1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21
22 #ifdef CONFIG_EXT4_DEBUG
23 ushort ext4_mballoc_debug __read_mostly;
24
25 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
26 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
27 #endif
28
29 /*
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
33 *
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
40 *
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
47 */
48
49 /*
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
52 *
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
62 *
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
65 *
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
70 *
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space (in clusters)
74 * pa_free -> free space available in this prealloc space (in clusters)
75 *
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
80 *
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
84 *
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
88 *
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 *
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
93 *
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
96 *
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
106 *
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 *
110 *
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
115 *
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
118 *
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
122 *
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
130 * dependent on the cluster size; for non-bigalloc file systems, it is
131 * 512 blocks. This can be tuned via
132 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133 * terms of number of blocks. If we have mounted the file system with -O
134 * stripe=<value> option the group prealloc request is normalized to the
135 * the smallest multiple of the stripe value (sbi->s_stripe) which is
136 * greater than the default mb_group_prealloc.
137 *
138 * The regular allocator (using the buddy cache) supports a few tunables.
139 *
140 * /sys/fs/ext4/<partition>/mb_min_to_scan
141 * /sys/fs/ext4/<partition>/mb_max_to_scan
142 * /sys/fs/ext4/<partition>/mb_order2_req
143 *
144 * The regular allocator uses buddy scan only if the request len is power of
145 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
146 * value of s_mb_order2_reqs can be tuned via
147 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
148 * stripe size (sbi->s_stripe), we try to search for contiguous block in
149 * stripe size. This should result in better allocation on RAID setups. If
150 * not, we search in the specific group using bitmap for best extents. The
151 * tunable min_to_scan and max_to_scan control the behaviour here.
152 * min_to_scan indicate how long the mballoc __must__ look for a best
153 * extent and max_to_scan indicates how long the mballoc __can__ look for a
154 * best extent in the found extents. Searching for the blocks starts with
155 * the group specified as the goal value in allocation context via
156 * ac_g_ex. Each group is first checked based on the criteria whether it
157 * can be used for allocation. ext4_mb_good_group explains how the groups are
158 * checked.
159 *
160 * Both the prealloc space are getting populated as above. So for the first
161 * request we will hit the buddy cache which will result in this prealloc
162 * space getting filled. The prealloc space is then later used for the
163 * subsequent request.
164 */
165
166 /*
167 * mballoc operates on the following data:
168 * - on-disk bitmap
169 * - in-core buddy (actually includes buddy and bitmap)
170 * - preallocation descriptors (PAs)
171 *
172 * there are two types of preallocations:
173 * - inode
174 * assiged to specific inode and can be used for this inode only.
175 * it describes part of inode's space preallocated to specific
176 * physical blocks. any block from that preallocated can be used
177 * independent. the descriptor just tracks number of blocks left
178 * unused. so, before taking some block from descriptor, one must
179 * make sure corresponded logical block isn't allocated yet. this
180 * also means that freeing any block within descriptor's range
181 * must discard all preallocated blocks.
182 * - locality group
183 * assigned to specific locality group which does not translate to
184 * permanent set of inodes: inode can join and leave group. space
185 * from this type of preallocation can be used for any inode. thus
186 * it's consumed from the beginning to the end.
187 *
188 * relation between them can be expressed as:
189 * in-core buddy = on-disk bitmap + preallocation descriptors
190 *
191 * this mean blocks mballoc considers used are:
192 * - allocated blocks (persistent)
193 * - preallocated blocks (non-persistent)
194 *
195 * consistency in mballoc world means that at any time a block is either
196 * free or used in ALL structures. notice: "any time" should not be read
197 * literally -- time is discrete and delimited by locks.
198 *
199 * to keep it simple, we don't use block numbers, instead we count number of
200 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 *
202 * all operations can be expressed as:
203 * - init buddy: buddy = on-disk + PAs
204 * - new PA: buddy += N; PA = N
205 * - use inode PA: on-disk += N; PA -= N
206 * - discard inode PA buddy -= on-disk - PA; PA = 0
207 * - use locality group PA on-disk += N; PA -= N
208 * - discard locality group PA buddy -= PA; PA = 0
209 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
210 * is used in real operation because we can't know actual used
211 * bits from PA, only from on-disk bitmap
212 *
213 * if we follow this strict logic, then all operations above should be atomic.
214 * given some of them can block, we'd have to use something like semaphores
215 * killing performance on high-end SMP hardware. let's try to relax it using
216 * the following knowledge:
217 * 1) if buddy is referenced, it's already initialized
218 * 2) while block is used in buddy and the buddy is referenced,
219 * nobody can re-allocate that block
220 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
221 * bit set and PA claims same block, it's OK. IOW, one can set bit in
222 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
223 * block
224 *
225 * so, now we're building a concurrency table:
226 * - init buddy vs.
227 * - new PA
228 * blocks for PA are allocated in the buddy, buddy must be referenced
229 * until PA is linked to allocation group to avoid concurrent buddy init
230 * - use inode PA
231 * we need to make sure that either on-disk bitmap or PA has uptodate data
232 * given (3) we care that PA-=N operation doesn't interfere with init
233 * - discard inode PA
234 * the simplest way would be to have buddy initialized by the discard
235 * - use locality group PA
236 * again PA-=N must be serialized with init
237 * - discard locality group PA
238 * the simplest way would be to have buddy initialized by the discard
239 * - new PA vs.
240 * - use inode PA
241 * i_data_sem serializes them
242 * - discard inode PA
243 * discard process must wait until PA isn't used by another process
244 * - use locality group PA
245 * some mutex should serialize them
246 * - discard locality group PA
247 * discard process must wait until PA isn't used by another process
248 * - use inode PA
249 * - use inode PA
250 * i_data_sem or another mutex should serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * nothing wrong here -- they're different PAs covering different blocks
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 *
258 * now we're ready to make few consequences:
259 * - PA is referenced and while it is no discard is possible
260 * - PA is referenced until block isn't marked in on-disk bitmap
261 * - PA changes only after on-disk bitmap
262 * - discard must not compete with init. either init is done before
263 * any discard or they're serialized somehow
264 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 *
266 * a special case when we've used PA to emptiness. no need to modify buddy
267 * in this case, but we should care about concurrent init
268 *
269 */
270
271 /*
272 * Logic in few words:
273 *
274 * - allocation:
275 * load group
276 * find blocks
277 * mark bits in on-disk bitmap
278 * release group
279 *
280 * - use preallocation:
281 * find proper PA (per-inode or group)
282 * load group
283 * mark bits in on-disk bitmap
284 * release group
285 * release PA
286 *
287 * - free:
288 * load group
289 * mark bits in on-disk bitmap
290 * release group
291 *
292 * - discard preallocations in group:
293 * mark PAs deleted
294 * move them onto local list
295 * load on-disk bitmap
296 * load group
297 * remove PA from object (inode or locality group)
298 * mark free blocks in-core
299 *
300 * - discard inode's preallocations:
301 */
302
303 /*
304 * Locking rules
305 *
306 * Locks:
307 * - bitlock on a group (group)
308 * - object (inode/locality) (object)
309 * - per-pa lock (pa)
310 *
311 * Paths:
312 * - new pa
313 * object
314 * group
315 *
316 * - find and use pa:
317 * pa
318 *
319 * - release consumed pa:
320 * pa
321 * group
322 * object
323 *
324 * - generate in-core bitmap:
325 * group
326 * pa
327 *
328 * - discard all for given object (inode, locality group):
329 * object
330 * pa
331 * group
332 *
333 * - discard all for given group:
334 * group
335 * pa
336 * group
337 * object
338 *
339 */
340 static struct kmem_cache *ext4_pspace_cachep;
341 static struct kmem_cache *ext4_ac_cachep;
342 static struct kmem_cache *ext4_free_data_cachep;
343
344 /* We create slab caches for groupinfo data structures based on the
345 * superblock block size. There will be one per mounted filesystem for
346 * each unique s_blocksize_bits */
347 #define NR_GRPINFO_CACHES 8
348 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349
350 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
351 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
352 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
353 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
354 };
355
356 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
357 ext4_group_t group);
358 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
359 ext4_group_t group);
360
mb_correct_addr_and_bit(int * bit,void * addr)361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 {
363 #if BITS_PER_LONG == 64
364 *bit += ((unsigned long) addr & 7UL) << 3;
365 addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit += ((unsigned long) addr & 3UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 return addr;
373 }
374
mb_test_bit(int bit,void * addr)375 static inline int mb_test_bit(int bit, void *addr)
376 {
377 /*
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
380 */
381 addr = mb_correct_addr_and_bit(&bit, addr);
382 return ext4_test_bit(bit, addr);
383 }
384
mb_set_bit(int bit,void * addr)385 static inline void mb_set_bit(int bit, void *addr)
386 {
387 addr = mb_correct_addr_and_bit(&bit, addr);
388 ext4_set_bit(bit, addr);
389 }
390
mb_clear_bit(int bit,void * addr)391 static inline void mb_clear_bit(int bit, void *addr)
392 {
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 ext4_clear_bit(bit, addr);
395 }
396
mb_test_and_clear_bit(int bit,void * addr)397 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 return ext4_test_and_clear_bit(bit, addr);
401 }
402
mb_find_next_zero_bit(void * addr,int max,int start)403 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 {
405 int fix = 0, ret, tmpmax;
406 addr = mb_correct_addr_and_bit(&fix, addr);
407 tmpmax = max + fix;
408 start += fix;
409
410 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
411 if (ret > max)
412 return max;
413 return ret;
414 }
415
mb_find_next_bit(void * addr,int max,int start)416 static inline int mb_find_next_bit(void *addr, int max, int start)
417 {
418 int fix = 0, ret, tmpmax;
419 addr = mb_correct_addr_and_bit(&fix, addr);
420 tmpmax = max + fix;
421 start += fix;
422
423 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
424 if (ret > max)
425 return max;
426 return ret;
427 }
428
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)429 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
430 {
431 char *bb;
432
433 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
434 BUG_ON(max == NULL);
435
436 if (order > e4b->bd_blkbits + 1) {
437 *max = 0;
438 return NULL;
439 }
440
441 /* at order 0 we see each particular block */
442 if (order == 0) {
443 *max = 1 << (e4b->bd_blkbits + 3);
444 return e4b->bd_bitmap;
445 }
446
447 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
448 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
449
450 return bb;
451 }
452
453 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)454 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
455 int first, int count)
456 {
457 int i;
458 struct super_block *sb = e4b->bd_sb;
459
460 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
461 return;
462 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
463 for (i = 0; i < count; i++) {
464 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
465 ext4_fsblk_t blocknr;
466
467 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
468 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
469 ext4_grp_locked_error(sb, e4b->bd_group,
470 inode ? inode->i_ino : 0,
471 blocknr,
472 "freeing block already freed "
473 "(bit %u)",
474 first + i);
475 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
476 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 }
478 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
479 }
480 }
481
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)482 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
483 {
484 int i;
485
486 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
487 return;
488 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
489 for (i = 0; i < count; i++) {
490 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
491 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
492 }
493 }
494
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)495 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 {
497 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
498 unsigned char *b1, *b2;
499 int i;
500 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
501 b2 = (unsigned char *) bitmap;
502 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
503 if (b1[i] != b2[i]) {
504 ext4_msg(e4b->bd_sb, KERN_ERR,
505 "corruption in group %u "
506 "at byte %u(%u): %x in copy != %x "
507 "on disk/prealloc",
508 e4b->bd_group, i, i * 8, b1[i], b2[i]);
509 BUG();
510 }
511 }
512 }
513 }
514
515 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)516 static inline void mb_free_blocks_double(struct inode *inode,
517 struct ext4_buddy *e4b, int first, int count)
518 {
519 return;
520 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)521 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
522 int first, int count)
523 {
524 return;
525 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)526 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
527 {
528 return;
529 }
530 #endif
531
532 #ifdef AGGRESSIVE_CHECK
533
534 #define MB_CHECK_ASSERT(assert) \
535 do { \
536 if (!(assert)) { \
537 printk(KERN_EMERG \
538 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
539 function, file, line, # assert); \
540 BUG(); \
541 } \
542 } while (0)
543
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)544 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
545 const char *function, int line)
546 {
547 struct super_block *sb = e4b->bd_sb;
548 int order = e4b->bd_blkbits + 1;
549 int max;
550 int max2;
551 int i;
552 int j;
553 int k;
554 int count;
555 struct ext4_group_info *grp;
556 int fragments = 0;
557 int fstart;
558 struct list_head *cur;
559 void *buddy;
560 void *buddy2;
561
562 {
563 static int mb_check_counter;
564 if (mb_check_counter++ % 100 != 0)
565 return 0;
566 }
567
568 while (order > 1) {
569 buddy = mb_find_buddy(e4b, order, &max);
570 MB_CHECK_ASSERT(buddy);
571 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
572 MB_CHECK_ASSERT(buddy2);
573 MB_CHECK_ASSERT(buddy != buddy2);
574 MB_CHECK_ASSERT(max * 2 == max2);
575
576 count = 0;
577 for (i = 0; i < max; i++) {
578
579 if (mb_test_bit(i, buddy)) {
580 /* only single bit in buddy2 may be 1 */
581 if (!mb_test_bit(i << 1, buddy2)) {
582 MB_CHECK_ASSERT(
583 mb_test_bit((i<<1)+1, buddy2));
584 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
585 MB_CHECK_ASSERT(
586 mb_test_bit(i << 1, buddy2));
587 }
588 continue;
589 }
590
591 /* both bits in buddy2 must be 1 */
592 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
593 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594
595 for (j = 0; j < (1 << order); j++) {
596 k = (i * (1 << order)) + j;
597 MB_CHECK_ASSERT(
598 !mb_test_bit(k, e4b->bd_bitmap));
599 }
600 count++;
601 }
602 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
603 order--;
604 }
605
606 fstart = -1;
607 buddy = mb_find_buddy(e4b, 0, &max);
608 for (i = 0; i < max; i++) {
609 if (!mb_test_bit(i, buddy)) {
610 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
611 if (fstart == -1) {
612 fragments++;
613 fstart = i;
614 }
615 continue;
616 }
617 fstart = -1;
618 /* check used bits only */
619 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
620 buddy2 = mb_find_buddy(e4b, j, &max2);
621 k = i >> j;
622 MB_CHECK_ASSERT(k < max2);
623 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
624 }
625 }
626 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
627 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628
629 grp = ext4_get_group_info(sb, e4b->bd_group);
630 list_for_each(cur, &grp->bb_prealloc_list) {
631 ext4_group_t groupnr;
632 struct ext4_prealloc_space *pa;
633 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
634 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
635 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
636 for (i = 0; i < pa->pa_len; i++)
637 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
638 }
639 return 0;
640 }
641 #undef MB_CHECK_ASSERT
642 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
643 __FILE__, __func__, __LINE__)
644 #else
645 #define mb_check_buddy(e4b)
646 #endif
647
648 /*
649 * Divide blocks started from @first with length @len into
650 * smaller chunks with power of 2 blocks.
651 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
652 * then increase bb_counters[] for corresponded chunk size.
653 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)654 static void ext4_mb_mark_free_simple(struct super_block *sb,
655 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
656 struct ext4_group_info *grp)
657 {
658 struct ext4_sb_info *sbi = EXT4_SB(sb);
659 ext4_grpblk_t min;
660 ext4_grpblk_t max;
661 ext4_grpblk_t chunk;
662 unsigned int border;
663
664 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665
666 border = 2 << sb->s_blocksize_bits;
667
668 while (len > 0) {
669 /* find how many blocks can be covered since this position */
670 max = ffs(first | border) - 1;
671
672 /* find how many blocks of power 2 we need to mark */
673 min = fls(len) - 1;
674
675 if (max < min)
676 min = max;
677 chunk = 1 << min;
678
679 /* mark multiblock chunks only */
680 grp->bb_counters[min]++;
681 if (min > 0)
682 mb_clear_bit(first >> min,
683 buddy + sbi->s_mb_offsets[min]);
684
685 len -= chunk;
686 first += chunk;
687 }
688 }
689
690 /*
691 * Cache the order of the largest free extent we have available in this block
692 * group.
693 */
694 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)695 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
696 {
697 int i;
698 int bits;
699
700 grp->bb_largest_free_order = -1; /* uninit */
701
702 bits = sb->s_blocksize_bits + 1;
703 for (i = bits; i >= 0; i--) {
704 if (grp->bb_counters[i] > 0) {
705 grp->bb_largest_free_order = i;
706 break;
707 }
708 }
709 }
710
711 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)712 void ext4_mb_generate_buddy(struct super_block *sb,
713 void *buddy, void *bitmap, ext4_group_t group)
714 {
715 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
716 struct ext4_sb_info *sbi = EXT4_SB(sb);
717 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
718 ext4_grpblk_t i = 0;
719 ext4_grpblk_t first;
720 ext4_grpblk_t len;
721 unsigned free = 0;
722 unsigned fragments = 0;
723 unsigned long long period = get_cycles();
724
725 /* initialize buddy from bitmap which is aggregation
726 * of on-disk bitmap and preallocations */
727 i = mb_find_next_zero_bit(bitmap, max, 0);
728 grp->bb_first_free = i;
729 while (i < max) {
730 fragments++;
731 first = i;
732 i = mb_find_next_bit(bitmap, max, i);
733 len = i - first;
734 free += len;
735 if (len > 1)
736 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
737 else
738 grp->bb_counters[0]++;
739 if (i < max)
740 i = mb_find_next_zero_bit(bitmap, max, i);
741 }
742 grp->bb_fragments = fragments;
743
744 if (free != grp->bb_free) {
745 ext4_grp_locked_error(sb, group, 0, 0,
746 "block bitmap and bg descriptor "
747 "inconsistent: %u vs %u free clusters",
748 free, grp->bb_free);
749 /*
750 * If we intend to continue, we consider group descriptor
751 * corrupt and update bb_free using bitmap value
752 */
753 grp->bb_free = free;
754 ext4_mark_group_bitmap_corrupted(sb, group,
755 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 }
757 mb_set_largest_free_order(sb, grp);
758
759 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760
761 period = get_cycles() - period;
762 spin_lock(&sbi->s_bal_lock);
763 sbi->s_mb_buddies_generated++;
764 sbi->s_mb_generation_time += period;
765 spin_unlock(&sbi->s_bal_lock);
766 }
767
mb_regenerate_buddy(struct ext4_buddy * e4b)768 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
769 {
770 int count;
771 int order = 1;
772 void *buddy;
773
774 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
775 ext4_set_bits(buddy, 0, count);
776 }
777 e4b->bd_info->bb_fragments = 0;
778 memset(e4b->bd_info->bb_counters, 0,
779 sizeof(*e4b->bd_info->bb_counters) *
780 (e4b->bd_sb->s_blocksize_bits + 2));
781
782 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
783 e4b->bd_bitmap, e4b->bd_group);
784 }
785
786 /* The buddy information is attached the buddy cache inode
787 * for convenience. The information regarding each group
788 * is loaded via ext4_mb_load_buddy. The information involve
789 * block bitmap and buddy information. The information are
790 * stored in the inode as
791 *
792 * { page }
793 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
794 *
795 *
796 * one block each for bitmap and buddy information.
797 * So for each group we take up 2 blocks. A page can
798 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
799 * So it can have information regarding groups_per_page which
800 * is blocks_per_page/2
801 *
802 * Locking note: This routine takes the block group lock of all groups
803 * for this page; do not hold this lock when calling this routine!
804 */
805
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)806 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 {
808 ext4_group_t ngroups;
809 int blocksize;
810 int blocks_per_page;
811 int groups_per_page;
812 int err = 0;
813 int i;
814 ext4_group_t first_group, group;
815 int first_block;
816 struct super_block *sb;
817 struct buffer_head *bhs;
818 struct buffer_head **bh = NULL;
819 struct inode *inode;
820 char *data;
821 char *bitmap;
822 struct ext4_group_info *grinfo;
823
824 mb_debug(1, "init page %lu\n", page->index);
825
826 inode = page->mapping->host;
827 sb = inode->i_sb;
828 ngroups = ext4_get_groups_count(sb);
829 blocksize = i_blocksize(inode);
830 blocks_per_page = PAGE_SIZE / blocksize;
831
832 groups_per_page = blocks_per_page >> 1;
833 if (groups_per_page == 0)
834 groups_per_page = 1;
835
836 /* allocate buffer_heads to read bitmaps */
837 if (groups_per_page > 1) {
838 i = sizeof(struct buffer_head *) * groups_per_page;
839 bh = kzalloc(i, gfp);
840 if (bh == NULL) {
841 err = -ENOMEM;
842 goto out;
843 }
844 } else
845 bh = &bhs;
846
847 first_group = page->index * blocks_per_page / 2;
848
849 /* read all groups the page covers into the cache */
850 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
851 if (group >= ngroups)
852 break;
853
854 grinfo = ext4_get_group_info(sb, group);
855 /*
856 * If page is uptodate then we came here after online resize
857 * which added some new uninitialized group info structs, so
858 * we must skip all initialized uptodate buddies on the page,
859 * which may be currently in use by an allocating task.
860 */
861 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
862 bh[i] = NULL;
863 continue;
864 }
865 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
866 if (IS_ERR(bh[i])) {
867 err = PTR_ERR(bh[i]);
868 bh[i] = NULL;
869 goto out;
870 }
871 mb_debug(1, "read bitmap for group %u\n", group);
872 }
873
874 /* wait for I/O completion */
875 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
876 int err2;
877
878 if (!bh[i])
879 continue;
880 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
881 if (!err)
882 err = err2;
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 if (!buffer_verified(bh[group - first_group]))
896 /* Skip faulty bitmaps */
897 continue;
898 err = 0;
899
900 /*
901 * data carry information regarding this
902 * particular group in the format specified
903 * above
904 *
905 */
906 data = page_address(page) + (i * blocksize);
907 bitmap = bh[group - first_group]->b_data;
908
909 /*
910 * We place the buddy block and bitmap block
911 * close together
912 */
913 if ((first_block + i) & 1) {
914 /* this is block of buddy */
915 BUG_ON(incore == NULL);
916 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
917 group, page->index, i * blocksize);
918 trace_ext4_mb_buddy_bitmap_load(sb, group);
919 grinfo = ext4_get_group_info(sb, group);
920 grinfo->bb_fragments = 0;
921 memset(grinfo->bb_counters, 0,
922 sizeof(*grinfo->bb_counters) *
923 (sb->s_blocksize_bits+2));
924 /*
925 * incore got set to the group block bitmap below
926 */
927 ext4_lock_group(sb, group);
928 /* init the buddy */
929 memset(data, 0xff, blocksize);
930 ext4_mb_generate_buddy(sb, data, incore, group);
931 ext4_unlock_group(sb, group);
932 incore = NULL;
933 } else {
934 /* this is block of bitmap */
935 BUG_ON(incore != NULL);
936 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
937 group, page->index, i * blocksize);
938 trace_ext4_mb_bitmap_load(sb, group);
939
940 /* see comments in ext4_mb_put_pa() */
941 ext4_lock_group(sb, group);
942 memcpy(data, bitmap, blocksize);
943
944 /* mark all preallocated blks used in in-core bitmap */
945 ext4_mb_generate_from_pa(sb, data, group);
946 ext4_mb_generate_from_freelist(sb, data, group);
947 ext4_unlock_group(sb, group);
948
949 /* set incore so that the buddy information can be
950 * generated using this
951 */
952 incore = data;
953 }
954 }
955 SetPageUptodate(page);
956
957 out:
958 if (bh) {
959 for (i = 0; i < groups_per_page; i++)
960 brelse(bh[i]);
961 if (bh != &bhs)
962 kfree(bh);
963 }
964 return err;
965 }
966
967 /*
968 * Lock the buddy and bitmap pages. This make sure other parallel init_group
969 * on the same buddy page doesn't happen whild holding the buddy page lock.
970 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
971 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)973 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
974 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 {
976 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
977 int block, pnum, poff;
978 int blocks_per_page;
979 struct page *page;
980
981 e4b->bd_buddy_page = NULL;
982 e4b->bd_bitmap_page = NULL;
983
984 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 /*
986 * the buddy cache inode stores the block bitmap
987 * and buddy information in consecutive blocks.
988 * So for each group we need two blocks.
989 */
990 block = group * 2;
991 pnum = block / blocks_per_page;
992 poff = block % blocks_per_page;
993 page = find_or_create_page(inode->i_mapping, pnum, gfp);
994 if (!page)
995 return -ENOMEM;
996 BUG_ON(page->mapping != inode->i_mapping);
997 e4b->bd_bitmap_page = page;
998 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999
1000 if (blocks_per_page >= 2) {
1001 /* buddy and bitmap are on the same page */
1002 return 0;
1003 }
1004
1005 block++;
1006 pnum = block / blocks_per_page;
1007 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1008 if (!page)
1009 return -ENOMEM;
1010 BUG_ON(page->mapping != inode->i_mapping);
1011 e4b->bd_buddy_page = page;
1012 return 0;
1013 }
1014
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1015 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 {
1017 if (e4b->bd_bitmap_page) {
1018 unlock_page(e4b->bd_bitmap_page);
1019 put_page(e4b->bd_bitmap_page);
1020 }
1021 if (e4b->bd_buddy_page) {
1022 unlock_page(e4b->bd_buddy_page);
1023 put_page(e4b->bd_buddy_page);
1024 }
1025 }
1026
1027 /*
1028 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1029 * block group lock of all groups for this page; do not hold the BG lock when
1030 * calling this routine!
1031 */
1032 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1033 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1034 {
1035
1036 struct ext4_group_info *this_grp;
1037 struct ext4_buddy e4b;
1038 struct page *page;
1039 int ret = 0;
1040
1041 might_sleep();
1042 mb_debug(1, "init group %u\n", group);
1043 this_grp = ext4_get_group_info(sb, group);
1044 /*
1045 * This ensures that we don't reinit the buddy cache
1046 * page which map to the group from which we are already
1047 * allocating. If we are looking at the buddy cache we would
1048 * have taken a reference using ext4_mb_load_buddy and that
1049 * would have pinned buddy page to page cache.
1050 * The call to ext4_mb_get_buddy_page_lock will mark the
1051 * page accessed.
1052 */
1053 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1054 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 /*
1056 * somebody initialized the group
1057 * return without doing anything
1058 */
1059 goto err;
1060 }
1061
1062 page = e4b.bd_bitmap_page;
1063 ret = ext4_mb_init_cache(page, NULL, gfp);
1064 if (ret)
1065 goto err;
1066 if (!PageUptodate(page)) {
1067 ret = -EIO;
1068 goto err;
1069 }
1070
1071 if (e4b.bd_buddy_page == NULL) {
1072 /*
1073 * If both the bitmap and buddy are in
1074 * the same page we don't need to force
1075 * init the buddy
1076 */
1077 ret = 0;
1078 goto err;
1079 }
1080 /* init buddy cache */
1081 page = e4b.bd_buddy_page;
1082 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1083 if (ret)
1084 goto err;
1085 if (!PageUptodate(page)) {
1086 ret = -EIO;
1087 goto err;
1088 }
1089 err:
1090 ext4_mb_put_buddy_page_lock(&e4b);
1091 return ret;
1092 }
1093
1094 /*
1095 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1096 * block group lock of all groups for this page; do not hold the BG lock when
1097 * calling this routine!
1098 */
1099 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1100 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1101 struct ext4_buddy *e4b, gfp_t gfp)
1102 {
1103 int blocks_per_page;
1104 int block;
1105 int pnum;
1106 int poff;
1107 struct page *page;
1108 int ret;
1109 struct ext4_group_info *grp;
1110 struct ext4_sb_info *sbi = EXT4_SB(sb);
1111 struct inode *inode = sbi->s_buddy_cache;
1112
1113 might_sleep();
1114 mb_debug(1, "load group %u\n", group);
1115
1116 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1117 grp = ext4_get_group_info(sb, group);
1118
1119 e4b->bd_blkbits = sb->s_blocksize_bits;
1120 e4b->bd_info = grp;
1121 e4b->bd_sb = sb;
1122 e4b->bd_group = group;
1123 e4b->bd_buddy_page = NULL;
1124 e4b->bd_bitmap_page = NULL;
1125
1126 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 /*
1128 * we need full data about the group
1129 * to make a good selection
1130 */
1131 ret = ext4_mb_init_group(sb, group, gfp);
1132 if (ret)
1133 return ret;
1134 }
1135
1136 /*
1137 * the buddy cache inode stores the block bitmap
1138 * and buddy information in consecutive blocks.
1139 * So for each group we need two blocks.
1140 */
1141 block = group * 2;
1142 pnum = block / blocks_per_page;
1143 poff = block % blocks_per_page;
1144
1145 /* we could use find_or_create_page(), but it locks page
1146 * what we'd like to avoid in fast path ... */
1147 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1148 if (page == NULL || !PageUptodate(page)) {
1149 if (page)
1150 /*
1151 * drop the page reference and try
1152 * to get the page with lock. If we
1153 * are not uptodate that implies
1154 * somebody just created the page but
1155 * is yet to initialize the same. So
1156 * wait for it to initialize.
1157 */
1158 put_page(page);
1159 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1160 if (page) {
1161 BUG_ON(page->mapping != inode->i_mapping);
1162 if (!PageUptodate(page)) {
1163 ret = ext4_mb_init_cache(page, NULL, gfp);
1164 if (ret) {
1165 unlock_page(page);
1166 goto err;
1167 }
1168 mb_cmp_bitmaps(e4b, page_address(page) +
1169 (poff * sb->s_blocksize));
1170 }
1171 unlock_page(page);
1172 }
1173 }
1174 if (page == NULL) {
1175 ret = -ENOMEM;
1176 goto err;
1177 }
1178 if (!PageUptodate(page)) {
1179 ret = -EIO;
1180 goto err;
1181 }
1182
1183 /* Pages marked accessed already */
1184 e4b->bd_bitmap_page = page;
1185 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1186
1187 block++;
1188 pnum = block / blocks_per_page;
1189 poff = block % blocks_per_page;
1190
1191 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1192 if (page == NULL || !PageUptodate(page)) {
1193 if (page)
1194 put_page(page);
1195 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1196 if (page) {
1197 BUG_ON(page->mapping != inode->i_mapping);
1198 if (!PageUptodate(page)) {
1199 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1200 gfp);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1204 }
1205 }
1206 unlock_page(page);
1207 }
1208 }
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1212 }
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1216 }
1217
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1224
1225 return 0;
1226
1227 err:
1228 if (page)
1229 put_page(page);
1230 if (e4b->bd_bitmap_page)
1231 put_page(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 put_page(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1237 }
1238
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1239 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1240 struct ext4_buddy *e4b)
1241 {
1242 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1243 }
1244
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1245 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 {
1247 if (e4b->bd_bitmap_page)
1248 put_page(e4b->bd_bitmap_page);
1249 if (e4b->bd_buddy_page)
1250 put_page(e4b->bd_buddy_page);
1251 }
1252
1253
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1254 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1255 {
1256 int order = 1;
1257 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1258 void *bb;
1259
1260 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1261 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1262
1263 bb = e4b->bd_buddy;
1264 while (order <= e4b->bd_blkbits + 1) {
1265 block = block >> 1;
1266 if (!mb_test_bit(block, bb)) {
1267 /* this block is part of buddy of order 'order' */
1268 return order;
1269 }
1270 bb += bb_incr;
1271 bb_incr >>= 1;
1272 order++;
1273 }
1274 return 0;
1275 }
1276
mb_clear_bits(void * bm,int cur,int len)1277 static void mb_clear_bits(void *bm, int cur, int len)
1278 {
1279 __u32 *addr;
1280
1281 len = cur + len;
1282 while (cur < len) {
1283 if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 /* fast path: clear whole word at once */
1285 addr = bm + (cur >> 3);
1286 *addr = 0;
1287 cur += 32;
1288 continue;
1289 }
1290 mb_clear_bit(cur, bm);
1291 cur++;
1292 }
1293 }
1294
1295 /* clear bits in given range
1296 * will return first found zero bit if any, -1 otherwise
1297 */
mb_test_and_clear_bits(void * bm,int cur,int len)1298 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1299 {
1300 __u32 *addr;
1301 int zero_bit = -1;
1302
1303 len = cur + len;
1304 while (cur < len) {
1305 if ((cur & 31) == 0 && (len - cur) >= 32) {
1306 /* fast path: clear whole word at once */
1307 addr = bm + (cur >> 3);
1308 if (*addr != (__u32)(-1) && zero_bit == -1)
1309 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1310 *addr = 0;
1311 cur += 32;
1312 continue;
1313 }
1314 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1315 zero_bit = cur;
1316 cur++;
1317 }
1318
1319 return zero_bit;
1320 }
1321
ext4_set_bits(void * bm,int cur,int len)1322 void ext4_set_bits(void *bm, int cur, int len)
1323 {
1324 __u32 *addr;
1325
1326 len = cur + len;
1327 while (cur < len) {
1328 if ((cur & 31) == 0 && (len - cur) >= 32) {
1329 /* fast path: set whole word at once */
1330 addr = bm + (cur >> 3);
1331 *addr = 0xffffffff;
1332 cur += 32;
1333 continue;
1334 }
1335 mb_set_bit(cur, bm);
1336 cur++;
1337 }
1338 }
1339
1340 /*
1341 * _________________________________________________________________ */
1342
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1343 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 {
1345 if (mb_test_bit(*bit + side, bitmap)) {
1346 mb_clear_bit(*bit, bitmap);
1347 (*bit) -= side;
1348 return 1;
1349 }
1350 else {
1351 (*bit) += side;
1352 mb_set_bit(*bit, bitmap);
1353 return -1;
1354 }
1355 }
1356
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1357 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1358 {
1359 int max;
1360 int order = 1;
1361 void *buddy = mb_find_buddy(e4b, order, &max);
1362
1363 while (buddy) {
1364 void *buddy2;
1365
1366 /* Bits in range [first; last] are known to be set since
1367 * corresponding blocks were allocated. Bits in range
1368 * (first; last) will stay set because they form buddies on
1369 * upper layer. We just deal with borders if they don't
1370 * align with upper layer and then go up.
1371 * Releasing entire group is all about clearing
1372 * single bit of highest order buddy.
1373 */
1374
1375 /* Example:
1376 * ---------------------------------
1377 * | 1 | 1 | 1 | 1 |
1378 * ---------------------------------
1379 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1380 * ---------------------------------
1381 * 0 1 2 3 4 5 6 7
1382 * \_____________________/
1383 *
1384 * Neither [1] nor [6] is aligned to above layer.
1385 * Left neighbour [0] is free, so mark it busy,
1386 * decrease bb_counters and extend range to
1387 * [0; 6]
1388 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1389 * mark [6] free, increase bb_counters and shrink range to
1390 * [0; 5].
1391 * Then shift range to [0; 2], go up and do the same.
1392 */
1393
1394
1395 if (first & 1)
1396 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1397 if (!(last & 1))
1398 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1399 if (first > last)
1400 break;
1401 order++;
1402
1403 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1404 mb_clear_bits(buddy, first, last - first + 1);
1405 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1406 break;
1407 }
1408 first >>= 1;
1409 last >>= 1;
1410 buddy = buddy2;
1411 }
1412 }
1413
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1414 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1415 int first, int count)
1416 {
1417 int left_is_free = 0;
1418 int right_is_free = 0;
1419 int block;
1420 int last = first + count - 1;
1421 struct super_block *sb = e4b->bd_sb;
1422
1423 if (WARN_ON(count == 0))
1424 return;
1425 BUG_ON(last >= (sb->s_blocksize << 3));
1426 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1427 /* Don't bother if the block group is corrupt. */
1428 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1429 return;
1430
1431 mb_check_buddy(e4b);
1432 mb_free_blocks_double(inode, e4b, first, count);
1433
1434 e4b->bd_info->bb_free += count;
1435 if (first < e4b->bd_info->bb_first_free)
1436 e4b->bd_info->bb_first_free = first;
1437
1438 /* access memory sequentially: check left neighbour,
1439 * clear range and then check right neighbour
1440 */
1441 if (first != 0)
1442 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1443 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1444 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1445 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446
1447 if (unlikely(block != -1)) {
1448 struct ext4_sb_info *sbi = EXT4_SB(sb);
1449 ext4_fsblk_t blocknr;
1450
1451 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1452 blocknr += EXT4_C2B(sbi, block);
1453 ext4_grp_locked_error(sb, e4b->bd_group,
1454 inode ? inode->i_ino : 0,
1455 blocknr,
1456 "freeing already freed block "
1457 "(bit %u); block bitmap corrupt.",
1458 block);
1459 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1460 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1461 mb_regenerate_buddy(e4b);
1462 goto done;
1463 }
1464
1465 /* let's maintain fragments counter */
1466 if (left_is_free && right_is_free)
1467 e4b->bd_info->bb_fragments--;
1468 else if (!left_is_free && !right_is_free)
1469 e4b->bd_info->bb_fragments++;
1470
1471 /* buddy[0] == bd_bitmap is a special case, so handle
1472 * it right away and let mb_buddy_mark_free stay free of
1473 * zero order checks.
1474 * Check if neighbours are to be coaleasced,
1475 * adjust bitmap bb_counters and borders appropriately.
1476 */
1477 if (first & 1) {
1478 first += !left_is_free;
1479 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1480 }
1481 if (!(last & 1)) {
1482 last -= !right_is_free;
1483 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1484 }
1485
1486 if (first <= last)
1487 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1488
1489 done:
1490 mb_set_largest_free_order(sb, e4b->bd_info);
1491 mb_check_buddy(e4b);
1492 }
1493
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1494 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1495 int needed, struct ext4_free_extent *ex)
1496 {
1497 int next = block;
1498 int max, order;
1499 void *buddy;
1500
1501 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1502 BUG_ON(ex == NULL);
1503
1504 buddy = mb_find_buddy(e4b, 0, &max);
1505 BUG_ON(buddy == NULL);
1506 BUG_ON(block >= max);
1507 if (mb_test_bit(block, buddy)) {
1508 ex->fe_len = 0;
1509 ex->fe_start = 0;
1510 ex->fe_group = 0;
1511 return 0;
1512 }
1513
1514 /* find actual order */
1515 order = mb_find_order_for_block(e4b, block);
1516 block = block >> order;
1517
1518 ex->fe_len = 1 << order;
1519 ex->fe_start = block << order;
1520 ex->fe_group = e4b->bd_group;
1521
1522 /* calc difference from given start */
1523 next = next - ex->fe_start;
1524 ex->fe_len -= next;
1525 ex->fe_start += next;
1526
1527 while (needed > ex->fe_len &&
1528 mb_find_buddy(e4b, order, &max)) {
1529
1530 if (block + 1 >= max)
1531 break;
1532
1533 next = (block + 1) * (1 << order);
1534 if (mb_test_bit(next, e4b->bd_bitmap))
1535 break;
1536
1537 order = mb_find_order_for_block(e4b, next);
1538
1539 block = next >> order;
1540 ex->fe_len += 1 << order;
1541 }
1542
1543 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1544 /* Should never happen! (but apparently sometimes does?!?) */
1545 WARN_ON(1);
1546 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1547 "corruption or bug in mb_find_extent "
1548 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1549 block, order, needed, ex->fe_group, ex->fe_start,
1550 ex->fe_len, ex->fe_logical);
1551 ex->fe_len = 0;
1552 ex->fe_start = 0;
1553 ex->fe_group = 0;
1554 }
1555 return ex->fe_len;
1556 }
1557
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1558 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1559 {
1560 int ord;
1561 int mlen = 0;
1562 int max = 0;
1563 int cur;
1564 int start = ex->fe_start;
1565 int len = ex->fe_len;
1566 unsigned ret = 0;
1567 int len0 = len;
1568 void *buddy;
1569
1570 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1571 BUG_ON(e4b->bd_group != ex->fe_group);
1572 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1573 mb_check_buddy(e4b);
1574 mb_mark_used_double(e4b, start, len);
1575
1576 e4b->bd_info->bb_free -= len;
1577 if (e4b->bd_info->bb_first_free == start)
1578 e4b->bd_info->bb_first_free += len;
1579
1580 /* let's maintain fragments counter */
1581 if (start != 0)
1582 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1583 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1584 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1585 if (mlen && max)
1586 e4b->bd_info->bb_fragments++;
1587 else if (!mlen && !max)
1588 e4b->bd_info->bb_fragments--;
1589
1590 /* let's maintain buddy itself */
1591 while (len) {
1592 ord = mb_find_order_for_block(e4b, start);
1593
1594 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1595 /* the whole chunk may be allocated at once! */
1596 mlen = 1 << ord;
1597 buddy = mb_find_buddy(e4b, ord, &max);
1598 BUG_ON((start >> ord) >= max);
1599 mb_set_bit(start >> ord, buddy);
1600 e4b->bd_info->bb_counters[ord]--;
1601 start += mlen;
1602 len -= mlen;
1603 BUG_ON(len < 0);
1604 continue;
1605 }
1606
1607 /* store for history */
1608 if (ret == 0)
1609 ret = len | (ord << 16);
1610
1611 /* we have to split large buddy */
1612 BUG_ON(ord <= 0);
1613 buddy = mb_find_buddy(e4b, ord, &max);
1614 mb_set_bit(start >> ord, buddy);
1615 e4b->bd_info->bb_counters[ord]--;
1616
1617 ord--;
1618 cur = (start >> ord) & ~1U;
1619 buddy = mb_find_buddy(e4b, ord, &max);
1620 mb_clear_bit(cur, buddy);
1621 mb_clear_bit(cur + 1, buddy);
1622 e4b->bd_info->bb_counters[ord]++;
1623 e4b->bd_info->bb_counters[ord]++;
1624 }
1625 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1626
1627 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1628 mb_check_buddy(e4b);
1629
1630 return ret;
1631 }
1632
1633 /*
1634 * Must be called under group lock!
1635 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1636 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1637 struct ext4_buddy *e4b)
1638 {
1639 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1640 int ret;
1641
1642 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1643 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1644
1645 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1646 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1647 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1648
1649 /* preallocation can change ac_b_ex, thus we store actually
1650 * allocated blocks for history */
1651 ac->ac_f_ex = ac->ac_b_ex;
1652
1653 ac->ac_status = AC_STATUS_FOUND;
1654 ac->ac_tail = ret & 0xffff;
1655 ac->ac_buddy = ret >> 16;
1656
1657 /*
1658 * take the page reference. We want the page to be pinned
1659 * so that we don't get a ext4_mb_init_cache_call for this
1660 * group until we update the bitmap. That would mean we
1661 * double allocate blocks. The reference is dropped
1662 * in ext4_mb_release_context
1663 */
1664 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1665 get_page(ac->ac_bitmap_page);
1666 ac->ac_buddy_page = e4b->bd_buddy_page;
1667 get_page(ac->ac_buddy_page);
1668 /* store last allocated for subsequent stream allocation */
1669 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1670 spin_lock(&sbi->s_md_lock);
1671 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1672 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1673 spin_unlock(&sbi->s_md_lock);
1674 }
1675 }
1676
1677 /*
1678 * regular allocator, for general purposes allocation
1679 */
1680
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1681 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1682 struct ext4_buddy *e4b,
1683 int finish_group)
1684 {
1685 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1686 struct ext4_free_extent *bex = &ac->ac_b_ex;
1687 struct ext4_free_extent *gex = &ac->ac_g_ex;
1688 struct ext4_free_extent ex;
1689 int max;
1690
1691 if (ac->ac_status == AC_STATUS_FOUND)
1692 return;
1693 /*
1694 * We don't want to scan for a whole year
1695 */
1696 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1697 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1698 ac->ac_status = AC_STATUS_BREAK;
1699 return;
1700 }
1701
1702 /*
1703 * Haven't found good chunk so far, let's continue
1704 */
1705 if (bex->fe_len < gex->fe_len)
1706 return;
1707
1708 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1709 && bex->fe_group == e4b->bd_group) {
1710 /* recheck chunk's availability - we don't know
1711 * when it was found (within this lock-unlock
1712 * period or not) */
1713 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1714 if (max >= gex->fe_len) {
1715 ext4_mb_use_best_found(ac, e4b);
1716 return;
1717 }
1718 }
1719 }
1720
1721 /*
1722 * The routine checks whether found extent is good enough. If it is,
1723 * then the extent gets marked used and flag is set to the context
1724 * to stop scanning. Otherwise, the extent is compared with the
1725 * previous found extent and if new one is better, then it's stored
1726 * in the context. Later, the best found extent will be used, if
1727 * mballoc can't find good enough extent.
1728 *
1729 * FIXME: real allocation policy is to be designed yet!
1730 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1731 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1732 struct ext4_free_extent *ex,
1733 struct ext4_buddy *e4b)
1734 {
1735 struct ext4_free_extent *bex = &ac->ac_b_ex;
1736 struct ext4_free_extent *gex = &ac->ac_g_ex;
1737
1738 BUG_ON(ex->fe_len <= 0);
1739 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1740 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1741 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1742
1743 ac->ac_found++;
1744
1745 /*
1746 * The special case - take what you catch first
1747 */
1748 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1749 *bex = *ex;
1750 ext4_mb_use_best_found(ac, e4b);
1751 return;
1752 }
1753
1754 /*
1755 * Let's check whether the chuck is good enough
1756 */
1757 if (ex->fe_len == gex->fe_len) {
1758 *bex = *ex;
1759 ext4_mb_use_best_found(ac, e4b);
1760 return;
1761 }
1762
1763 /*
1764 * If this is first found extent, just store it in the context
1765 */
1766 if (bex->fe_len == 0) {
1767 *bex = *ex;
1768 return;
1769 }
1770
1771 /*
1772 * If new found extent is better, store it in the context
1773 */
1774 if (bex->fe_len < gex->fe_len) {
1775 /* if the request isn't satisfied, any found extent
1776 * larger than previous best one is better */
1777 if (ex->fe_len > bex->fe_len)
1778 *bex = *ex;
1779 } else if (ex->fe_len > gex->fe_len) {
1780 /* if the request is satisfied, then we try to find
1781 * an extent that still satisfy the request, but is
1782 * smaller than previous one */
1783 if (ex->fe_len < bex->fe_len)
1784 *bex = *ex;
1785 }
1786
1787 ext4_mb_check_limits(ac, e4b, 0);
1788 }
1789
1790 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1791 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1792 struct ext4_buddy *e4b)
1793 {
1794 struct ext4_free_extent ex = ac->ac_b_ex;
1795 ext4_group_t group = ex.fe_group;
1796 int max;
1797 int err;
1798
1799 BUG_ON(ex.fe_len <= 0);
1800 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1801 if (err)
1802 return err;
1803
1804 ext4_lock_group(ac->ac_sb, group);
1805 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1806
1807 if (max > 0) {
1808 ac->ac_b_ex = ex;
1809 ext4_mb_use_best_found(ac, e4b);
1810 }
1811
1812 ext4_unlock_group(ac->ac_sb, group);
1813 ext4_mb_unload_buddy(e4b);
1814
1815 return 0;
1816 }
1817
1818 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1819 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1820 struct ext4_buddy *e4b)
1821 {
1822 ext4_group_t group = ac->ac_g_ex.fe_group;
1823 int max;
1824 int err;
1825 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1826 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1827 struct ext4_free_extent ex;
1828
1829 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1830 return 0;
1831 if (grp->bb_free == 0)
1832 return 0;
1833
1834 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1835 if (err)
1836 return err;
1837
1838 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1839 ext4_mb_unload_buddy(e4b);
1840 return 0;
1841 }
1842
1843 ext4_lock_group(ac->ac_sb, group);
1844 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1845 ac->ac_g_ex.fe_len, &ex);
1846 ex.fe_logical = 0xDEADFA11; /* debug value */
1847
1848 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1849 ext4_fsblk_t start;
1850
1851 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1852 ex.fe_start;
1853 /* use do_div to get remainder (would be 64-bit modulo) */
1854 if (do_div(start, sbi->s_stripe) == 0) {
1855 ac->ac_found++;
1856 ac->ac_b_ex = ex;
1857 ext4_mb_use_best_found(ac, e4b);
1858 }
1859 } else if (max >= ac->ac_g_ex.fe_len) {
1860 BUG_ON(ex.fe_len <= 0);
1861 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1862 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1863 ac->ac_found++;
1864 ac->ac_b_ex = ex;
1865 ext4_mb_use_best_found(ac, e4b);
1866 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1867 /* Sometimes, caller may want to merge even small
1868 * number of blocks to an existing extent */
1869 BUG_ON(ex.fe_len <= 0);
1870 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1871 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1872 ac->ac_found++;
1873 ac->ac_b_ex = ex;
1874 ext4_mb_use_best_found(ac, e4b);
1875 }
1876 ext4_unlock_group(ac->ac_sb, group);
1877 ext4_mb_unload_buddy(e4b);
1878
1879 return 0;
1880 }
1881
1882 /*
1883 * The routine scans buddy structures (not bitmap!) from given order
1884 * to max order and tries to find big enough chunk to satisfy the req
1885 */
1886 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1887 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1888 struct ext4_buddy *e4b)
1889 {
1890 struct super_block *sb = ac->ac_sb;
1891 struct ext4_group_info *grp = e4b->bd_info;
1892 void *buddy;
1893 int i;
1894 int k;
1895 int max;
1896
1897 BUG_ON(ac->ac_2order <= 0);
1898 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1899 if (grp->bb_counters[i] == 0)
1900 continue;
1901
1902 buddy = mb_find_buddy(e4b, i, &max);
1903 BUG_ON(buddy == NULL);
1904
1905 k = mb_find_next_zero_bit(buddy, max, 0);
1906 if (k >= max) {
1907 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1908 "%d free clusters of order %d. But found 0",
1909 grp->bb_counters[i], i);
1910 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1911 e4b->bd_group,
1912 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1913 break;
1914 }
1915 ac->ac_found++;
1916
1917 ac->ac_b_ex.fe_len = 1 << i;
1918 ac->ac_b_ex.fe_start = k << i;
1919 ac->ac_b_ex.fe_group = e4b->bd_group;
1920
1921 ext4_mb_use_best_found(ac, e4b);
1922
1923 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1924
1925 if (EXT4_SB(sb)->s_mb_stats)
1926 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1927
1928 break;
1929 }
1930 }
1931
1932 /*
1933 * The routine scans the group and measures all found extents.
1934 * In order to optimize scanning, caller must pass number of
1935 * free blocks in the group, so the routine can know upper limit.
1936 */
1937 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1938 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1939 struct ext4_buddy *e4b)
1940 {
1941 struct super_block *sb = ac->ac_sb;
1942 void *bitmap = e4b->bd_bitmap;
1943 struct ext4_free_extent ex;
1944 int i;
1945 int free;
1946
1947 free = e4b->bd_info->bb_free;
1948 if (WARN_ON(free <= 0))
1949 return;
1950
1951 i = e4b->bd_info->bb_first_free;
1952
1953 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1954 i = mb_find_next_zero_bit(bitmap,
1955 EXT4_CLUSTERS_PER_GROUP(sb), i);
1956 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1957 /*
1958 * IF we have corrupt bitmap, we won't find any
1959 * free blocks even though group info says we
1960 * we have free blocks
1961 */
1962 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1963 "%d free clusters as per "
1964 "group info. But bitmap says 0",
1965 free);
1966 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1967 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1968 break;
1969 }
1970
1971 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1972 if (WARN_ON(ex.fe_len <= 0))
1973 break;
1974 if (free < ex.fe_len) {
1975 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1976 "%d free clusters as per "
1977 "group info. But got %d blocks",
1978 free, ex.fe_len);
1979 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1980 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1981 /*
1982 * The number of free blocks differs. This mostly
1983 * indicate that the bitmap is corrupt. So exit
1984 * without claiming the space.
1985 */
1986 break;
1987 }
1988 ex.fe_logical = 0xDEADC0DE; /* debug value */
1989 ext4_mb_measure_extent(ac, &ex, e4b);
1990
1991 i += ex.fe_len;
1992 free -= ex.fe_len;
1993 }
1994
1995 ext4_mb_check_limits(ac, e4b, 1);
1996 }
1997
1998 /*
1999 * This is a special case for storages like raid5
2000 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001 */
2002 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2004 struct ext4_buddy *e4b)
2005 {
2006 struct super_block *sb = ac->ac_sb;
2007 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 void *bitmap = e4b->bd_bitmap;
2009 struct ext4_free_extent ex;
2010 ext4_fsblk_t first_group_block;
2011 ext4_fsblk_t a;
2012 ext4_grpblk_t i;
2013 int max;
2014
2015 BUG_ON(sbi->s_stripe == 0);
2016
2017 /* find first stripe-aligned block in group */
2018 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019
2020 a = first_group_block + sbi->s_stripe - 1;
2021 do_div(a, sbi->s_stripe);
2022 i = (a * sbi->s_stripe) - first_group_block;
2023
2024 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2025 if (!mb_test_bit(i, bitmap)) {
2026 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2027 if (max >= sbi->s_stripe) {
2028 ac->ac_found++;
2029 ex.fe_logical = 0xDEADF00D; /* debug value */
2030 ac->ac_b_ex = ex;
2031 ext4_mb_use_best_found(ac, e4b);
2032 break;
2033 }
2034 }
2035 i += sbi->s_stripe;
2036 }
2037 }
2038
2039 /*
2040 * This is now called BEFORE we load the buddy bitmap.
2041 * Returns either 1 or 0 indicating that the group is either suitable
2042 * for the allocation or not. In addition it can also return negative
2043 * error code when something goes wrong.
2044 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2046 ext4_group_t group, int cr)
2047 {
2048 unsigned free, fragments;
2049 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2050 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051
2052 BUG_ON(cr < 0 || cr >= 4);
2053
2054 free = grp->bb_free;
2055 if (free == 0)
2056 return 0;
2057 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2058 return 0;
2059
2060 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2061 return 0;
2062
2063 /* We only do this if the grp has never been initialized */
2064 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2065 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 fragments = grp->bb_fragments;
2071 if (fragments == 0)
2072 return 0;
2073
2074 switch (cr) {
2075 case 0:
2076 BUG_ON(ac->ac_2order == 0);
2077
2078 /* Avoid using the first bg of a flexgroup for data files */
2079 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2080 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2081 ((group % flex_size) == 0))
2082 return 0;
2083
2084 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2085 (free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087
2088 if (grp->bb_largest_free_order < ac->ac_2order)
2089 return 0;
2090
2091 return 1;
2092 case 1:
2093 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2094 return 1;
2095 break;
2096 case 2:
2097 if (free >= ac->ac_g_ex.fe_len)
2098 return 1;
2099 break;
2100 case 3:
2101 return 1;
2102 default:
2103 BUG();
2104 }
2105
2106 return 0;
2107 }
2108
2109 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 {
2112 ext4_group_t ngroups, group, i;
2113 int cr;
2114 int err = 0, first_err = 0;
2115 struct ext4_sb_info *sbi;
2116 struct super_block *sb;
2117 struct ext4_buddy e4b;
2118
2119 sb = ac->ac_sb;
2120 sbi = EXT4_SB(sb);
2121 ngroups = ext4_get_groups_count(sb);
2122 /* non-extent files are limited to low blocks/groups */
2123 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2124 ngroups = sbi->s_blockfile_groups;
2125
2126 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127
2128 /* first, try the goal */
2129 err = ext4_mb_find_by_goal(ac, &e4b);
2130 if (err || ac->ac_status == AC_STATUS_FOUND)
2131 goto out;
2132
2133 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2134 goto out;
2135
2136 /*
2137 * ac->ac2_order is set only if the fe_len is a power of 2
2138 * if ac2_order is set we also set criteria to 0 so that we
2139 * try exact allocation using buddy.
2140 */
2141 i = fls(ac->ac_g_ex.fe_len);
2142 ac->ac_2order = 0;
2143 /*
2144 * We search using buddy data only if the order of the request
2145 * is greater than equal to the sbi_s_mb_order2_reqs
2146 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2147 * We also support searching for power-of-two requests only for
2148 * requests upto maximum buddy size we have constructed.
2149 */
2150 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 /*
2152 * This should tell if fe_len is exactly power of 2
2153 */
2154 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2155 ac->ac_2order = array_index_nospec(i - 1,
2156 sb->s_blocksize_bits + 2);
2157 }
2158
2159 /* if stream allocation is enabled, use global goal */
2160 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2161 /* TBD: may be hot point */
2162 spin_lock(&sbi->s_md_lock);
2163 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2164 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2165 spin_unlock(&sbi->s_md_lock);
2166 }
2167
2168 /* Let's just scan groups to find more-less suitable blocks */
2169 cr = ac->ac_2order ? 0 : 1;
2170 /*
2171 * cr == 0 try to get exact allocation,
2172 * cr == 3 try to get anything
2173 */
2174 repeat:
2175 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2176 ac->ac_criteria = cr;
2177 /*
2178 * searching for the right group start
2179 * from the goal value specified
2180 */
2181 group = ac->ac_g_ex.fe_group;
2182
2183 for (i = 0; i < ngroups; group++, i++) {
2184 int ret = 0;
2185 cond_resched();
2186 /*
2187 * Artificially restricted ngroups for non-extent
2188 * files makes group > ngroups possible on first loop.
2189 */
2190 if (group >= ngroups)
2191 group = 0;
2192
2193 /* This now checks without needing the buddy page */
2194 ret = ext4_mb_good_group(ac, group, cr);
2195 if (ret <= 0) {
2196 if (!first_err)
2197 first_err = ret;
2198 continue;
2199 }
2200
2201 err = ext4_mb_load_buddy(sb, group, &e4b);
2202 if (err)
2203 goto out;
2204
2205 ext4_lock_group(sb, group);
2206
2207 /*
2208 * We need to check again after locking the
2209 * block group
2210 */
2211 ret = ext4_mb_good_group(ac, group, cr);
2212 if (ret <= 0) {
2213 ext4_unlock_group(sb, group);
2214 ext4_mb_unload_buddy(&e4b);
2215 if (!first_err)
2216 first_err = ret;
2217 continue;
2218 }
2219
2220 ac->ac_groups_scanned++;
2221 if (cr == 0)
2222 ext4_mb_simple_scan_group(ac, &e4b);
2223 else if (cr == 1 && sbi->s_stripe &&
2224 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2225 ext4_mb_scan_aligned(ac, &e4b);
2226 else
2227 ext4_mb_complex_scan_group(ac, &e4b);
2228
2229 ext4_unlock_group(sb, group);
2230 ext4_mb_unload_buddy(&e4b);
2231
2232 if (ac->ac_status != AC_STATUS_CONTINUE)
2233 break;
2234 }
2235 }
2236
2237 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2238 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2239 /*
2240 * We've been searching too long. Let's try to allocate
2241 * the best chunk we've found so far
2242 */
2243
2244 ext4_mb_try_best_found(ac, &e4b);
2245 if (ac->ac_status != AC_STATUS_FOUND) {
2246 /*
2247 * Someone more lucky has already allocated it.
2248 * The only thing we can do is just take first
2249 * found block(s)
2250 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2251 */
2252 ac->ac_b_ex.fe_group = 0;
2253 ac->ac_b_ex.fe_start = 0;
2254 ac->ac_b_ex.fe_len = 0;
2255 ac->ac_status = AC_STATUS_CONTINUE;
2256 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2257 cr = 3;
2258 atomic_inc(&sbi->s_mb_lost_chunks);
2259 goto repeat;
2260 }
2261 }
2262 out:
2263 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2264 err = first_err;
2265 return err;
2266 }
2267
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2268 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2269 {
2270 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2271 ext4_group_t group;
2272
2273 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2274 return NULL;
2275 group = *pos + 1;
2276 return (void *) ((unsigned long) group);
2277 }
2278
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2279 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2280 {
2281 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2282 ext4_group_t group;
2283
2284 ++*pos;
2285 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2286 return NULL;
2287 group = *pos + 1;
2288 return (void *) ((unsigned long) group);
2289 }
2290
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2291 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2292 {
2293 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2294 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2295 int i;
2296 int err, buddy_loaded = 0;
2297 struct ext4_buddy e4b;
2298 struct ext4_group_info *grinfo;
2299 unsigned char blocksize_bits = min_t(unsigned char,
2300 sb->s_blocksize_bits,
2301 EXT4_MAX_BLOCK_LOG_SIZE);
2302 struct sg {
2303 struct ext4_group_info info;
2304 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2305 } sg;
2306
2307 group--;
2308 if (group == 0)
2309 seq_puts(seq, "#group: free frags first ["
2310 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2311 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2312
2313 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2314 sizeof(struct ext4_group_info);
2315
2316 grinfo = ext4_get_group_info(sb, group);
2317 /* Load the group info in memory only if not already loaded. */
2318 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2319 err = ext4_mb_load_buddy(sb, group, &e4b);
2320 if (err) {
2321 seq_printf(seq, "#%-5u: I/O error\n", group);
2322 return 0;
2323 }
2324 buddy_loaded = 1;
2325 }
2326
2327 memcpy(&sg, ext4_get_group_info(sb, group), i);
2328
2329 if (buddy_loaded)
2330 ext4_mb_unload_buddy(&e4b);
2331
2332 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2333 sg.info.bb_fragments, sg.info.bb_first_free);
2334 for (i = 0; i <= 13; i++)
2335 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2336 sg.info.bb_counters[i] : 0);
2337 seq_printf(seq, " ]\n");
2338
2339 return 0;
2340 }
2341
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2342 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2343 {
2344 }
2345
2346 const struct seq_operations ext4_mb_seq_groups_ops = {
2347 .start = ext4_mb_seq_groups_start,
2348 .next = ext4_mb_seq_groups_next,
2349 .stop = ext4_mb_seq_groups_stop,
2350 .show = ext4_mb_seq_groups_show,
2351 };
2352
get_groupinfo_cache(int blocksize_bits)2353 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2354 {
2355 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2356 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2357
2358 BUG_ON(!cachep);
2359 return cachep;
2360 }
2361
2362 /*
2363 * Allocate the top-level s_group_info array for the specified number
2364 * of groups
2365 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2366 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2367 {
2368 struct ext4_sb_info *sbi = EXT4_SB(sb);
2369 unsigned size;
2370 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2371
2372 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2373 EXT4_DESC_PER_BLOCK_BITS(sb);
2374 if (size <= sbi->s_group_info_size)
2375 return 0;
2376
2377 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2378 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2379 if (!new_groupinfo) {
2380 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2381 return -ENOMEM;
2382 }
2383 rcu_read_lock();
2384 old_groupinfo = rcu_dereference(sbi->s_group_info);
2385 if (old_groupinfo)
2386 memcpy(new_groupinfo, old_groupinfo,
2387 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2388 rcu_read_unlock();
2389 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2390 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2391 if (old_groupinfo)
2392 ext4_kvfree_array_rcu(old_groupinfo);
2393 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2394 sbi->s_group_info_size);
2395 return 0;
2396 }
2397
2398 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2399 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2400 struct ext4_group_desc *desc)
2401 {
2402 int i;
2403 int metalen = 0;
2404 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2405 struct ext4_sb_info *sbi = EXT4_SB(sb);
2406 struct ext4_group_info **meta_group_info;
2407 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2408
2409 /*
2410 * First check if this group is the first of a reserved block.
2411 * If it's true, we have to allocate a new table of pointers
2412 * to ext4_group_info structures
2413 */
2414 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2415 metalen = sizeof(*meta_group_info) <<
2416 EXT4_DESC_PER_BLOCK_BITS(sb);
2417 meta_group_info = kmalloc(metalen, GFP_NOFS);
2418 if (meta_group_info == NULL) {
2419 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2420 "for a buddy group");
2421 goto exit_meta_group_info;
2422 }
2423 rcu_read_lock();
2424 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2425 rcu_read_unlock();
2426 }
2427
2428 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2429 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2430
2431 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2432 if (meta_group_info[i] == NULL) {
2433 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2434 goto exit_group_info;
2435 }
2436 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2437 &(meta_group_info[i]->bb_state));
2438
2439 /*
2440 * initialize bb_free to be able to skip
2441 * empty groups without initialization
2442 */
2443 if (ext4_has_group_desc_csum(sb) &&
2444 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2445 meta_group_info[i]->bb_free =
2446 ext4_free_clusters_after_init(sb, group, desc);
2447 } else {
2448 meta_group_info[i]->bb_free =
2449 ext4_free_group_clusters(sb, desc);
2450 }
2451
2452 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2453 init_rwsem(&meta_group_info[i]->alloc_sem);
2454 meta_group_info[i]->bb_free_root = RB_ROOT;
2455 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2456
2457 #ifdef DOUBLE_CHECK
2458 {
2459 struct buffer_head *bh;
2460 meta_group_info[i]->bb_bitmap =
2461 kmalloc(sb->s_blocksize, GFP_NOFS);
2462 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2463 bh = ext4_read_block_bitmap(sb, group);
2464 BUG_ON(IS_ERR_OR_NULL(bh));
2465 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2466 sb->s_blocksize);
2467 put_bh(bh);
2468 }
2469 #endif
2470
2471 return 0;
2472
2473 exit_group_info:
2474 /* If a meta_group_info table has been allocated, release it now */
2475 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2476 struct ext4_group_info ***group_info;
2477
2478 rcu_read_lock();
2479 group_info = rcu_dereference(sbi->s_group_info);
2480 kfree(group_info[idx]);
2481 group_info[idx] = NULL;
2482 rcu_read_unlock();
2483 }
2484 exit_meta_group_info:
2485 return -ENOMEM;
2486 } /* ext4_mb_add_groupinfo */
2487
ext4_mb_init_backend(struct super_block * sb)2488 static int ext4_mb_init_backend(struct super_block *sb)
2489 {
2490 ext4_group_t ngroups = ext4_get_groups_count(sb);
2491 ext4_group_t i;
2492 struct ext4_sb_info *sbi = EXT4_SB(sb);
2493 int err;
2494 struct ext4_group_desc *desc;
2495 struct ext4_group_info ***group_info;
2496 struct kmem_cache *cachep;
2497
2498 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2499 if (err)
2500 return err;
2501
2502 sbi->s_buddy_cache = new_inode(sb);
2503 if (sbi->s_buddy_cache == NULL) {
2504 ext4_msg(sb, KERN_ERR, "can't get new inode");
2505 goto err_freesgi;
2506 }
2507 /* To avoid potentially colliding with an valid on-disk inode number,
2508 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2509 * not in the inode hash, so it should never be found by iget(), but
2510 * this will avoid confusion if it ever shows up during debugging. */
2511 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2512 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2513 for (i = 0; i < ngroups; i++) {
2514 desc = ext4_get_group_desc(sb, i, NULL);
2515 if (desc == NULL) {
2516 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2517 goto err_freebuddy;
2518 }
2519 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2520 goto err_freebuddy;
2521 }
2522
2523 return 0;
2524
2525 err_freebuddy:
2526 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2527 while (i-- > 0)
2528 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2529 i = sbi->s_group_info_size;
2530 rcu_read_lock();
2531 group_info = rcu_dereference(sbi->s_group_info);
2532 while (i-- > 0)
2533 kfree(group_info[i]);
2534 rcu_read_unlock();
2535 iput(sbi->s_buddy_cache);
2536 err_freesgi:
2537 rcu_read_lock();
2538 kvfree(rcu_dereference(sbi->s_group_info));
2539 rcu_read_unlock();
2540 return -ENOMEM;
2541 }
2542
ext4_groupinfo_destroy_slabs(void)2543 static void ext4_groupinfo_destroy_slabs(void)
2544 {
2545 int i;
2546
2547 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2548 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2549 ext4_groupinfo_caches[i] = NULL;
2550 }
2551 }
2552
ext4_groupinfo_create_slab(size_t size)2553 static int ext4_groupinfo_create_slab(size_t size)
2554 {
2555 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2556 int slab_size;
2557 int blocksize_bits = order_base_2(size);
2558 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2559 struct kmem_cache *cachep;
2560
2561 if (cache_index >= NR_GRPINFO_CACHES)
2562 return -EINVAL;
2563
2564 if (unlikely(cache_index < 0))
2565 cache_index = 0;
2566
2567 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2568 if (ext4_groupinfo_caches[cache_index]) {
2569 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2570 return 0; /* Already created */
2571 }
2572
2573 slab_size = offsetof(struct ext4_group_info,
2574 bb_counters[blocksize_bits + 2]);
2575
2576 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2577 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2578 NULL);
2579
2580 ext4_groupinfo_caches[cache_index] = cachep;
2581
2582 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2583 if (!cachep) {
2584 printk(KERN_EMERG
2585 "EXT4-fs: no memory for groupinfo slab cache\n");
2586 return -ENOMEM;
2587 }
2588
2589 return 0;
2590 }
2591
ext4_mb_init(struct super_block * sb)2592 int ext4_mb_init(struct super_block *sb)
2593 {
2594 struct ext4_sb_info *sbi = EXT4_SB(sb);
2595 unsigned i, j;
2596 unsigned offset, offset_incr;
2597 unsigned max;
2598 int ret;
2599
2600 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2601
2602 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2603 if (sbi->s_mb_offsets == NULL) {
2604 ret = -ENOMEM;
2605 goto out;
2606 }
2607
2608 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2609 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2610 if (sbi->s_mb_maxs == NULL) {
2611 ret = -ENOMEM;
2612 goto out;
2613 }
2614
2615 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2616 if (ret < 0)
2617 goto out;
2618
2619 /* order 0 is regular bitmap */
2620 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2621 sbi->s_mb_offsets[0] = 0;
2622
2623 i = 1;
2624 offset = 0;
2625 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2626 max = sb->s_blocksize << 2;
2627 do {
2628 sbi->s_mb_offsets[i] = offset;
2629 sbi->s_mb_maxs[i] = max;
2630 offset += offset_incr;
2631 offset_incr = offset_incr >> 1;
2632 max = max >> 1;
2633 i++;
2634 } while (i <= sb->s_blocksize_bits + 1);
2635
2636 spin_lock_init(&sbi->s_md_lock);
2637 spin_lock_init(&sbi->s_bal_lock);
2638 sbi->s_mb_free_pending = 0;
2639 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2640
2641 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2642 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2643 sbi->s_mb_stats = MB_DEFAULT_STATS;
2644 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2645 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2646 /*
2647 * The default group preallocation is 512, which for 4k block
2648 * sizes translates to 2 megabytes. However for bigalloc file
2649 * systems, this is probably too big (i.e, if the cluster size
2650 * is 1 megabyte, then group preallocation size becomes half a
2651 * gigabyte!). As a default, we will keep a two megabyte
2652 * group pralloc size for cluster sizes up to 64k, and after
2653 * that, we will force a minimum group preallocation size of
2654 * 32 clusters. This translates to 8 megs when the cluster
2655 * size is 256k, and 32 megs when the cluster size is 1 meg,
2656 * which seems reasonable as a default.
2657 */
2658 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2659 sbi->s_cluster_bits, 32);
2660 /*
2661 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2662 * to the lowest multiple of s_stripe which is bigger than
2663 * the s_mb_group_prealloc as determined above. We want
2664 * the preallocation size to be an exact multiple of the
2665 * RAID stripe size so that preallocations don't fragment
2666 * the stripes.
2667 */
2668 if (sbi->s_stripe > 1) {
2669 sbi->s_mb_group_prealloc = roundup(
2670 sbi->s_mb_group_prealloc, sbi->s_stripe);
2671 }
2672
2673 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2674 if (sbi->s_locality_groups == NULL) {
2675 ret = -ENOMEM;
2676 goto out;
2677 }
2678 for_each_possible_cpu(i) {
2679 struct ext4_locality_group *lg;
2680 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2681 mutex_init(&lg->lg_mutex);
2682 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2683 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2684 spin_lock_init(&lg->lg_prealloc_lock);
2685 }
2686
2687 /* init file for buddy data */
2688 ret = ext4_mb_init_backend(sb);
2689 if (ret != 0)
2690 goto out_free_locality_groups;
2691
2692 return 0;
2693
2694 out_free_locality_groups:
2695 free_percpu(sbi->s_locality_groups);
2696 sbi->s_locality_groups = NULL;
2697 out:
2698 kfree(sbi->s_mb_offsets);
2699 sbi->s_mb_offsets = NULL;
2700 kfree(sbi->s_mb_maxs);
2701 sbi->s_mb_maxs = NULL;
2702 return ret;
2703 }
2704
2705 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2706 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2707 {
2708 struct ext4_prealloc_space *pa;
2709 struct list_head *cur, *tmp;
2710 int count = 0;
2711
2712 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2713 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2714 list_del(&pa->pa_group_list);
2715 count++;
2716 kmem_cache_free(ext4_pspace_cachep, pa);
2717 }
2718 if (count)
2719 mb_debug(1, "mballoc: %u PAs left\n", count);
2720
2721 }
2722
ext4_mb_release(struct super_block * sb)2723 int ext4_mb_release(struct super_block *sb)
2724 {
2725 ext4_group_t ngroups = ext4_get_groups_count(sb);
2726 ext4_group_t i;
2727 int num_meta_group_infos;
2728 struct ext4_group_info *grinfo, ***group_info;
2729 struct ext4_sb_info *sbi = EXT4_SB(sb);
2730 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2731
2732 if (sbi->s_group_info) {
2733 for (i = 0; i < ngroups; i++) {
2734 grinfo = ext4_get_group_info(sb, i);
2735 #ifdef DOUBLE_CHECK
2736 kfree(grinfo->bb_bitmap);
2737 #endif
2738 ext4_lock_group(sb, i);
2739 ext4_mb_cleanup_pa(grinfo);
2740 ext4_unlock_group(sb, i);
2741 kmem_cache_free(cachep, grinfo);
2742 }
2743 num_meta_group_infos = (ngroups +
2744 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2745 EXT4_DESC_PER_BLOCK_BITS(sb);
2746 rcu_read_lock();
2747 group_info = rcu_dereference(sbi->s_group_info);
2748 for (i = 0; i < num_meta_group_infos; i++)
2749 kfree(group_info[i]);
2750 kvfree(group_info);
2751 rcu_read_unlock();
2752 }
2753 kfree(sbi->s_mb_offsets);
2754 kfree(sbi->s_mb_maxs);
2755 iput(sbi->s_buddy_cache);
2756 if (sbi->s_mb_stats) {
2757 ext4_msg(sb, KERN_INFO,
2758 "mballoc: %u blocks %u reqs (%u success)",
2759 atomic_read(&sbi->s_bal_allocated),
2760 atomic_read(&sbi->s_bal_reqs),
2761 atomic_read(&sbi->s_bal_success));
2762 ext4_msg(sb, KERN_INFO,
2763 "mballoc: %u extents scanned, %u goal hits, "
2764 "%u 2^N hits, %u breaks, %u lost",
2765 atomic_read(&sbi->s_bal_ex_scanned),
2766 atomic_read(&sbi->s_bal_goals),
2767 atomic_read(&sbi->s_bal_2orders),
2768 atomic_read(&sbi->s_bal_breaks),
2769 atomic_read(&sbi->s_mb_lost_chunks));
2770 ext4_msg(sb, KERN_INFO,
2771 "mballoc: %lu generated and it took %Lu",
2772 sbi->s_mb_buddies_generated,
2773 sbi->s_mb_generation_time);
2774 ext4_msg(sb, KERN_INFO,
2775 "mballoc: %u preallocated, %u discarded",
2776 atomic_read(&sbi->s_mb_preallocated),
2777 atomic_read(&sbi->s_mb_discarded));
2778 }
2779
2780 free_percpu(sbi->s_locality_groups);
2781
2782 return 0;
2783 }
2784
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)2785 static inline int ext4_issue_discard(struct super_block *sb,
2786 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2787 struct bio **biop)
2788 {
2789 ext4_fsblk_t discard_block;
2790
2791 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2792 ext4_group_first_block_no(sb, block_group));
2793 count = EXT4_C2B(EXT4_SB(sb), count);
2794 trace_ext4_discard_blocks(sb,
2795 (unsigned long long) discard_block, count);
2796 if (biop) {
2797 return __blkdev_issue_discard(sb->s_bdev,
2798 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2799 (sector_t)count << (sb->s_blocksize_bits - 9),
2800 GFP_NOFS, 0, biop);
2801 } else
2802 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2803 }
2804
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)2805 static void ext4_free_data_in_buddy(struct super_block *sb,
2806 struct ext4_free_data *entry)
2807 {
2808 struct ext4_buddy e4b;
2809 struct ext4_group_info *db;
2810 int err, count = 0, count2 = 0;
2811
2812 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2813 entry->efd_count, entry->efd_group, entry);
2814
2815 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2816 /* we expect to find existing buddy because it's pinned */
2817 BUG_ON(err != 0);
2818
2819 spin_lock(&EXT4_SB(sb)->s_md_lock);
2820 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2821 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2822
2823 db = e4b.bd_info;
2824 /* there are blocks to put in buddy to make them really free */
2825 count += entry->efd_count;
2826 count2++;
2827 ext4_lock_group(sb, entry->efd_group);
2828 /* Take it out of per group rb tree */
2829 rb_erase(&entry->efd_node, &(db->bb_free_root));
2830 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2831
2832 /*
2833 * Clear the trimmed flag for the group so that the next
2834 * ext4_trim_fs can trim it.
2835 * If the volume is mounted with -o discard, online discard
2836 * is supported and the free blocks will be trimmed online.
2837 */
2838 if (!test_opt(sb, DISCARD))
2839 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2840
2841 if (!db->bb_free_root.rb_node) {
2842 /* No more items in the per group rb tree
2843 * balance refcounts from ext4_mb_free_metadata()
2844 */
2845 put_page(e4b.bd_buddy_page);
2846 put_page(e4b.bd_bitmap_page);
2847 }
2848 ext4_unlock_group(sb, entry->efd_group);
2849 kmem_cache_free(ext4_free_data_cachep, entry);
2850 ext4_mb_unload_buddy(&e4b);
2851
2852 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2853 }
2854
2855 /*
2856 * This function is called by the jbd2 layer once the commit has finished,
2857 * so we know we can free the blocks that were released with that commit.
2858 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)2859 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2860 {
2861 struct ext4_sb_info *sbi = EXT4_SB(sb);
2862 struct ext4_free_data *entry, *tmp;
2863 struct bio *discard_bio = NULL;
2864 struct list_head freed_data_list;
2865 struct list_head *cut_pos = NULL;
2866 int err;
2867
2868 INIT_LIST_HEAD(&freed_data_list);
2869
2870 spin_lock(&sbi->s_md_lock);
2871 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2872 if (entry->efd_tid != commit_tid)
2873 break;
2874 cut_pos = &entry->efd_list;
2875 }
2876 if (cut_pos)
2877 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2878 cut_pos);
2879 spin_unlock(&sbi->s_md_lock);
2880
2881 if (test_opt(sb, DISCARD)) {
2882 list_for_each_entry(entry, &freed_data_list, efd_list) {
2883 err = ext4_issue_discard(sb, entry->efd_group,
2884 entry->efd_start_cluster,
2885 entry->efd_count,
2886 &discard_bio);
2887 if (err && err != -EOPNOTSUPP) {
2888 ext4_msg(sb, KERN_WARNING, "discard request in"
2889 " group:%d block:%d count:%d failed"
2890 " with %d", entry->efd_group,
2891 entry->efd_start_cluster,
2892 entry->efd_count, err);
2893 } else if (err == -EOPNOTSUPP)
2894 break;
2895 }
2896
2897 if (discard_bio) {
2898 submit_bio_wait(discard_bio);
2899 bio_put(discard_bio);
2900 }
2901 }
2902
2903 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2904 ext4_free_data_in_buddy(sb, entry);
2905 }
2906
ext4_init_mballoc(void)2907 int __init ext4_init_mballoc(void)
2908 {
2909 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2910 SLAB_RECLAIM_ACCOUNT);
2911 if (ext4_pspace_cachep == NULL)
2912 return -ENOMEM;
2913
2914 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2915 SLAB_RECLAIM_ACCOUNT);
2916 if (ext4_ac_cachep == NULL) {
2917 kmem_cache_destroy(ext4_pspace_cachep);
2918 return -ENOMEM;
2919 }
2920
2921 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2922 SLAB_RECLAIM_ACCOUNT);
2923 if (ext4_free_data_cachep == NULL) {
2924 kmem_cache_destroy(ext4_pspace_cachep);
2925 kmem_cache_destroy(ext4_ac_cachep);
2926 return -ENOMEM;
2927 }
2928 return 0;
2929 }
2930
ext4_exit_mballoc(void)2931 void ext4_exit_mballoc(void)
2932 {
2933 /*
2934 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2935 * before destroying the slab cache.
2936 */
2937 rcu_barrier();
2938 kmem_cache_destroy(ext4_pspace_cachep);
2939 kmem_cache_destroy(ext4_ac_cachep);
2940 kmem_cache_destroy(ext4_free_data_cachep);
2941 ext4_groupinfo_destroy_slabs();
2942 }
2943
2944
2945 /*
2946 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2947 * Returns 0 if success or error code
2948 */
2949 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2950 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2951 handle_t *handle, unsigned int reserv_clstrs)
2952 {
2953 struct buffer_head *bitmap_bh = NULL;
2954 struct ext4_group_desc *gdp;
2955 struct buffer_head *gdp_bh;
2956 struct ext4_sb_info *sbi;
2957 struct super_block *sb;
2958 ext4_fsblk_t block;
2959 int err, len;
2960
2961 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2962 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2963
2964 sb = ac->ac_sb;
2965 sbi = EXT4_SB(sb);
2966
2967 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2968 if (IS_ERR(bitmap_bh)) {
2969 err = PTR_ERR(bitmap_bh);
2970 bitmap_bh = NULL;
2971 goto out_err;
2972 }
2973
2974 BUFFER_TRACE(bitmap_bh, "getting write access");
2975 err = ext4_journal_get_write_access(handle, bitmap_bh);
2976 if (err)
2977 goto out_err;
2978
2979 err = -EIO;
2980 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2981 if (!gdp)
2982 goto out_err;
2983
2984 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2985 ext4_free_group_clusters(sb, gdp));
2986
2987 BUFFER_TRACE(gdp_bh, "get_write_access");
2988 err = ext4_journal_get_write_access(handle, gdp_bh);
2989 if (err)
2990 goto out_err;
2991
2992 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2993
2994 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2995 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
2996 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2997 "fs metadata", block, block+len);
2998 /* File system mounted not to panic on error
2999 * Fix the bitmap and return EFSCORRUPTED
3000 * We leak some of the blocks here.
3001 */
3002 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3003 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3004 ac->ac_b_ex.fe_len);
3005 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3006 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3007 if (!err)
3008 err = -EFSCORRUPTED;
3009 goto out_err;
3010 }
3011
3012 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3013 #ifdef AGGRESSIVE_CHECK
3014 {
3015 int i;
3016 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3017 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3018 bitmap_bh->b_data));
3019 }
3020 }
3021 #endif
3022 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3023 ac->ac_b_ex.fe_len);
3024 if (ext4_has_group_desc_csum(sb) &&
3025 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3026 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3027 ext4_free_group_clusters_set(sb, gdp,
3028 ext4_free_clusters_after_init(sb,
3029 ac->ac_b_ex.fe_group, gdp));
3030 }
3031 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3032 ext4_free_group_clusters_set(sb, gdp, len);
3033 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3034 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3035
3036 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3037 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3038 /*
3039 * Now reduce the dirty block count also. Should not go negative
3040 */
3041 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3042 /* release all the reserved blocks if non delalloc */
3043 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3044 reserv_clstrs);
3045
3046 if (sbi->s_log_groups_per_flex) {
3047 ext4_group_t flex_group = ext4_flex_group(sbi,
3048 ac->ac_b_ex.fe_group);
3049 atomic64_sub(ac->ac_b_ex.fe_len,
3050 &sbi_array_rcu_deref(sbi, s_flex_groups,
3051 flex_group)->free_clusters);
3052 }
3053
3054 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3055 if (err)
3056 goto out_err;
3057 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3058
3059 out_err:
3060 brelse(bitmap_bh);
3061 return err;
3062 }
3063
3064 /*
3065 * here we normalize request for locality group
3066 * Group request are normalized to s_mb_group_prealloc, which goes to
3067 * s_strip if we set the same via mount option.
3068 * s_mb_group_prealloc can be configured via
3069 * /sys/fs/ext4/<partition>/mb_group_prealloc
3070 *
3071 * XXX: should we try to preallocate more than the group has now?
3072 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3073 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3074 {
3075 struct super_block *sb = ac->ac_sb;
3076 struct ext4_locality_group *lg = ac->ac_lg;
3077
3078 BUG_ON(lg == NULL);
3079 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3080 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3081 current->pid, ac->ac_g_ex.fe_len);
3082 }
3083
3084 /*
3085 * Normalization means making request better in terms of
3086 * size and alignment
3087 */
3088 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3090 struct ext4_allocation_request *ar)
3091 {
3092 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3093 struct ext4_super_block *es = sbi->s_es;
3094 int bsbits, max;
3095 ext4_lblk_t end;
3096 loff_t size, start_off;
3097 loff_t orig_size __maybe_unused;
3098 ext4_lblk_t start;
3099 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3100 struct ext4_prealloc_space *pa;
3101
3102 /* do normalize only data requests, metadata requests
3103 do not need preallocation */
3104 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3105 return;
3106
3107 /* sometime caller may want exact blocks */
3108 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3109 return;
3110
3111 /* caller may indicate that preallocation isn't
3112 * required (it's a tail, for example) */
3113 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3114 return;
3115
3116 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3117 ext4_mb_normalize_group_request(ac);
3118 return ;
3119 }
3120
3121 bsbits = ac->ac_sb->s_blocksize_bits;
3122
3123 /* first, let's learn actual file size
3124 * given current request is allocated */
3125 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3126 size = size << bsbits;
3127 if (size < i_size_read(ac->ac_inode))
3128 size = i_size_read(ac->ac_inode);
3129 orig_size = size;
3130
3131 /* max size of free chunks */
3132 max = 2 << bsbits;
3133
3134 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3135 (req <= (size) || max <= (chunk_size))
3136
3137 /* first, try to predict filesize */
3138 /* XXX: should this table be tunable? */
3139 start_off = 0;
3140 if (size <= 16 * 1024) {
3141 size = 16 * 1024;
3142 } else if (size <= 32 * 1024) {
3143 size = 32 * 1024;
3144 } else if (size <= 64 * 1024) {
3145 size = 64 * 1024;
3146 } else if (size <= 128 * 1024) {
3147 size = 128 * 1024;
3148 } else if (size <= 256 * 1024) {
3149 size = 256 * 1024;
3150 } else if (size <= 512 * 1024) {
3151 size = 512 * 1024;
3152 } else if (size <= 1024 * 1024) {
3153 size = 1024 * 1024;
3154 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3155 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3156 (21 - bsbits)) << 21;
3157 size = 2 * 1024 * 1024;
3158 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3159 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3160 (22 - bsbits)) << 22;
3161 size = 4 * 1024 * 1024;
3162 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3163 (8<<20)>>bsbits, max, 8 * 1024)) {
3164 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3165 (23 - bsbits)) << 23;
3166 size = 8 * 1024 * 1024;
3167 } else {
3168 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3169 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3170 ac->ac_o_ex.fe_len) << bsbits;
3171 }
3172 size = size >> bsbits;
3173 start = start_off >> bsbits;
3174
3175 /*
3176 * For tiny groups (smaller than 8MB) the chosen allocation
3177 * alignment may be larger than group size. Make sure the
3178 * alignment does not move allocation to a different group which
3179 * makes mballoc fail assertions later.
3180 */
3181 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
3182 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
3183
3184 /* don't cover already allocated blocks in selected range */
3185 if (ar->pleft && start <= ar->lleft) {
3186 size -= ar->lleft + 1 - start;
3187 start = ar->lleft + 1;
3188 }
3189 if (ar->pright && start + size - 1 >= ar->lright)
3190 size -= start + size - ar->lright;
3191
3192 /*
3193 * Trim allocation request for filesystems with artificially small
3194 * groups.
3195 */
3196 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3197 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3198
3199 end = start + size;
3200
3201 /* check we don't cross already preallocated blocks */
3202 rcu_read_lock();
3203 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3204 ext4_lblk_t pa_end;
3205
3206 if (pa->pa_deleted)
3207 continue;
3208 spin_lock(&pa->pa_lock);
3209 if (pa->pa_deleted) {
3210 spin_unlock(&pa->pa_lock);
3211 continue;
3212 }
3213
3214 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3215 pa->pa_len);
3216
3217 /* PA must not overlap original request */
3218 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3219 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3220
3221 /* skip PAs this normalized request doesn't overlap with */
3222 if (pa->pa_lstart >= end || pa_end <= start) {
3223 spin_unlock(&pa->pa_lock);
3224 continue;
3225 }
3226 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3227
3228 /* adjust start or end to be adjacent to this pa */
3229 if (pa_end <= ac->ac_o_ex.fe_logical) {
3230 BUG_ON(pa_end < start);
3231 start = pa_end;
3232 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3233 BUG_ON(pa->pa_lstart > end);
3234 end = pa->pa_lstart;
3235 }
3236 spin_unlock(&pa->pa_lock);
3237 }
3238 rcu_read_unlock();
3239 size = end - start;
3240
3241 /* XXX: extra loop to check we really don't overlap preallocations */
3242 rcu_read_lock();
3243 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3244 ext4_lblk_t pa_end;
3245
3246 spin_lock(&pa->pa_lock);
3247 if (pa->pa_deleted == 0) {
3248 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3249 pa->pa_len);
3250 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3251 }
3252 spin_unlock(&pa->pa_lock);
3253 }
3254 rcu_read_unlock();
3255
3256 if (start + size <= ac->ac_o_ex.fe_logical &&
3257 start > ac->ac_o_ex.fe_logical) {
3258 ext4_msg(ac->ac_sb, KERN_ERR,
3259 "start %lu, size %lu, fe_logical %lu",
3260 (unsigned long) start, (unsigned long) size,
3261 (unsigned long) ac->ac_o_ex.fe_logical);
3262 BUG();
3263 }
3264 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3265
3266 /* now prepare goal request */
3267
3268 /* XXX: is it better to align blocks WRT to logical
3269 * placement or satisfy big request as is */
3270 ac->ac_g_ex.fe_logical = start;
3271 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3272
3273 /* define goal start in order to merge */
3274 if (ar->pright && (ar->lright == (start + size)) &&
3275 ar->pright >= size &&
3276 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
3277 /* merge to the right */
3278 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3279 &ac->ac_g_ex.fe_group,
3280 &ac->ac_g_ex.fe_start);
3281 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3282 }
3283 if (ar->pleft && (ar->lleft + 1 == start) &&
3284 ar->pleft + 1 < ext4_blocks_count(es)) {
3285 /* merge to the left */
3286 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3287 &ac->ac_g_ex.fe_group,
3288 &ac->ac_g_ex.fe_start);
3289 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3290 }
3291
3292 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3293 (unsigned) orig_size, (unsigned) start);
3294 }
3295
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3296 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3297 {
3298 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3299
3300 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3301 atomic_inc(&sbi->s_bal_reqs);
3302 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3303 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3304 atomic_inc(&sbi->s_bal_success);
3305 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3306 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3307 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3308 atomic_inc(&sbi->s_bal_goals);
3309 if (ac->ac_found > sbi->s_mb_max_to_scan)
3310 atomic_inc(&sbi->s_bal_breaks);
3311 }
3312
3313 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3314 trace_ext4_mballoc_alloc(ac);
3315 else
3316 trace_ext4_mballoc_prealloc(ac);
3317 }
3318
3319 /*
3320 * Called on failure; free up any blocks from the inode PA for this
3321 * context. We don't need this for MB_GROUP_PA because we only change
3322 * pa_free in ext4_mb_release_context(), but on failure, we've already
3323 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3324 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3325 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3326 {
3327 struct ext4_prealloc_space *pa = ac->ac_pa;
3328 struct ext4_buddy e4b;
3329 int err;
3330
3331 if (pa == NULL) {
3332 if (ac->ac_f_ex.fe_len == 0)
3333 return;
3334 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3335 if (err) {
3336 /*
3337 * This should never happen since we pin the
3338 * pages in the ext4_allocation_context so
3339 * ext4_mb_load_buddy() should never fail.
3340 */
3341 WARN(1, "mb_load_buddy failed (%d)", err);
3342 return;
3343 }
3344 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3345 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3346 ac->ac_f_ex.fe_len);
3347 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3348 ext4_mb_unload_buddy(&e4b);
3349 return;
3350 }
3351 if (pa->pa_type == MB_INODE_PA)
3352 pa->pa_free += ac->ac_b_ex.fe_len;
3353 }
3354
3355 /*
3356 * use blocks preallocated to inode
3357 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3358 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3359 struct ext4_prealloc_space *pa)
3360 {
3361 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3362 ext4_fsblk_t start;
3363 ext4_fsblk_t end;
3364 int len;
3365
3366 /* found preallocated blocks, use them */
3367 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3368 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3369 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3370 len = EXT4_NUM_B2C(sbi, end - start);
3371 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3372 &ac->ac_b_ex.fe_start);
3373 ac->ac_b_ex.fe_len = len;
3374 ac->ac_status = AC_STATUS_FOUND;
3375 ac->ac_pa = pa;
3376
3377 BUG_ON(start < pa->pa_pstart);
3378 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3379 BUG_ON(pa->pa_free < len);
3380 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3381 pa->pa_free -= len;
3382
3383 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3384 }
3385
3386 /*
3387 * use blocks preallocated to locality group
3388 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3389 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3390 struct ext4_prealloc_space *pa)
3391 {
3392 unsigned int len = ac->ac_o_ex.fe_len;
3393
3394 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3395 &ac->ac_b_ex.fe_group,
3396 &ac->ac_b_ex.fe_start);
3397 ac->ac_b_ex.fe_len = len;
3398 ac->ac_status = AC_STATUS_FOUND;
3399 ac->ac_pa = pa;
3400
3401 /* we don't correct pa_pstart or pa_plen here to avoid
3402 * possible race when the group is being loaded concurrently
3403 * instead we correct pa later, after blocks are marked
3404 * in on-disk bitmap -- see ext4_mb_release_context()
3405 * Other CPUs are prevented from allocating from this pa by lg_mutex
3406 */
3407 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3408 }
3409
3410 /*
3411 * Return the prealloc space that have minimal distance
3412 * from the goal block. @cpa is the prealloc
3413 * space that is having currently known minimal distance
3414 * from the goal block.
3415 */
3416 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3417 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3418 struct ext4_prealloc_space *pa,
3419 struct ext4_prealloc_space *cpa)
3420 {
3421 ext4_fsblk_t cur_distance, new_distance;
3422
3423 if (cpa == NULL) {
3424 atomic_inc(&pa->pa_count);
3425 return pa;
3426 }
3427 cur_distance = abs(goal_block - cpa->pa_pstart);
3428 new_distance = abs(goal_block - pa->pa_pstart);
3429
3430 if (cur_distance <= new_distance)
3431 return cpa;
3432
3433 /* drop the previous reference */
3434 atomic_dec(&cpa->pa_count);
3435 atomic_inc(&pa->pa_count);
3436 return pa;
3437 }
3438
3439 /*
3440 * search goal blocks in preallocated space
3441 */
3442 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3443 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3444 {
3445 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3446 int order, i;
3447 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3448 struct ext4_locality_group *lg;
3449 struct ext4_prealloc_space *pa, *cpa = NULL;
3450 ext4_fsblk_t goal_block;
3451
3452 /* only data can be preallocated */
3453 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3454 return 0;
3455
3456 /* first, try per-file preallocation */
3457 rcu_read_lock();
3458 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3459
3460 /* all fields in this condition don't change,
3461 * so we can skip locking for them */
3462 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3463 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3464 EXT4_C2B(sbi, pa->pa_len)))
3465 continue;
3466
3467 /* non-extent files can't have physical blocks past 2^32 */
3468 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3469 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3470 EXT4_MAX_BLOCK_FILE_PHYS))
3471 continue;
3472
3473 /* found preallocated blocks, use them */
3474 spin_lock(&pa->pa_lock);
3475 if (pa->pa_deleted == 0 && pa->pa_free) {
3476 atomic_inc(&pa->pa_count);
3477 ext4_mb_use_inode_pa(ac, pa);
3478 spin_unlock(&pa->pa_lock);
3479 ac->ac_criteria = 10;
3480 rcu_read_unlock();
3481 return 1;
3482 }
3483 spin_unlock(&pa->pa_lock);
3484 }
3485 rcu_read_unlock();
3486
3487 /* can we use group allocation? */
3488 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3489 return 0;
3490
3491 /* inode may have no locality group for some reason */
3492 lg = ac->ac_lg;
3493 if (lg == NULL)
3494 return 0;
3495 order = fls(ac->ac_o_ex.fe_len) - 1;
3496 if (order > PREALLOC_TB_SIZE - 1)
3497 /* The max size of hash table is PREALLOC_TB_SIZE */
3498 order = PREALLOC_TB_SIZE - 1;
3499
3500 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3501 /*
3502 * search for the prealloc space that is having
3503 * minimal distance from the goal block.
3504 */
3505 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3506 rcu_read_lock();
3507 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3508 pa_inode_list) {
3509 spin_lock(&pa->pa_lock);
3510 if (pa->pa_deleted == 0 &&
3511 pa->pa_free >= ac->ac_o_ex.fe_len) {
3512
3513 cpa = ext4_mb_check_group_pa(goal_block,
3514 pa, cpa);
3515 }
3516 spin_unlock(&pa->pa_lock);
3517 }
3518 rcu_read_unlock();
3519 }
3520 if (cpa) {
3521 ext4_mb_use_group_pa(ac, cpa);
3522 ac->ac_criteria = 20;
3523 return 1;
3524 }
3525 return 0;
3526 }
3527
3528 /*
3529 * the function goes through all block freed in the group
3530 * but not yet committed and marks them used in in-core bitmap.
3531 * buddy must be generated from this bitmap
3532 * Need to be called with the ext4 group lock held
3533 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3534 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3535 ext4_group_t group)
3536 {
3537 struct rb_node *n;
3538 struct ext4_group_info *grp;
3539 struct ext4_free_data *entry;
3540
3541 grp = ext4_get_group_info(sb, group);
3542 n = rb_first(&(grp->bb_free_root));
3543
3544 while (n) {
3545 entry = rb_entry(n, struct ext4_free_data, efd_node);
3546 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3547 n = rb_next(n);
3548 }
3549 return;
3550 }
3551
3552 /*
3553 * the function goes through all preallocation in this group and marks them
3554 * used in in-core bitmap. buddy must be generated from this bitmap
3555 * Need to be called with ext4 group lock held
3556 */
3557 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3558 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3559 ext4_group_t group)
3560 {
3561 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3562 struct ext4_prealloc_space *pa;
3563 struct list_head *cur;
3564 ext4_group_t groupnr;
3565 ext4_grpblk_t start;
3566 int preallocated = 0;
3567 int len;
3568
3569 /* all form of preallocation discards first load group,
3570 * so the only competing code is preallocation use.
3571 * we don't need any locking here
3572 * notice we do NOT ignore preallocations with pa_deleted
3573 * otherwise we could leave used blocks available for
3574 * allocation in buddy when concurrent ext4_mb_put_pa()
3575 * is dropping preallocation
3576 */
3577 list_for_each(cur, &grp->bb_prealloc_list) {
3578 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3579 spin_lock(&pa->pa_lock);
3580 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3581 &groupnr, &start);
3582 len = pa->pa_len;
3583 spin_unlock(&pa->pa_lock);
3584 if (unlikely(len == 0))
3585 continue;
3586 BUG_ON(groupnr != group);
3587 ext4_set_bits(bitmap, start, len);
3588 preallocated += len;
3589 }
3590 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3591 }
3592
ext4_mb_pa_callback(struct rcu_head * head)3593 static void ext4_mb_pa_callback(struct rcu_head *head)
3594 {
3595 struct ext4_prealloc_space *pa;
3596 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3597
3598 BUG_ON(atomic_read(&pa->pa_count));
3599 BUG_ON(pa->pa_deleted == 0);
3600 kmem_cache_free(ext4_pspace_cachep, pa);
3601 }
3602
3603 /*
3604 * drops a reference to preallocated space descriptor
3605 * if this was the last reference and the space is consumed
3606 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3607 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3608 struct super_block *sb, struct ext4_prealloc_space *pa)
3609 {
3610 ext4_group_t grp;
3611 ext4_fsblk_t grp_blk;
3612
3613 /* in this short window concurrent discard can set pa_deleted */
3614 spin_lock(&pa->pa_lock);
3615 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3616 spin_unlock(&pa->pa_lock);
3617 return;
3618 }
3619
3620 if (pa->pa_deleted == 1) {
3621 spin_unlock(&pa->pa_lock);
3622 return;
3623 }
3624
3625 pa->pa_deleted = 1;
3626 spin_unlock(&pa->pa_lock);
3627
3628 grp_blk = pa->pa_pstart;
3629 /*
3630 * If doing group-based preallocation, pa_pstart may be in the
3631 * next group when pa is used up
3632 */
3633 if (pa->pa_type == MB_GROUP_PA)
3634 grp_blk--;
3635
3636 grp = ext4_get_group_number(sb, grp_blk);
3637
3638 /*
3639 * possible race:
3640 *
3641 * P1 (buddy init) P2 (regular allocation)
3642 * find block B in PA
3643 * copy on-disk bitmap to buddy
3644 * mark B in on-disk bitmap
3645 * drop PA from group
3646 * mark all PAs in buddy
3647 *
3648 * thus, P1 initializes buddy with B available. to prevent this
3649 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3650 * against that pair
3651 */
3652 ext4_lock_group(sb, grp);
3653 list_del(&pa->pa_group_list);
3654 ext4_unlock_group(sb, grp);
3655
3656 spin_lock(pa->pa_obj_lock);
3657 list_del_rcu(&pa->pa_inode_list);
3658 spin_unlock(pa->pa_obj_lock);
3659
3660 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3661 }
3662
3663 /*
3664 * creates new preallocated space for given inode
3665 */
3666 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3667 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3668 {
3669 struct super_block *sb = ac->ac_sb;
3670 struct ext4_sb_info *sbi = EXT4_SB(sb);
3671 struct ext4_prealloc_space *pa;
3672 struct ext4_group_info *grp;
3673 struct ext4_inode_info *ei;
3674
3675 /* preallocate only when found space is larger then requested */
3676 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3677 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3678 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3679
3680 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3681 if (pa == NULL)
3682 return -ENOMEM;
3683
3684 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3685 int new_bex_start;
3686 int new_bex_end;
3687
3688 /* we can't allocate as much as normalizer wants.
3689 * so, found space must get proper lstart
3690 * to cover original request */
3691 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3692 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3693
3694 /*
3695 * Use the below logic for adjusting best extent as it keeps
3696 * fragmentation in check while ensuring logical range of best
3697 * extent doesn't overflow out of goal extent:
3698 *
3699 * 1. Check if best ex can be kept at end of goal and still
3700 * cover original start
3701 * 2. Else, check if best ex can be kept at start of goal and
3702 * still cover original start
3703 * 3. Else, keep the best ex at start of original request.
3704 */
3705 new_bex_end = ac->ac_g_ex.fe_logical +
3706 EXT4_C2B(sbi, ac->ac_g_ex.fe_len);
3707 new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3708 if (ac->ac_o_ex.fe_logical >= new_bex_start)
3709 goto adjust_bex;
3710
3711 new_bex_start = ac->ac_g_ex.fe_logical;
3712 new_bex_end =
3713 new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3714 if (ac->ac_o_ex.fe_logical < new_bex_end)
3715 goto adjust_bex;
3716
3717 new_bex_start = ac->ac_o_ex.fe_logical;
3718 new_bex_end =
3719 new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3720
3721 adjust_bex:
3722 ac->ac_b_ex.fe_logical = new_bex_start;
3723
3724 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3725 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3726 BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
3727 EXT4_C2B(sbi, ac->ac_g_ex.fe_len)));
3728 }
3729
3730 /* preallocation can change ac_b_ex, thus we store actually
3731 * allocated blocks for history */
3732 ac->ac_f_ex = ac->ac_b_ex;
3733
3734 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3735 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3736 pa->pa_len = ac->ac_b_ex.fe_len;
3737 pa->pa_free = pa->pa_len;
3738 atomic_set(&pa->pa_count, 1);
3739 spin_lock_init(&pa->pa_lock);
3740 INIT_LIST_HEAD(&pa->pa_inode_list);
3741 INIT_LIST_HEAD(&pa->pa_group_list);
3742 pa->pa_deleted = 0;
3743 pa->pa_type = MB_INODE_PA;
3744
3745 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3746 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3747 trace_ext4_mb_new_inode_pa(ac, pa);
3748
3749 ext4_mb_use_inode_pa(ac, pa);
3750 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3751
3752 ei = EXT4_I(ac->ac_inode);
3753 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3754
3755 pa->pa_obj_lock = &ei->i_prealloc_lock;
3756 pa->pa_inode = ac->ac_inode;
3757
3758 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3759 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3760 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3761
3762 spin_lock(pa->pa_obj_lock);
3763 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3764 spin_unlock(pa->pa_obj_lock);
3765
3766 return 0;
3767 }
3768
3769 /*
3770 * creates new preallocated space for locality group inodes belongs to
3771 */
3772 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3773 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3774 {
3775 struct super_block *sb = ac->ac_sb;
3776 struct ext4_locality_group *lg;
3777 struct ext4_prealloc_space *pa;
3778 struct ext4_group_info *grp;
3779
3780 /* preallocate only when found space is larger then requested */
3781 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3782 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3783 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3784
3785 BUG_ON(ext4_pspace_cachep == NULL);
3786 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3787 if (pa == NULL)
3788 return -ENOMEM;
3789
3790 /* preallocation can change ac_b_ex, thus we store actually
3791 * allocated blocks for history */
3792 ac->ac_f_ex = ac->ac_b_ex;
3793
3794 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3795 pa->pa_lstart = pa->pa_pstart;
3796 pa->pa_len = ac->ac_b_ex.fe_len;
3797 pa->pa_free = pa->pa_len;
3798 atomic_set(&pa->pa_count, 1);
3799 spin_lock_init(&pa->pa_lock);
3800 INIT_LIST_HEAD(&pa->pa_inode_list);
3801 INIT_LIST_HEAD(&pa->pa_group_list);
3802 pa->pa_deleted = 0;
3803 pa->pa_type = MB_GROUP_PA;
3804
3805 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3806 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3807 trace_ext4_mb_new_group_pa(ac, pa);
3808
3809 ext4_mb_use_group_pa(ac, pa);
3810 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3811
3812 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3813 lg = ac->ac_lg;
3814 BUG_ON(lg == NULL);
3815
3816 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3817 pa->pa_inode = NULL;
3818
3819 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3820 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3821 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3822
3823 /*
3824 * We will later add the new pa to the right bucket
3825 * after updating the pa_free in ext4_mb_release_context
3826 */
3827 return 0;
3828 }
3829
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3830 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3831 {
3832 int err;
3833
3834 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3835 err = ext4_mb_new_group_pa(ac);
3836 else
3837 err = ext4_mb_new_inode_pa(ac);
3838 return err;
3839 }
3840
3841 /*
3842 * finds all unused blocks in on-disk bitmap, frees them in
3843 * in-core bitmap and buddy.
3844 * @pa must be unlinked from inode and group lists, so that
3845 * nobody else can find/use it.
3846 * the caller MUST hold group/inode locks.
3847 * TODO: optimize the case when there are no in-core structures yet
3848 */
3849 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3850 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3851 struct ext4_prealloc_space *pa)
3852 {
3853 struct super_block *sb = e4b->bd_sb;
3854 struct ext4_sb_info *sbi = EXT4_SB(sb);
3855 unsigned int end;
3856 unsigned int next;
3857 ext4_group_t group;
3858 ext4_grpblk_t bit;
3859 unsigned long long grp_blk_start;
3860 int free = 0;
3861
3862 BUG_ON(pa->pa_deleted == 0);
3863 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3864 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3865 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3866 end = bit + pa->pa_len;
3867
3868 while (bit < end) {
3869 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3870 if (bit >= end)
3871 break;
3872 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3873 mb_debug(1, " free preallocated %u/%u in group %u\n",
3874 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3875 (unsigned) next - bit, (unsigned) group);
3876 free += next - bit;
3877
3878 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3879 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3880 EXT4_C2B(sbi, bit)),
3881 next - bit);
3882 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3883 bit = next + 1;
3884 }
3885 if (free != pa->pa_free) {
3886 ext4_msg(e4b->bd_sb, KERN_CRIT,
3887 "pa %p: logic %lu, phys. %lu, len %lu",
3888 pa, (unsigned long) pa->pa_lstart,
3889 (unsigned long) pa->pa_pstart,
3890 (unsigned long) pa->pa_len);
3891 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3892 free, pa->pa_free);
3893 /*
3894 * pa is already deleted so we use the value obtained
3895 * from the bitmap and continue.
3896 */
3897 }
3898 atomic_add(free, &sbi->s_mb_discarded);
3899
3900 return 0;
3901 }
3902
3903 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3904 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3905 struct ext4_prealloc_space *pa)
3906 {
3907 struct super_block *sb = e4b->bd_sb;
3908 ext4_group_t group;
3909 ext4_grpblk_t bit;
3910
3911 trace_ext4_mb_release_group_pa(sb, pa);
3912 BUG_ON(pa->pa_deleted == 0);
3913 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3914 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
3915 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
3916 e4b->bd_group, group, pa->pa_pstart);
3917 return 0;
3918 }
3919 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3920 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3921 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3922
3923 return 0;
3924 }
3925
3926 /*
3927 * releases all preallocations in given group
3928 *
3929 * first, we need to decide discard policy:
3930 * - when do we discard
3931 * 1) ENOSPC
3932 * - how many do we discard
3933 * 1) how many requested
3934 */
3935 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3936 ext4_mb_discard_group_preallocations(struct super_block *sb,
3937 ext4_group_t group, int needed)
3938 {
3939 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3940 struct buffer_head *bitmap_bh = NULL;
3941 struct ext4_prealloc_space *pa, *tmp;
3942 struct list_head list;
3943 struct ext4_buddy e4b;
3944 int err;
3945 int busy = 0;
3946 int free = 0;
3947
3948 mb_debug(1, "discard preallocation for group %u\n", group);
3949
3950 if (list_empty(&grp->bb_prealloc_list))
3951 return 0;
3952
3953 bitmap_bh = ext4_read_block_bitmap(sb, group);
3954 if (IS_ERR(bitmap_bh)) {
3955 err = PTR_ERR(bitmap_bh);
3956 ext4_error(sb, "Error %d reading block bitmap for %u",
3957 err, group);
3958 return 0;
3959 }
3960
3961 err = ext4_mb_load_buddy(sb, group, &e4b);
3962 if (err) {
3963 ext4_warning(sb, "Error %d loading buddy information for %u",
3964 err, group);
3965 put_bh(bitmap_bh);
3966 return 0;
3967 }
3968
3969 if (needed == 0)
3970 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3971
3972 INIT_LIST_HEAD(&list);
3973 repeat:
3974 ext4_lock_group(sb, group);
3975 list_for_each_entry_safe(pa, tmp,
3976 &grp->bb_prealloc_list, pa_group_list) {
3977 spin_lock(&pa->pa_lock);
3978 if (atomic_read(&pa->pa_count)) {
3979 spin_unlock(&pa->pa_lock);
3980 busy = 1;
3981 continue;
3982 }
3983 if (pa->pa_deleted) {
3984 spin_unlock(&pa->pa_lock);
3985 continue;
3986 }
3987
3988 /* seems this one can be freed ... */
3989 pa->pa_deleted = 1;
3990
3991 /* we can trust pa_free ... */
3992 free += pa->pa_free;
3993
3994 spin_unlock(&pa->pa_lock);
3995
3996 list_del(&pa->pa_group_list);
3997 list_add(&pa->u.pa_tmp_list, &list);
3998 }
3999
4000 /* if we still need more blocks and some PAs were used, try again */
4001 if (free < needed && busy) {
4002 busy = 0;
4003 ext4_unlock_group(sb, group);
4004 cond_resched();
4005 goto repeat;
4006 }
4007
4008 /* found anything to free? */
4009 if (list_empty(&list)) {
4010 BUG_ON(free != 0);
4011 goto out;
4012 }
4013
4014 /* now free all selected PAs */
4015 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4016
4017 /* remove from object (inode or locality group) */
4018 spin_lock(pa->pa_obj_lock);
4019 list_del_rcu(&pa->pa_inode_list);
4020 spin_unlock(pa->pa_obj_lock);
4021
4022 if (pa->pa_type == MB_GROUP_PA)
4023 ext4_mb_release_group_pa(&e4b, pa);
4024 else
4025 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4026
4027 list_del(&pa->u.pa_tmp_list);
4028 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4029 }
4030
4031 out:
4032 ext4_unlock_group(sb, group);
4033 ext4_mb_unload_buddy(&e4b);
4034 put_bh(bitmap_bh);
4035 return free;
4036 }
4037
4038 /*
4039 * releases all non-used preallocated blocks for given inode
4040 *
4041 * It's important to discard preallocations under i_data_sem
4042 * We don't want another block to be served from the prealloc
4043 * space when we are discarding the inode prealloc space.
4044 *
4045 * FIXME!! Make sure it is valid at all the call sites
4046 */
ext4_discard_preallocations(struct inode * inode)4047 void ext4_discard_preallocations(struct inode *inode)
4048 {
4049 struct ext4_inode_info *ei = EXT4_I(inode);
4050 struct super_block *sb = inode->i_sb;
4051 struct buffer_head *bitmap_bh = NULL;
4052 struct ext4_prealloc_space *pa, *tmp;
4053 ext4_group_t group = 0;
4054 struct list_head list;
4055 struct ext4_buddy e4b;
4056 int err;
4057
4058 if (!S_ISREG(inode->i_mode)) {
4059 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4060 return;
4061 }
4062
4063 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4064 trace_ext4_discard_preallocations(inode);
4065
4066 INIT_LIST_HEAD(&list);
4067
4068 repeat:
4069 /* first, collect all pa's in the inode */
4070 spin_lock(&ei->i_prealloc_lock);
4071 while (!list_empty(&ei->i_prealloc_list)) {
4072 pa = list_entry(ei->i_prealloc_list.next,
4073 struct ext4_prealloc_space, pa_inode_list);
4074 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4075 spin_lock(&pa->pa_lock);
4076 if (atomic_read(&pa->pa_count)) {
4077 /* this shouldn't happen often - nobody should
4078 * use preallocation while we're discarding it */
4079 spin_unlock(&pa->pa_lock);
4080 spin_unlock(&ei->i_prealloc_lock);
4081 ext4_msg(sb, KERN_ERR,
4082 "uh-oh! used pa while discarding");
4083 WARN_ON(1);
4084 schedule_timeout_uninterruptible(HZ);
4085 goto repeat;
4086
4087 }
4088 if (pa->pa_deleted == 0) {
4089 pa->pa_deleted = 1;
4090 spin_unlock(&pa->pa_lock);
4091 list_del_rcu(&pa->pa_inode_list);
4092 list_add(&pa->u.pa_tmp_list, &list);
4093 continue;
4094 }
4095
4096 /* someone is deleting pa right now */
4097 spin_unlock(&pa->pa_lock);
4098 spin_unlock(&ei->i_prealloc_lock);
4099
4100 /* we have to wait here because pa_deleted
4101 * doesn't mean pa is already unlinked from
4102 * the list. as we might be called from
4103 * ->clear_inode() the inode will get freed
4104 * and concurrent thread which is unlinking
4105 * pa from inode's list may access already
4106 * freed memory, bad-bad-bad */
4107
4108 /* XXX: if this happens too often, we can
4109 * add a flag to force wait only in case
4110 * of ->clear_inode(), but not in case of
4111 * regular truncate */
4112 schedule_timeout_uninterruptible(HZ);
4113 goto repeat;
4114 }
4115 spin_unlock(&ei->i_prealloc_lock);
4116
4117 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4118 BUG_ON(pa->pa_type != MB_INODE_PA);
4119 group = ext4_get_group_number(sb, pa->pa_pstart);
4120
4121 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4122 GFP_NOFS|__GFP_NOFAIL);
4123 if (err) {
4124 ext4_error(sb, "Error %d loading buddy information for %u",
4125 err, group);
4126 continue;
4127 }
4128
4129 bitmap_bh = ext4_read_block_bitmap(sb, group);
4130 if (IS_ERR(bitmap_bh)) {
4131 err = PTR_ERR(bitmap_bh);
4132 ext4_error(sb, "Error %d reading block bitmap for %u",
4133 err, group);
4134 ext4_mb_unload_buddy(&e4b);
4135 continue;
4136 }
4137
4138 ext4_lock_group(sb, group);
4139 list_del(&pa->pa_group_list);
4140 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4141 ext4_unlock_group(sb, group);
4142
4143 ext4_mb_unload_buddy(&e4b);
4144 put_bh(bitmap_bh);
4145
4146 list_del(&pa->u.pa_tmp_list);
4147 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4148 }
4149 }
4150
4151 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4152 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4153 {
4154 struct super_block *sb = ac->ac_sb;
4155 ext4_group_t ngroups, i;
4156
4157 if (!ext4_mballoc_debug ||
4158 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4159 return;
4160
4161 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4162 " Allocation context details:");
4163 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4164 ac->ac_status, ac->ac_flags);
4165 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4166 "goal %lu/%lu/%lu@%lu, "
4167 "best %lu/%lu/%lu@%lu cr %d",
4168 (unsigned long)ac->ac_o_ex.fe_group,
4169 (unsigned long)ac->ac_o_ex.fe_start,
4170 (unsigned long)ac->ac_o_ex.fe_len,
4171 (unsigned long)ac->ac_o_ex.fe_logical,
4172 (unsigned long)ac->ac_g_ex.fe_group,
4173 (unsigned long)ac->ac_g_ex.fe_start,
4174 (unsigned long)ac->ac_g_ex.fe_len,
4175 (unsigned long)ac->ac_g_ex.fe_logical,
4176 (unsigned long)ac->ac_b_ex.fe_group,
4177 (unsigned long)ac->ac_b_ex.fe_start,
4178 (unsigned long)ac->ac_b_ex.fe_len,
4179 (unsigned long)ac->ac_b_ex.fe_logical,
4180 (int)ac->ac_criteria);
4181 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4182 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4183 ngroups = ext4_get_groups_count(sb);
4184 for (i = 0; i < ngroups; i++) {
4185 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4186 struct ext4_prealloc_space *pa;
4187 ext4_grpblk_t start;
4188 struct list_head *cur;
4189 ext4_lock_group(sb, i);
4190 list_for_each(cur, &grp->bb_prealloc_list) {
4191 pa = list_entry(cur, struct ext4_prealloc_space,
4192 pa_group_list);
4193 spin_lock(&pa->pa_lock);
4194 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4195 NULL, &start);
4196 spin_unlock(&pa->pa_lock);
4197 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4198 start, pa->pa_len);
4199 }
4200 ext4_unlock_group(sb, i);
4201
4202 if (grp->bb_free == 0)
4203 continue;
4204 printk(KERN_ERR "%u: %d/%d \n",
4205 i, grp->bb_free, grp->bb_fragments);
4206 }
4207 printk(KERN_ERR "\n");
4208 }
4209 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4210 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4211 {
4212 return;
4213 }
4214 #endif
4215
4216 /*
4217 * We use locality group preallocation for small size file. The size of the
4218 * file is determined by the current size or the resulting size after
4219 * allocation which ever is larger
4220 *
4221 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4222 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4223 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4224 {
4225 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4226 int bsbits = ac->ac_sb->s_blocksize_bits;
4227 loff_t size, isize;
4228
4229 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4230 return;
4231
4232 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4233 return;
4234
4235 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4236 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4237 >> bsbits;
4238
4239 if ((size == isize) &&
4240 !ext4_fs_is_busy(sbi) &&
4241 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4242 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4243 return;
4244 }
4245
4246 if (sbi->s_mb_group_prealloc <= 0) {
4247 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4248 return;
4249 }
4250
4251 /* don't use group allocation for large files */
4252 size = max(size, isize);
4253 if (size > sbi->s_mb_stream_request) {
4254 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4255 return;
4256 }
4257
4258 BUG_ON(ac->ac_lg != NULL);
4259 /*
4260 * locality group prealloc space are per cpu. The reason for having
4261 * per cpu locality group is to reduce the contention between block
4262 * request from multiple CPUs.
4263 */
4264 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4265
4266 /* we're going to use group allocation */
4267 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4268
4269 /* serialize all allocations in the group */
4270 mutex_lock(&ac->ac_lg->lg_mutex);
4271 }
4272
4273 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4274 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4275 struct ext4_allocation_request *ar)
4276 {
4277 struct super_block *sb = ar->inode->i_sb;
4278 struct ext4_sb_info *sbi = EXT4_SB(sb);
4279 struct ext4_super_block *es = sbi->s_es;
4280 ext4_group_t group;
4281 unsigned int len;
4282 ext4_fsblk_t goal;
4283 ext4_grpblk_t block;
4284
4285 /* we can't allocate > group size */
4286 len = ar->len;
4287
4288 /* just a dirty hack to filter too big requests */
4289 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4290 len = EXT4_CLUSTERS_PER_GROUP(sb);
4291
4292 /* start searching from the goal */
4293 goal = ar->goal;
4294 if (goal < le32_to_cpu(es->s_first_data_block) ||
4295 goal >= ext4_blocks_count(es))
4296 goal = le32_to_cpu(es->s_first_data_block);
4297 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4298
4299 /* set up allocation goals */
4300 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4301 ac->ac_status = AC_STATUS_CONTINUE;
4302 ac->ac_sb = sb;
4303 ac->ac_inode = ar->inode;
4304 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4305 ac->ac_o_ex.fe_group = group;
4306 ac->ac_o_ex.fe_start = block;
4307 ac->ac_o_ex.fe_len = len;
4308 ac->ac_g_ex = ac->ac_o_ex;
4309 ac->ac_flags = ar->flags;
4310
4311 /* we have to define context: we'll we work with a file or
4312 * locality group. this is a policy, actually */
4313 ext4_mb_group_or_file(ac);
4314
4315 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4316 "left: %u/%u, right %u/%u to %swritable\n",
4317 (unsigned) ar->len, (unsigned) ar->logical,
4318 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4319 (unsigned) ar->lleft, (unsigned) ar->pleft,
4320 (unsigned) ar->lright, (unsigned) ar->pright,
4321 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4322 return 0;
4323
4324 }
4325
4326 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4327 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4328 struct ext4_locality_group *lg,
4329 int order, int total_entries)
4330 {
4331 ext4_group_t group = 0;
4332 struct ext4_buddy e4b;
4333 struct list_head discard_list;
4334 struct ext4_prealloc_space *pa, *tmp;
4335
4336 mb_debug(1, "discard locality group preallocation\n");
4337
4338 INIT_LIST_HEAD(&discard_list);
4339
4340 spin_lock(&lg->lg_prealloc_lock);
4341 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4342 pa_inode_list) {
4343 spin_lock(&pa->pa_lock);
4344 if (atomic_read(&pa->pa_count)) {
4345 /*
4346 * This is the pa that we just used
4347 * for block allocation. So don't
4348 * free that
4349 */
4350 spin_unlock(&pa->pa_lock);
4351 continue;
4352 }
4353 if (pa->pa_deleted) {
4354 spin_unlock(&pa->pa_lock);
4355 continue;
4356 }
4357 /* only lg prealloc space */
4358 BUG_ON(pa->pa_type != MB_GROUP_PA);
4359
4360 /* seems this one can be freed ... */
4361 pa->pa_deleted = 1;
4362 spin_unlock(&pa->pa_lock);
4363
4364 list_del_rcu(&pa->pa_inode_list);
4365 list_add(&pa->u.pa_tmp_list, &discard_list);
4366
4367 total_entries--;
4368 if (total_entries <= 5) {
4369 /*
4370 * we want to keep only 5 entries
4371 * allowing it to grow to 8. This
4372 * mak sure we don't call discard
4373 * soon for this list.
4374 */
4375 break;
4376 }
4377 }
4378 spin_unlock(&lg->lg_prealloc_lock);
4379
4380 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4381 int err;
4382
4383 group = ext4_get_group_number(sb, pa->pa_pstart);
4384 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4385 GFP_NOFS|__GFP_NOFAIL);
4386 if (err) {
4387 ext4_error(sb, "Error %d loading buddy information for %u",
4388 err, group);
4389 continue;
4390 }
4391 ext4_lock_group(sb, group);
4392 list_del(&pa->pa_group_list);
4393 ext4_mb_release_group_pa(&e4b, pa);
4394 ext4_unlock_group(sb, group);
4395
4396 ext4_mb_unload_buddy(&e4b);
4397 list_del(&pa->u.pa_tmp_list);
4398 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4399 }
4400 }
4401
4402 /*
4403 * We have incremented pa_count. So it cannot be freed at this
4404 * point. Also we hold lg_mutex. So no parallel allocation is
4405 * possible from this lg. That means pa_free cannot be updated.
4406 *
4407 * A parallel ext4_mb_discard_group_preallocations is possible.
4408 * which can cause the lg_prealloc_list to be updated.
4409 */
4410
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4411 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4412 {
4413 int order, added = 0, lg_prealloc_count = 1;
4414 struct super_block *sb = ac->ac_sb;
4415 struct ext4_locality_group *lg = ac->ac_lg;
4416 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4417
4418 order = fls(pa->pa_free) - 1;
4419 if (order > PREALLOC_TB_SIZE - 1)
4420 /* The max size of hash table is PREALLOC_TB_SIZE */
4421 order = PREALLOC_TB_SIZE - 1;
4422 /* Add the prealloc space to lg */
4423 spin_lock(&lg->lg_prealloc_lock);
4424 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4425 pa_inode_list) {
4426 spin_lock(&tmp_pa->pa_lock);
4427 if (tmp_pa->pa_deleted) {
4428 spin_unlock(&tmp_pa->pa_lock);
4429 continue;
4430 }
4431 if (!added && pa->pa_free < tmp_pa->pa_free) {
4432 /* Add to the tail of the previous entry */
4433 list_add_tail_rcu(&pa->pa_inode_list,
4434 &tmp_pa->pa_inode_list);
4435 added = 1;
4436 /*
4437 * we want to count the total
4438 * number of entries in the list
4439 */
4440 }
4441 spin_unlock(&tmp_pa->pa_lock);
4442 lg_prealloc_count++;
4443 }
4444 if (!added)
4445 list_add_tail_rcu(&pa->pa_inode_list,
4446 &lg->lg_prealloc_list[order]);
4447 spin_unlock(&lg->lg_prealloc_lock);
4448
4449 /* Now trim the list to be not more than 8 elements */
4450 if (lg_prealloc_count > 8) {
4451 ext4_mb_discard_lg_preallocations(sb, lg,
4452 order, lg_prealloc_count);
4453 return;
4454 }
4455 return ;
4456 }
4457
4458 /*
4459 * release all resource we used in allocation
4460 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4461 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4462 {
4463 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4464 struct ext4_prealloc_space *pa = ac->ac_pa;
4465 if (pa) {
4466 if (pa->pa_type == MB_GROUP_PA) {
4467 /* see comment in ext4_mb_use_group_pa() */
4468 spin_lock(&pa->pa_lock);
4469 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4470 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4471 pa->pa_free -= ac->ac_b_ex.fe_len;
4472 pa->pa_len -= ac->ac_b_ex.fe_len;
4473 spin_unlock(&pa->pa_lock);
4474 }
4475 }
4476 if (pa) {
4477 /*
4478 * We want to add the pa to the right bucket.
4479 * Remove it from the list and while adding
4480 * make sure the list to which we are adding
4481 * doesn't grow big.
4482 */
4483 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4484 spin_lock(pa->pa_obj_lock);
4485 list_del_rcu(&pa->pa_inode_list);
4486 spin_unlock(pa->pa_obj_lock);
4487 ext4_mb_add_n_trim(ac);
4488 }
4489 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4490 }
4491 if (ac->ac_bitmap_page)
4492 put_page(ac->ac_bitmap_page);
4493 if (ac->ac_buddy_page)
4494 put_page(ac->ac_buddy_page);
4495 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4496 mutex_unlock(&ac->ac_lg->lg_mutex);
4497 ext4_mb_collect_stats(ac);
4498 return 0;
4499 }
4500
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4501 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4502 {
4503 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4504 int ret;
4505 int freed = 0;
4506
4507 trace_ext4_mb_discard_preallocations(sb, needed);
4508 for (i = 0; i < ngroups && needed > 0; i++) {
4509 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4510 freed += ret;
4511 needed -= ret;
4512 }
4513
4514 return freed;
4515 }
4516
4517 /*
4518 * Main entry point into mballoc to allocate blocks
4519 * it tries to use preallocation first, then falls back
4520 * to usual allocation
4521 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4522 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4523 struct ext4_allocation_request *ar, int *errp)
4524 {
4525 int freed;
4526 struct ext4_allocation_context *ac = NULL;
4527 struct ext4_sb_info *sbi;
4528 struct super_block *sb;
4529 ext4_fsblk_t block = 0;
4530 unsigned int inquota = 0;
4531 unsigned int reserv_clstrs = 0;
4532
4533 might_sleep();
4534 sb = ar->inode->i_sb;
4535 sbi = EXT4_SB(sb);
4536
4537 trace_ext4_request_blocks(ar);
4538
4539 /* Allow to use superuser reservation for quota file */
4540 if (ext4_is_quota_file(ar->inode))
4541 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4542
4543 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4544 /* Without delayed allocation we need to verify
4545 * there is enough free blocks to do block allocation
4546 * and verify allocation doesn't exceed the quota limits.
4547 */
4548 while (ar->len &&
4549 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4550
4551 /* let others to free the space */
4552 cond_resched();
4553 ar->len = ar->len >> 1;
4554 }
4555 if (!ar->len) {
4556 *errp = -ENOSPC;
4557 return 0;
4558 }
4559 reserv_clstrs = ar->len;
4560 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4561 dquot_alloc_block_nofail(ar->inode,
4562 EXT4_C2B(sbi, ar->len));
4563 } else {
4564 while (ar->len &&
4565 dquot_alloc_block(ar->inode,
4566 EXT4_C2B(sbi, ar->len))) {
4567
4568 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4569 ar->len--;
4570 }
4571 }
4572 inquota = ar->len;
4573 if (ar->len == 0) {
4574 *errp = -EDQUOT;
4575 goto out;
4576 }
4577 }
4578
4579 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4580 if (!ac) {
4581 ar->len = 0;
4582 *errp = -ENOMEM;
4583 goto out;
4584 }
4585
4586 *errp = ext4_mb_initialize_context(ac, ar);
4587 if (*errp) {
4588 ar->len = 0;
4589 goto out;
4590 }
4591
4592 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4593 if (!ext4_mb_use_preallocated(ac)) {
4594 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4595 ext4_mb_normalize_request(ac, ar);
4596 repeat:
4597 /* allocate space in core */
4598 *errp = ext4_mb_regular_allocator(ac);
4599 if (*errp)
4600 goto discard_and_exit;
4601
4602 /* as we've just preallocated more space than
4603 * user requested originally, we store allocated
4604 * space in a special descriptor */
4605 if (ac->ac_status == AC_STATUS_FOUND &&
4606 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4607 *errp = ext4_mb_new_preallocation(ac);
4608 if (*errp) {
4609 discard_and_exit:
4610 ext4_discard_allocated_blocks(ac);
4611 goto errout;
4612 }
4613 }
4614 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4615 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4616 if (*errp) {
4617 ext4_discard_allocated_blocks(ac);
4618 goto errout;
4619 } else {
4620 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4621 ar->len = ac->ac_b_ex.fe_len;
4622 }
4623 } else {
4624 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4625 if (freed)
4626 goto repeat;
4627 *errp = -ENOSPC;
4628 }
4629
4630 errout:
4631 if (*errp) {
4632 ac->ac_b_ex.fe_len = 0;
4633 ar->len = 0;
4634 ext4_mb_show_ac(ac);
4635 }
4636 ext4_mb_release_context(ac);
4637 out:
4638 if (ac)
4639 kmem_cache_free(ext4_ac_cachep, ac);
4640 if (inquota && ar->len < inquota)
4641 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4642 if (!ar->len) {
4643 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4644 /* release all the reserved blocks if non delalloc */
4645 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4646 reserv_clstrs);
4647 }
4648
4649 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4650
4651 return block;
4652 }
4653
4654 /*
4655 * We can merge two free data extents only if the physical blocks
4656 * are contiguous, AND the extents were freed by the same transaction,
4657 * AND the blocks are associated with the same group.
4658 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)4659 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4660 struct ext4_free_data *entry,
4661 struct ext4_free_data *new_entry,
4662 struct rb_root *entry_rb_root)
4663 {
4664 if ((entry->efd_tid != new_entry->efd_tid) ||
4665 (entry->efd_group != new_entry->efd_group))
4666 return;
4667 if (entry->efd_start_cluster + entry->efd_count ==
4668 new_entry->efd_start_cluster) {
4669 new_entry->efd_start_cluster = entry->efd_start_cluster;
4670 new_entry->efd_count += entry->efd_count;
4671 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4672 entry->efd_start_cluster) {
4673 new_entry->efd_count += entry->efd_count;
4674 } else
4675 return;
4676 spin_lock(&sbi->s_md_lock);
4677 list_del(&entry->efd_list);
4678 spin_unlock(&sbi->s_md_lock);
4679 rb_erase(&entry->efd_node, entry_rb_root);
4680 kmem_cache_free(ext4_free_data_cachep, entry);
4681 }
4682
4683 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4684 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4685 struct ext4_free_data *new_entry)
4686 {
4687 ext4_group_t group = e4b->bd_group;
4688 ext4_grpblk_t cluster;
4689 ext4_grpblk_t clusters = new_entry->efd_count;
4690 struct ext4_free_data *entry;
4691 struct ext4_group_info *db = e4b->bd_info;
4692 struct super_block *sb = e4b->bd_sb;
4693 struct ext4_sb_info *sbi = EXT4_SB(sb);
4694 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4695 struct rb_node *parent = NULL, *new_node;
4696
4697 BUG_ON(!ext4_handle_valid(handle));
4698 BUG_ON(e4b->bd_bitmap_page == NULL);
4699 BUG_ON(e4b->bd_buddy_page == NULL);
4700
4701 new_node = &new_entry->efd_node;
4702 cluster = new_entry->efd_start_cluster;
4703
4704 if (!*n) {
4705 /* first free block exent. We need to
4706 protect buddy cache from being freed,
4707 * otherwise we'll refresh it from
4708 * on-disk bitmap and lose not-yet-available
4709 * blocks */
4710 get_page(e4b->bd_buddy_page);
4711 get_page(e4b->bd_bitmap_page);
4712 }
4713 while (*n) {
4714 parent = *n;
4715 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4716 if (cluster < entry->efd_start_cluster)
4717 n = &(*n)->rb_left;
4718 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4719 n = &(*n)->rb_right;
4720 else {
4721 ext4_grp_locked_error(sb, group, 0,
4722 ext4_group_first_block_no(sb, group) +
4723 EXT4_C2B(sbi, cluster),
4724 "Block already on to-be-freed list");
4725 kmem_cache_free(ext4_free_data_cachep, new_entry);
4726 return 0;
4727 }
4728 }
4729
4730 rb_link_node(new_node, parent, n);
4731 rb_insert_color(new_node, &db->bb_free_root);
4732
4733 /* Now try to see the extent can be merged to left and right */
4734 node = rb_prev(new_node);
4735 if (node) {
4736 entry = rb_entry(node, struct ext4_free_data, efd_node);
4737 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4738 &(db->bb_free_root));
4739 }
4740
4741 node = rb_next(new_node);
4742 if (node) {
4743 entry = rb_entry(node, struct ext4_free_data, efd_node);
4744 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4745 &(db->bb_free_root));
4746 }
4747
4748 spin_lock(&sbi->s_md_lock);
4749 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4750 sbi->s_mb_free_pending += clusters;
4751 spin_unlock(&sbi->s_md_lock);
4752 return 0;
4753 }
4754
4755 /**
4756 * ext4_free_blocks() -- Free given blocks and update quota
4757 * @handle: handle for this transaction
4758 * @inode: inode
4759 * @block: start physical block to free
4760 * @count: number of blocks to count
4761 * @flags: flags used by ext4_free_blocks
4762 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4763 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4764 struct buffer_head *bh, ext4_fsblk_t block,
4765 unsigned long count, int flags)
4766 {
4767 struct buffer_head *bitmap_bh = NULL;
4768 struct super_block *sb = inode->i_sb;
4769 struct ext4_group_desc *gdp;
4770 unsigned int overflow;
4771 ext4_grpblk_t bit;
4772 struct buffer_head *gd_bh;
4773 ext4_group_t block_group;
4774 struct ext4_sb_info *sbi;
4775 struct ext4_buddy e4b;
4776 unsigned int count_clusters;
4777 int err = 0;
4778 int ret;
4779
4780 might_sleep();
4781 if (bh) {
4782 if (block)
4783 BUG_ON(block != bh->b_blocknr);
4784 else
4785 block = bh->b_blocknr;
4786 }
4787
4788 sbi = EXT4_SB(sb);
4789 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4790 !ext4_inode_block_valid(inode, block, count)) {
4791 ext4_error(sb, "Freeing blocks not in datazone - "
4792 "block = %llu, count = %lu", block, count);
4793 goto error_return;
4794 }
4795
4796 ext4_debug("freeing block %llu\n", block);
4797 trace_ext4_free_blocks(inode, block, count, flags);
4798
4799 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4800 BUG_ON(count > 1);
4801
4802 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4803 inode, bh, block);
4804 }
4805
4806 /*
4807 * If the extent to be freed does not begin on a cluster
4808 * boundary, we need to deal with partial clusters at the
4809 * beginning and end of the extent. Normally we will free
4810 * blocks at the beginning or the end unless we are explicitly
4811 * requested to avoid doing so.
4812 */
4813 overflow = EXT4_PBLK_COFF(sbi, block);
4814 if (overflow) {
4815 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4816 overflow = sbi->s_cluster_ratio - overflow;
4817 block += overflow;
4818 if (count > overflow)
4819 count -= overflow;
4820 else
4821 return;
4822 } else {
4823 block -= overflow;
4824 count += overflow;
4825 }
4826 }
4827 overflow = EXT4_LBLK_COFF(sbi, count);
4828 if (overflow) {
4829 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4830 if (count > overflow)
4831 count -= overflow;
4832 else
4833 return;
4834 } else
4835 count += sbi->s_cluster_ratio - overflow;
4836 }
4837
4838 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4839 int i;
4840 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4841
4842 for (i = 0; i < count; i++) {
4843 cond_resched();
4844 if (is_metadata)
4845 bh = sb_find_get_block(inode->i_sb, block + i);
4846 ext4_forget(handle, is_metadata, inode, bh, block + i);
4847 }
4848 }
4849
4850 do_more:
4851 overflow = 0;
4852 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4853
4854 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4855 ext4_get_group_info(sb, block_group))))
4856 return;
4857
4858 /*
4859 * Check to see if we are freeing blocks across a group
4860 * boundary.
4861 */
4862 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4863 overflow = EXT4_C2B(sbi, bit) + count -
4864 EXT4_BLOCKS_PER_GROUP(sb);
4865 count -= overflow;
4866 }
4867 count_clusters = EXT4_NUM_B2C(sbi, count);
4868 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4869 if (IS_ERR(bitmap_bh)) {
4870 err = PTR_ERR(bitmap_bh);
4871 bitmap_bh = NULL;
4872 goto error_return;
4873 }
4874 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4875 if (!gdp) {
4876 err = -EIO;
4877 goto error_return;
4878 }
4879
4880 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4881 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4882 in_range(block, ext4_inode_table(sb, gdp),
4883 sbi->s_itb_per_group) ||
4884 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4885 sbi->s_itb_per_group)) {
4886
4887 ext4_error(sb, "Freeing blocks in system zone - "
4888 "Block = %llu, count = %lu", block, count);
4889 /* err = 0. ext4_std_error should be a no op */
4890 goto error_return;
4891 }
4892
4893 BUFFER_TRACE(bitmap_bh, "getting write access");
4894 err = ext4_journal_get_write_access(handle, bitmap_bh);
4895 if (err)
4896 goto error_return;
4897
4898 /*
4899 * We are about to modify some metadata. Call the journal APIs
4900 * to unshare ->b_data if a currently-committing transaction is
4901 * using it
4902 */
4903 BUFFER_TRACE(gd_bh, "get_write_access");
4904 err = ext4_journal_get_write_access(handle, gd_bh);
4905 if (err)
4906 goto error_return;
4907 #ifdef AGGRESSIVE_CHECK
4908 {
4909 int i;
4910 for (i = 0; i < count_clusters; i++)
4911 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4912 }
4913 #endif
4914 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4915
4916 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4917 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4918 GFP_NOFS|__GFP_NOFAIL);
4919 if (err)
4920 goto error_return;
4921
4922 /*
4923 * We need to make sure we don't reuse the freed block until after the
4924 * transaction is committed. We make an exception if the inode is to be
4925 * written in writeback mode since writeback mode has weak data
4926 * consistency guarantees.
4927 */
4928 if (ext4_handle_valid(handle) &&
4929 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4930 !ext4_should_writeback_data(inode))) {
4931 struct ext4_free_data *new_entry;
4932 /*
4933 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4934 * to fail.
4935 */
4936 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4937 GFP_NOFS|__GFP_NOFAIL);
4938 new_entry->efd_start_cluster = bit;
4939 new_entry->efd_group = block_group;
4940 new_entry->efd_count = count_clusters;
4941 new_entry->efd_tid = handle->h_transaction->t_tid;
4942
4943 ext4_lock_group(sb, block_group);
4944 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4945 ext4_mb_free_metadata(handle, &e4b, new_entry);
4946 } else {
4947 /* need to update group_info->bb_free and bitmap
4948 * with group lock held. generate_buddy look at
4949 * them with group lock_held
4950 */
4951 if (test_opt(sb, DISCARD)) {
4952 err = ext4_issue_discard(sb, block_group, bit,
4953 count_clusters, NULL);
4954 if (err && err != -EOPNOTSUPP)
4955 ext4_msg(sb, KERN_WARNING, "discard request in"
4956 " group:%d block:%d count:%lu failed"
4957 " with %d", block_group, bit, count,
4958 err);
4959 } else
4960 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4961
4962 ext4_lock_group(sb, block_group);
4963 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4964 mb_free_blocks(inode, &e4b, bit, count_clusters);
4965 }
4966
4967 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4968 ext4_free_group_clusters_set(sb, gdp, ret);
4969 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4970 ext4_group_desc_csum_set(sb, block_group, gdp);
4971 ext4_unlock_group(sb, block_group);
4972
4973 if (sbi->s_log_groups_per_flex) {
4974 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4975 atomic64_add(count_clusters,
4976 &sbi_array_rcu_deref(sbi, s_flex_groups,
4977 flex_group)->free_clusters);
4978 }
4979
4980 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4981 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4982 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4983
4984 ext4_mb_unload_buddy(&e4b);
4985
4986 /* We dirtied the bitmap block */
4987 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4988 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4989
4990 /* And the group descriptor block */
4991 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4992 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4993 if (!err)
4994 err = ret;
4995
4996 if (overflow && !err) {
4997 block += count;
4998 count = overflow;
4999 put_bh(bitmap_bh);
5000 goto do_more;
5001 }
5002 error_return:
5003 brelse(bitmap_bh);
5004 ext4_std_error(sb, err);
5005 return;
5006 }
5007
5008 /**
5009 * ext4_group_add_blocks() -- Add given blocks to an existing group
5010 * @handle: handle to this transaction
5011 * @sb: super block
5012 * @block: start physical block to add to the block group
5013 * @count: number of blocks to free
5014 *
5015 * This marks the blocks as free in the bitmap and buddy.
5016 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)5017 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5018 ext4_fsblk_t block, unsigned long count)
5019 {
5020 struct buffer_head *bitmap_bh = NULL;
5021 struct buffer_head *gd_bh;
5022 ext4_group_t block_group;
5023 ext4_grpblk_t bit;
5024 unsigned int i;
5025 struct ext4_group_desc *desc;
5026 struct ext4_sb_info *sbi = EXT4_SB(sb);
5027 struct ext4_buddy e4b;
5028 int err = 0, ret, free_clusters_count;
5029 ext4_grpblk_t clusters_freed;
5030 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5031 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5032 unsigned long cluster_count = last_cluster - first_cluster + 1;
5033
5034 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5035
5036 if (count == 0)
5037 return 0;
5038
5039 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5040 /*
5041 * Check to see if we are freeing blocks across a group
5042 * boundary.
5043 */
5044 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5045 ext4_warning(sb, "too many blocks added to group %u",
5046 block_group);
5047 err = -EINVAL;
5048 goto error_return;
5049 }
5050
5051 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5052 if (IS_ERR(bitmap_bh)) {
5053 err = PTR_ERR(bitmap_bh);
5054 bitmap_bh = NULL;
5055 goto error_return;
5056 }
5057
5058 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5059 if (!desc) {
5060 err = -EIO;
5061 goto error_return;
5062 }
5063
5064 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5065 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5066 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5067 in_range(block + count - 1, ext4_inode_table(sb, desc),
5068 sbi->s_itb_per_group)) {
5069 ext4_error(sb, "Adding blocks in system zones - "
5070 "Block = %llu, count = %lu",
5071 block, count);
5072 err = -EINVAL;
5073 goto error_return;
5074 }
5075
5076 BUFFER_TRACE(bitmap_bh, "getting write access");
5077 err = ext4_journal_get_write_access(handle, bitmap_bh);
5078 if (err)
5079 goto error_return;
5080
5081 /*
5082 * We are about to modify some metadata. Call the journal APIs
5083 * to unshare ->b_data if a currently-committing transaction is
5084 * using it
5085 */
5086 BUFFER_TRACE(gd_bh, "get_write_access");
5087 err = ext4_journal_get_write_access(handle, gd_bh);
5088 if (err)
5089 goto error_return;
5090
5091 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5092 BUFFER_TRACE(bitmap_bh, "clear bit");
5093 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5094 ext4_error(sb, "bit already cleared for block %llu",
5095 (ext4_fsblk_t)(block + i));
5096 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5097 } else {
5098 clusters_freed++;
5099 }
5100 }
5101
5102 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5103 if (err)
5104 goto error_return;
5105
5106 /*
5107 * need to update group_info->bb_free and bitmap
5108 * with group lock held. generate_buddy look at
5109 * them with group lock_held
5110 */
5111 ext4_lock_group(sb, block_group);
5112 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5113 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5114 free_clusters_count = clusters_freed +
5115 ext4_free_group_clusters(sb, desc);
5116 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5117 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5118 ext4_group_desc_csum_set(sb, block_group, desc);
5119 ext4_unlock_group(sb, block_group);
5120 percpu_counter_add(&sbi->s_freeclusters_counter,
5121 clusters_freed);
5122
5123 if (sbi->s_log_groups_per_flex) {
5124 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5125 atomic64_add(clusters_freed,
5126 &sbi_array_rcu_deref(sbi, s_flex_groups,
5127 flex_group)->free_clusters);
5128 }
5129
5130 ext4_mb_unload_buddy(&e4b);
5131
5132 /* We dirtied the bitmap block */
5133 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5134 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5135
5136 /* And the group descriptor block */
5137 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5138 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5139 if (!err)
5140 err = ret;
5141
5142 error_return:
5143 brelse(bitmap_bh);
5144 ext4_std_error(sb, err);
5145 return err;
5146 }
5147
5148 /**
5149 * ext4_trim_extent -- function to TRIM one single free extent in the group
5150 * @sb: super block for the file system
5151 * @start: starting block of the free extent in the alloc. group
5152 * @count: number of blocks to TRIM
5153 * @e4b: ext4 buddy for the group
5154 *
5155 * Trim "count" blocks starting at "start" in the "group". To assure that no
5156 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5157 * be called with under the group lock.
5158 */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)5159 static int ext4_trim_extent(struct super_block *sb,
5160 int start, int count, struct ext4_buddy *e4b)
5161 __releases(bitlock)
5162 __acquires(bitlock)
5163 {
5164 struct ext4_free_extent ex;
5165 ext4_group_t group = e4b->bd_group;
5166 int ret = 0;
5167
5168 trace_ext4_trim_extent(sb, group, start, count);
5169
5170 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5171
5172 ex.fe_start = start;
5173 ex.fe_group = group;
5174 ex.fe_len = count;
5175
5176 /*
5177 * Mark blocks used, so no one can reuse them while
5178 * being trimmed.
5179 */
5180 mb_mark_used(e4b, &ex);
5181 ext4_unlock_group(sb, group);
5182 ret = ext4_issue_discard(sb, group, start, count, NULL);
5183 ext4_lock_group(sb, group);
5184 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5185 return ret;
5186 }
5187
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)5188 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
5189 ext4_group_t grp)
5190 {
5191 if (grp < ext4_get_groups_count(sb))
5192 return EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5193 return (ext4_blocks_count(EXT4_SB(sb)->s_es) -
5194 ext4_group_first_block_no(sb, grp) - 1) >>
5195 EXT4_CLUSTER_BITS(sb);
5196 }
5197
ext4_trim_interrupted(void)5198 static bool ext4_trim_interrupted(void)
5199 {
5200 return fatal_signal_pending(current) || freezing(current);
5201 }
5202
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5203 static int ext4_try_to_trim_range(struct super_block *sb,
5204 struct ext4_buddy *e4b, ext4_grpblk_t start,
5205 ext4_grpblk_t max, ext4_grpblk_t minblocks)
5206 {
5207 ext4_grpblk_t next, count, free_count;
5208 bool set_trimmed = false;
5209 void *bitmap;
5210
5211 bitmap = e4b->bd_bitmap;
5212 if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group))
5213 set_trimmed = true;
5214 start = max(e4b->bd_info->bb_first_free, start);
5215 count = 0;
5216 free_count = 0;
5217
5218 while (start <= max) {
5219 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5220 if (start > max)
5221 break;
5222 next = mb_find_next_bit(bitmap, max + 1, start);
5223
5224 if ((next - start) >= minblocks) {
5225 int ret = ext4_trim_extent(sb, start, next - start, e4b);
5226
5227 if (ret && ret != -EOPNOTSUPP)
5228 return count;
5229 count += next - start;
5230 }
5231 free_count += next - start;
5232 start = next + 1;
5233
5234 if (ext4_trim_interrupted())
5235 return count;
5236
5237 if (need_resched()) {
5238 ext4_unlock_group(sb, e4b->bd_group);
5239 cond_resched();
5240 ext4_lock_group(sb, e4b->bd_group);
5241 }
5242
5243 if ((e4b->bd_info->bb_free - free_count) < minblocks)
5244 break;
5245 }
5246
5247 if (set_trimmed)
5248 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
5249
5250 return count;
5251 }
5252
5253 /**
5254 * ext4_trim_all_free -- function to trim all free space in alloc. group
5255 * @sb: super block for file system
5256 * @group: group to be trimmed
5257 * @start: first group block to examine
5258 * @max: last group block to examine
5259 * @minblocks: minimum extent block count
5260 *
5261 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5262 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5263 * the extent.
5264 *
5265 *
5266 * ext4_trim_all_free walks through group's block bitmap searching for free
5267 * extents. When the free extent is found, mark it as used in group buddy
5268 * bitmap. Then issue a TRIM command on this extent and free the extent in
5269 * the group buddy bitmap. This is done until whole group is scanned.
5270 */
5271 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5272 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5273 ext4_grpblk_t start, ext4_grpblk_t max,
5274 ext4_grpblk_t minblocks)
5275 {
5276 struct ext4_buddy e4b;
5277 int ret;
5278
5279 trace_ext4_trim_all_free(sb, group, start, max);
5280
5281 ret = ext4_mb_load_buddy(sb, group, &e4b);
5282 if (ret) {
5283 ext4_warning(sb, "Error %d loading buddy information for %u",
5284 ret, group);
5285 return ret;
5286 }
5287
5288 ext4_lock_group(sb, group);
5289
5290 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
5291 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
5292 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
5293 else
5294 ret = 0;
5295
5296 ext4_unlock_group(sb, group);
5297 ext4_mb_unload_buddy(&e4b);
5298
5299 ext4_debug("trimmed %d blocks in the group %d\n",
5300 ret, group);
5301
5302 return ret;
5303 }
5304
5305 /**
5306 * ext4_trim_fs() -- trim ioctl handle function
5307 * @sb: superblock for filesystem
5308 * @range: fstrim_range structure
5309 *
5310 * start: First Byte to trim
5311 * len: number of Bytes to trim from start
5312 * minlen: minimum extent length in Bytes
5313 * ext4_trim_fs goes through all allocation groups containing Bytes from
5314 * start to start+len. For each such a group ext4_trim_all_free function
5315 * is invoked to trim all free space.
5316 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5317 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5318 {
5319 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5320 struct ext4_group_info *grp;
5321 ext4_group_t group, first_group, last_group;
5322 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5323 uint64_t start, end, minlen, trimmed = 0;
5324 ext4_fsblk_t first_data_blk =
5325 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5326 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5327 int ret = 0;
5328
5329 start = range->start >> sb->s_blocksize_bits;
5330 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5331 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5332 range->minlen >> sb->s_blocksize_bits);
5333
5334 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5335 start >= max_blks ||
5336 range->len < sb->s_blocksize)
5337 return -EINVAL;
5338 /* No point to try to trim less than discard granularity */
5339 if (range->minlen < q->limits.discard_granularity) {
5340 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5341 q->limits.discard_granularity >> sb->s_blocksize_bits);
5342 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
5343 goto out;
5344 }
5345 if (end >= max_blks - 1)
5346 end = max_blks - 1;
5347 if (end <= first_data_blk)
5348 goto out;
5349 if (start < first_data_blk)
5350 start = first_data_blk;
5351
5352 /* Determine first and last group to examine based on start and end */
5353 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5354 &first_group, &first_cluster);
5355 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5356 &last_group, &last_cluster);
5357
5358 /* end now represents the last cluster to discard in this group */
5359 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5360
5361 for (group = first_group; group <= last_group; group++) {
5362 if (ext4_trim_interrupted())
5363 break;
5364 grp = ext4_get_group_info(sb, group);
5365 /* We only do this if the grp has never been initialized */
5366 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5367 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5368 if (ret)
5369 break;
5370 }
5371
5372 /*
5373 * For all the groups except the last one, last cluster will
5374 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5375 * change it for the last group, note that last_cluster is
5376 * already computed earlier by ext4_get_group_no_and_offset()
5377 */
5378 if (group == last_group)
5379 end = last_cluster;
5380 if (grp->bb_free >= minlen) {
5381 cnt = ext4_trim_all_free(sb, group, first_cluster,
5382 end, minlen);
5383 if (cnt < 0) {
5384 ret = cnt;
5385 break;
5386 }
5387 trimmed += cnt;
5388 }
5389
5390 /*
5391 * For every group except the first one, we are sure
5392 * that the first cluster to discard will be cluster #0.
5393 */
5394 first_cluster = 0;
5395 }
5396
5397 if (!ret)
5398 EXT4_SB(sb)->s_last_trim_minblks = minlen;
5399
5400 out:
5401 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5402 return ret;
5403 }
5404
5405 /* Iterate all the free extents in the group. */
5406 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5407 ext4_mballoc_query_range(
5408 struct super_block *sb,
5409 ext4_group_t group,
5410 ext4_grpblk_t start,
5411 ext4_grpblk_t end,
5412 ext4_mballoc_query_range_fn formatter,
5413 void *priv)
5414 {
5415 void *bitmap;
5416 ext4_grpblk_t next;
5417 struct ext4_buddy e4b;
5418 int error;
5419
5420 error = ext4_mb_load_buddy(sb, group, &e4b);
5421 if (error)
5422 return error;
5423 bitmap = e4b.bd_bitmap;
5424
5425 ext4_lock_group(sb, group);
5426
5427 start = max(e4b.bd_info->bb_first_free, start);
5428 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5429 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5430
5431 while (start <= end) {
5432 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5433 if (start > end)
5434 break;
5435 next = mb_find_next_bit(bitmap, end + 1, start);
5436
5437 ext4_unlock_group(sb, group);
5438 error = formatter(sb, group, start, next - start, priv);
5439 if (error)
5440 goto out_unload;
5441 ext4_lock_group(sb, group);
5442
5443 start = next + 1;
5444 }
5445
5446 ext4_unlock_group(sb, group);
5447 out_unload:
5448 ext4_mb_unload_buddy(&e4b);
5449
5450 return error;
5451 }
5452