011 return ret;
1012
1013 put_unlocked:
1014 put_unlocked_mapping_entry(mapping, index, entry2);
1015 xa_unlock_irq(pages);
1016 return ret;
1017 }
1018
1019 /*
1020 * Flush the mapping to the persistent domain within the byte range of [start,
1021 * end]. This is required by data integrity operations to ensure file data is
1022 * on persistent storage prior to completion of the operation.
1023 */
dax_writeback_mapping_range(struct address_space * mapping,struct block_device * bdev,struct writeback_control * wbc)1024 int dax_writeback_mapping_range(struct address_space *mapping,
1025 struct block_device *bdev, struct writeback_control *wbc)
1026 {
1027 struct inode *inode = mapping->host;
1028 pgoff_t start_index, end_index;
1029 pgoff_t indices[PAGEVEC_SIZE];
1030 struct dax_device *dax_dev;
1031 struct pagevec pvec;
1032 bool done = false;
1033 int i, ret = 0;
1034
1035 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1036 return -EIO;
1037
1038 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1039 return 0;
1040
1041 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1042 if (!dax_dev)
1043 return -EIO;
1044
1045 start_index = wbc->range_start >> PAGE_SHIFT;
1046 end_index = wbc->range_end >> PAGE_SHIFT;
1047
1048 trace_dax_writeback_range(inode, start_index, end_index);
1049
1050 tag_pages_for_writeback(mapping, start_index, end_index);
1051
1052 pagevec_init(&pvec);
1053 while (!done) {
1054 pvec.nr = find_get_entries_tag(mapping, start_index,
1055 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1056 pvec.pages, indices);
1057
1058 if (pvec.nr == 0)
1059 break;
1060
1061 for (i = 0; i < pvec.nr; i++) {
1062 if (indices[i] > end_index) {
1063 done = true;
1064 break;
1065 }
1066
1067 ret = dax_writeback_one(dax_dev, mapping, indices[i],
1068 pvec.pages[i]);
1069 if (ret < 0) {
1070 mapping_set_error(mapping, ret);
1071 goto out;
1072 }
1073 }
1074 start_index = indices[pvec.nr - 1] + 1;
1075 }
1076 out:
1077 put_dax(dax_dev);
1078 trace_dax_writeback_range_done(inode, start_index, end_index);
1079 return (ret < 0 ? ret : 0);
1080 }
1081 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1082
dax_iomap_sector(struct iomap * iomap,loff_t pos)1083 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1084 {
1085 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1086 }
1087
dax_iomap_pfn(struct iomap * iomap,loff_t pos,size_t size,pfn_t * pfnp)1088 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1089 pfn_t *pfnp)
1090 {
1091 const sector_t sector = dax_iomap_sector(iomap, pos);
1092 pgoff_t pgoff;
1093 int id, rc;
1094 long length;
1095
1096 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1097 if (rc)
1098 return rc;
1099 id = dax_read_lock();
1100 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1101 NULL, pfnp);
1102 if (length < 0) {
1103 rc = length;
1104 goto out;
1105 }
1106 rc = -EINVAL;
1107 if (PFN_PHYS(length) < size)
1108 goto out;
1109 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1110 goto out;
1111 /* For larger pages we need devmap */
1112 if (length > 1 && !pfn_t_devmap(*pfnp))
1113 goto out;
1114 rc = 0;
1115 out:
1116 dax_read_unlock(id);
1117 return rc;
1118 }
1119
1120 /*
1121 * The user has performed a load from a hole in the file. Allocating a new
1122 * page in the file would cause excessive storage usage for workloads with
1123 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1124 * If this page is ever written to we will re-fault and change the mapping to
1125 * point to real DAX storage instead.
1126 */
dax_load_hole(struct address_space * mapping,void * entry,struct vm_fault * vmf)1127 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1128 struct vm_fault *vmf)
1129 {
1130 struct inode *inode = mapping->host;
1131 unsigned long vaddr = vmf->address;
1132 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1133 vm_fault_t ret;
1134
1135 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1136 false);
1137 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1138 trace_dax_load_hole(inode, vmf, ret);
1139 return ret;
1140 }
1141
dax_range_is_aligned(struct block_device * bdev,unsigned int offset,unsigned int length)1142 static bool dax_range_is_aligned(struct block_device *bdev,
1143 unsigned int offset, unsigned int length)
1144 {
1145 unsigned short sector_size = bdev_logical_block_size(bdev);
1146
1147 if (!IS_ALIGNED(offset, sector_size))
1148 return false;
1149 if (!IS_ALIGNED(length, sector_size))
1150 return false;
1151
1152 return true;
1153 }
1154
__dax_zero_page_range(struct block_device * bdev,struct dax_device * dax_dev,sector_t sector,unsigned int offset,unsigned int size)1155 int __dax_zero_page_range(struct block_device *bdev,
1156 struct dax_device *dax_dev, sector_t sector,
1157 unsigned int offset, unsigned int size)
1158 {
1159 if (dax_range_is_aligned(bdev, offset, size)) {
1160 sector_t start_sector = sector + (offset >> 9);
1161
1162 return blkdev_issue_zeroout(bdev, start_sector,
1163 size >> 9, GFP_NOFS, 0);
1164 } else {
1165 pgoff_t pgoff;
1166 long rc, id;
1167 void *kaddr;
1168
1169 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1170 if (rc)
1171 return rc;
1172
1173 id = dax_read_lock();
1174 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1175 if (rc < 0) {
1176 dax_read_unlock(id);
1177 return rc;
1178 }
1179 memset(kaddr + offset, 0, size);
1180 dax_flush(dax_dev, kaddr + offset, size);
1181 dax_read_unlock(id);
1182 }
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1186
1187 static loff_t
dax_iomap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1188 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1189 struct iomap *iomap)
1190 {
1191 struct block_device *bdev = iomap->bdev;
1192 struct dax_device *dax_dev = iomap->dax_dev;
1193 struct iov_iter *iter = data;
1194 loff_t end = pos + length, done = 0;
1195 ssize_t ret = 0;
1196 size_t xfer;
1197 int id;
1198
1199 if (iov_iter_rw(iter) == READ) {
1200 end = min(end, i_size_read(inode));
1201 if (pos >= end)
1202 return 0;
1203
1204 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1205 return iov_iter_zero(min(length, end - pos), iter);
1206 }
1207
1208 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1209 return -EIO;
1210
1211 /*
1212 * Write can allocate block for an area which has a hole page mapped
1213 * into page tables. We have to tear down these mappings so that data
1214 * written by write(2) is visible in mmap.
1215 */
1216 if (iomap->flags & IOMAP_F_NEW) {
1217 invalidate_inode_pages2_range(inode->i_mapping,
1218 pos >> PAGE_SHIFT,
1219 (end - 1) >> PAGE_SHIFT);
1220 }
1221
1222 id = dax_read_lock();
1223 while (pos < end) {
1224 unsigned offset = pos & (PAGE_SIZE - 1);
1225 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1226 const sector_t sector = dax_iomap_sector(iomap, pos);
1227 ssize_t map_len;
1228 pgoff_t pgoff;
1229 void *kaddr;
1230
1231 if (fatal_signal_pending(current)) {
1232 ret = -EINTR;
1233 break;
1234 }
1235
1236 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1237 if (ret)
1238 break;
1239
1240 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1241 &kaddr, NULL);
1242 if (map_len < 0) {
1243 ret = map_len;
1244 break;
1245 }
1246
1247 map_len = PFN_PHYS(map_len);
1248 kaddr += offset;
1249 map_len -= offset;
1250 if (map_len > end - pos)
1251 map_len = end - pos;
1252
1253 /*
1254 * The userspace address for the memory copy has already been
1255 * validated via access_ok() in either vfs_read() or
1256 * vfs_write(), depending on which operation we are doing.
1257 */
1258 if (iov_iter_rw(iter) == WRITE)
1259 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1260 map_len, iter);
1261 else
1262 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1263 map_len, iter);
1264
1265 pos += xfer;
1266 length -= xfer;
1267 done += xfer;
1268
1269 if (xfer == 0)
1270 ret = -EFAULT;
1271 if (xfer < map_len)
1272 break;
1273 }
1274 dax_read_unlock(id);
1275
1276 return done ? done : ret;
1277 }
1278
1279 /**
1280 * dax_iomap_rw - Perform I/O to a DAX file
1281 * @iocb: The control block for this I/O
1282 * @iter: The addresses to do I/O from or to
1283 * @ops: iomap ops passed from the file system
1284 *
1285 * This function performs read and write operations to directly mapped
1286 * persistent memory. The callers needs to take care of read/write exclusion
1287 * and evicting any page cache pages in the region under I/O.
1288 */
1289 ssize_t
dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1290 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1291 const struct iomap_ops *ops)
1292 {
1293 struct address_space *mapping = iocb->ki_filp->f_mapping;
1294 struct inode *inode = mapping->host;
1295 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1296 unsigned flags = 0;
1297
1298 if (iov_iter_rw(iter) == WRITE) {
1299 lockdep_assert_held_exclusive(&inode->i_rwsem);
1300 flags |= IOMAP_WRITE;
1301 } else {
1302 lockdep_assert_held(&inode->i_rwsem);
1303 }
1304
1305 if (iocb->ki_flags & IOCB_NOWAIT)
1306 flags |= IOMAP_NOWAIT;
1307
1308 while (iov_iter_count(iter)) {
1309 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1310 iter, dax_iomap_actor);
1311 if (ret <= 0)
1312 break;
1313 pos += ret;
1314 done += ret;
1315 }
1316
1317 iocb->ki_pos += done;
1318 return done ? done : ret;
1319 }
1320 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1321
dax_fault_return(int error)1322 static vm_fault_t dax_fault_return(int error)
1323 {
1324 if (error == 0)
1325 return VM_FAULT_NOPAGE;
1326 if (error == -ENOMEM)
1327 return VM_FAULT_OOM;
1328 return VM_FAULT_SIGBUS;
1329 }
1330
1331 /*
1332 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1333 * flushed on write-faults (non-cow), but not read-faults.
1334 */
dax_fault_is_synchronous(unsigned long flags,struct vm_area_struct * vma,struct iomap * iomap)1335 static bool dax_fault_is_synchronous(unsigned long flags,
1336 struct vm_area_struct *vma, struct iomap *iomap)
1337 {
1338 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1339 && (iomap->flags & IOMAP_F_DIRTY);
1340 }
1341
dax_iomap_pte_fault(struct vm_fault * vmf,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1342 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1343 int *iomap_errp, const struct iomap_ops *ops)
1344 {
1345 struct vm_area_struct *vma = vmf->vma;
1346 struct address_space *mapping = vma->vm_file->f_mapping;
1347 struct inode *inode = mapping->host;
1348 unsigned long vaddr = vmf->address;
1349 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1350 struct iomap iomap = { 0 };
1351 unsigned flags = IOMAP_FAULT;
1352 int error, major = 0;
1353 bool write = vmf->flags & FAULT_FLAG_WRITE;
1354 bool sync;
1355 vm_fault_t ret = 0;
1356 void *entry;
1357 pfn_t pfn;
1358
1359 trace_dax_pte_fault(inode, vmf, ret);
1360 /*
1361 * Check whether offset isn't beyond end of file now. Caller is supposed
1362 * to hold locks serializing us with truncate / punch hole so this is
1363 * a reliable test.
1364 */
1365 if (pos >= i_size_read(inode)) {
1366 ret = VM_FAULT_SIGBUS;
1367 goto out;
1368 }
1369
1370 if (write && !vmf->cow_page)
1371 flags |= IOMAP_WRITE;
1372
1373 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1374 if (IS_ERR(entry)) {
1375 ret = dax_fault_return(PTR_ERR(entry));
1376 goto out;
1377 }
1378
1379 /*
1380 * It is possible, particularly with mixed reads & writes to private
1381 * mappings, that we have raced with a PMD fault that overlaps with
1382 * the PTE we need to set up. If so just return and the fault will be
1383 * retried.
1384 */
1385 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1386 ret = VM_FAULT_NOPAGE;
1387 goto unlock_entry;
1388 }
1389
1390 /*
1391 * Note that we don't bother to use iomap_apply here: DAX required
1392 * the file system block size to be equal the page size, which means
1393 * that we never have to deal with more than a single extent here.
1394 */
1395 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1396 if (iomap_errp)
1397 *iomap_errp = error;
1398 if (error) {
1399 ret = dax_fault_return(error);
1400 goto unlock_entry;
1401 }
1402 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1403 error = -EIO; /* fs corruption? */
1404 goto error_finish_iomap;
1405 }
1406
1407 if (vmf->cow_page) {
1408 sector_t sector = dax_iomap_sector(&iomap, pos);
1409
1410 switch (iomap.type) {
1411 case IOMAP_HOLE:
1412 case IOMAP_UNWRITTEN:
1413 clear_user_highpage(vmf->cow_page, vaddr);
1414 break;
1415 case IOMAP_MAPPED:
1416 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1417 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1418 break;
1419 default:
1420 WARN_ON_ONCE(1);
1421 error = -EIO;
1422 break;
1423 }
1424
1425 if (error)
1426 goto error_finish_iomap;
1427
1428 __SetPageUptodate(vmf->cow_page);
1429 ret = finish_fault(vmf);
1430 if (!ret)
1431 ret = VM_FAULT_DONE_COW;
1432 goto finish_iomap;
1433 }
1434
1435 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1436
1437 switch (iomap.type) {
1438 case IOMAP_MAPPED:
1439 if (iomap.flags & IOMAP_F_NEW) {
1440 count_vm_event(PGMAJFAULT);
1441 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1442 major = VM_FAULT_MAJOR;
1443 }
1444 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1445 if (error < 0)
1446 goto error_finish_iomap;
1447
1448 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1449 0, write && !sync);
1450
1451 /*
1452 * If we are doing synchronous page fault and inode needs fsync,
1453 * we can insert PTE into page tables only after that happens.
1454 * Skip insertion for now and return the pfn so that caller can
1455 * insert it after fsync is done.
1456 */
1457 if (sync) {
1458 if (WARN_ON_ONCE(!pfnp)) {
1459 error = -EIO;
1460 goto error_finish_iomap;
1461 }
1462 *pfnp = pfn;
1463 ret = VM_FAULT_NEEDDSYNC | major;
1464 goto finish_iomap;
1465 }
1466 trace_dax_insert_mapping(inode, vmf, entry);
1467 if (write)
1468 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1469 else
1470 ret = vmf_insert_mixed(vma, vaddr, pfn);
1471
1472 goto finish_iomap;
1473 case IOMAP_UNWRITTEN:
1474 case IOMAP_HOLE:
1475 if (!write) {
1476 ret = dax_load_hole(mapping, entry, vmf);
1477 goto finish_iomap;
1478 }
1479 /*FALLTHRU*/
1480 default:
1481 WARN_ON_ONCE(1);
1482 error = -EIO;
1483 break;
1484 }
1485
1486 error_finish_iomap:
1487 ret = dax_fault_return(error);
1488 finish_iomap:
1489 if (ops->iomap_end) {
1490 int copied = PAGE_SIZE;
1491
1492 if (ret & VM_FAULT_ERROR)
1493 copied = 0;
1494 /*
1495 * The fault is done by now and there's no way back (other
1496 * thread may be already happily using PTE we have installed).
1497 * Just ignore error from ->iomap_end since we cannot do much
1498 * with it.
1499 */
1500 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1501 }
1502 unlock_entry:
1503 put_locked_mapping_entry(mapping, vmf->pgoff);
1504 out:
1505 trace_dax_pte_fault_done(inode, vmf, ret);
1506 return ret | major;
1507 }
1508
1509 #ifdef CONFIG_FS_DAX_PMD
dax_pmd_load_hole(struct vm_fault * vmf,struct iomap * iomap,void * entry)1510 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1511 void *entry)
1512 {
1513 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1514 unsigned long pmd_addr = vmf->address & PMD_MASK;
1515 struct inode *inode = mapping->host;
1516 struct page *zero_page;
1517 void *ret = NULL;
1518 spinlock_t *ptl;
1519 pmd_t pmd_entry;
1520 pfn_t pfn;
1521
1522 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1523
1524 if (unlikely(!zero_page))
1525 goto fallback;
1526
1527 pfn = page_to_pfn_t(zero_page);
1528 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1529 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1530
1531 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1532 if (!pmd_none(*(vmf->pmd))) {
1533 spin_unlock(ptl);
1534 goto fallback;
1535 }
1536
1537 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1538 pmd_entry = pmd_mkhuge(pmd_entry);
1539 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1540 spin_unlock(ptl);
1541 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1542 return VM_FAULT_NOPAGE;
1543
1544 fallback:
1545 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1546 return VM_FAULT_FALLBACK;
1547 }
1548
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1549 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1550 const struct iomap_ops *ops)
1551 {
1552 struct vm_area_struct *vma = vmf->vma;
1553 struct address_space *mapping = vma->vm_file->f_mapping;
1554 unsigned long pmd_addr = vmf->address & PMD_MASK;
1555 bool write = vmf->flags & FAULT_FLAG_WRITE;
1556 bool sync;
1557 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1558 struct inode *inode = mapping->host;
1559 vm_fault_t result = VM_FAULT_FALLBACK;
1560 struct iomap iomap = { 0 };
1561 pgoff_t max_pgoff, pgoff;
1562 void *entry;
1563 loff_t pos;
1564 int error;
1565 pfn_t pfn;
1566
1567 /*
1568 * Check whether offset isn't beyond end of file now. Caller is
1569 * supposed to hold locks serializing us with truncate / punch hole so
1570 * this is a reliable test.
1571 */
1572 pgoff = linear_page_index(vma, pmd_addr);
1573 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1574
1575 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1576
1577 /*
1578 * Make sure that the faulting address's PMD offset (color) matches
1579 * the PMD offset from the start of the file. This is necessary so
1580 * that a PMD range in the page table overlaps exactly with a PMD
1581 * range in the radix tree.
1582 */
1583 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1584 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1585 goto fallback;
1586
1587 /* Fall back to PTEs if we're going to COW */
1588 if (write && !(vma->vm_flags & VM_SHARED))
1589 goto fallback;
1590
1591 /* If the PMD would extend outside the VMA */
1592 if (pmd_addr < vma->vm_start)
1593 goto fallback;
1594 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1595 goto fallback;
1596
1597 if (pgoff >= max_pgoff) {
1598 result = VM_FAULT_SIGBUS;
1599 goto out;
1600 }
1601
1602 /* If the PMD would extend beyond the file size */
1603 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1604 goto fallback;
1605
1606 /*
1607 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1608 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1609 * is already in the tree, for instance), it will return -EEXIST and
1610 * we just fall back to 4k entries.
1611 */
1612 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1613 if (IS_ERR(entry))
1614 goto fallback;
1615
1616 /*
1617 * It is possible, particularly with mixed reads & writes to private
1618 * mappings, that we have raced with a PTE fault that overlaps with
1619 * the PMD we need to set up. If so just return and the fault will be
1620 * retried.
1621 */
1622 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1623 !pmd_devmap(*vmf->pmd)) {
1624 result = 0;
1625 goto unlock_entry;
1626 }
1627
1628 /*
1629 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1630 * setting up a mapping, so really we're using iomap_begin() as a way
1631 * to look up our filesystem block.
1632 */
1633 pos = (loff_t)pgoff << PAGE_SHIFT;
1634 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1635 if (error)
1636 goto unlock_entry;
1637
1638 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1639 goto finish_iomap;
1640
1641 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1642
1643 switch (iomap.type) {
1644 case IOMAP_MAPPED:
1645 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1646 if (error < 0)
1647 goto finish_iomap;
1648
1649 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1650 RADIX_DAX_PMD, write && !sync);
1651
1652 /*
1653 * If we are doing synchronous page fault and inode needs fsync,
1654 * we can insert PMD into page tables only after that happens.
1655 * Skip insertion for now and return the pfn so that caller can
1656 * insert it after fsync is done.
1657 */
1658 if (sync) {
1659 if (WARN_ON_ONCE(!pfnp))
1660 goto finish_iomap;
1661 *pfnp = pfn;
1662 result = VM_FAULT_NEEDDSYNC;
1663 goto finish_iomap;
1664 }
1665
1666 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1667 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1668 break;
1669 case IOMAP_UNWRITTEN:
1670 case IOMAP_HOLE:
1671 if (WARN_ON_ONCE(write))
1672 break;
1673 result = dax_pmd_load_hole(vmf, &iomap, entry);
1674 break;
1675 default:
1676 WARN_ON_ONCE(1);
1677 break;
1678 }
1679
1680 finish_iomap:
1681 if (ops->iomap_end) {
1682 int copied = PMD_SIZE;
1683
1684 if (result == VM_FAULT_FALLBACK)
1685 copied = 0;
1686 /*
1687 * The fault is done by now and there's no way back (other
1688 * thread may be already happily using PMD we have installed).
1689 * Just ignore error from ->iomap_end since we cannot do much
1690 * with it.
1691 */
1692 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1693 &iomap);
1694 }
1695 unlock_entry:
1696 put_locked_mapping_entry(mapping, pgoff);
1697 fallback:
1698 if (result == VM_FAULT_FALLBACK) {
1699 split_huge_pmd(vma, vmf->pmd, vmf->address);
1700 count_vm_event(THP_FAULT_FALLBACK);
1701 }
1702 out:
1703 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1704 return result;
1705 }
1706 #else
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1707 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1708 const struct iomap_ops *ops)
1709 {
1710 return VM_FAULT_FALLBACK;
1711 }
1712 #endif /* CONFIG_FS_DAX_PMD */
1713
1714 /**
1715 * dax_iomap_fault - handle a page fault on a DAX file
1716 * @vmf: The description of the fault
1717 * @pe_size: Size of the page to fault in
1718 * @pfnp: PFN to insert for synchronous faults if fsync is required
1719 * @iomap_errp: Storage for detailed error code in case of error
1720 * @ops: Iomap ops passed from the file system
1721 *
1722 * When a page fault occurs, filesystems may call this helper in
1723 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1724 * has done all the necessary locking for page fault to proceed
1725 * successfully.
1726 */
dax_iomap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1727 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1728 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1729 {
1730 switch (pe_size) {
1731 case PE_SIZE_PTE:
1732 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1733 case PE_SIZE_PMD:
1734 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1735 default:
1736 return VM_FAULT_FALLBACK;
1737 }
1738 }
1739 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1740
1741 /**
1742 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1743 * @vmf: The description of the fault
1744 * @pe_size: Size of entry to be inserted
1745 * @pfn: PFN to insert
1746 *
1747 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1748 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1749 * as well.
1750 */
dax_insert_pfn_mkwrite(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t pfn)1751 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1752 enum page_entry_size pe_size,
1753 pfn_t pfn)
1754 {
1755 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1756 void *entry, **slot;
1757 pgoff_t index = vmf->pgoff;
1758 vm_fault_t ret;
1759
1760 xa_lock_irq(&mapping->i_pages);
1761 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1762 /* Did we race with someone splitting entry or so? */
1763 if (!entry ||
1764 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1765 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1766 put_unlocked_mapping_entry(mapping, index, entry);
1767 xa_unlock_irq(&mapping->i_pages);
1768 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1769 VM_FAULT_NOPAGE);
1770 return VM_FAULT_NOPAGE;
1771 }
1772 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1773 entry = lock_slot(mapping, slot);
1774 xa_unlock_irq(&mapping->i_pages);
1775 switch (pe_size) {
1776 case PE_SIZE_PTE:
1777 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1778 break;
1779 #ifdef CONFIG_FS_DAX_PMD
1780 case PE_SIZE_PMD:
1781 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1782 break;
1783 #endif
1784 default:
1785 ret = VM_FAULT_FALLBACK;
1786 }
1787 put_locked_mapping_entry(mapping, index);
1788 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1789 return ret;
1790 }
1791
1792 /**
1793 * dax_finish_sync_fault - finish synchronous page fault
1794 * @vmf: The description of the fault
1795 * @pe_size: Size of entry to be inserted
1796 * @pfn: PFN to insert
1797 *
1798 * This function ensures that the file range touched by the page fault is
1799 * stored persistently on the media and handles inserting of appropriate page
1800 * table entry.
1801 */
dax_finish_sync_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t pfn)1802 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1803 enum page_entry_size pe_size, pfn_t pfn)
1804 {
1805 int err;
1806 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1807 size_t len = 0;
1808
1809 if (pe_size == PE_SIZE_PTE)
1810 len = PAGE_SIZE;
1811 else if (pe_size == PE_SIZE_PMD)
1812 len = PMD_SIZE;
1813 else
1814 WARN_ON_ONCE(1);
1815 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1816 if (err)
1817 return VM_FAULT_SIGBUS;
1818 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1819 }
1820 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1821