1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48
49 #include "ext4.h"
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static int ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88 /*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 /*
144 * This works like sb_bread() except it uses ERR_PTR for error
145 * returns. Currently with sb_bread it's impossible to distinguish
146 * between ENOMEM and EIO situations (since both result in a NULL
147 * return.
148 */
149 struct buffer_head *
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151 {
152 struct buffer_head *bh = sb_getblk(sb, block);
153
154 if (bh == NULL)
155 return ERR_PTR(-ENOMEM);
156 if (buffer_uptodate(bh))
157 return bh;
158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 wait_on_buffer(bh);
160 if (buffer_uptodate(bh))
161 return bh;
162 put_bh(bh);
163 return ERR_PTR(-EIO);
164 }
165
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)166 static int ext4_verify_csum_type(struct super_block *sb,
167 struct ext4_super_block *es)
168 {
169 if (!ext4_has_feature_metadata_csum(sb))
170 return 1;
171
172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173 }
174
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)175 static __le32 ext4_superblock_csum(struct super_block *sb,
176 struct ext4_super_block *es)
177 {
178 struct ext4_sb_info *sbi = EXT4_SB(sb);
179 int offset = offsetof(struct ext4_super_block, s_checksum);
180 __u32 csum;
181
182 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183
184 return cpu_to_le32(csum);
185 }
186
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)187 static int ext4_superblock_csum_verify(struct super_block *sb,
188 struct ext4_super_block *es)
189 {
190 if (!ext4_has_metadata_csum(sb))
191 return 1;
192
193 return es->s_checksum == ext4_superblock_csum(sb, es);
194 }
195
ext4_superblock_csum_set(struct super_block * sb)196 void ext4_superblock_csum_set(struct super_block *sb)
197 {
198 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199
200 if (!ext4_has_metadata_csum(sb))
201 return;
202
203 es->s_checksum = ext4_superblock_csum(sb, es);
204 }
205
ext4_kvmalloc(size_t size,gfp_t flags)206 void *ext4_kvmalloc(size_t size, gfp_t flags)
207 {
208 void *ret;
209
210 ret = kmalloc(size, flags | __GFP_NOWARN);
211 if (!ret)
212 ret = __vmalloc(size, flags, PAGE_KERNEL);
213 return ret;
214 }
215
ext4_kvzalloc(size_t size,gfp_t flags)216 void *ext4_kvzalloc(size_t size, gfp_t flags)
217 {
218 void *ret;
219
220 ret = kzalloc(size, flags | __GFP_NOWARN);
221 if (!ret)
222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 return ret;
224 }
225
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232 }
233
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240 }
241
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)242 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 struct ext4_group_desc *bg)
244 {
245 return le32_to_cpu(bg->bg_inode_table_lo) |
246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248 }
249
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)250 __u32 ext4_free_group_clusters(struct super_block *sb,
251 struct ext4_group_desc *bg)
252 {
253 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256 }
257
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)258 __u32 ext4_free_inodes_count(struct super_block *sb,
259 struct ext4_group_desc *bg)
260 {
261 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264 }
265
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)266 __u32 ext4_used_dirs_count(struct super_block *sb,
267 struct ext4_group_desc *bg)
268 {
269 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272 }
273
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)274 __u32 ext4_itable_unused_count(struct super_block *sb,
275 struct ext4_group_desc *bg)
276 {
277 return le16_to_cpu(bg->bg_itable_unused_lo) |
278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280 }
281
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)282 void ext4_block_bitmap_set(struct super_block *sb,
283 struct ext4_group_desc *bg, ext4_fsblk_t blk)
284 {
285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288 }
289
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)290 void ext4_inode_bitmap_set(struct super_block *sb,
291 struct ext4_group_desc *bg, ext4_fsblk_t blk)
292 {
293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296 }
297
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)298 void ext4_inode_table_set(struct super_block *sb,
299 struct ext4_group_desc *bg, ext4_fsblk_t blk)
300 {
301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304 }
305
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)306 void ext4_free_group_clusters_set(struct super_block *sb,
307 struct ext4_group_desc *bg, __u32 count)
308 {
309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312 }
313
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)314 void ext4_free_inodes_set(struct super_block *sb,
315 struct ext4_group_desc *bg, __u32 count)
316 {
317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320 }
321
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)322 void ext4_used_dirs_set(struct super_block *sb,
323 struct ext4_group_desc *bg, __u32 count)
324 {
325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328 }
329
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)330 void ext4_itable_unused_set(struct super_block *sb,
331 struct ext4_group_desc *bg, __u32 count)
332 {
333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336 }
337
__ext4_update_tstamp(__le32 * lo,__u8 * hi)338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339 {
340 time64_t now = ktime_get_real_seconds();
341
342 now = clamp_val(now, 0, (1ull << 40) - 1);
343
344 *lo = cpu_to_le32(lower_32_bits(now));
345 *hi = upper_32_bits(now);
346 }
347
__ext4_get_tstamp(__le32 * lo,__u8 * hi)348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349 {
350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351 }
352 #define ext4_update_tstamp(es, tstamp) \
353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354 #define ext4_get_tstamp(es, tstamp) \
355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356
__save_error_info(struct super_block * sb,const char * func,unsigned int line)357 static void __save_error_info(struct super_block *sb, const char *func,
358 unsigned int line)
359 {
360 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361
362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 if (bdev_read_only(sb->s_bdev))
364 return;
365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 ext4_update_tstamp(es, s_last_error_time);
367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 es->s_last_error_line = cpu_to_le32(line);
369 if (!es->s_first_error_time) {
370 es->s_first_error_time = es->s_last_error_time;
371 es->s_first_error_time_hi = es->s_last_error_time_hi;
372 strncpy(es->s_first_error_func, func,
373 sizeof(es->s_first_error_func));
374 es->s_first_error_line = cpu_to_le32(line);
375 es->s_first_error_ino = es->s_last_error_ino;
376 es->s_first_error_block = es->s_last_error_block;
377 }
378 /*
379 * Start the daily error reporting function if it hasn't been
380 * started already
381 */
382 if (!es->s_error_count)
383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 le32_add_cpu(&es->s_error_count, 1);
385 }
386
save_error_info(struct super_block * sb,const char * func,unsigned int line)387 static void save_error_info(struct super_block *sb, const char *func,
388 unsigned int line)
389 {
390 __save_error_info(sb, func, line);
391 if (!bdev_read_only(sb->s_bdev))
392 ext4_commit_super(sb, 1);
393 }
394
395 /*
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
402 */
block_device_ejected(struct super_block * sb)403 static int block_device_ejected(struct super_block *sb)
404 {
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408 return bdi->dev == NULL;
409 }
410
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
417
418 BUG_ON(txn->t_state == T_FINISHED);
419
420 ext4_process_freed_data(sb, txn->t_tid);
421
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
430 }
431 spin_unlock(&sbi->s_md_lock);
432 }
433
system_going_down(void)434 static bool system_going_down(void)
435 {
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
442 *
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
449 *
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
453 */
454
ext4_handle_error(struct super_block * sb)455 static void ext4_handle_error(struct super_block *sb)
456 {
457 journal_t *journal = EXT4_SB(sb)->s_journal;
458
459 if (test_opt(sb, WARN_ON_ERROR))
460 WARN_ON_ONCE(1);
461
462 if (sb_rdonly(sb) || test_opt(sb, ERRORS_CONT))
463 return;
464
465 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
466 if (journal)
467 jbd2_journal_abort(journal, -EIO);
468 /*
469 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
470 * could panic during 'reboot -f' as the underlying device got already
471 * disabled.
472 */
473 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
474 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
475 /*
476 * Make sure updated value of ->s_mount_flags will be visible
477 * before ->s_flags update
478 */
479 smp_wmb();
480 sb->s_flags |= SB_RDONLY;
481 } else if (test_opt(sb, ERRORS_PANIC)) {
482 if (EXT4_SB(sb)->s_journal &&
483 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
484 return;
485 panic("EXT4-fs (device %s): panic forced after error\n",
486 sb->s_id);
487 }
488 }
489
490 #define ext4_error_ratelimit(sb) \
491 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
492 "EXT4-fs error")
493
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)494 void __ext4_error(struct super_block *sb, const char *function,
495 unsigned int line, const char *fmt, ...)
496 {
497 struct va_format vaf;
498 va_list args;
499
500 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
501 return;
502
503 trace_ext4_error(sb, function, line);
504 if (ext4_error_ratelimit(sb)) {
505 va_start(args, fmt);
506 vaf.fmt = fmt;
507 vaf.va = &args;
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
510 sb->s_id, function, line, current->comm, &vaf);
511 va_end(args);
512 }
513 save_error_info(sb, function, line);
514 ext4_handle_error(sb);
515 }
516
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)517 void __ext4_error_inode(struct inode *inode, const char *function,
518 unsigned int line, ext4_fsblk_t block,
519 const char *fmt, ...)
520 {
521 va_list args;
522 struct va_format vaf;
523 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
524
525 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
526 return;
527
528 trace_ext4_error(inode->i_sb, function, line);
529 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
530 es->s_last_error_block = cpu_to_le64(block);
531 if (ext4_error_ratelimit(inode->i_sb)) {
532 va_start(args, fmt);
533 vaf.fmt = fmt;
534 vaf.va = &args;
535 if (block)
536 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
537 "inode #%lu: block %llu: comm %s: %pV\n",
538 inode->i_sb->s_id, function, line, inode->i_ino,
539 block, current->comm, &vaf);
540 else
541 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
542 "inode #%lu: comm %s: %pV\n",
543 inode->i_sb->s_id, function, line, inode->i_ino,
544 current->comm, &vaf);
545 va_end(args);
546 }
547 save_error_info(inode->i_sb, function, line);
548 ext4_handle_error(inode->i_sb);
549 }
550
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)551 void __ext4_error_file(struct file *file, const char *function,
552 unsigned int line, ext4_fsblk_t block,
553 const char *fmt, ...)
554 {
555 va_list args;
556 struct va_format vaf;
557 struct ext4_super_block *es;
558 struct inode *inode = file_inode(file);
559 char pathname[80], *path;
560
561 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
562 return;
563
564 trace_ext4_error(inode->i_sb, function, line);
565 es = EXT4_SB(inode->i_sb)->s_es;
566 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
567 if (ext4_error_ratelimit(inode->i_sb)) {
568 path = file_path(file, pathname, sizeof(pathname));
569 if (IS_ERR(path))
570 path = "(unknown)";
571 va_start(args, fmt);
572 vaf.fmt = fmt;
573 vaf.va = &args;
574 if (block)
575 printk(KERN_CRIT
576 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
577 "block %llu: comm %s: path %s: %pV\n",
578 inode->i_sb->s_id, function, line, inode->i_ino,
579 block, current->comm, path, &vaf);
580 else
581 printk(KERN_CRIT
582 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
583 "comm %s: path %s: %pV\n",
584 inode->i_sb->s_id, function, line, inode->i_ino,
585 current->comm, path, &vaf);
586 va_end(args);
587 }
588 save_error_info(inode->i_sb, function, line);
589 ext4_handle_error(inode->i_sb);
590 }
591
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])592 const char *ext4_decode_error(struct super_block *sb, int errno,
593 char nbuf[16])
594 {
595 char *errstr = NULL;
596
597 switch (errno) {
598 case -EFSCORRUPTED:
599 errstr = "Corrupt filesystem";
600 break;
601 case -EFSBADCRC:
602 errstr = "Filesystem failed CRC";
603 break;
604 case -EIO:
605 errstr = "IO failure";
606 break;
607 case -ENOMEM:
608 errstr = "Out of memory";
609 break;
610 case -EROFS:
611 if (!sb || (EXT4_SB(sb)->s_journal &&
612 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
613 errstr = "Journal has aborted";
614 else
615 errstr = "Readonly filesystem";
616 break;
617 default:
618 /* If the caller passed in an extra buffer for unknown
619 * errors, textualise them now. Else we just return
620 * NULL. */
621 if (nbuf) {
622 /* Check for truncated error codes... */
623 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
624 errstr = nbuf;
625 }
626 break;
627 }
628
629 return errstr;
630 }
631
632 /* __ext4_std_error decodes expected errors from journaling functions
633 * automatically and invokes the appropriate error response. */
634
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)635 void __ext4_std_error(struct super_block *sb, const char *function,
636 unsigned int line, int errno)
637 {
638 char nbuf[16];
639 const char *errstr;
640
641 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
642 return;
643
644 /* Special case: if the error is EROFS, and we're not already
645 * inside a transaction, then there's really no point in logging
646 * an error. */
647 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
648 return;
649
650 if (ext4_error_ratelimit(sb)) {
651 errstr = ext4_decode_error(sb, errno, nbuf);
652 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
653 sb->s_id, function, line, errstr);
654 }
655
656 save_error_info(sb, function, line);
657 ext4_handle_error(sb);
658 }
659
660 /*
661 * ext4_abort is a much stronger failure handler than ext4_error. The
662 * abort function may be used to deal with unrecoverable failures such
663 * as journal IO errors or ENOMEM at a critical moment in log management.
664 *
665 * We unconditionally force the filesystem into an ABORT|READONLY state,
666 * unless the error response on the fs has been set to panic in which
667 * case we take the easy way out and panic immediately.
668 */
669
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)670 void __ext4_abort(struct super_block *sb, const char *function,
671 unsigned int line, const char *fmt, ...)
672 {
673 struct va_format vaf;
674 va_list args;
675
676 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
677 return;
678
679 save_error_info(sb, function, line);
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
686
687 if (sb_rdonly(sb) == 0) {
688 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
689 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
690 /*
691 * Make sure updated value of ->s_mount_flags will be visible
692 * before ->s_flags update
693 */
694 smp_wmb();
695 sb->s_flags |= SB_RDONLY;
696 if (EXT4_SB(sb)->s_journal)
697 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
698 save_error_info(sb, function, line);
699 }
700 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
701 if (EXT4_SB(sb)->s_journal &&
702 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
703 return;
704 panic("EXT4-fs panic from previous error\n");
705 }
706 }
707
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)708 void __ext4_msg(struct super_block *sb,
709 const char *prefix, const char *fmt, ...)
710 {
711 struct va_format vaf;
712 va_list args;
713
714 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
715 return;
716
717 va_start(args, fmt);
718 vaf.fmt = fmt;
719 vaf.va = &args;
720 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
721 va_end(args);
722 }
723
724 #define ext4_warning_ratelimit(sb) \
725 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
726 "EXT4-fs warning")
727
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)728 void __ext4_warning(struct super_block *sb, const char *function,
729 unsigned int line, const char *fmt, ...)
730 {
731 struct va_format vaf;
732 va_list args;
733
734 if (!ext4_warning_ratelimit(sb))
735 return;
736
737 va_start(args, fmt);
738 vaf.fmt = fmt;
739 vaf.va = &args;
740 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
741 sb->s_id, function, line, &vaf);
742 va_end(args);
743 }
744
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)745 void __ext4_warning_inode(const struct inode *inode, const char *function,
746 unsigned int line, const char *fmt, ...)
747 {
748 struct va_format vaf;
749 va_list args;
750
751 if (!ext4_warning_ratelimit(inode->i_sb))
752 return;
753
754 va_start(args, fmt);
755 vaf.fmt = fmt;
756 vaf.va = &args;
757 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
758 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
759 function, line, inode->i_ino, current->comm, &vaf);
760 va_end(args);
761 }
762
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)763 void __ext4_grp_locked_error(const char *function, unsigned int line,
764 struct super_block *sb, ext4_group_t grp,
765 unsigned long ino, ext4_fsblk_t block,
766 const char *fmt, ...)
767 __releases(bitlock)
768 __acquires(bitlock)
769 {
770 struct va_format vaf;
771 va_list args;
772 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
773
774 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
775 return;
776
777 trace_ext4_error(sb, function, line);
778 es->s_last_error_ino = cpu_to_le32(ino);
779 es->s_last_error_block = cpu_to_le64(block);
780 __save_error_info(sb, function, line);
781
782 if (ext4_error_ratelimit(sb)) {
783 va_start(args, fmt);
784 vaf.fmt = fmt;
785 vaf.va = &args;
786 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
787 sb->s_id, function, line, grp);
788 if (ino)
789 printk(KERN_CONT "inode %lu: ", ino);
790 if (block)
791 printk(KERN_CONT "block %llu:",
792 (unsigned long long) block);
793 printk(KERN_CONT "%pV\n", &vaf);
794 va_end(args);
795 }
796
797 if (test_opt(sb, WARN_ON_ERROR))
798 WARN_ON_ONCE(1);
799
800 if (test_opt(sb, ERRORS_CONT)) {
801 ext4_commit_super(sb, 0);
802 return;
803 }
804
805 ext4_unlock_group(sb, grp);
806 ext4_commit_super(sb, 1);
807 ext4_handle_error(sb);
808 /*
809 * We only get here in the ERRORS_RO case; relocking the group
810 * may be dangerous, but nothing bad will happen since the
811 * filesystem will have already been marked read/only and the
812 * journal has been aborted. We return 1 as a hint to callers
813 * who might what to use the return value from
814 * ext4_grp_locked_error() to distinguish between the
815 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
816 * aggressively from the ext4 function in question, with a
817 * more appropriate error code.
818 */
819 ext4_lock_group(sb, grp);
820 return;
821 }
822
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)823 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
824 ext4_group_t group,
825 unsigned int flags)
826 {
827 struct ext4_sb_info *sbi = EXT4_SB(sb);
828 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
829 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
830 int ret;
831
832 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
833 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
834 &grp->bb_state);
835 if (!ret)
836 percpu_counter_sub(&sbi->s_freeclusters_counter,
837 grp->bb_free);
838 }
839
840 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
841 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
842 &grp->bb_state);
843 if (!ret && gdp) {
844 int count;
845
846 count = ext4_free_inodes_count(sb, gdp);
847 percpu_counter_sub(&sbi->s_freeinodes_counter,
848 count);
849 }
850 }
851 }
852
ext4_update_dynamic_rev(struct super_block * sb)853 void ext4_update_dynamic_rev(struct super_block *sb)
854 {
855 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
856
857 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
858 return;
859
860 ext4_warning(sb,
861 "updating to rev %d because of new feature flag, "
862 "running e2fsck is recommended",
863 EXT4_DYNAMIC_REV);
864
865 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
866 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
867 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
868 /* leave es->s_feature_*compat flags alone */
869 /* es->s_uuid will be set by e2fsck if empty */
870
871 /*
872 * The rest of the superblock fields should be zero, and if not it
873 * means they are likely already in use, so leave them alone. We
874 * can leave it up to e2fsck to clean up any inconsistencies there.
875 */
876 }
877
878 /*
879 * Open the external journal device
880 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)881 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
882 {
883 struct block_device *bdev;
884 char b[BDEVNAME_SIZE];
885
886 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
887 if (IS_ERR(bdev))
888 goto fail;
889 return bdev;
890
891 fail:
892 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
893 __bdevname(dev, b), PTR_ERR(bdev));
894 return NULL;
895 }
896
897 /*
898 * Release the journal device
899 */
ext4_blkdev_put(struct block_device * bdev)900 static void ext4_blkdev_put(struct block_device *bdev)
901 {
902 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
903 }
904
ext4_blkdev_remove(struct ext4_sb_info * sbi)905 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
906 {
907 struct block_device *bdev;
908 bdev = sbi->s_journal_bdev;
909 if (bdev) {
910 /*
911 * Invalidate the journal device's buffers. We don't want them
912 * floating about in memory - the physical journal device may
913 * hotswapped, and it breaks the `ro-after' testing code.
914 */
915 invalidate_bdev(bdev);
916 ext4_blkdev_put(bdev);
917 sbi->s_journal_bdev = NULL;
918 }
919 }
920
orphan_list_entry(struct list_head * l)921 static inline struct inode *orphan_list_entry(struct list_head *l)
922 {
923 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
924 }
925
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)926 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
927 {
928 struct list_head *l;
929
930 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
931 le32_to_cpu(sbi->s_es->s_last_orphan));
932
933 printk(KERN_ERR "sb_info orphan list:\n");
934 list_for_each(l, &sbi->s_orphan) {
935 struct inode *inode = orphan_list_entry(l);
936 printk(KERN_ERR " "
937 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
938 inode->i_sb->s_id, inode->i_ino, inode,
939 inode->i_mode, inode->i_nlink,
940 NEXT_ORPHAN(inode));
941 }
942 }
943
944 #ifdef CONFIG_QUOTA
945 static int ext4_quota_off(struct super_block *sb, int type);
946
ext4_quota_off_umount(struct super_block * sb)947 static inline void ext4_quota_off_umount(struct super_block *sb)
948 {
949 int type;
950
951 /* Use our quota_off function to clear inode flags etc. */
952 for (type = 0; type < EXT4_MAXQUOTAS; type++)
953 ext4_quota_off(sb, type);
954 }
955
956 /*
957 * This is a helper function which is used in the mount/remount
958 * codepaths (which holds s_umount) to fetch the quota file name.
959 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)960 static inline char *get_qf_name(struct super_block *sb,
961 struct ext4_sb_info *sbi,
962 int type)
963 {
964 return rcu_dereference_protected(sbi->s_qf_names[type],
965 lockdep_is_held(&sb->s_umount));
966 }
967 #else
ext4_quota_off_umount(struct super_block * sb)968 static inline void ext4_quota_off_umount(struct super_block *sb)
969 {
970 }
971 #endif
972
ext4_put_super(struct super_block * sb)973 static void ext4_put_super(struct super_block *sb)
974 {
975 struct ext4_sb_info *sbi = EXT4_SB(sb);
976 struct ext4_super_block *es = sbi->s_es;
977 struct buffer_head **group_desc;
978 struct flex_groups **flex_groups;
979 int aborted = 0;
980 int i, err;
981
982 ext4_unregister_li_request(sb);
983 ext4_quota_off_umount(sb);
984
985 destroy_workqueue(sbi->rsv_conversion_wq);
986
987 if (sbi->s_journal) {
988 aborted = is_journal_aborted(sbi->s_journal);
989 err = jbd2_journal_destroy(sbi->s_journal);
990 sbi->s_journal = NULL;
991 if ((err < 0) && !aborted)
992 ext4_abort(sb, "Couldn't clean up the journal");
993 }
994
995 ext4_unregister_sysfs(sb);
996 ext4_es_unregister_shrinker(sbi);
997 del_timer_sync(&sbi->s_err_report);
998 ext4_release_system_zone(sb);
999 ext4_mb_release(sb);
1000 ext4_ext_release(sb);
1001
1002 if (!sb_rdonly(sb) && !aborted) {
1003 ext4_clear_feature_journal_needs_recovery(sb);
1004 es->s_state = cpu_to_le16(sbi->s_mount_state);
1005 }
1006 if (!sb_rdonly(sb))
1007 ext4_commit_super(sb, 1);
1008
1009 rcu_read_lock();
1010 group_desc = rcu_dereference(sbi->s_group_desc);
1011 for (i = 0; i < sbi->s_gdb_count; i++)
1012 brelse(group_desc[i]);
1013 kvfree(group_desc);
1014 flex_groups = rcu_dereference(sbi->s_flex_groups);
1015 if (flex_groups) {
1016 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1017 kvfree(flex_groups[i]);
1018 kvfree(flex_groups);
1019 }
1020 rcu_read_unlock();
1021 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1022 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1023 percpu_counter_destroy(&sbi->s_dirs_counter);
1024 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1025 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1026 #ifdef CONFIG_QUOTA
1027 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1028 kfree(get_qf_name(sb, sbi, i));
1029 #endif
1030
1031 /* Debugging code just in case the in-memory inode orphan list
1032 * isn't empty. The on-disk one can be non-empty if we've
1033 * detected an error and taken the fs readonly, but the
1034 * in-memory list had better be clean by this point. */
1035 if (!list_empty(&sbi->s_orphan))
1036 dump_orphan_list(sb, sbi);
1037 J_ASSERT(list_empty(&sbi->s_orphan));
1038
1039 sync_blockdev(sb->s_bdev);
1040 invalidate_bdev(sb->s_bdev);
1041 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1042 sync_blockdev(sbi->s_journal_bdev);
1043 ext4_blkdev_remove(sbi);
1044 }
1045 if (sbi->s_ea_inode_cache) {
1046 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1047 sbi->s_ea_inode_cache = NULL;
1048 }
1049 if (sbi->s_ea_block_cache) {
1050 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1051 sbi->s_ea_block_cache = NULL;
1052 }
1053 if (sbi->s_mmp_tsk)
1054 kthread_stop(sbi->s_mmp_tsk);
1055 brelse(sbi->s_sbh);
1056 sb->s_fs_info = NULL;
1057 /*
1058 * Now that we are completely done shutting down the
1059 * superblock, we need to actually destroy the kobject.
1060 */
1061 kobject_put(&sbi->s_kobj);
1062 wait_for_completion(&sbi->s_kobj_unregister);
1063 if (sbi->s_chksum_driver)
1064 crypto_free_shash(sbi->s_chksum_driver);
1065 kfree(sbi->s_blockgroup_lock);
1066 fs_put_dax(sbi->s_daxdev);
1067 kfree(sbi);
1068 }
1069
1070 static struct kmem_cache *ext4_inode_cachep;
1071
1072 /*
1073 * Called inside transaction, so use GFP_NOFS
1074 */
ext4_alloc_inode(struct super_block * sb)1075 static struct inode *ext4_alloc_inode(struct super_block *sb)
1076 {
1077 struct ext4_inode_info *ei;
1078
1079 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1080 if (!ei)
1081 return NULL;
1082
1083 inode_set_iversion(&ei->vfs_inode, 1);
1084 ei->i_flags = 0;
1085 spin_lock_init(&ei->i_raw_lock);
1086 INIT_LIST_HEAD(&ei->i_prealloc_list);
1087 spin_lock_init(&ei->i_prealloc_lock);
1088 ext4_es_init_tree(&ei->i_es_tree);
1089 rwlock_init(&ei->i_es_lock);
1090 INIT_LIST_HEAD(&ei->i_es_list);
1091 ei->i_es_all_nr = 0;
1092 ei->i_es_shk_nr = 0;
1093 ei->i_es_shrink_lblk = 0;
1094 ei->i_reserved_data_blocks = 0;
1095 ei->i_da_metadata_calc_len = 0;
1096 ei->i_da_metadata_calc_last_lblock = 0;
1097 spin_lock_init(&(ei->i_block_reservation_lock));
1098 #ifdef CONFIG_QUOTA
1099 ei->i_reserved_quota = 0;
1100 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1101 #endif
1102 ei->jinode = NULL;
1103 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1104 spin_lock_init(&ei->i_completed_io_lock);
1105 ei->i_sync_tid = 0;
1106 ei->i_datasync_tid = 0;
1107 atomic_set(&ei->i_unwritten, 0);
1108 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1109 return &ei->vfs_inode;
1110 }
1111
ext4_drop_inode(struct inode * inode)1112 static int ext4_drop_inode(struct inode *inode)
1113 {
1114 int drop = generic_drop_inode(inode);
1115
1116 trace_ext4_drop_inode(inode, drop);
1117 return drop;
1118 }
1119
ext4_i_callback(struct rcu_head * head)1120 static void ext4_i_callback(struct rcu_head *head)
1121 {
1122 struct inode *inode = container_of(head, struct inode, i_rcu);
1123 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1124 }
1125
ext4_destroy_inode(struct inode * inode)1126 static void ext4_destroy_inode(struct inode *inode)
1127 {
1128 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1129 ext4_msg(inode->i_sb, KERN_ERR,
1130 "Inode %lu (%p): orphan list check failed!",
1131 inode->i_ino, EXT4_I(inode));
1132 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1133 EXT4_I(inode), sizeof(struct ext4_inode_info),
1134 true);
1135 dump_stack();
1136 }
1137 call_rcu(&inode->i_rcu, ext4_i_callback);
1138 }
1139
init_once(void * foo)1140 static void init_once(void *foo)
1141 {
1142 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1143
1144 INIT_LIST_HEAD(&ei->i_orphan);
1145 init_rwsem(&ei->xattr_sem);
1146 init_rwsem(&ei->i_data_sem);
1147 init_rwsem(&ei->i_mmap_sem);
1148 inode_init_once(&ei->vfs_inode);
1149 }
1150
init_inodecache(void)1151 static int __init init_inodecache(void)
1152 {
1153 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1154 sizeof(struct ext4_inode_info), 0,
1155 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1156 SLAB_ACCOUNT),
1157 offsetof(struct ext4_inode_info, i_data),
1158 sizeof_field(struct ext4_inode_info, i_data),
1159 init_once);
1160 if (ext4_inode_cachep == NULL)
1161 return -ENOMEM;
1162 return 0;
1163 }
1164
destroy_inodecache(void)1165 static void destroy_inodecache(void)
1166 {
1167 /*
1168 * Make sure all delayed rcu free inodes are flushed before we
1169 * destroy cache.
1170 */
1171 rcu_barrier();
1172 kmem_cache_destroy(ext4_inode_cachep);
1173 }
1174
ext4_clear_inode(struct inode * inode)1175 void ext4_clear_inode(struct inode *inode)
1176 {
1177 invalidate_inode_buffers(inode);
1178 clear_inode(inode);
1179 dquot_drop(inode);
1180 ext4_discard_preallocations(inode);
1181 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1182 if (EXT4_I(inode)->jinode) {
1183 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1184 EXT4_I(inode)->jinode);
1185 jbd2_free_inode(EXT4_I(inode)->jinode);
1186 EXT4_I(inode)->jinode = NULL;
1187 }
1188 fscrypt_put_encryption_info(inode);
1189 }
1190
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1191 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1192 u64 ino, u32 generation)
1193 {
1194 struct inode *inode;
1195
1196 /*
1197 * Currently we don't know the generation for parent directory, so
1198 * a generation of 0 means "accept any"
1199 */
1200 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1201 if (IS_ERR(inode))
1202 return ERR_CAST(inode);
1203 if (generation && inode->i_generation != generation) {
1204 iput(inode);
1205 return ERR_PTR(-ESTALE);
1206 }
1207
1208 return inode;
1209 }
1210
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1211 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1212 int fh_len, int fh_type)
1213 {
1214 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1215 ext4_nfs_get_inode);
1216 }
1217
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1218 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1219 int fh_len, int fh_type)
1220 {
1221 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1222 ext4_nfs_get_inode);
1223 }
1224
ext4_nfs_commit_metadata(struct inode * inode)1225 static int ext4_nfs_commit_metadata(struct inode *inode)
1226 {
1227 struct writeback_control wbc = {
1228 .sync_mode = WB_SYNC_ALL
1229 };
1230
1231 trace_ext4_nfs_commit_metadata(inode);
1232 return ext4_write_inode(inode, &wbc);
1233 }
1234
1235 /*
1236 * Try to release metadata pages (indirect blocks, directories) which are
1237 * mapped via the block device. Since these pages could have journal heads
1238 * which would prevent try_to_free_buffers() from freeing them, we must use
1239 * jbd2 layer's try_to_free_buffers() function to release them.
1240 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1241 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1242 gfp_t wait)
1243 {
1244 journal_t *journal = EXT4_SB(sb)->s_journal;
1245
1246 WARN_ON(PageChecked(page));
1247 if (!page_has_buffers(page))
1248 return 0;
1249 if (journal)
1250 return jbd2_journal_try_to_free_buffers(journal, page,
1251 wait & ~__GFP_DIRECT_RECLAIM);
1252 return try_to_free_buffers(page);
1253 }
1254
1255 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1256 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1257 {
1258 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1259 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1260 }
1261
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1262 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1263 void *fs_data)
1264 {
1265 handle_t *handle = fs_data;
1266 int res, res2, credits, retries = 0;
1267
1268 /*
1269 * Encrypting the root directory is not allowed because e2fsck expects
1270 * lost+found to exist and be unencrypted, and encrypting the root
1271 * directory would imply encrypting the lost+found directory as well as
1272 * the filename "lost+found" itself.
1273 */
1274 if (inode->i_ino == EXT4_ROOT_INO)
1275 return -EPERM;
1276
1277 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1278 return -EINVAL;
1279
1280 res = ext4_convert_inline_data(inode);
1281 if (res)
1282 return res;
1283
1284 /*
1285 * If a journal handle was specified, then the encryption context is
1286 * being set on a new inode via inheritance and is part of a larger
1287 * transaction to create the inode. Otherwise the encryption context is
1288 * being set on an existing inode in its own transaction. Only in the
1289 * latter case should the "retry on ENOSPC" logic be used.
1290 */
1291
1292 if (handle) {
1293 res = ext4_xattr_set_handle(handle, inode,
1294 EXT4_XATTR_INDEX_ENCRYPTION,
1295 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1296 ctx, len, 0);
1297 if (!res) {
1298 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1299 ext4_clear_inode_state(inode,
1300 EXT4_STATE_MAY_INLINE_DATA);
1301 /*
1302 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1303 * S_DAX may be disabled
1304 */
1305 ext4_set_inode_flags(inode);
1306 }
1307 return res;
1308 }
1309
1310 res = dquot_initialize(inode);
1311 if (res)
1312 return res;
1313 retry:
1314 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1315 &credits);
1316 if (res)
1317 return res;
1318
1319 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1320 if (IS_ERR(handle))
1321 return PTR_ERR(handle);
1322
1323 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1324 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1325 ctx, len, 0);
1326 if (!res) {
1327 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1328 /*
1329 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1330 * S_DAX may be disabled
1331 */
1332 ext4_set_inode_flags(inode);
1333 res = ext4_mark_inode_dirty(handle, inode);
1334 if (res)
1335 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1336 }
1337 res2 = ext4_journal_stop(handle);
1338
1339 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1340 goto retry;
1341 if (!res)
1342 res = res2;
1343 return res;
1344 }
1345
ext4_dummy_context(struct inode * inode)1346 static bool ext4_dummy_context(struct inode *inode)
1347 {
1348 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1349 }
1350
1351 static const struct fscrypt_operations ext4_cryptops = {
1352 .key_prefix = "ext4:",
1353 .get_context = ext4_get_context,
1354 .set_context = ext4_set_context,
1355 .dummy_context = ext4_dummy_context,
1356 .empty_dir = ext4_empty_dir,
1357 .max_namelen = EXT4_NAME_LEN,
1358 };
1359 #endif
1360
1361 #ifdef CONFIG_QUOTA
1362 static const char * const quotatypes[] = INITQFNAMES;
1363 #define QTYPE2NAME(t) (quotatypes[t])
1364
1365 static int ext4_write_dquot(struct dquot *dquot);
1366 static int ext4_acquire_dquot(struct dquot *dquot);
1367 static int ext4_release_dquot(struct dquot *dquot);
1368 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1369 static int ext4_write_info(struct super_block *sb, int type);
1370 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1371 const struct path *path);
1372 static int ext4_quota_on_mount(struct super_block *sb, int type);
1373 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1374 size_t len, loff_t off);
1375 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1376 const char *data, size_t len, loff_t off);
1377 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1378 unsigned int flags);
1379 static int ext4_enable_quotas(struct super_block *sb);
1380 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1381
ext4_get_dquots(struct inode * inode)1382 static struct dquot **ext4_get_dquots(struct inode *inode)
1383 {
1384 return EXT4_I(inode)->i_dquot;
1385 }
1386
1387 static const struct dquot_operations ext4_quota_operations = {
1388 .get_reserved_space = ext4_get_reserved_space,
1389 .write_dquot = ext4_write_dquot,
1390 .acquire_dquot = ext4_acquire_dquot,
1391 .release_dquot = ext4_release_dquot,
1392 .mark_dirty = ext4_mark_dquot_dirty,
1393 .write_info = ext4_write_info,
1394 .alloc_dquot = dquot_alloc,
1395 .destroy_dquot = dquot_destroy,
1396 .get_projid = ext4_get_projid,
1397 .get_inode_usage = ext4_get_inode_usage,
1398 .get_next_id = ext4_get_next_id,
1399 };
1400
1401 static const struct quotactl_ops ext4_qctl_operations = {
1402 .quota_on = ext4_quota_on,
1403 .quota_off = ext4_quota_off,
1404 .quota_sync = dquot_quota_sync,
1405 .get_state = dquot_get_state,
1406 .set_info = dquot_set_dqinfo,
1407 .get_dqblk = dquot_get_dqblk,
1408 .set_dqblk = dquot_set_dqblk,
1409 .get_nextdqblk = dquot_get_next_dqblk,
1410 };
1411 #endif
1412
1413 static const struct super_operations ext4_sops = {
1414 .alloc_inode = ext4_alloc_inode,
1415 .destroy_inode = ext4_destroy_inode,
1416 .write_inode = ext4_write_inode,
1417 .dirty_inode = ext4_dirty_inode,
1418 .drop_inode = ext4_drop_inode,
1419 .evict_inode = ext4_evict_inode,
1420 .put_super = ext4_put_super,
1421 .sync_fs = ext4_sync_fs,
1422 .freeze_fs = ext4_freeze,
1423 .unfreeze_fs = ext4_unfreeze,
1424 .statfs = ext4_statfs,
1425 .remount_fs = ext4_remount,
1426 .show_options = ext4_show_options,
1427 #ifdef CONFIG_QUOTA
1428 .quota_read = ext4_quota_read,
1429 .quota_write = ext4_quota_write,
1430 .get_dquots = ext4_get_dquots,
1431 #endif
1432 .bdev_try_to_free_page = bdev_try_to_free_page,
1433 };
1434
1435 static const struct export_operations ext4_export_ops = {
1436 .fh_to_dentry = ext4_fh_to_dentry,
1437 .fh_to_parent = ext4_fh_to_parent,
1438 .get_parent = ext4_get_parent,
1439 .commit_metadata = ext4_nfs_commit_metadata,
1440 };
1441
1442 enum {
1443 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1444 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1445 Opt_nouid32, Opt_debug, Opt_removed,
1446 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1447 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1448 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1449 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1450 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1451 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1452 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1453 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1454 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1455 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1456 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1457 Opt_nowarn_on_error, Opt_mblk_io_submit,
1458 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1459 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1460 Opt_inode_readahead_blks, Opt_journal_ioprio,
1461 Opt_dioread_nolock, Opt_dioread_lock,
1462 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1463 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1464 };
1465
1466 static const match_table_t tokens = {
1467 {Opt_bsd_df, "bsddf"},
1468 {Opt_minix_df, "minixdf"},
1469 {Opt_grpid, "grpid"},
1470 {Opt_grpid, "bsdgroups"},
1471 {Opt_nogrpid, "nogrpid"},
1472 {Opt_nogrpid, "sysvgroups"},
1473 {Opt_resgid, "resgid=%u"},
1474 {Opt_resuid, "resuid=%u"},
1475 {Opt_sb, "sb=%u"},
1476 {Opt_err_cont, "errors=continue"},
1477 {Opt_err_panic, "errors=panic"},
1478 {Opt_err_ro, "errors=remount-ro"},
1479 {Opt_nouid32, "nouid32"},
1480 {Opt_debug, "debug"},
1481 {Opt_removed, "oldalloc"},
1482 {Opt_removed, "orlov"},
1483 {Opt_user_xattr, "user_xattr"},
1484 {Opt_nouser_xattr, "nouser_xattr"},
1485 {Opt_acl, "acl"},
1486 {Opt_noacl, "noacl"},
1487 {Opt_noload, "norecovery"},
1488 {Opt_noload, "noload"},
1489 {Opt_removed, "nobh"},
1490 {Opt_removed, "bh"},
1491 {Opt_commit, "commit=%u"},
1492 {Opt_min_batch_time, "min_batch_time=%u"},
1493 {Opt_max_batch_time, "max_batch_time=%u"},
1494 {Opt_journal_dev, "journal_dev=%u"},
1495 {Opt_journal_path, "journal_path=%s"},
1496 {Opt_journal_checksum, "journal_checksum"},
1497 {Opt_nojournal_checksum, "nojournal_checksum"},
1498 {Opt_journal_async_commit, "journal_async_commit"},
1499 {Opt_abort, "abort"},
1500 {Opt_data_journal, "data=journal"},
1501 {Opt_data_ordered, "data=ordered"},
1502 {Opt_data_writeback, "data=writeback"},
1503 {Opt_data_err_abort, "data_err=abort"},
1504 {Opt_data_err_ignore, "data_err=ignore"},
1505 {Opt_offusrjquota, "usrjquota="},
1506 {Opt_usrjquota, "usrjquota=%s"},
1507 {Opt_offgrpjquota, "grpjquota="},
1508 {Opt_grpjquota, "grpjquota=%s"},
1509 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1510 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1511 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1512 {Opt_grpquota, "grpquota"},
1513 {Opt_noquota, "noquota"},
1514 {Opt_quota, "quota"},
1515 {Opt_usrquota, "usrquota"},
1516 {Opt_prjquota, "prjquota"},
1517 {Opt_barrier, "barrier=%u"},
1518 {Opt_barrier, "barrier"},
1519 {Opt_nobarrier, "nobarrier"},
1520 {Opt_i_version, "i_version"},
1521 {Opt_dax, "dax"},
1522 {Opt_stripe, "stripe=%u"},
1523 {Opt_delalloc, "delalloc"},
1524 {Opt_warn_on_error, "warn_on_error"},
1525 {Opt_nowarn_on_error, "nowarn_on_error"},
1526 {Opt_lazytime, "lazytime"},
1527 {Opt_nolazytime, "nolazytime"},
1528 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1529 {Opt_nodelalloc, "nodelalloc"},
1530 {Opt_removed, "mblk_io_submit"},
1531 {Opt_removed, "nomblk_io_submit"},
1532 {Opt_block_validity, "block_validity"},
1533 {Opt_noblock_validity, "noblock_validity"},
1534 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1535 {Opt_journal_ioprio, "journal_ioprio=%u"},
1536 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1537 {Opt_auto_da_alloc, "auto_da_alloc"},
1538 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1539 {Opt_dioread_nolock, "dioread_nolock"},
1540 {Opt_dioread_lock, "dioread_lock"},
1541 {Opt_discard, "discard"},
1542 {Opt_nodiscard, "nodiscard"},
1543 {Opt_init_itable, "init_itable=%u"},
1544 {Opt_init_itable, "init_itable"},
1545 {Opt_noinit_itable, "noinit_itable"},
1546 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1547 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1548 {Opt_nombcache, "nombcache"},
1549 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1550 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1551 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1552 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1553 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1554 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1555 {Opt_err, NULL},
1556 };
1557
get_sb_block(void ** data)1558 static ext4_fsblk_t get_sb_block(void **data)
1559 {
1560 ext4_fsblk_t sb_block;
1561 char *options = (char *) *data;
1562
1563 if (!options || strncmp(options, "sb=", 3) != 0)
1564 return 1; /* Default location */
1565
1566 options += 3;
1567 /* TODO: use simple_strtoll with >32bit ext4 */
1568 sb_block = simple_strtoul(options, &options, 0);
1569 if (*options && *options != ',') {
1570 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1571 (char *) *data);
1572 return 1;
1573 }
1574 if (*options == ',')
1575 options++;
1576 *data = (void *) options;
1577
1578 return sb_block;
1579 }
1580
1581 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1582 static const char deprecated_msg[] =
1583 "Mount option \"%s\" will be removed by %s\n"
1584 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1585
1586 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1587 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1588 {
1589 struct ext4_sb_info *sbi = EXT4_SB(sb);
1590 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1591 int ret = -1;
1592
1593 if (sb_any_quota_loaded(sb) && !old_qname) {
1594 ext4_msg(sb, KERN_ERR,
1595 "Cannot change journaled "
1596 "quota options when quota turned on");
1597 return -1;
1598 }
1599 if (ext4_has_feature_quota(sb)) {
1600 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1601 "ignored when QUOTA feature is enabled");
1602 return 1;
1603 }
1604 qname = match_strdup(args);
1605 if (!qname) {
1606 ext4_msg(sb, KERN_ERR,
1607 "Not enough memory for storing quotafile name");
1608 return -1;
1609 }
1610 if (old_qname) {
1611 if (strcmp(old_qname, qname) == 0)
1612 ret = 1;
1613 else
1614 ext4_msg(sb, KERN_ERR,
1615 "%s quota file already specified",
1616 QTYPE2NAME(qtype));
1617 goto errout;
1618 }
1619 if (strchr(qname, '/')) {
1620 ext4_msg(sb, KERN_ERR,
1621 "quotafile must be on filesystem root");
1622 goto errout;
1623 }
1624 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1625 set_opt(sb, QUOTA);
1626 return 1;
1627 errout:
1628 kfree(qname);
1629 return ret;
1630 }
1631
clear_qf_name(struct super_block * sb,int qtype)1632 static int clear_qf_name(struct super_block *sb, int qtype)
1633 {
1634
1635 struct ext4_sb_info *sbi = EXT4_SB(sb);
1636 char *old_qname = get_qf_name(sb, sbi, qtype);
1637
1638 if (sb_any_quota_loaded(sb) && old_qname) {
1639 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1640 " when quota turned on");
1641 return -1;
1642 }
1643 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1644 synchronize_rcu();
1645 kfree(old_qname);
1646 return 1;
1647 }
1648 #endif
1649
1650 #define MOPT_SET 0x0001
1651 #define MOPT_CLEAR 0x0002
1652 #define MOPT_NOSUPPORT 0x0004
1653 #define MOPT_EXPLICIT 0x0008
1654 #define MOPT_CLEAR_ERR 0x0010
1655 #define MOPT_GTE0 0x0020
1656 #ifdef CONFIG_QUOTA
1657 #define MOPT_Q 0
1658 #define MOPT_QFMT 0x0040
1659 #else
1660 #define MOPT_Q MOPT_NOSUPPORT
1661 #define MOPT_QFMT MOPT_NOSUPPORT
1662 #endif
1663 #define MOPT_DATAJ 0x0080
1664 #define MOPT_NO_EXT2 0x0100
1665 #define MOPT_NO_EXT3 0x0200
1666 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1667 #define MOPT_STRING 0x0400
1668
1669 static const struct mount_opts {
1670 int token;
1671 int mount_opt;
1672 int flags;
1673 } ext4_mount_opts[] = {
1674 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1675 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1676 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1677 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1678 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1679 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1680 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1681 MOPT_EXT4_ONLY | MOPT_SET},
1682 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1683 MOPT_EXT4_ONLY | MOPT_CLEAR},
1684 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1685 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1686 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1687 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1688 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1689 MOPT_EXT4_ONLY | MOPT_CLEAR},
1690 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1691 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1692 {Opt_commit, 0, MOPT_NO_EXT2},
1693 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1694 MOPT_EXT4_ONLY | MOPT_CLEAR},
1695 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1696 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1697 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1698 EXT4_MOUNT_JOURNAL_CHECKSUM),
1699 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1700 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1701 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1702 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1703 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1704 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1705 MOPT_NO_EXT2},
1706 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1707 MOPT_NO_EXT2},
1708 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1709 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1710 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1711 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1712 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1713 {Opt_commit, 0, MOPT_GTE0},
1714 {Opt_max_batch_time, 0, MOPT_GTE0},
1715 {Opt_min_batch_time, 0, MOPT_GTE0},
1716 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1717 {Opt_init_itable, 0, MOPT_GTE0},
1718 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1719 {Opt_stripe, 0, MOPT_GTE0},
1720 {Opt_resuid, 0, MOPT_GTE0},
1721 {Opt_resgid, 0, MOPT_GTE0},
1722 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1723 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1724 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1725 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1726 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1727 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1728 MOPT_NO_EXT2 | MOPT_DATAJ},
1729 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1730 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1731 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1732 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1733 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1734 #else
1735 {Opt_acl, 0, MOPT_NOSUPPORT},
1736 {Opt_noacl, 0, MOPT_NOSUPPORT},
1737 #endif
1738 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1739 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1740 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1741 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1742 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1743 MOPT_SET | MOPT_Q},
1744 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1745 MOPT_SET | MOPT_Q},
1746 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1747 MOPT_SET | MOPT_Q},
1748 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1749 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1750 MOPT_CLEAR | MOPT_Q},
1751 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1752 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1753 {Opt_offusrjquota, 0, MOPT_Q},
1754 {Opt_offgrpjquota, 0, MOPT_Q},
1755 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1756 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1757 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1758 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1759 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1760 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1761 {Opt_err, 0, 0}
1762 };
1763
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1764 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1765 substring_t *args, unsigned long *journal_devnum,
1766 unsigned int *journal_ioprio, int is_remount)
1767 {
1768 struct ext4_sb_info *sbi = EXT4_SB(sb);
1769 const struct mount_opts *m;
1770 kuid_t uid;
1771 kgid_t gid;
1772 int arg = 0;
1773
1774 #ifdef CONFIG_QUOTA
1775 if (token == Opt_usrjquota)
1776 return set_qf_name(sb, USRQUOTA, &args[0]);
1777 else if (token == Opt_grpjquota)
1778 return set_qf_name(sb, GRPQUOTA, &args[0]);
1779 else if (token == Opt_offusrjquota)
1780 return clear_qf_name(sb, USRQUOTA);
1781 else if (token == Opt_offgrpjquota)
1782 return clear_qf_name(sb, GRPQUOTA);
1783 #endif
1784 switch (token) {
1785 case Opt_noacl:
1786 case Opt_nouser_xattr:
1787 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1788 break;
1789 case Opt_sb:
1790 return 1; /* handled by get_sb_block() */
1791 case Opt_removed:
1792 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1793 return 1;
1794 case Opt_abort:
1795 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1796 return 1;
1797 case Opt_i_version:
1798 sb->s_flags |= SB_I_VERSION;
1799 return 1;
1800 case Opt_lazytime:
1801 sb->s_flags |= SB_LAZYTIME;
1802 return 1;
1803 case Opt_nolazytime:
1804 sb->s_flags &= ~SB_LAZYTIME;
1805 return 1;
1806 }
1807
1808 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1809 if (token == m->token)
1810 break;
1811
1812 if (m->token == Opt_err) {
1813 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1814 "or missing value", opt);
1815 return -1;
1816 }
1817
1818 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1819 ext4_msg(sb, KERN_ERR,
1820 "Mount option \"%s\" incompatible with ext2", opt);
1821 return -1;
1822 }
1823 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1824 ext4_msg(sb, KERN_ERR,
1825 "Mount option \"%s\" incompatible with ext3", opt);
1826 return -1;
1827 }
1828
1829 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1830 return -1;
1831 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1832 return -1;
1833 if (m->flags & MOPT_EXPLICIT) {
1834 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1835 set_opt2(sb, EXPLICIT_DELALLOC);
1836 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1837 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1838 } else
1839 return -1;
1840 }
1841 if (m->flags & MOPT_CLEAR_ERR)
1842 clear_opt(sb, ERRORS_MASK);
1843 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1844 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1845 "options when quota turned on");
1846 return -1;
1847 }
1848
1849 if (m->flags & MOPT_NOSUPPORT) {
1850 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1851 } else if (token == Opt_commit) {
1852 if (arg == 0)
1853 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1854 sbi->s_commit_interval = HZ * arg;
1855 } else if (token == Opt_debug_want_extra_isize) {
1856 if ((arg & 1) ||
1857 (arg < 4) ||
1858 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1859 ext4_msg(sb, KERN_ERR,
1860 "Invalid want_extra_isize %d", arg);
1861 return -1;
1862 }
1863 sbi->s_want_extra_isize = arg;
1864 } else if (token == Opt_max_batch_time) {
1865 sbi->s_max_batch_time = arg;
1866 } else if (token == Opt_min_batch_time) {
1867 sbi->s_min_batch_time = arg;
1868 } else if (token == Opt_inode_readahead_blks) {
1869 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1870 ext4_msg(sb, KERN_ERR,
1871 "EXT4-fs: inode_readahead_blks must be "
1872 "0 or a power of 2 smaller than 2^31");
1873 return -1;
1874 }
1875 sbi->s_inode_readahead_blks = arg;
1876 } else if (token == Opt_init_itable) {
1877 set_opt(sb, INIT_INODE_TABLE);
1878 if (!args->from)
1879 arg = EXT4_DEF_LI_WAIT_MULT;
1880 sbi->s_li_wait_mult = arg;
1881 } else if (token == Opt_max_dir_size_kb) {
1882 sbi->s_max_dir_size_kb = arg;
1883 } else if (token == Opt_stripe) {
1884 sbi->s_stripe = arg;
1885 } else if (token == Opt_resuid) {
1886 uid = make_kuid(current_user_ns(), arg);
1887 if (!uid_valid(uid)) {
1888 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1889 return -1;
1890 }
1891 sbi->s_resuid = uid;
1892 } else if (token == Opt_resgid) {
1893 gid = make_kgid(current_user_ns(), arg);
1894 if (!gid_valid(gid)) {
1895 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1896 return -1;
1897 }
1898 sbi->s_resgid = gid;
1899 } else if (token == Opt_journal_dev) {
1900 if (is_remount) {
1901 ext4_msg(sb, KERN_ERR,
1902 "Cannot specify journal on remount");
1903 return -1;
1904 }
1905 *journal_devnum = arg;
1906 } else if (token == Opt_journal_path) {
1907 char *journal_path;
1908 struct inode *journal_inode;
1909 struct path path;
1910 int error;
1911
1912 if (is_remount) {
1913 ext4_msg(sb, KERN_ERR,
1914 "Cannot specify journal on remount");
1915 return -1;
1916 }
1917 journal_path = match_strdup(&args[0]);
1918 if (!journal_path) {
1919 ext4_msg(sb, KERN_ERR, "error: could not dup "
1920 "journal device string");
1921 return -1;
1922 }
1923
1924 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1925 if (error) {
1926 ext4_msg(sb, KERN_ERR, "error: could not find "
1927 "journal device path: error %d", error);
1928 kfree(journal_path);
1929 return -1;
1930 }
1931
1932 journal_inode = d_inode(path.dentry);
1933 if (!S_ISBLK(journal_inode->i_mode)) {
1934 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1935 "is not a block device", journal_path);
1936 path_put(&path);
1937 kfree(journal_path);
1938 return -1;
1939 }
1940
1941 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1942 path_put(&path);
1943 kfree(journal_path);
1944 } else if (token == Opt_journal_ioprio) {
1945 if (arg > 7) {
1946 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1947 " (must be 0-7)");
1948 return -1;
1949 }
1950 *journal_ioprio =
1951 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1952 } else if (token == Opt_test_dummy_encryption) {
1953 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1954 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1955 ext4_msg(sb, KERN_WARNING,
1956 "Test dummy encryption mode enabled");
1957 #else
1958 ext4_msg(sb, KERN_WARNING,
1959 "Test dummy encryption mount option ignored");
1960 #endif
1961 } else if (m->flags & MOPT_DATAJ) {
1962 if (is_remount) {
1963 if (!sbi->s_journal)
1964 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1965 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1966 ext4_msg(sb, KERN_ERR,
1967 "Cannot change data mode on remount");
1968 return -1;
1969 }
1970 } else {
1971 clear_opt(sb, DATA_FLAGS);
1972 sbi->s_mount_opt |= m->mount_opt;
1973 }
1974 #ifdef CONFIG_QUOTA
1975 } else if (m->flags & MOPT_QFMT) {
1976 if (sb_any_quota_loaded(sb) &&
1977 sbi->s_jquota_fmt != m->mount_opt) {
1978 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1979 "quota options when quota turned on");
1980 return -1;
1981 }
1982 if (ext4_has_feature_quota(sb)) {
1983 ext4_msg(sb, KERN_INFO,
1984 "Quota format mount options ignored "
1985 "when QUOTA feature is enabled");
1986 return 1;
1987 }
1988 sbi->s_jquota_fmt = m->mount_opt;
1989 #endif
1990 } else if (token == Opt_dax) {
1991 #ifdef CONFIG_FS_DAX
1992 if (is_remount && test_opt(sb, DAX)) {
1993 ext4_msg(sb, KERN_ERR, "can't mount with "
1994 "both data=journal and dax");
1995 return -1;
1996 }
1997 if (is_remount && !(sbi->s_mount_opt & EXT4_MOUNT_DAX)) {
1998 ext4_msg(sb, KERN_ERR, "can't change "
1999 "dax mount option while remounting");
2000 return -1;
2001 }
2002 ext4_msg(sb, KERN_WARNING,
2003 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2004 sbi->s_mount_opt |= m->mount_opt;
2005 #else
2006 ext4_msg(sb, KERN_INFO, "dax option not supported");
2007 return -1;
2008 #endif
2009 } else if (token == Opt_data_err_abort) {
2010 sbi->s_mount_opt |= m->mount_opt;
2011 } else if (token == Opt_data_err_ignore) {
2012 sbi->s_mount_opt &= ~m->mount_opt;
2013 } else {
2014 if (!args->from)
2015 arg = 1;
2016 if (m->flags & MOPT_CLEAR)
2017 arg = !arg;
2018 else if (unlikely(!(m->flags & MOPT_SET))) {
2019 ext4_msg(sb, KERN_WARNING,
2020 "buggy handling of option %s", opt);
2021 WARN_ON(1);
2022 return -1;
2023 }
2024 if (arg != 0)
2025 sbi->s_mount_opt |= m->mount_opt;
2026 else
2027 sbi->s_mount_opt &= ~m->mount_opt;
2028 }
2029 return 1;
2030 }
2031
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2032 static int parse_options(char *options, struct super_block *sb,
2033 unsigned long *journal_devnum,
2034 unsigned int *journal_ioprio,
2035 int is_remount)
2036 {
2037 struct ext4_sb_info *sbi = EXT4_SB(sb);
2038 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2039 substring_t args[MAX_OPT_ARGS];
2040 int token;
2041
2042 if (!options)
2043 return 1;
2044
2045 while ((p = strsep(&options, ",")) != NULL) {
2046 if (!*p)
2047 continue;
2048 /*
2049 * Initialize args struct so we know whether arg was
2050 * found; some options take optional arguments.
2051 */
2052 args[0].to = args[0].from = NULL;
2053 token = match_token(p, tokens, args);
2054 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2055 journal_ioprio, is_remount) < 0)
2056 return 0;
2057 }
2058 #ifdef CONFIG_QUOTA
2059 /*
2060 * We do the test below only for project quotas. 'usrquota' and
2061 * 'grpquota' mount options are allowed even without quota feature
2062 * to support legacy quotas in quota files.
2063 */
2064 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2065 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2066 "Cannot enable project quota enforcement.");
2067 return 0;
2068 }
2069 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2070 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2071 if (usr_qf_name || grp_qf_name) {
2072 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2073 clear_opt(sb, USRQUOTA);
2074
2075 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2076 clear_opt(sb, GRPQUOTA);
2077
2078 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2079 ext4_msg(sb, KERN_ERR, "old and new quota "
2080 "format mixing");
2081 return 0;
2082 }
2083
2084 if (!sbi->s_jquota_fmt) {
2085 ext4_msg(sb, KERN_ERR, "journaled quota format "
2086 "not specified");
2087 return 0;
2088 }
2089 }
2090 #endif
2091 if (test_opt(sb, DIOREAD_NOLOCK)) {
2092 int blocksize =
2093 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2094
2095 if (blocksize < PAGE_SIZE) {
2096 ext4_msg(sb, KERN_ERR, "can't mount with "
2097 "dioread_nolock if block size != PAGE_SIZE");
2098 return 0;
2099 }
2100 }
2101 return 1;
2102 }
2103
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2104 static inline void ext4_show_quota_options(struct seq_file *seq,
2105 struct super_block *sb)
2106 {
2107 #if defined(CONFIG_QUOTA)
2108 struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 char *usr_qf_name, *grp_qf_name;
2110
2111 if (sbi->s_jquota_fmt) {
2112 char *fmtname = "";
2113
2114 switch (sbi->s_jquota_fmt) {
2115 case QFMT_VFS_OLD:
2116 fmtname = "vfsold";
2117 break;
2118 case QFMT_VFS_V0:
2119 fmtname = "vfsv0";
2120 break;
2121 case QFMT_VFS_V1:
2122 fmtname = "vfsv1";
2123 break;
2124 }
2125 seq_printf(seq, ",jqfmt=%s", fmtname);
2126 }
2127
2128 rcu_read_lock();
2129 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2130 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2131 if (usr_qf_name)
2132 seq_show_option(seq, "usrjquota", usr_qf_name);
2133 if (grp_qf_name)
2134 seq_show_option(seq, "grpjquota", grp_qf_name);
2135 rcu_read_unlock();
2136 #endif
2137 }
2138
token2str(int token)2139 static const char *token2str(int token)
2140 {
2141 const struct match_token *t;
2142
2143 for (t = tokens; t->token != Opt_err; t++)
2144 if (t->token == token && !strchr(t->pattern, '='))
2145 break;
2146 return t->pattern;
2147 }
2148
2149 /*
2150 * Show an option if
2151 * - it's set to a non-default value OR
2152 * - if the per-sb default is different from the global default
2153 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2154 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2155 int nodefs)
2156 {
2157 struct ext4_sb_info *sbi = EXT4_SB(sb);
2158 struct ext4_super_block *es = sbi->s_es;
2159 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2160 const struct mount_opts *m;
2161 char sep = nodefs ? '\n' : ',';
2162
2163 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2164 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2165
2166 if (sbi->s_sb_block != 1)
2167 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2168
2169 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2170 int want_set = m->flags & MOPT_SET;
2171 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2172 (m->flags & MOPT_CLEAR_ERR))
2173 continue;
2174 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2175 continue; /* skip if same as the default */
2176 if ((want_set &&
2177 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2178 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2179 continue; /* select Opt_noFoo vs Opt_Foo */
2180 SEQ_OPTS_PRINT("%s", token2str(m->token));
2181 }
2182
2183 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2184 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2185 SEQ_OPTS_PRINT("resuid=%u",
2186 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2187 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2188 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2189 SEQ_OPTS_PRINT("resgid=%u",
2190 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2191 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2192 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2193 SEQ_OPTS_PUTS("errors=remount-ro");
2194 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2195 SEQ_OPTS_PUTS("errors=continue");
2196 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2197 SEQ_OPTS_PUTS("errors=panic");
2198 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2199 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2200 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2201 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2202 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2203 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2204 if (sb->s_flags & SB_I_VERSION)
2205 SEQ_OPTS_PUTS("i_version");
2206 if (nodefs || sbi->s_stripe)
2207 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2208 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2209 (sbi->s_mount_opt ^ def_mount_opt)) {
2210 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2211 SEQ_OPTS_PUTS("data=journal");
2212 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2213 SEQ_OPTS_PUTS("data=ordered");
2214 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2215 SEQ_OPTS_PUTS("data=writeback");
2216 }
2217 if (nodefs ||
2218 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2219 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2220 sbi->s_inode_readahead_blks);
2221
2222 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2223 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2224 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2225 if (nodefs || sbi->s_max_dir_size_kb)
2226 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2227 if (test_opt(sb, DATA_ERR_ABORT))
2228 SEQ_OPTS_PUTS("data_err=abort");
2229 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2230 SEQ_OPTS_PUTS("test_dummy_encryption");
2231
2232 ext4_show_quota_options(seq, sb);
2233 return 0;
2234 }
2235
ext4_show_options(struct seq_file * seq,struct dentry * root)2236 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2237 {
2238 return _ext4_show_options(seq, root->d_sb, 0);
2239 }
2240
ext4_seq_options_show(struct seq_file * seq,void * offset)2241 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2242 {
2243 struct super_block *sb = seq->private;
2244 int rc;
2245
2246 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2247 rc = _ext4_show_options(seq, sb, 1);
2248 seq_puts(seq, "\n");
2249 return rc;
2250 }
2251
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2252 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2253 int read_only)
2254 {
2255 struct ext4_sb_info *sbi = EXT4_SB(sb);
2256 int err = 0;
2257
2258 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2259 ext4_msg(sb, KERN_ERR, "revision level too high, "
2260 "forcing read-only mode");
2261 err = -EROFS;
2262 goto done;
2263 }
2264 if (read_only)
2265 goto done;
2266 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2267 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2268 "running e2fsck is recommended");
2269 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2270 ext4_msg(sb, KERN_WARNING,
2271 "warning: mounting fs with errors, "
2272 "running e2fsck is recommended");
2273 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2274 le16_to_cpu(es->s_mnt_count) >=
2275 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2276 ext4_msg(sb, KERN_WARNING,
2277 "warning: maximal mount count reached, "
2278 "running e2fsck is recommended");
2279 else if (le32_to_cpu(es->s_checkinterval) &&
2280 (ext4_get_tstamp(es, s_lastcheck) +
2281 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2282 ext4_msg(sb, KERN_WARNING,
2283 "warning: checktime reached, "
2284 "running e2fsck is recommended");
2285 if (!sbi->s_journal)
2286 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2287 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2288 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2289 le16_add_cpu(&es->s_mnt_count, 1);
2290 ext4_update_tstamp(es, s_mtime);
2291 if (sbi->s_journal)
2292 ext4_set_feature_journal_needs_recovery(sb);
2293
2294 err = ext4_commit_super(sb, 1);
2295 done:
2296 if (test_opt(sb, DEBUG))
2297 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2298 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2299 sb->s_blocksize,
2300 sbi->s_groups_count,
2301 EXT4_BLOCKS_PER_GROUP(sb),
2302 EXT4_INODES_PER_GROUP(sb),
2303 sbi->s_mount_opt, sbi->s_mount_opt2);
2304
2305 cleancache_init_fs(sb);
2306 return err;
2307 }
2308
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2309 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2310 {
2311 struct ext4_sb_info *sbi = EXT4_SB(sb);
2312 struct flex_groups **old_groups, **new_groups;
2313 int size, i, j;
2314
2315 if (!sbi->s_log_groups_per_flex)
2316 return 0;
2317
2318 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2319 if (size <= sbi->s_flex_groups_allocated)
2320 return 0;
2321
2322 new_groups = kvzalloc(roundup_pow_of_two(size *
2323 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2324 if (!new_groups) {
2325 ext4_msg(sb, KERN_ERR,
2326 "not enough memory for %d flex group pointers", size);
2327 return -ENOMEM;
2328 }
2329 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2330 new_groups[i] = kvzalloc(roundup_pow_of_two(
2331 sizeof(struct flex_groups)),
2332 GFP_KERNEL);
2333 if (!new_groups[i]) {
2334 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2335 kvfree(new_groups[j]);
2336 kvfree(new_groups);
2337 ext4_msg(sb, KERN_ERR,
2338 "not enough memory for %d flex groups", size);
2339 return -ENOMEM;
2340 }
2341 }
2342 rcu_read_lock();
2343 old_groups = rcu_dereference(sbi->s_flex_groups);
2344 if (old_groups)
2345 memcpy(new_groups, old_groups,
2346 (sbi->s_flex_groups_allocated *
2347 sizeof(struct flex_groups *)));
2348 rcu_read_unlock();
2349 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2350 sbi->s_flex_groups_allocated = size;
2351 if (old_groups)
2352 ext4_kvfree_array_rcu(old_groups);
2353 return 0;
2354 }
2355
ext4_fill_flex_info(struct super_block * sb)2356 static int ext4_fill_flex_info(struct super_block *sb)
2357 {
2358 struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 struct ext4_group_desc *gdp = NULL;
2360 struct flex_groups *fg;
2361 ext4_group_t flex_group;
2362 int i, err;
2363
2364 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2365 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2366 sbi->s_log_groups_per_flex = 0;
2367 return 1;
2368 }
2369
2370 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2371 if (err)
2372 goto failed;
2373
2374 for (i = 0; i < sbi->s_groups_count; i++) {
2375 gdp = ext4_get_group_desc(sb, i, NULL);
2376
2377 flex_group = ext4_flex_group(sbi, i);
2378 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2379 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2380 atomic64_add(ext4_free_group_clusters(sb, gdp),
2381 &fg->free_clusters);
2382 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2383 }
2384
2385 return 1;
2386 failed:
2387 return 0;
2388 }
2389
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2390 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2391 struct ext4_group_desc *gdp)
2392 {
2393 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2394 __u16 crc = 0;
2395 __le32 le_group = cpu_to_le32(block_group);
2396 struct ext4_sb_info *sbi = EXT4_SB(sb);
2397
2398 if (ext4_has_metadata_csum(sbi->s_sb)) {
2399 /* Use new metadata_csum algorithm */
2400 __u32 csum32;
2401 __u16 dummy_csum = 0;
2402
2403 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2404 sizeof(le_group));
2405 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2406 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2407 sizeof(dummy_csum));
2408 offset += sizeof(dummy_csum);
2409 if (offset < sbi->s_desc_size)
2410 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2411 sbi->s_desc_size - offset);
2412
2413 crc = csum32 & 0xFFFF;
2414 goto out;
2415 }
2416
2417 /* old crc16 code */
2418 if (!ext4_has_feature_gdt_csum(sb))
2419 return 0;
2420
2421 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2422 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2423 crc = crc16(crc, (__u8 *)gdp, offset);
2424 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2425 /* for checksum of struct ext4_group_desc do the rest...*/
2426 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2427 crc = crc16(crc, (__u8 *)gdp + offset,
2428 sbi->s_desc_size - offset);
2429
2430 out:
2431 return cpu_to_le16(crc);
2432 }
2433
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2434 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2435 struct ext4_group_desc *gdp)
2436 {
2437 if (ext4_has_group_desc_csum(sb) &&
2438 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2439 return 0;
2440
2441 return 1;
2442 }
2443
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2444 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2445 struct ext4_group_desc *gdp)
2446 {
2447 if (!ext4_has_group_desc_csum(sb))
2448 return;
2449 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2450 }
2451
2452 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2453 static int ext4_check_descriptors(struct super_block *sb,
2454 ext4_fsblk_t sb_block,
2455 ext4_group_t *first_not_zeroed)
2456 {
2457 struct ext4_sb_info *sbi = EXT4_SB(sb);
2458 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2459 ext4_fsblk_t last_block;
2460 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2461 ext4_fsblk_t block_bitmap;
2462 ext4_fsblk_t inode_bitmap;
2463 ext4_fsblk_t inode_table;
2464 int flexbg_flag = 0;
2465 ext4_group_t i, grp = sbi->s_groups_count;
2466
2467 if (ext4_has_feature_flex_bg(sb))
2468 flexbg_flag = 1;
2469
2470 ext4_debug("Checking group descriptors");
2471
2472 for (i = 0; i < sbi->s_groups_count; i++) {
2473 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2474
2475 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2476 last_block = ext4_blocks_count(sbi->s_es) - 1;
2477 else
2478 last_block = first_block +
2479 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2480
2481 if ((grp == sbi->s_groups_count) &&
2482 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2483 grp = i;
2484
2485 block_bitmap = ext4_block_bitmap(sb, gdp);
2486 if (block_bitmap == sb_block) {
2487 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2488 "Block bitmap for group %u overlaps "
2489 "superblock", i);
2490 if (!sb_rdonly(sb))
2491 return 0;
2492 }
2493 if (block_bitmap >= sb_block + 1 &&
2494 block_bitmap <= last_bg_block) {
2495 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2496 "Block bitmap for group %u overlaps "
2497 "block group descriptors", i);
2498 if (!sb_rdonly(sb))
2499 return 0;
2500 }
2501 if (block_bitmap < first_block || block_bitmap > last_block) {
2502 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2503 "Block bitmap for group %u not in group "
2504 "(block %llu)!", i, block_bitmap);
2505 return 0;
2506 }
2507 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2508 if (inode_bitmap == sb_block) {
2509 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2510 "Inode bitmap for group %u overlaps "
2511 "superblock", i);
2512 if (!sb_rdonly(sb))
2513 return 0;
2514 }
2515 if (inode_bitmap >= sb_block + 1 &&
2516 inode_bitmap <= last_bg_block) {
2517 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2518 "Inode bitmap for group %u overlaps "
2519 "block group descriptors", i);
2520 if (!sb_rdonly(sb))
2521 return 0;
2522 }
2523 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2524 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2525 "Inode bitmap for group %u not in group "
2526 "(block %llu)!", i, inode_bitmap);
2527 return 0;
2528 }
2529 inode_table = ext4_inode_table(sb, gdp);
2530 if (inode_table == sb_block) {
2531 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2532 "Inode table for group %u overlaps "
2533 "superblock", i);
2534 if (!sb_rdonly(sb))
2535 return 0;
2536 }
2537 if (inode_table >= sb_block + 1 &&
2538 inode_table <= last_bg_block) {
2539 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2540 "Inode table for group %u overlaps "
2541 "block group descriptors", i);
2542 if (!sb_rdonly(sb))
2543 return 0;
2544 }
2545 if (inode_table < first_block ||
2546 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2547 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2548 "Inode table for group %u not in group "
2549 "(block %llu)!", i, inode_table);
2550 return 0;
2551 }
2552 ext4_lock_group(sb, i);
2553 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2554 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2555 "Checksum for group %u failed (%u!=%u)",
2556 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2557 gdp)), le16_to_cpu(gdp->bg_checksum));
2558 if (!sb_rdonly(sb)) {
2559 ext4_unlock_group(sb, i);
2560 return 0;
2561 }
2562 }
2563 ext4_unlock_group(sb, i);
2564 if (!flexbg_flag)
2565 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2566 }
2567 if (NULL != first_not_zeroed)
2568 *first_not_zeroed = grp;
2569 return 1;
2570 }
2571
2572 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2573 * the superblock) which were deleted from all directories, but held open by
2574 * a process at the time of a crash. We walk the list and try to delete these
2575 * inodes at recovery time (only with a read-write filesystem).
2576 *
2577 * In order to keep the orphan inode chain consistent during traversal (in
2578 * case of crash during recovery), we link each inode into the superblock
2579 * orphan list_head and handle it the same way as an inode deletion during
2580 * normal operation (which journals the operations for us).
2581 *
2582 * We only do an iget() and an iput() on each inode, which is very safe if we
2583 * accidentally point at an in-use or already deleted inode. The worst that
2584 * can happen in this case is that we get a "bit already cleared" message from
2585 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2586 * e2fsck was run on this filesystem, and it must have already done the orphan
2587 * inode cleanup for us, so we can safely abort without any further action.
2588 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2589 static void ext4_orphan_cleanup(struct super_block *sb,
2590 struct ext4_super_block *es)
2591 {
2592 unsigned int s_flags = sb->s_flags;
2593 int ret, nr_orphans = 0, nr_truncates = 0;
2594 #ifdef CONFIG_QUOTA
2595 int quota_update = 0;
2596 int i;
2597 #endif
2598 if (!es->s_last_orphan) {
2599 jbd_debug(4, "no orphan inodes to clean up\n");
2600 return;
2601 }
2602
2603 if (bdev_read_only(sb->s_bdev)) {
2604 ext4_msg(sb, KERN_ERR, "write access "
2605 "unavailable, skipping orphan cleanup");
2606 return;
2607 }
2608
2609 /* Check if feature set would not allow a r/w mount */
2610 if (!ext4_feature_set_ok(sb, 0)) {
2611 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2612 "unknown ROCOMPAT features");
2613 return;
2614 }
2615
2616 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2617 /* don't clear list on RO mount w/ errors */
2618 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2619 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2620 "clearing orphan list.\n");
2621 es->s_last_orphan = 0;
2622 }
2623 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2624 return;
2625 }
2626
2627 if (s_flags & SB_RDONLY) {
2628 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2629 sb->s_flags &= ~SB_RDONLY;
2630 }
2631 #ifdef CONFIG_QUOTA
2632 /*
2633 * Turn on quotas which were not enabled for read-only mounts if
2634 * filesystem has quota feature, so that they are updated correctly.
2635 */
2636 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2637 int ret = ext4_enable_quotas(sb);
2638
2639 if (!ret)
2640 quota_update = 1;
2641 else
2642 ext4_msg(sb, KERN_ERR,
2643 "Cannot turn on quotas: error %d", ret);
2644 }
2645
2646 /* Turn on journaled quotas used for old sytle */
2647 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2648 if (EXT4_SB(sb)->s_qf_names[i]) {
2649 int ret = ext4_quota_on_mount(sb, i);
2650
2651 if (!ret)
2652 quota_update = 1;
2653 else
2654 ext4_msg(sb, KERN_ERR,
2655 "Cannot turn on journaled "
2656 "quota: type %d: error %d", i, ret);
2657 }
2658 }
2659 #endif
2660
2661 while (es->s_last_orphan) {
2662 struct inode *inode;
2663
2664 /*
2665 * We may have encountered an error during cleanup; if
2666 * so, skip the rest.
2667 */
2668 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2669 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2670 es->s_last_orphan = 0;
2671 break;
2672 }
2673
2674 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2675 if (IS_ERR(inode)) {
2676 es->s_last_orphan = 0;
2677 break;
2678 }
2679
2680 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2681 dquot_initialize(inode);
2682 if (inode->i_nlink) {
2683 if (test_opt(sb, DEBUG))
2684 ext4_msg(sb, KERN_DEBUG,
2685 "%s: truncating inode %lu to %lld bytes",
2686 __func__, inode->i_ino, inode->i_size);
2687 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2688 inode->i_ino, inode->i_size);
2689 inode_lock(inode);
2690 truncate_inode_pages(inode->i_mapping, inode->i_size);
2691 ret = ext4_truncate(inode);
2692 if (ret) {
2693 /*
2694 * We need to clean up the in-core orphan list
2695 * manually if ext4_truncate() failed to get a
2696 * transaction handle.
2697 */
2698 ext4_orphan_del(NULL, inode);
2699 ext4_std_error(inode->i_sb, ret);
2700 }
2701 inode_unlock(inode);
2702 nr_truncates++;
2703 } else {
2704 if (test_opt(sb, DEBUG))
2705 ext4_msg(sb, KERN_DEBUG,
2706 "%s: deleting unreferenced inode %lu",
2707 __func__, inode->i_ino);
2708 jbd_debug(2, "deleting unreferenced inode %lu\n",
2709 inode->i_ino);
2710 nr_orphans++;
2711 }
2712 iput(inode); /* The delete magic happens here! */
2713 }
2714
2715 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2716
2717 if (nr_orphans)
2718 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2719 PLURAL(nr_orphans));
2720 if (nr_truncates)
2721 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2722 PLURAL(nr_truncates));
2723 #ifdef CONFIG_QUOTA
2724 /* Turn off quotas if they were enabled for orphan cleanup */
2725 if (quota_update) {
2726 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2727 if (sb_dqopt(sb)->files[i])
2728 dquot_quota_off(sb, i);
2729 }
2730 }
2731 #endif
2732 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2733 }
2734
2735 /*
2736 * Maximal extent format file size.
2737 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2738 * extent format containers, within a sector_t, and within i_blocks
2739 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2740 * so that won't be a limiting factor.
2741 *
2742 * However there is other limiting factor. We do store extents in the form
2743 * of starting block and length, hence the resulting length of the extent
2744 * covering maximum file size must fit into on-disk format containers as
2745 * well. Given that length is always by 1 unit bigger than max unit (because
2746 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2747 *
2748 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2749 */
ext4_max_size(int blkbits,int has_huge_files)2750 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2751 {
2752 loff_t res;
2753 loff_t upper_limit = MAX_LFS_FILESIZE;
2754
2755 /* small i_blocks in vfs inode? */
2756 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2757 /*
2758 * CONFIG_LBDAF is not enabled implies the inode
2759 * i_block represent total blocks in 512 bytes
2760 * 32 == size of vfs inode i_blocks * 8
2761 */
2762 upper_limit = (1LL << 32) - 1;
2763
2764 /* total blocks in file system block size */
2765 upper_limit >>= (blkbits - 9);
2766 upper_limit <<= blkbits;
2767 }
2768
2769 /*
2770 * 32-bit extent-start container, ee_block. We lower the maxbytes
2771 * by one fs block, so ee_len can cover the extent of maximum file
2772 * size
2773 */
2774 res = (1LL << 32) - 1;
2775 res <<= blkbits;
2776
2777 /* Sanity check against vm- & vfs- imposed limits */
2778 if (res > upper_limit)
2779 res = upper_limit;
2780
2781 return res;
2782 }
2783
2784 /*
2785 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2786 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2787 * We need to be 1 filesystem block less than the 2^48 sector limit.
2788 */
ext4_max_bitmap_size(int bits,int has_huge_files)2789 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2790 {
2791 loff_t res = EXT4_NDIR_BLOCKS;
2792 int meta_blocks;
2793 loff_t upper_limit;
2794 /* This is calculated to be the largest file size for a dense, block
2795 * mapped file such that the file's total number of 512-byte sectors,
2796 * including data and all indirect blocks, does not exceed (2^48 - 1).
2797 *
2798 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2799 * number of 512-byte sectors of the file.
2800 */
2801
2802 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2803 /*
2804 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2805 * the inode i_block field represents total file blocks in
2806 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2807 */
2808 upper_limit = (1LL << 32) - 1;
2809
2810 /* total blocks in file system block size */
2811 upper_limit >>= (bits - 9);
2812
2813 } else {
2814 /*
2815 * We use 48 bit ext4_inode i_blocks
2816 * With EXT4_HUGE_FILE_FL set the i_blocks
2817 * represent total number of blocks in
2818 * file system block size
2819 */
2820 upper_limit = (1LL << 48) - 1;
2821
2822 }
2823
2824 /* indirect blocks */
2825 meta_blocks = 1;
2826 /* double indirect blocks */
2827 meta_blocks += 1 + (1LL << (bits-2));
2828 /* tripple indirect blocks */
2829 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2830
2831 upper_limit -= meta_blocks;
2832 upper_limit <<= bits;
2833
2834 res += 1LL << (bits-2);
2835 res += 1LL << (2*(bits-2));
2836 res += 1LL << (3*(bits-2));
2837 res <<= bits;
2838 if (res > upper_limit)
2839 res = upper_limit;
2840
2841 if (res > MAX_LFS_FILESIZE)
2842 res = MAX_LFS_FILESIZE;
2843
2844 return res;
2845 }
2846
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2847 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2848 ext4_fsblk_t logical_sb_block, int nr)
2849 {
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2851 ext4_group_t bg, first_meta_bg;
2852 int has_super = 0;
2853
2854 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2855
2856 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2857 return logical_sb_block + nr + 1;
2858 bg = sbi->s_desc_per_block * nr;
2859 if (ext4_bg_has_super(sb, bg))
2860 has_super = 1;
2861
2862 /*
2863 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2864 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2865 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2866 * compensate.
2867 */
2868 if (sb->s_blocksize == 1024 && nr == 0 &&
2869 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2870 has_super++;
2871
2872 return (has_super + ext4_group_first_block_no(sb, bg));
2873 }
2874
2875 /**
2876 * ext4_get_stripe_size: Get the stripe size.
2877 * @sbi: In memory super block info
2878 *
2879 * If we have specified it via mount option, then
2880 * use the mount option value. If the value specified at mount time is
2881 * greater than the blocks per group use the super block value.
2882 * If the super block value is greater than blocks per group return 0.
2883 * Allocator needs it be less than blocks per group.
2884 *
2885 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2886 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2887 {
2888 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2889 unsigned long stripe_width =
2890 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2891 int ret;
2892
2893 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2894 ret = sbi->s_stripe;
2895 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2896 ret = stripe_width;
2897 else if (stride && stride <= sbi->s_blocks_per_group)
2898 ret = stride;
2899 else
2900 ret = 0;
2901
2902 /*
2903 * If the stripe width is 1, this makes no sense and
2904 * we set it to 0 to turn off stripe handling code.
2905 */
2906 if (ret <= 1)
2907 ret = 0;
2908
2909 return ret;
2910 }
2911
2912 /*
2913 * Check whether this filesystem can be mounted based on
2914 * the features present and the RDONLY/RDWR mount requested.
2915 * Returns 1 if this filesystem can be mounted as requested,
2916 * 0 if it cannot be.
2917 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2918 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2919 {
2920 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2921 ext4_msg(sb, KERN_ERR,
2922 "Couldn't mount because of "
2923 "unsupported optional features (%x)",
2924 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2925 ~EXT4_FEATURE_INCOMPAT_SUPP));
2926 return 0;
2927 }
2928
2929 if (readonly)
2930 return 1;
2931
2932 if (ext4_has_feature_readonly(sb)) {
2933 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2934 sb->s_flags |= SB_RDONLY;
2935 return 1;
2936 }
2937
2938 /* Check that feature set is OK for a read-write mount */
2939 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2940 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2941 "unsupported optional features (%x)",
2942 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2943 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2944 return 0;
2945 }
2946 /*
2947 * Large file size enabled file system can only be mounted
2948 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2949 */
2950 if (ext4_has_feature_huge_file(sb)) {
2951 if (sizeof(blkcnt_t) < sizeof(u64)) {
2952 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2953 "cannot be mounted RDWR without "
2954 "CONFIG_LBDAF");
2955 return 0;
2956 }
2957 }
2958 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2959 ext4_msg(sb, KERN_ERR,
2960 "Can't support bigalloc feature without "
2961 "extents feature\n");
2962 return 0;
2963 }
2964
2965 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
2966 if (!readonly && (ext4_has_feature_quota(sb) ||
2967 ext4_has_feature_project(sb))) {
2968 ext4_msg(sb, KERN_ERR,
2969 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
2970 return 0;
2971 }
2972 #endif /* CONFIG_QUOTA */
2973 return 1;
2974 }
2975
2976 /*
2977 * This function is called once a day if we have errors logged
2978 * on the file system
2979 */
print_daily_error_info(struct timer_list * t)2980 static void print_daily_error_info(struct timer_list *t)
2981 {
2982 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2983 struct super_block *sb = sbi->s_sb;
2984 struct ext4_super_block *es = sbi->s_es;
2985
2986 if (es->s_error_count)
2987 /* fsck newer than v1.41.13 is needed to clean this condition. */
2988 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2989 le32_to_cpu(es->s_error_count));
2990 if (es->s_first_error_time) {
2991 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2992 sb->s_id,
2993 ext4_get_tstamp(es, s_first_error_time),
2994 (int) sizeof(es->s_first_error_func),
2995 es->s_first_error_func,
2996 le32_to_cpu(es->s_first_error_line));
2997 if (es->s_first_error_ino)
2998 printk(KERN_CONT ": inode %u",
2999 le32_to_cpu(es->s_first_error_ino));
3000 if (es->s_first_error_block)
3001 printk(KERN_CONT ": block %llu", (unsigned long long)
3002 le64_to_cpu(es->s_first_error_block));
3003 printk(KERN_CONT "\n");
3004 }
3005 if (es->s_last_error_time) {
3006 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3007 sb->s_id,
3008 ext4_get_tstamp(es, s_last_error_time),
3009 (int) sizeof(es->s_last_error_func),
3010 es->s_last_error_func,
3011 le32_to_cpu(es->s_last_error_line));
3012 if (es->s_last_error_ino)
3013 printk(KERN_CONT ": inode %u",
3014 le32_to_cpu(es->s_last_error_ino));
3015 if (es->s_last_error_block)
3016 printk(KERN_CONT ": block %llu", (unsigned long long)
3017 le64_to_cpu(es->s_last_error_block));
3018 printk(KERN_CONT "\n");
3019 }
3020 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3021 }
3022
3023 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3024 static int ext4_run_li_request(struct ext4_li_request *elr)
3025 {
3026 struct ext4_group_desc *gdp = NULL;
3027 ext4_group_t group, ngroups;
3028 struct super_block *sb;
3029 int ret = 0;
3030 u64 start_time;
3031
3032 sb = elr->lr_super;
3033 ngroups = EXT4_SB(sb)->s_groups_count;
3034
3035 for (group = elr->lr_next_group; group < ngroups; group++) {
3036 gdp = ext4_get_group_desc(sb, group, NULL);
3037 if (!gdp) {
3038 ret = 1;
3039 break;
3040 }
3041
3042 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3043 break;
3044 }
3045
3046 if (group >= ngroups)
3047 ret = 1;
3048
3049 if (!ret) {
3050 start_time = ktime_get_real_ns();
3051 ret = ext4_init_inode_table(sb, group,
3052 elr->lr_timeout ? 0 : 1);
3053 if (elr->lr_timeout == 0) {
3054 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3055 elr->lr_sbi->s_li_wait_mult);
3056 }
3057 elr->lr_next_sched = jiffies + elr->lr_timeout;
3058 elr->lr_next_group = group + 1;
3059 }
3060 return ret;
3061 }
3062
3063 /*
3064 * Remove lr_request from the list_request and free the
3065 * request structure. Should be called with li_list_mtx held
3066 */
ext4_remove_li_request(struct ext4_li_request * elr)3067 static void ext4_remove_li_request(struct ext4_li_request *elr)
3068 {
3069 struct ext4_sb_info *sbi;
3070
3071 if (!elr)
3072 return;
3073
3074 sbi = elr->lr_sbi;
3075
3076 list_del(&elr->lr_request);
3077 sbi->s_li_request = NULL;
3078 kfree(elr);
3079 }
3080
ext4_unregister_li_request(struct super_block * sb)3081 static void ext4_unregister_li_request(struct super_block *sb)
3082 {
3083 mutex_lock(&ext4_li_mtx);
3084 if (!ext4_li_info) {
3085 mutex_unlock(&ext4_li_mtx);
3086 return;
3087 }
3088
3089 mutex_lock(&ext4_li_info->li_list_mtx);
3090 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3091 mutex_unlock(&ext4_li_info->li_list_mtx);
3092 mutex_unlock(&ext4_li_mtx);
3093 }
3094
3095 static struct task_struct *ext4_lazyinit_task;
3096
3097 /*
3098 * This is the function where ext4lazyinit thread lives. It walks
3099 * through the request list searching for next scheduled filesystem.
3100 * When such a fs is found, run the lazy initialization request
3101 * (ext4_rn_li_request) and keep track of the time spend in this
3102 * function. Based on that time we compute next schedule time of
3103 * the request. When walking through the list is complete, compute
3104 * next waking time and put itself into sleep.
3105 */
ext4_lazyinit_thread(void * arg)3106 static int ext4_lazyinit_thread(void *arg)
3107 {
3108 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3109 struct list_head *pos, *n;
3110 struct ext4_li_request *elr;
3111 unsigned long next_wakeup, cur;
3112
3113 BUG_ON(NULL == eli);
3114 set_freezable();
3115
3116 cont_thread:
3117 while (true) {
3118 next_wakeup = MAX_JIFFY_OFFSET;
3119
3120 mutex_lock(&eli->li_list_mtx);
3121 if (list_empty(&eli->li_request_list)) {
3122 mutex_unlock(&eli->li_list_mtx);
3123 goto exit_thread;
3124 }
3125 list_for_each_safe(pos, n, &eli->li_request_list) {
3126 int err = 0;
3127 int progress = 0;
3128 elr = list_entry(pos, struct ext4_li_request,
3129 lr_request);
3130
3131 if (time_before(jiffies, elr->lr_next_sched)) {
3132 if (time_before(elr->lr_next_sched, next_wakeup))
3133 next_wakeup = elr->lr_next_sched;
3134 continue;
3135 }
3136 if (down_read_trylock(&elr->lr_super->s_umount)) {
3137 if (sb_start_write_trylock(elr->lr_super)) {
3138 progress = 1;
3139 /*
3140 * We hold sb->s_umount, sb can not
3141 * be removed from the list, it is
3142 * now safe to drop li_list_mtx
3143 */
3144 mutex_unlock(&eli->li_list_mtx);
3145 err = ext4_run_li_request(elr);
3146 sb_end_write(elr->lr_super);
3147 mutex_lock(&eli->li_list_mtx);
3148 n = pos->next;
3149 }
3150 up_read((&elr->lr_super->s_umount));
3151 }
3152 /* error, remove the lazy_init job */
3153 if (err) {
3154 ext4_remove_li_request(elr);
3155 continue;
3156 }
3157 if (!progress) {
3158 elr->lr_next_sched = jiffies +
3159 (prandom_u32()
3160 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3161 }
3162 if (time_before(elr->lr_next_sched, next_wakeup))
3163 next_wakeup = elr->lr_next_sched;
3164 }
3165 mutex_unlock(&eli->li_list_mtx);
3166
3167 try_to_freeze();
3168
3169 cur = jiffies;
3170 if ((time_after_eq(cur, next_wakeup)) ||
3171 (MAX_JIFFY_OFFSET == next_wakeup)) {
3172 cond_resched();
3173 continue;
3174 }
3175
3176 schedule_timeout_interruptible(next_wakeup - cur);
3177
3178 if (kthread_should_stop()) {
3179 ext4_clear_request_list();
3180 goto exit_thread;
3181 }
3182 }
3183
3184 exit_thread:
3185 /*
3186 * It looks like the request list is empty, but we need
3187 * to check it under the li_list_mtx lock, to prevent any
3188 * additions into it, and of course we should lock ext4_li_mtx
3189 * to atomically free the list and ext4_li_info, because at
3190 * this point another ext4 filesystem could be registering
3191 * new one.
3192 */
3193 mutex_lock(&ext4_li_mtx);
3194 mutex_lock(&eli->li_list_mtx);
3195 if (!list_empty(&eli->li_request_list)) {
3196 mutex_unlock(&eli->li_list_mtx);
3197 mutex_unlock(&ext4_li_mtx);
3198 goto cont_thread;
3199 }
3200 mutex_unlock(&eli->li_list_mtx);
3201 kfree(ext4_li_info);
3202 ext4_li_info = NULL;
3203 mutex_unlock(&ext4_li_mtx);
3204
3205 return 0;
3206 }
3207
ext4_clear_request_list(void)3208 static void ext4_clear_request_list(void)
3209 {
3210 struct list_head *pos, *n;
3211 struct ext4_li_request *elr;
3212
3213 mutex_lock(&ext4_li_info->li_list_mtx);
3214 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3215 elr = list_entry(pos, struct ext4_li_request,
3216 lr_request);
3217 ext4_remove_li_request(elr);
3218 }
3219 mutex_unlock(&ext4_li_info->li_list_mtx);
3220 }
3221
ext4_run_lazyinit_thread(void)3222 static int ext4_run_lazyinit_thread(void)
3223 {
3224 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3225 ext4_li_info, "ext4lazyinit");
3226 if (IS_ERR(ext4_lazyinit_task)) {
3227 int err = PTR_ERR(ext4_lazyinit_task);
3228 ext4_clear_request_list();
3229 kfree(ext4_li_info);
3230 ext4_li_info = NULL;
3231 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3232 "initialization thread\n",
3233 err);
3234 return err;
3235 }
3236 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3237 return 0;
3238 }
3239
3240 /*
3241 * Check whether it make sense to run itable init. thread or not.
3242 * If there is at least one uninitialized inode table, return
3243 * corresponding group number, else the loop goes through all
3244 * groups and return total number of groups.
3245 */
ext4_has_uninit_itable(struct super_block * sb)3246 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3247 {
3248 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3249 struct ext4_group_desc *gdp = NULL;
3250
3251 if (!ext4_has_group_desc_csum(sb))
3252 return ngroups;
3253
3254 for (group = 0; group < ngroups; group++) {
3255 gdp = ext4_get_group_desc(sb, group, NULL);
3256 if (!gdp)
3257 continue;
3258
3259 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3260 break;
3261 }
3262
3263 return group;
3264 }
3265
ext4_li_info_new(void)3266 static int ext4_li_info_new(void)
3267 {
3268 struct ext4_lazy_init *eli = NULL;
3269
3270 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3271 if (!eli)
3272 return -ENOMEM;
3273
3274 INIT_LIST_HEAD(&eli->li_request_list);
3275 mutex_init(&eli->li_list_mtx);
3276
3277 eli->li_state |= EXT4_LAZYINIT_QUIT;
3278
3279 ext4_li_info = eli;
3280
3281 return 0;
3282 }
3283
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3284 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3285 ext4_group_t start)
3286 {
3287 struct ext4_sb_info *sbi = EXT4_SB(sb);
3288 struct ext4_li_request *elr;
3289
3290 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3291 if (!elr)
3292 return NULL;
3293
3294 elr->lr_super = sb;
3295 elr->lr_sbi = sbi;
3296 elr->lr_next_group = start;
3297
3298 /*
3299 * Randomize first schedule time of the request to
3300 * spread the inode table initialization requests
3301 * better.
3302 */
3303 elr->lr_next_sched = jiffies + (prandom_u32() %
3304 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3305 return elr;
3306 }
3307
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3308 int ext4_register_li_request(struct super_block *sb,
3309 ext4_group_t first_not_zeroed)
3310 {
3311 struct ext4_sb_info *sbi = EXT4_SB(sb);
3312 struct ext4_li_request *elr = NULL;
3313 ext4_group_t ngroups = sbi->s_groups_count;
3314 int ret = 0;
3315
3316 mutex_lock(&ext4_li_mtx);
3317 if (sbi->s_li_request != NULL) {
3318 /*
3319 * Reset timeout so it can be computed again, because
3320 * s_li_wait_mult might have changed.
3321 */
3322 sbi->s_li_request->lr_timeout = 0;
3323 goto out;
3324 }
3325
3326 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3327 !test_opt(sb, INIT_INODE_TABLE))
3328 goto out;
3329
3330 elr = ext4_li_request_new(sb, first_not_zeroed);
3331 if (!elr) {
3332 ret = -ENOMEM;
3333 goto out;
3334 }
3335
3336 if (NULL == ext4_li_info) {
3337 ret = ext4_li_info_new();
3338 if (ret)
3339 goto out;
3340 }
3341
3342 mutex_lock(&ext4_li_info->li_list_mtx);
3343 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3344 mutex_unlock(&ext4_li_info->li_list_mtx);
3345
3346 sbi->s_li_request = elr;
3347 /*
3348 * set elr to NULL here since it has been inserted to
3349 * the request_list and the removal and free of it is
3350 * handled by ext4_clear_request_list from now on.
3351 */
3352 elr = NULL;
3353
3354 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3355 ret = ext4_run_lazyinit_thread();
3356 if (ret)
3357 goto out;
3358 }
3359 out:
3360 mutex_unlock(&ext4_li_mtx);
3361 if (ret)
3362 kfree(elr);
3363 return ret;
3364 }
3365
3366 /*
3367 * We do not need to lock anything since this is called on
3368 * module unload.
3369 */
ext4_destroy_lazyinit_thread(void)3370 static void ext4_destroy_lazyinit_thread(void)
3371 {
3372 /*
3373 * If thread exited earlier
3374 * there's nothing to be done.
3375 */
3376 if (!ext4_li_info || !ext4_lazyinit_task)
3377 return;
3378
3379 kthread_stop(ext4_lazyinit_task);
3380 }
3381
set_journal_csum_feature_set(struct super_block * sb)3382 static int set_journal_csum_feature_set(struct super_block *sb)
3383 {
3384 int ret = 1;
3385 int compat, incompat;
3386 struct ext4_sb_info *sbi = EXT4_SB(sb);
3387
3388 if (ext4_has_metadata_csum(sb)) {
3389 /* journal checksum v3 */
3390 compat = 0;
3391 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3392 } else {
3393 /* journal checksum v1 */
3394 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3395 incompat = 0;
3396 }
3397
3398 jbd2_journal_clear_features(sbi->s_journal,
3399 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3400 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3401 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3402 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3403 ret = jbd2_journal_set_features(sbi->s_journal,
3404 compat, 0,
3405 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3406 incompat);
3407 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3408 ret = jbd2_journal_set_features(sbi->s_journal,
3409 compat, 0,
3410 incompat);
3411 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3412 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3413 } else {
3414 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3415 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3416 }
3417
3418 return ret;
3419 }
3420
3421 /*
3422 * Note: calculating the overhead so we can be compatible with
3423 * historical BSD practice is quite difficult in the face of
3424 * clusters/bigalloc. This is because multiple metadata blocks from
3425 * different block group can end up in the same allocation cluster.
3426 * Calculating the exact overhead in the face of clustered allocation
3427 * requires either O(all block bitmaps) in memory or O(number of block
3428 * groups**2) in time. We will still calculate the superblock for
3429 * older file systems --- and if we come across with a bigalloc file
3430 * system with zero in s_overhead_clusters the estimate will be close to
3431 * correct especially for very large cluster sizes --- but for newer
3432 * file systems, it's better to calculate this figure once at mkfs
3433 * time, and store it in the superblock. If the superblock value is
3434 * present (even for non-bigalloc file systems), we will use it.
3435 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3436 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3437 char *buf)
3438 {
3439 struct ext4_sb_info *sbi = EXT4_SB(sb);
3440 struct ext4_group_desc *gdp;
3441 ext4_fsblk_t first_block, last_block, b;
3442 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3443 int s, j, count = 0;
3444 int has_super = ext4_bg_has_super(sb, grp);
3445
3446 if (!ext4_has_feature_bigalloc(sb))
3447 return (has_super + ext4_bg_num_gdb(sb, grp) +
3448 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3449 sbi->s_itb_per_group + 2);
3450
3451 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3452 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3453 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3454 for (i = 0; i < ngroups; i++) {
3455 gdp = ext4_get_group_desc(sb, i, NULL);
3456 b = ext4_block_bitmap(sb, gdp);
3457 if (b >= first_block && b <= last_block) {
3458 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3459 count++;
3460 }
3461 b = ext4_inode_bitmap(sb, gdp);
3462 if (b >= first_block && b <= last_block) {
3463 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3464 count++;
3465 }
3466 b = ext4_inode_table(sb, gdp);
3467 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3468 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3469 int c = EXT4_B2C(sbi, b - first_block);
3470 ext4_set_bit(c, buf);
3471 count++;
3472 }
3473 if (i != grp)
3474 continue;
3475 s = 0;
3476 if (ext4_bg_has_super(sb, grp)) {
3477 ext4_set_bit(s++, buf);
3478 count++;
3479 }
3480 j = ext4_bg_num_gdb(sb, grp);
3481 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3482 ext4_error(sb, "Invalid number of block group "
3483 "descriptor blocks: %d", j);
3484 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3485 }
3486 count += j;
3487 for (; j > 0; j--)
3488 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3489 }
3490 if (!count)
3491 return 0;
3492 return EXT4_CLUSTERS_PER_GROUP(sb) -
3493 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3494 }
3495
3496 /*
3497 * Compute the overhead and stash it in sbi->s_overhead
3498 */
ext4_calculate_overhead(struct super_block * sb)3499 int ext4_calculate_overhead(struct super_block *sb)
3500 {
3501 struct ext4_sb_info *sbi = EXT4_SB(sb);
3502 struct ext4_super_block *es = sbi->s_es;
3503 struct inode *j_inode;
3504 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3505 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3506 ext4_fsblk_t overhead = 0;
3507 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3508
3509 if (!buf)
3510 return -ENOMEM;
3511
3512 /*
3513 * Compute the overhead (FS structures). This is constant
3514 * for a given filesystem unless the number of block groups
3515 * changes so we cache the previous value until it does.
3516 */
3517
3518 /*
3519 * All of the blocks before first_data_block are overhead
3520 */
3521 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3522
3523 /*
3524 * Add the overhead found in each block group
3525 */
3526 for (i = 0; i < ngroups; i++) {
3527 int blks;
3528
3529 blks = count_overhead(sb, i, buf);
3530 overhead += blks;
3531 if (blks)
3532 memset(buf, 0, PAGE_SIZE);
3533 cond_resched();
3534 }
3535
3536 /*
3537 * Add the internal journal blocks whether the journal has been
3538 * loaded or not
3539 */
3540 if (sbi->s_journal && !sbi->s_journal_bdev)
3541 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3542 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3543 /* j_inum for internal journal is non-zero */
3544 j_inode = ext4_get_journal_inode(sb, j_inum);
3545 if (j_inode) {
3546 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3547 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3548 iput(j_inode);
3549 } else {
3550 ext4_msg(sb, KERN_ERR, "can't get journal size");
3551 }
3552 }
3553 sbi->s_overhead = overhead;
3554 smp_wmb();
3555 free_page((unsigned long) buf);
3556 return 0;
3557 }
3558
ext4_set_resv_clusters(struct super_block * sb)3559 static void ext4_set_resv_clusters(struct super_block *sb)
3560 {
3561 ext4_fsblk_t resv_clusters;
3562 struct ext4_sb_info *sbi = EXT4_SB(sb);
3563
3564 /*
3565 * There's no need to reserve anything when we aren't using extents.
3566 * The space estimates are exact, there are no unwritten extents,
3567 * hole punching doesn't need new metadata... This is needed especially
3568 * to keep ext2/3 backward compatibility.
3569 */
3570 if (!ext4_has_feature_extents(sb))
3571 return;
3572 /*
3573 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3574 * This should cover the situations where we can not afford to run
3575 * out of space like for example punch hole, or converting
3576 * unwritten extents in delalloc path. In most cases such
3577 * allocation would require 1, or 2 blocks, higher numbers are
3578 * very rare.
3579 */
3580 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3581 sbi->s_cluster_bits);
3582
3583 do_div(resv_clusters, 50);
3584 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3585
3586 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3587 }
3588
ext4_fill_super(struct super_block * sb,void * data,int silent)3589 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3590 {
3591 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3592 char *orig_data = kstrdup(data, GFP_KERNEL);
3593 struct buffer_head *bh, **group_desc;
3594 struct ext4_super_block *es = NULL;
3595 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3596 struct flex_groups **flex_groups;
3597 ext4_fsblk_t block;
3598 ext4_fsblk_t sb_block = get_sb_block(&data);
3599 ext4_fsblk_t logical_sb_block;
3600 unsigned long offset = 0;
3601 unsigned long journal_devnum = 0;
3602 unsigned long def_mount_opts;
3603 struct inode *root;
3604 const char *descr;
3605 int ret = -ENOMEM;
3606 int blocksize, clustersize;
3607 unsigned int db_count;
3608 unsigned int i;
3609 int needs_recovery, has_huge_files, has_bigalloc;
3610 __u64 blocks_count;
3611 int err = 0;
3612 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3613 ext4_group_t first_not_zeroed;
3614
3615 if ((data && !orig_data) || !sbi)
3616 goto out_free_base;
3617
3618 sbi->s_daxdev = dax_dev;
3619 sbi->s_blockgroup_lock =
3620 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3621 if (!sbi->s_blockgroup_lock)
3622 goto out_free_base;
3623
3624 sb->s_fs_info = sbi;
3625 sbi->s_sb = sb;
3626 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3627 sbi->s_sb_block = sb_block;
3628 if (sb->s_bdev->bd_part)
3629 sbi->s_sectors_written_start =
3630 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3631
3632 /* Cleanup superblock name */
3633 strreplace(sb->s_id, '/', '!');
3634
3635 /* -EINVAL is default */
3636 ret = -EINVAL;
3637 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3638 if (!blocksize) {
3639 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3640 goto out_fail;
3641 }
3642
3643 /*
3644 * The ext4 superblock will not be buffer aligned for other than 1kB
3645 * block sizes. We need to calculate the offset from buffer start.
3646 */
3647 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3648 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3649 offset = do_div(logical_sb_block, blocksize);
3650 } else {
3651 logical_sb_block = sb_block;
3652 }
3653
3654 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3655 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3656 goto out_fail;
3657 }
3658 /*
3659 * Note: s_es must be initialized as soon as possible because
3660 * some ext4 macro-instructions depend on its value
3661 */
3662 es = (struct ext4_super_block *) (bh->b_data + offset);
3663 sbi->s_es = es;
3664 sb->s_magic = le16_to_cpu(es->s_magic);
3665 if (sb->s_magic != EXT4_SUPER_MAGIC)
3666 goto cantfind_ext4;
3667 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3668
3669 /* Warn if metadata_csum and gdt_csum are both set. */
3670 if (ext4_has_feature_metadata_csum(sb) &&
3671 ext4_has_feature_gdt_csum(sb))
3672 ext4_warning(sb, "metadata_csum and uninit_bg are "
3673 "redundant flags; please run fsck.");
3674
3675 /* Check for a known checksum algorithm */
3676 if (!ext4_verify_csum_type(sb, es)) {
3677 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3678 "unknown checksum algorithm.");
3679 silent = 1;
3680 goto cantfind_ext4;
3681 }
3682
3683 /* Load the checksum driver */
3684 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3685 if (IS_ERR(sbi->s_chksum_driver)) {
3686 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3687 ret = PTR_ERR(sbi->s_chksum_driver);
3688 sbi->s_chksum_driver = NULL;
3689 goto failed_mount;
3690 }
3691
3692 /* Check superblock checksum */
3693 if (!ext4_superblock_csum_verify(sb, es)) {
3694 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3695 "invalid superblock checksum. Run e2fsck?");
3696 silent = 1;
3697 ret = -EFSBADCRC;
3698 goto cantfind_ext4;
3699 }
3700
3701 /* Precompute checksum seed for all metadata */
3702 if (ext4_has_feature_csum_seed(sb))
3703 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3704 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3705 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3706 sizeof(es->s_uuid));
3707
3708 /* Set defaults before we parse the mount options */
3709 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3710 set_opt(sb, INIT_INODE_TABLE);
3711 if (def_mount_opts & EXT4_DEFM_DEBUG)
3712 set_opt(sb, DEBUG);
3713 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3714 set_opt(sb, GRPID);
3715 if (def_mount_opts & EXT4_DEFM_UID16)
3716 set_opt(sb, NO_UID32);
3717 /* xattr user namespace & acls are now defaulted on */
3718 set_opt(sb, XATTR_USER);
3719 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3720 set_opt(sb, POSIX_ACL);
3721 #endif
3722 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3723 if (ext4_has_metadata_csum(sb))
3724 set_opt(sb, JOURNAL_CHECKSUM);
3725
3726 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3727 set_opt(sb, JOURNAL_DATA);
3728 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3729 set_opt(sb, ORDERED_DATA);
3730 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3731 set_opt(sb, WRITEBACK_DATA);
3732
3733 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3734 set_opt(sb, ERRORS_PANIC);
3735 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3736 set_opt(sb, ERRORS_CONT);
3737 else
3738 set_opt(sb, ERRORS_RO);
3739 /* block_validity enabled by default; disable with noblock_validity */
3740 set_opt(sb, BLOCK_VALIDITY);
3741 if (def_mount_opts & EXT4_DEFM_DISCARD)
3742 set_opt(sb, DISCARD);
3743
3744 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3745 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3746 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3747 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3748 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3749
3750 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3751 set_opt(sb, BARRIER);
3752
3753 /*
3754 * enable delayed allocation by default
3755 * Use -o nodelalloc to turn it off
3756 */
3757 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3758 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3759 set_opt(sb, DELALLOC);
3760
3761 /*
3762 * set default s_li_wait_mult for lazyinit, for the case there is
3763 * no mount option specified.
3764 */
3765 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3766
3767 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3768 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3769 blocksize > EXT4_MAX_BLOCK_SIZE) {
3770 ext4_msg(sb, KERN_ERR,
3771 "Unsupported filesystem blocksize %d (%d log_block_size)",
3772 blocksize, le32_to_cpu(es->s_log_block_size));
3773 goto failed_mount;
3774 }
3775
3776 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3777 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3778 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3779 } else {
3780 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3781 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3782 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3783 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3784 sbi->s_first_ino);
3785 goto failed_mount;
3786 }
3787 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3788 (!is_power_of_2(sbi->s_inode_size)) ||
3789 (sbi->s_inode_size > blocksize)) {
3790 ext4_msg(sb, KERN_ERR,
3791 "unsupported inode size: %d",
3792 sbi->s_inode_size);
3793 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3794 goto failed_mount;
3795 }
3796 /*
3797 * i_atime_extra is the last extra field available for
3798 * [acm]times in struct ext4_inode. Checking for that
3799 * field should suffice to ensure we have extra space
3800 * for all three.
3801 */
3802 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3803 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3804 sb->s_time_gran = 1;
3805 } else {
3806 sb->s_time_gran = NSEC_PER_SEC;
3807 }
3808 }
3809 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3810 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3811 EXT4_GOOD_OLD_INODE_SIZE;
3812 if (ext4_has_feature_extra_isize(sb)) {
3813 unsigned v, max = (sbi->s_inode_size -
3814 EXT4_GOOD_OLD_INODE_SIZE);
3815
3816 v = le16_to_cpu(es->s_want_extra_isize);
3817 if (v > max) {
3818 ext4_msg(sb, KERN_ERR,
3819 "bad s_want_extra_isize: %d", v);
3820 goto failed_mount;
3821 }
3822 if (sbi->s_want_extra_isize < v)
3823 sbi->s_want_extra_isize = v;
3824
3825 v = le16_to_cpu(es->s_min_extra_isize);
3826 if (v > max) {
3827 ext4_msg(sb, KERN_ERR,
3828 "bad s_min_extra_isize: %d", v);
3829 goto failed_mount;
3830 }
3831 if (sbi->s_want_extra_isize < v)
3832 sbi->s_want_extra_isize = v;
3833 }
3834 }
3835
3836 if (sbi->s_es->s_mount_opts[0]) {
3837 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3838 sizeof(sbi->s_es->s_mount_opts),
3839 GFP_KERNEL);
3840 if (!s_mount_opts)
3841 goto failed_mount;
3842 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3843 &journal_ioprio, 0)) {
3844 ext4_msg(sb, KERN_WARNING,
3845 "failed to parse options in superblock: %s",
3846 s_mount_opts);
3847 }
3848 kfree(s_mount_opts);
3849 }
3850 sbi->s_def_mount_opt = sbi->s_mount_opt;
3851 if (!parse_options((char *) data, sb, &journal_devnum,
3852 &journal_ioprio, 0))
3853 goto failed_mount;
3854
3855 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3856 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3857 "with data=journal disables delayed "
3858 "allocation and O_DIRECT support!\n");
3859 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3860 ext4_msg(sb, KERN_ERR, "can't mount with "
3861 "both data=journal and delalloc");
3862 goto failed_mount;
3863 }
3864 if (test_opt(sb, DIOREAD_NOLOCK)) {
3865 ext4_msg(sb, KERN_ERR, "can't mount with "
3866 "both data=journal and dioread_nolock");
3867 goto failed_mount;
3868 }
3869 if (test_opt(sb, DAX)) {
3870 ext4_msg(sb, KERN_ERR, "can't mount with "
3871 "both data=journal and dax");
3872 goto failed_mount;
3873 }
3874 if (ext4_has_feature_encrypt(sb)) {
3875 ext4_msg(sb, KERN_WARNING,
3876 "encrypted files will use data=ordered "
3877 "instead of data journaling mode");
3878 }
3879 if (test_opt(sb, DELALLOC))
3880 clear_opt(sb, DELALLOC);
3881 } else {
3882 sb->s_iflags |= SB_I_CGROUPWB;
3883 }
3884
3885 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3886 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3887
3888 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3889 (ext4_has_compat_features(sb) ||
3890 ext4_has_ro_compat_features(sb) ||
3891 ext4_has_incompat_features(sb)))
3892 ext4_msg(sb, KERN_WARNING,
3893 "feature flags set on rev 0 fs, "
3894 "running e2fsck is recommended");
3895
3896 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3897 set_opt2(sb, HURD_COMPAT);
3898 if (ext4_has_feature_64bit(sb)) {
3899 ext4_msg(sb, KERN_ERR,
3900 "The Hurd can't support 64-bit file systems");
3901 goto failed_mount;
3902 }
3903
3904 /*
3905 * ea_inode feature uses l_i_version field which is not
3906 * available in HURD_COMPAT mode.
3907 */
3908 if (ext4_has_feature_ea_inode(sb)) {
3909 ext4_msg(sb, KERN_ERR,
3910 "ea_inode feature is not supported for Hurd");
3911 goto failed_mount;
3912 }
3913 }
3914
3915 if (IS_EXT2_SB(sb)) {
3916 if (ext2_feature_set_ok(sb))
3917 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3918 "using the ext4 subsystem");
3919 else {
3920 /*
3921 * If we're probing be silent, if this looks like
3922 * it's actually an ext[34] filesystem.
3923 */
3924 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3925 goto failed_mount;
3926 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3927 "to feature incompatibilities");
3928 goto failed_mount;
3929 }
3930 }
3931
3932 if (IS_EXT3_SB(sb)) {
3933 if (ext3_feature_set_ok(sb))
3934 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3935 "using the ext4 subsystem");
3936 else {
3937 /*
3938 * If we're probing be silent, if this looks like
3939 * it's actually an ext4 filesystem.
3940 */
3941 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3942 goto failed_mount;
3943 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3944 "to feature incompatibilities");
3945 goto failed_mount;
3946 }
3947 }
3948
3949 /*
3950 * Check feature flags regardless of the revision level, since we
3951 * previously didn't change the revision level when setting the flags,
3952 * so there is a chance incompat flags are set on a rev 0 filesystem.
3953 */
3954 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3955 goto failed_mount;
3956
3957 if (le32_to_cpu(es->s_log_block_size) >
3958 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3959 ext4_msg(sb, KERN_ERR,
3960 "Invalid log block size: %u",
3961 le32_to_cpu(es->s_log_block_size));
3962 goto failed_mount;
3963 }
3964 if (le32_to_cpu(es->s_log_cluster_size) >
3965 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3966 ext4_msg(sb, KERN_ERR,
3967 "Invalid log cluster size: %u",
3968 le32_to_cpu(es->s_log_cluster_size));
3969 goto failed_mount;
3970 }
3971
3972 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3973 ext4_msg(sb, KERN_ERR,
3974 "Number of reserved GDT blocks insanely large: %d",
3975 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3976 goto failed_mount;
3977 }
3978
3979 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3980 if (ext4_has_feature_inline_data(sb)) {
3981 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3982 " that may contain inline data");
3983 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3984 }
3985 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3986 ext4_msg(sb, KERN_ERR,
3987 "DAX unsupported by block device. Turning off DAX.");
3988 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3989 }
3990 }
3991
3992 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3993 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3994 es->s_encryption_level);
3995 goto failed_mount;
3996 }
3997
3998 if (sb->s_blocksize != blocksize) {
3999 /* Validate the filesystem blocksize */
4000 if (!sb_set_blocksize(sb, blocksize)) {
4001 ext4_msg(sb, KERN_ERR, "bad block size %d",
4002 blocksize);
4003 goto failed_mount;
4004 }
4005
4006 brelse(bh);
4007 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4008 offset = do_div(logical_sb_block, blocksize);
4009 bh = sb_bread_unmovable(sb, logical_sb_block);
4010 if (!bh) {
4011 ext4_msg(sb, KERN_ERR,
4012 "Can't read superblock on 2nd try");
4013 goto failed_mount;
4014 }
4015 es = (struct ext4_super_block *)(bh->b_data + offset);
4016 sbi->s_es = es;
4017 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4018 ext4_msg(sb, KERN_ERR,
4019 "Magic mismatch, very weird!");
4020 goto failed_mount;
4021 }
4022 }
4023
4024 has_huge_files = ext4_has_feature_huge_file(sb);
4025 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4026 has_huge_files);
4027 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4028
4029 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4030 if (ext4_has_feature_64bit(sb)) {
4031 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4032 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4033 !is_power_of_2(sbi->s_desc_size)) {
4034 ext4_msg(sb, KERN_ERR,
4035 "unsupported descriptor size %lu",
4036 sbi->s_desc_size);
4037 goto failed_mount;
4038 }
4039 } else
4040 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4041
4042 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4043 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4044
4045 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4046 if (sbi->s_inodes_per_block == 0)
4047 goto cantfind_ext4;
4048 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4049 sbi->s_inodes_per_group > blocksize * 8) {
4050 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4051 sbi->s_inodes_per_group);
4052 goto failed_mount;
4053 }
4054 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4055 sbi->s_inodes_per_block;
4056 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4057 sbi->s_sbh = bh;
4058 sbi->s_mount_state = le16_to_cpu(es->s_state);
4059 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4060 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4061
4062 for (i = 0; i < 4; i++)
4063 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4064 sbi->s_def_hash_version = es->s_def_hash_version;
4065 if (ext4_has_feature_dir_index(sb)) {
4066 i = le32_to_cpu(es->s_flags);
4067 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4068 sbi->s_hash_unsigned = 3;
4069 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4070 #ifdef __CHAR_UNSIGNED__
4071 if (!sb_rdonly(sb))
4072 es->s_flags |=
4073 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4074 sbi->s_hash_unsigned = 3;
4075 #else
4076 if (!sb_rdonly(sb))
4077 es->s_flags |=
4078 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4079 #endif
4080 }
4081 }
4082
4083 /* Handle clustersize */
4084 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4085 has_bigalloc = ext4_has_feature_bigalloc(sb);
4086 if (has_bigalloc) {
4087 if (clustersize < blocksize) {
4088 ext4_msg(sb, KERN_ERR,
4089 "cluster size (%d) smaller than "
4090 "block size (%d)", clustersize, blocksize);
4091 goto failed_mount;
4092 }
4093 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4094 le32_to_cpu(es->s_log_block_size);
4095 sbi->s_clusters_per_group =
4096 le32_to_cpu(es->s_clusters_per_group);
4097 if (sbi->s_clusters_per_group > blocksize * 8) {
4098 ext4_msg(sb, KERN_ERR,
4099 "#clusters per group too big: %lu",
4100 sbi->s_clusters_per_group);
4101 goto failed_mount;
4102 }
4103 if (sbi->s_blocks_per_group !=
4104 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4105 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4106 "clusters per group (%lu) inconsistent",
4107 sbi->s_blocks_per_group,
4108 sbi->s_clusters_per_group);
4109 goto failed_mount;
4110 }
4111 } else {
4112 if (clustersize != blocksize) {
4113 ext4_msg(sb, KERN_ERR,
4114 "fragment/cluster size (%d) != "
4115 "block size (%d)", clustersize, blocksize);
4116 goto failed_mount;
4117 }
4118 if (sbi->s_blocks_per_group > blocksize * 8) {
4119 ext4_msg(sb, KERN_ERR,
4120 "#blocks per group too big: %lu",
4121 sbi->s_blocks_per_group);
4122 goto failed_mount;
4123 }
4124 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4125 sbi->s_cluster_bits = 0;
4126 }
4127 sbi->s_cluster_ratio = clustersize / blocksize;
4128
4129 /* Do we have standard group size of clustersize * 8 blocks ? */
4130 if (sbi->s_blocks_per_group == clustersize << 3)
4131 set_opt2(sb, STD_GROUP_SIZE);
4132
4133 /*
4134 * Test whether we have more sectors than will fit in sector_t,
4135 * and whether the max offset is addressable by the page cache.
4136 */
4137 err = generic_check_addressable(sb->s_blocksize_bits,
4138 ext4_blocks_count(es));
4139 if (err) {
4140 ext4_msg(sb, KERN_ERR, "filesystem"
4141 " too large to mount safely on this system");
4142 if (sizeof(sector_t) < 8)
4143 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4144 goto failed_mount;
4145 }
4146
4147 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4148 goto cantfind_ext4;
4149
4150 /* check blocks count against device size */
4151 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4152 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4153 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4154 "exceeds size of device (%llu blocks)",
4155 ext4_blocks_count(es), blocks_count);
4156 goto failed_mount;
4157 }
4158
4159 /*
4160 * It makes no sense for the first data block to be beyond the end
4161 * of the filesystem.
4162 */
4163 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4164 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4165 "block %u is beyond end of filesystem (%llu)",
4166 le32_to_cpu(es->s_first_data_block),
4167 ext4_blocks_count(es));
4168 goto failed_mount;
4169 }
4170 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4171 (sbi->s_cluster_ratio == 1)) {
4172 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4173 "block is 0 with a 1k block and cluster size");
4174 goto failed_mount;
4175 }
4176
4177 blocks_count = (ext4_blocks_count(es) -
4178 le32_to_cpu(es->s_first_data_block) +
4179 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4180 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4181 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4182 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4183 "(block count %llu, first data block %u, "
4184 "blocks per group %lu)", blocks_count,
4185 ext4_blocks_count(es),
4186 le32_to_cpu(es->s_first_data_block),
4187 EXT4_BLOCKS_PER_GROUP(sb));
4188 goto failed_mount;
4189 }
4190 sbi->s_groups_count = blocks_count;
4191 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4192 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4193 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4194 le32_to_cpu(es->s_inodes_count)) {
4195 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4196 le32_to_cpu(es->s_inodes_count),
4197 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4198 ret = -EINVAL;
4199 goto failed_mount;
4200 }
4201 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4202 EXT4_DESC_PER_BLOCK(sb);
4203 if (ext4_has_feature_meta_bg(sb)) {
4204 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4205 ext4_msg(sb, KERN_WARNING,
4206 "first meta block group too large: %u "
4207 "(group descriptor block count %u)",
4208 le32_to_cpu(es->s_first_meta_bg), db_count);
4209 goto failed_mount;
4210 }
4211 }
4212 rcu_assign_pointer(sbi->s_group_desc,
4213 kvmalloc_array(db_count,
4214 sizeof(struct buffer_head *),
4215 GFP_KERNEL));
4216 if (sbi->s_group_desc == NULL) {
4217 ext4_msg(sb, KERN_ERR, "not enough memory");
4218 ret = -ENOMEM;
4219 goto failed_mount;
4220 }
4221
4222 bgl_lock_init(sbi->s_blockgroup_lock);
4223
4224 /* Pre-read the descriptors into the buffer cache */
4225 for (i = 0; i < db_count; i++) {
4226 block = descriptor_loc(sb, logical_sb_block, i);
4227 sb_breadahead_unmovable(sb, block);
4228 }
4229
4230 for (i = 0; i < db_count; i++) {
4231 struct buffer_head *bh;
4232
4233 block = descriptor_loc(sb, logical_sb_block, i);
4234 bh = sb_bread_unmovable(sb, block);
4235 if (!bh) {
4236 ext4_msg(sb, KERN_ERR,
4237 "can't read group descriptor %d", i);
4238 db_count = i;
4239 goto failed_mount2;
4240 }
4241 rcu_read_lock();
4242 rcu_dereference(sbi->s_group_desc)[i] = bh;
4243 rcu_read_unlock();
4244 }
4245 sbi->s_gdb_count = db_count;
4246 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4247 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4248 ret = -EFSCORRUPTED;
4249 goto failed_mount2;
4250 }
4251
4252 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4253
4254 /* Register extent status tree shrinker */
4255 if (ext4_es_register_shrinker(sbi))
4256 goto failed_mount3;
4257
4258 sbi->s_stripe = ext4_get_stripe_size(sbi);
4259 sbi->s_extent_max_zeroout_kb = 32;
4260
4261 /*
4262 * set up enough so that it can read an inode
4263 */
4264 sb->s_op = &ext4_sops;
4265 sb->s_export_op = &ext4_export_ops;
4266 sb->s_xattr = ext4_xattr_handlers;
4267 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4268 sb->s_cop = &ext4_cryptops;
4269 #endif
4270 #ifdef CONFIG_QUOTA
4271 sb->dq_op = &ext4_quota_operations;
4272 if (ext4_has_feature_quota(sb))
4273 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4274 else
4275 sb->s_qcop = &ext4_qctl_operations;
4276 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4277 #endif
4278 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4279
4280 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4281 mutex_init(&sbi->s_orphan_lock);
4282
4283 sb->s_root = NULL;
4284
4285 needs_recovery = (es->s_last_orphan != 0 ||
4286 ext4_has_feature_journal_needs_recovery(sb));
4287
4288 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4289 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4290 goto failed_mount3a;
4291
4292 /*
4293 * The first inode we look at is the journal inode. Don't try
4294 * root first: it may be modified in the journal!
4295 */
4296 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4297 err = ext4_load_journal(sb, es, journal_devnum);
4298 if (err)
4299 goto failed_mount3a;
4300 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4301 ext4_has_feature_journal_needs_recovery(sb)) {
4302 ext4_msg(sb, KERN_ERR, "required journal recovery "
4303 "suppressed and not mounted read-only");
4304 goto failed_mount3a;
4305 } else {
4306 /* Nojournal mode, all journal mount options are illegal */
4307 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4308 ext4_msg(sb, KERN_ERR, "can't mount with "
4309 "journal_async_commit, fs mounted w/o journal");
4310 goto failed_mount3a;
4311 }
4312
4313 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4314 ext4_msg(sb, KERN_ERR, "can't mount with "
4315 "journal_checksum, fs mounted w/o journal");
4316 goto failed_mount3a;
4317 }
4318 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4319 ext4_msg(sb, KERN_ERR, "can't mount with "
4320 "commit=%lu, fs mounted w/o journal",
4321 sbi->s_commit_interval / HZ);
4322 goto failed_mount3a;
4323 }
4324 if (EXT4_MOUNT_DATA_FLAGS &
4325 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4326 ext4_msg(sb, KERN_ERR, "can't mount with "
4327 "data=, fs mounted w/o journal");
4328 goto failed_mount3a;
4329 }
4330 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4331 clear_opt(sb, JOURNAL_CHECKSUM);
4332 clear_opt(sb, DATA_FLAGS);
4333 sbi->s_journal = NULL;
4334 needs_recovery = 0;
4335 goto no_journal;
4336 }
4337
4338 if (ext4_has_feature_64bit(sb) &&
4339 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4340 JBD2_FEATURE_INCOMPAT_64BIT)) {
4341 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4342 goto failed_mount_wq;
4343 }
4344
4345 if (!set_journal_csum_feature_set(sb)) {
4346 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4347 "feature set");
4348 goto failed_mount_wq;
4349 }
4350
4351 /* We have now updated the journal if required, so we can
4352 * validate the data journaling mode. */
4353 switch (test_opt(sb, DATA_FLAGS)) {
4354 case 0:
4355 /* No mode set, assume a default based on the journal
4356 * capabilities: ORDERED_DATA if the journal can
4357 * cope, else JOURNAL_DATA
4358 */
4359 if (jbd2_journal_check_available_features
4360 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4361 set_opt(sb, ORDERED_DATA);
4362 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4363 } else {
4364 set_opt(sb, JOURNAL_DATA);
4365 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4366 }
4367 break;
4368
4369 case EXT4_MOUNT_ORDERED_DATA:
4370 case EXT4_MOUNT_WRITEBACK_DATA:
4371 if (!jbd2_journal_check_available_features
4372 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4373 ext4_msg(sb, KERN_ERR, "Journal does not support "
4374 "requested data journaling mode");
4375 goto failed_mount_wq;
4376 }
4377 default:
4378 break;
4379 }
4380
4381 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4382 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4383 ext4_msg(sb, KERN_ERR, "can't mount with "
4384 "journal_async_commit in data=ordered mode");
4385 goto failed_mount_wq;
4386 }
4387
4388 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4389
4390 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4391
4392 no_journal:
4393 if (!test_opt(sb, NO_MBCACHE)) {
4394 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4395 if (!sbi->s_ea_block_cache) {
4396 ext4_msg(sb, KERN_ERR,
4397 "Failed to create ea_block_cache");
4398 goto failed_mount_wq;
4399 }
4400
4401 if (ext4_has_feature_ea_inode(sb)) {
4402 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4403 if (!sbi->s_ea_inode_cache) {
4404 ext4_msg(sb, KERN_ERR,
4405 "Failed to create ea_inode_cache");
4406 goto failed_mount_wq;
4407 }
4408 }
4409 }
4410
4411 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4412 (blocksize != PAGE_SIZE)) {
4413 ext4_msg(sb, KERN_ERR,
4414 "Unsupported blocksize for fs encryption");
4415 goto failed_mount_wq;
4416 }
4417
4418 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4419 !ext4_has_feature_encrypt(sb)) {
4420 ext4_set_feature_encrypt(sb);
4421 ext4_commit_super(sb, 1);
4422 }
4423
4424 /*
4425 * Get the # of file system overhead blocks from the
4426 * superblock if present.
4427 */
4428 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4429 /* ignore the precalculated value if it is ridiculous */
4430 if (sbi->s_overhead > ext4_blocks_count(es))
4431 sbi->s_overhead = 0;
4432 /*
4433 * If the bigalloc feature is not enabled recalculating the
4434 * overhead doesn't take long, so we might as well just redo
4435 * it to make sure we are using the correct value.
4436 */
4437 if (!ext4_has_feature_bigalloc(sb))
4438 sbi->s_overhead = 0;
4439 if (sbi->s_overhead == 0) {
4440 err = ext4_calculate_overhead(sb);
4441 if (err)
4442 goto failed_mount_wq;
4443 }
4444
4445 /*
4446 * The maximum number of concurrent works can be high and
4447 * concurrency isn't really necessary. Limit it to 1.
4448 */
4449 EXT4_SB(sb)->rsv_conversion_wq =
4450 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4451 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4452 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4453 ret = -ENOMEM;
4454 goto failed_mount4;
4455 }
4456
4457 /*
4458 * The jbd2_journal_load will have done any necessary log recovery,
4459 * so we can safely mount the rest of the filesystem now.
4460 */
4461
4462 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4463 if (IS_ERR(root)) {
4464 ext4_msg(sb, KERN_ERR, "get root inode failed");
4465 ret = PTR_ERR(root);
4466 root = NULL;
4467 goto failed_mount4;
4468 }
4469 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4470 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4471 iput(root);
4472 goto failed_mount4;
4473 }
4474 sb->s_root = d_make_root(root);
4475 if (!sb->s_root) {
4476 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4477 ret = -ENOMEM;
4478 goto failed_mount4;
4479 }
4480
4481 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4482 if (ret == -EROFS) {
4483 sb->s_flags |= SB_RDONLY;
4484 ret = 0;
4485 } else if (ret)
4486 goto failed_mount4a;
4487
4488 ext4_set_resv_clusters(sb);
4489
4490 if (test_opt(sb, BLOCK_VALIDITY)) {
4491 err = ext4_setup_system_zone(sb);
4492 if (err) {
4493 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4494 "zone (%d)", err);
4495 goto failed_mount4a;
4496 }
4497 }
4498
4499 ext4_ext_init(sb);
4500 err = ext4_mb_init(sb);
4501 if (err) {
4502 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4503 err);
4504 goto failed_mount5;
4505 }
4506
4507 block = ext4_count_free_clusters(sb);
4508 ext4_free_blocks_count_set(sbi->s_es,
4509 EXT4_C2B(sbi, block));
4510 ext4_superblock_csum_set(sb);
4511 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4512 GFP_KERNEL);
4513 if (!err) {
4514 unsigned long freei = ext4_count_free_inodes(sb);
4515 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4516 ext4_superblock_csum_set(sb);
4517 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4518 GFP_KERNEL);
4519 }
4520 if (!err)
4521 err = percpu_counter_init(&sbi->s_dirs_counter,
4522 ext4_count_dirs(sb), GFP_KERNEL);
4523 if (!err)
4524 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4525 GFP_KERNEL);
4526 if (!err)
4527 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4528
4529 if (err) {
4530 ext4_msg(sb, KERN_ERR, "insufficient memory");
4531 goto failed_mount6;
4532 }
4533
4534 if (ext4_has_feature_flex_bg(sb))
4535 if (!ext4_fill_flex_info(sb)) {
4536 ext4_msg(sb, KERN_ERR,
4537 "unable to initialize "
4538 "flex_bg meta info!");
4539 ret = -ENOMEM;
4540 goto failed_mount6;
4541 }
4542
4543 err = ext4_register_li_request(sb, first_not_zeroed);
4544 if (err)
4545 goto failed_mount6;
4546
4547 err = ext4_register_sysfs(sb);
4548 if (err)
4549 goto failed_mount7;
4550
4551 #ifdef CONFIG_QUOTA
4552 /* Enable quota usage during mount. */
4553 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4554 err = ext4_enable_quotas(sb);
4555 if (err)
4556 goto failed_mount8;
4557 }
4558 #endif /* CONFIG_QUOTA */
4559
4560 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4561 ext4_orphan_cleanup(sb, es);
4562 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4563 if (needs_recovery) {
4564 ext4_msg(sb, KERN_INFO, "recovery complete");
4565 err = ext4_mark_recovery_complete(sb, es);
4566 if (err)
4567 goto failed_mount8;
4568 }
4569 if (EXT4_SB(sb)->s_journal) {
4570 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4571 descr = " journalled data mode";
4572 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4573 descr = " ordered data mode";
4574 else
4575 descr = " writeback data mode";
4576 } else
4577 descr = "out journal";
4578
4579 if (test_opt(sb, DISCARD)) {
4580 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4581 if (!blk_queue_discard(q))
4582 ext4_msg(sb, KERN_WARNING,
4583 "mounting with \"discard\" option, but "
4584 "the device does not support discard");
4585 }
4586
4587 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4588 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4589 "Opts: %.*s%s%s", descr,
4590 (int) sizeof(sbi->s_es->s_mount_opts),
4591 sbi->s_es->s_mount_opts,
4592 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4593
4594 if (es->s_error_count)
4595 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4596
4597 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4598 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4599 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4600 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4601
4602 kfree(orig_data);
4603 return 0;
4604
4605 cantfind_ext4:
4606 if (!silent)
4607 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4608 goto failed_mount;
4609
4610 failed_mount8:
4611 ext4_unregister_sysfs(sb);
4612 kobject_put(&sbi->s_kobj);
4613 failed_mount7:
4614 ext4_unregister_li_request(sb);
4615 failed_mount6:
4616 ext4_mb_release(sb);
4617 rcu_read_lock();
4618 flex_groups = rcu_dereference(sbi->s_flex_groups);
4619 if (flex_groups) {
4620 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4621 kvfree(flex_groups[i]);
4622 kvfree(flex_groups);
4623 }
4624 rcu_read_unlock();
4625 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4626 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4627 percpu_counter_destroy(&sbi->s_dirs_counter);
4628 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4629 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4630 failed_mount5:
4631 ext4_ext_release(sb);
4632 ext4_release_system_zone(sb);
4633 failed_mount4a:
4634 dput(sb->s_root);
4635 sb->s_root = NULL;
4636 failed_mount4:
4637 ext4_msg(sb, KERN_ERR, "mount failed");
4638 if (EXT4_SB(sb)->rsv_conversion_wq)
4639 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4640 failed_mount_wq:
4641 if (sbi->s_ea_inode_cache) {
4642 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4643 sbi->s_ea_inode_cache = NULL;
4644 }
4645 if (sbi->s_ea_block_cache) {
4646 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4647 sbi->s_ea_block_cache = NULL;
4648 }
4649 if (sbi->s_journal) {
4650 jbd2_journal_destroy(sbi->s_journal);
4651 sbi->s_journal = NULL;
4652 }
4653 failed_mount3a:
4654 ext4_es_unregister_shrinker(sbi);
4655 failed_mount3:
4656 del_timer_sync(&sbi->s_err_report);
4657 if (sbi->s_mmp_tsk)
4658 kthread_stop(sbi->s_mmp_tsk);
4659 failed_mount2:
4660 rcu_read_lock();
4661 group_desc = rcu_dereference(sbi->s_group_desc);
4662 for (i = 0; i < db_count; i++)
4663 brelse(group_desc[i]);
4664 kvfree(group_desc);
4665 rcu_read_unlock();
4666 failed_mount:
4667 if (sbi->s_chksum_driver)
4668 crypto_free_shash(sbi->s_chksum_driver);
4669 #ifdef CONFIG_QUOTA
4670 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4671 kfree(sbi->s_qf_names[i]);
4672 #endif
4673 ext4_blkdev_remove(sbi);
4674 brelse(bh);
4675 out_fail:
4676 invalidate_bdev(sb->s_bdev);
4677 sb->s_fs_info = NULL;
4678 kfree(sbi->s_blockgroup_lock);
4679 out_free_base:
4680 kfree(sbi);
4681 kfree(orig_data);
4682 fs_put_dax(dax_dev);
4683 return err ? err : ret;
4684 }
4685
4686 /*
4687 * Setup any per-fs journal parameters now. We'll do this both on
4688 * initial mount, once the journal has been initialised but before we've
4689 * done any recovery; and again on any subsequent remount.
4690 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4691 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4692 {
4693 struct ext4_sb_info *sbi = EXT4_SB(sb);
4694
4695 journal->j_commit_interval = sbi->s_commit_interval;
4696 journal->j_min_batch_time = sbi->s_min_batch_time;
4697 journal->j_max_batch_time = sbi->s_max_batch_time;
4698
4699 write_lock(&journal->j_state_lock);
4700 if (test_opt(sb, BARRIER))
4701 journal->j_flags |= JBD2_BARRIER;
4702 else
4703 journal->j_flags &= ~JBD2_BARRIER;
4704 if (test_opt(sb, DATA_ERR_ABORT))
4705 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4706 else
4707 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4708 write_unlock(&journal->j_state_lock);
4709 }
4710
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4711 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4712 unsigned int journal_inum)
4713 {
4714 struct inode *journal_inode;
4715
4716 /*
4717 * Test for the existence of a valid inode on disk. Bad things
4718 * happen if we iget() an unused inode, as the subsequent iput()
4719 * will try to delete it.
4720 */
4721 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4722 if (IS_ERR(journal_inode)) {
4723 ext4_msg(sb, KERN_ERR, "no journal found");
4724 return NULL;
4725 }
4726 if (!journal_inode->i_nlink) {
4727 make_bad_inode(journal_inode);
4728 iput(journal_inode);
4729 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4730 return NULL;
4731 }
4732
4733 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4734 journal_inode, journal_inode->i_size);
4735 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
4736 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4737 iput(journal_inode);
4738 return NULL;
4739 }
4740 return journal_inode;
4741 }
4742
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4743 static journal_t *ext4_get_journal(struct super_block *sb,
4744 unsigned int journal_inum)
4745 {
4746 struct inode *journal_inode;
4747 journal_t *journal;
4748
4749 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4750 return NULL;
4751
4752 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4753 if (!journal_inode)
4754 return NULL;
4755
4756 journal = jbd2_journal_init_inode(journal_inode);
4757 if (!journal) {
4758 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4759 iput(journal_inode);
4760 return NULL;
4761 }
4762 journal->j_private = sb;
4763 ext4_init_journal_params(sb, journal);
4764 return journal;
4765 }
4766
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4767 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4768 dev_t j_dev)
4769 {
4770 struct buffer_head *bh;
4771 journal_t *journal;
4772 ext4_fsblk_t start;
4773 ext4_fsblk_t len;
4774 int hblock, blocksize;
4775 ext4_fsblk_t sb_block;
4776 unsigned long offset;
4777 struct ext4_super_block *es;
4778 struct block_device *bdev;
4779
4780 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4781 return NULL;
4782
4783 bdev = ext4_blkdev_get(j_dev, sb);
4784 if (bdev == NULL)
4785 return NULL;
4786
4787 blocksize = sb->s_blocksize;
4788 hblock = bdev_logical_block_size(bdev);
4789 if (blocksize < hblock) {
4790 ext4_msg(sb, KERN_ERR,
4791 "blocksize too small for journal device");
4792 goto out_bdev;
4793 }
4794
4795 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4796 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4797 set_blocksize(bdev, blocksize);
4798 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4799 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4800 "external journal");
4801 goto out_bdev;
4802 }
4803
4804 es = (struct ext4_super_block *) (bh->b_data + offset);
4805 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4806 !(le32_to_cpu(es->s_feature_incompat) &
4807 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4808 ext4_msg(sb, KERN_ERR, "external journal has "
4809 "bad superblock");
4810 brelse(bh);
4811 goto out_bdev;
4812 }
4813
4814 if ((le32_to_cpu(es->s_feature_ro_compat) &
4815 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4816 es->s_checksum != ext4_superblock_csum(sb, es)) {
4817 ext4_msg(sb, KERN_ERR, "external journal has "
4818 "corrupt superblock");
4819 brelse(bh);
4820 goto out_bdev;
4821 }
4822
4823 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4824 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4825 brelse(bh);
4826 goto out_bdev;
4827 }
4828
4829 len = ext4_blocks_count(es);
4830 start = sb_block + 1;
4831 brelse(bh); /* we're done with the superblock */
4832
4833 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4834 start, len, blocksize);
4835 if (!journal) {
4836 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4837 goto out_bdev;
4838 }
4839 journal->j_private = sb;
4840 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4841 wait_on_buffer(journal->j_sb_buffer);
4842 if (!buffer_uptodate(journal->j_sb_buffer)) {
4843 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4844 goto out_journal;
4845 }
4846 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4847 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4848 "user (unsupported) - %d",
4849 be32_to_cpu(journal->j_superblock->s_nr_users));
4850 goto out_journal;
4851 }
4852 EXT4_SB(sb)->s_journal_bdev = bdev;
4853 ext4_init_journal_params(sb, journal);
4854 return journal;
4855
4856 out_journal:
4857 jbd2_journal_destroy(journal);
4858 out_bdev:
4859 ext4_blkdev_put(bdev);
4860 return NULL;
4861 }
4862
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4863 static int ext4_load_journal(struct super_block *sb,
4864 struct ext4_super_block *es,
4865 unsigned long journal_devnum)
4866 {
4867 journal_t *journal;
4868 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4869 dev_t journal_dev;
4870 int err = 0;
4871 int really_read_only;
4872 int journal_dev_ro;
4873
4874 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
4875 return -EFSCORRUPTED;
4876
4877 if (journal_devnum &&
4878 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4879 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4880 "numbers have changed");
4881 journal_dev = new_decode_dev(journal_devnum);
4882 } else
4883 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4884
4885 if (journal_inum && journal_dev) {
4886 ext4_msg(sb, KERN_ERR,
4887 "filesystem has both journal inode and journal device!");
4888 return -EINVAL;
4889 }
4890
4891 if (journal_inum) {
4892 journal = ext4_get_journal(sb, journal_inum);
4893 if (!journal)
4894 return -EINVAL;
4895 } else {
4896 journal = ext4_get_dev_journal(sb, journal_dev);
4897 if (!journal)
4898 return -EINVAL;
4899 }
4900
4901 journal_dev_ro = bdev_read_only(journal->j_dev);
4902 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
4903
4904 if (journal_dev_ro && !sb_rdonly(sb)) {
4905 ext4_msg(sb, KERN_ERR,
4906 "journal device read-only, try mounting with '-o ro'");
4907 err = -EROFS;
4908 goto err_out;
4909 }
4910
4911 /*
4912 * Are we loading a blank journal or performing recovery after a
4913 * crash? For recovery, we need to check in advance whether we
4914 * can get read-write access to the device.
4915 */
4916 if (ext4_has_feature_journal_needs_recovery(sb)) {
4917 if (sb_rdonly(sb)) {
4918 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4919 "required on readonly filesystem");
4920 if (really_read_only) {
4921 ext4_msg(sb, KERN_ERR, "write access "
4922 "unavailable, cannot proceed "
4923 "(try mounting with noload)");
4924 err = -EROFS;
4925 goto err_out;
4926 }
4927 ext4_msg(sb, KERN_INFO, "write access will "
4928 "be enabled during recovery");
4929 }
4930 }
4931
4932 if (!(journal->j_flags & JBD2_BARRIER))
4933 ext4_msg(sb, KERN_INFO, "barriers disabled");
4934
4935 if (!ext4_has_feature_journal_needs_recovery(sb))
4936 err = jbd2_journal_wipe(journal, !really_read_only);
4937 if (!err) {
4938 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4939 if (save)
4940 memcpy(save, ((char *) es) +
4941 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4942 err = jbd2_journal_load(journal);
4943 if (save)
4944 memcpy(((char *) es) + EXT4_S_ERR_START,
4945 save, EXT4_S_ERR_LEN);
4946 kfree(save);
4947 }
4948
4949 if (err) {
4950 ext4_msg(sb, KERN_ERR, "error loading journal");
4951 goto err_out;
4952 }
4953
4954 EXT4_SB(sb)->s_journal = journal;
4955 err = ext4_clear_journal_err(sb, es);
4956 if (err) {
4957 EXT4_SB(sb)->s_journal = NULL;
4958 jbd2_journal_destroy(journal);
4959 return err;
4960 }
4961
4962 if (!really_read_only && journal_devnum &&
4963 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4964 es->s_journal_dev = cpu_to_le32(journal_devnum);
4965
4966 /* Make sure we flush the recovery flag to disk. */
4967 ext4_commit_super(sb, 1);
4968 }
4969
4970 return 0;
4971
4972 err_out:
4973 jbd2_journal_destroy(journal);
4974 return err;
4975 }
4976
ext4_commit_super(struct super_block * sb,int sync)4977 static int ext4_commit_super(struct super_block *sb, int sync)
4978 {
4979 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4980 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4981 int error = 0;
4982
4983 if (!sbh)
4984 return -EINVAL;
4985 if (block_device_ejected(sb))
4986 return -ENODEV;
4987
4988 /*
4989 * If the file system is mounted read-only, don't update the
4990 * superblock write time. This avoids updating the superblock
4991 * write time when we are mounting the root file system
4992 * read/only but we need to replay the journal; at that point,
4993 * for people who are east of GMT and who make their clock
4994 * tick in localtime for Windows bug-for-bug compatibility,
4995 * the clock is set in the future, and this will cause e2fsck
4996 * to complain and force a full file system check.
4997 */
4998 if (!(sb->s_flags & SB_RDONLY))
4999 ext4_update_tstamp(es, s_wtime);
5000 if (sb->s_bdev->bd_part)
5001 es->s_kbytes_written =
5002 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5003 ((part_stat_read(sb->s_bdev->bd_part,
5004 sectors[STAT_WRITE]) -
5005 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5006 else
5007 es->s_kbytes_written =
5008 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5009 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5010 ext4_free_blocks_count_set(es,
5011 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5012 &EXT4_SB(sb)->s_freeclusters_counter)));
5013 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5014 es->s_free_inodes_count =
5015 cpu_to_le32(percpu_counter_sum_positive(
5016 &EXT4_SB(sb)->s_freeinodes_counter));
5017 BUFFER_TRACE(sbh, "marking dirty");
5018 ext4_superblock_csum_set(sb);
5019 if (sync)
5020 lock_buffer(sbh);
5021 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5022 /*
5023 * Oh, dear. A previous attempt to write the
5024 * superblock failed. This could happen because the
5025 * USB device was yanked out. Or it could happen to
5026 * be a transient write error and maybe the block will
5027 * be remapped. Nothing we can do but to retry the
5028 * write and hope for the best.
5029 */
5030 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5031 "superblock detected");
5032 clear_buffer_write_io_error(sbh);
5033 set_buffer_uptodate(sbh);
5034 }
5035 mark_buffer_dirty(sbh);
5036 if (sync) {
5037 unlock_buffer(sbh);
5038 error = __sync_dirty_buffer(sbh,
5039 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5040 if (buffer_write_io_error(sbh)) {
5041 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5042 "superblock");
5043 clear_buffer_write_io_error(sbh);
5044 set_buffer_uptodate(sbh);
5045 }
5046 }
5047 return error;
5048 }
5049
5050 /*
5051 * Have we just finished recovery? If so, and if we are mounting (or
5052 * remounting) the filesystem readonly, then we will end up with a
5053 * consistent fs on disk. Record that fact.
5054 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5055 static int ext4_mark_recovery_complete(struct super_block *sb,
5056 struct ext4_super_block *es)
5057 {
5058 int err;
5059 journal_t *journal = EXT4_SB(sb)->s_journal;
5060
5061 if (!ext4_has_feature_journal(sb)) {
5062 if (journal != NULL) {
5063 ext4_error(sb, "Journal got removed while the fs was "
5064 "mounted!");
5065 return -EFSCORRUPTED;
5066 }
5067 return 0;
5068 }
5069 jbd2_journal_lock_updates(journal);
5070 err = jbd2_journal_flush(journal);
5071 if (err < 0)
5072 goto out;
5073
5074 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5075 ext4_clear_feature_journal_needs_recovery(sb);
5076 ext4_commit_super(sb, 1);
5077 }
5078 out:
5079 jbd2_journal_unlock_updates(journal);
5080 return err;
5081 }
5082
5083 /*
5084 * If we are mounting (or read-write remounting) a filesystem whose journal
5085 * has recorded an error from a previous lifetime, move that error to the
5086 * main filesystem now.
5087 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5088 static int ext4_clear_journal_err(struct super_block *sb,
5089 struct ext4_super_block *es)
5090 {
5091 journal_t *journal;
5092 int j_errno;
5093 const char *errstr;
5094
5095 if (!ext4_has_feature_journal(sb)) {
5096 ext4_error(sb, "Journal got removed while the fs was mounted!");
5097 return -EFSCORRUPTED;
5098 }
5099
5100 journal = EXT4_SB(sb)->s_journal;
5101
5102 /*
5103 * Now check for any error status which may have been recorded in the
5104 * journal by a prior ext4_error() or ext4_abort()
5105 */
5106
5107 j_errno = jbd2_journal_errno(journal);
5108 if (j_errno) {
5109 char nbuf[16];
5110
5111 errstr = ext4_decode_error(sb, j_errno, nbuf);
5112 ext4_warning(sb, "Filesystem error recorded "
5113 "from previous mount: %s", errstr);
5114 ext4_warning(sb, "Marking fs in need of filesystem check.");
5115
5116 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5117 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5118 ext4_commit_super(sb, 1);
5119
5120 jbd2_journal_clear_err(journal);
5121 jbd2_journal_update_sb_errno(journal);
5122 }
5123 return 0;
5124 }
5125
5126 /*
5127 * Force the running and committing transactions to commit,
5128 * and wait on the commit.
5129 */
ext4_force_commit(struct super_block * sb)5130 int ext4_force_commit(struct super_block *sb)
5131 {
5132 journal_t *journal;
5133
5134 if (sb_rdonly(sb))
5135 return 0;
5136
5137 journal = EXT4_SB(sb)->s_journal;
5138 return ext4_journal_force_commit(journal);
5139 }
5140
ext4_sync_fs(struct super_block * sb,int wait)5141 static int ext4_sync_fs(struct super_block *sb, int wait)
5142 {
5143 int ret = 0;
5144 tid_t target;
5145 bool needs_barrier = false;
5146 struct ext4_sb_info *sbi = EXT4_SB(sb);
5147
5148 if (unlikely(ext4_forced_shutdown(sbi)))
5149 return 0;
5150
5151 trace_ext4_sync_fs(sb, wait);
5152 flush_workqueue(sbi->rsv_conversion_wq);
5153 /*
5154 * Writeback quota in non-journalled quota case - journalled quota has
5155 * no dirty dquots
5156 */
5157 dquot_writeback_dquots(sb, -1);
5158 /*
5159 * Data writeback is possible w/o journal transaction, so barrier must
5160 * being sent at the end of the function. But we can skip it if
5161 * transaction_commit will do it for us.
5162 */
5163 if (sbi->s_journal) {
5164 target = jbd2_get_latest_transaction(sbi->s_journal);
5165 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5166 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5167 needs_barrier = true;
5168
5169 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5170 if (wait)
5171 ret = jbd2_log_wait_commit(sbi->s_journal,
5172 target);
5173 }
5174 } else if (wait && test_opt(sb, BARRIER))
5175 needs_barrier = true;
5176 if (needs_barrier) {
5177 int err;
5178 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5179 if (!ret)
5180 ret = err;
5181 }
5182
5183 return ret;
5184 }
5185
5186 /*
5187 * LVM calls this function before a (read-only) snapshot is created. This
5188 * gives us a chance to flush the journal completely and mark the fs clean.
5189 *
5190 * Note that only this function cannot bring a filesystem to be in a clean
5191 * state independently. It relies on upper layer to stop all data & metadata
5192 * modifications.
5193 */
ext4_freeze(struct super_block * sb)5194 static int ext4_freeze(struct super_block *sb)
5195 {
5196 int error = 0;
5197 journal_t *journal;
5198
5199 if (sb_rdonly(sb))
5200 return 0;
5201
5202 journal = EXT4_SB(sb)->s_journal;
5203
5204 if (journal) {
5205 /* Now we set up the journal barrier. */
5206 jbd2_journal_lock_updates(journal);
5207
5208 /*
5209 * Don't clear the needs_recovery flag if we failed to
5210 * flush the journal.
5211 */
5212 error = jbd2_journal_flush(journal);
5213 if (error < 0)
5214 goto out;
5215
5216 /* Journal blocked and flushed, clear needs_recovery flag. */
5217 ext4_clear_feature_journal_needs_recovery(sb);
5218 }
5219
5220 error = ext4_commit_super(sb, 1);
5221 out:
5222 if (journal)
5223 /* we rely on upper layer to stop further updates */
5224 jbd2_journal_unlock_updates(journal);
5225 return error;
5226 }
5227
5228 /*
5229 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5230 * flag here, even though the filesystem is not technically dirty yet.
5231 */
ext4_unfreeze(struct super_block * sb)5232 static int ext4_unfreeze(struct super_block *sb)
5233 {
5234 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5235 return 0;
5236
5237 if (EXT4_SB(sb)->s_journal) {
5238 /* Reset the needs_recovery flag before the fs is unlocked. */
5239 ext4_set_feature_journal_needs_recovery(sb);
5240 }
5241
5242 ext4_commit_super(sb, 1);
5243 return 0;
5244 }
5245
5246 /*
5247 * Structure to save mount options for ext4_remount's benefit
5248 */
5249 struct ext4_mount_options {
5250 unsigned long s_mount_opt;
5251 unsigned long s_mount_opt2;
5252 kuid_t s_resuid;
5253 kgid_t s_resgid;
5254 unsigned long s_commit_interval;
5255 u32 s_min_batch_time, s_max_batch_time;
5256 #ifdef CONFIG_QUOTA
5257 int s_jquota_fmt;
5258 char *s_qf_names[EXT4_MAXQUOTAS];
5259 #endif
5260 };
5261
ext4_remount(struct super_block * sb,int * flags,char * data)5262 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5263 {
5264 struct ext4_super_block *es;
5265 struct ext4_sb_info *sbi = EXT4_SB(sb);
5266 unsigned long old_sb_flags, vfs_flags;
5267 struct ext4_mount_options old_opts;
5268 int enable_quota = 0;
5269 ext4_group_t g;
5270 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5271 int err = 0;
5272 #ifdef CONFIG_QUOTA
5273 int i, j;
5274 char *to_free[EXT4_MAXQUOTAS];
5275 #endif
5276 char *orig_data = kstrdup(data, GFP_KERNEL);
5277
5278 if (data && !orig_data)
5279 return -ENOMEM;
5280
5281 /* Store the original options */
5282 old_sb_flags = sb->s_flags;
5283 old_opts.s_mount_opt = sbi->s_mount_opt;
5284 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5285 old_opts.s_resuid = sbi->s_resuid;
5286 old_opts.s_resgid = sbi->s_resgid;
5287 old_opts.s_commit_interval = sbi->s_commit_interval;
5288 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5289 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5290 #ifdef CONFIG_QUOTA
5291 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5292 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5293 if (sbi->s_qf_names[i]) {
5294 char *qf_name = get_qf_name(sb, sbi, i);
5295
5296 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5297 if (!old_opts.s_qf_names[i]) {
5298 for (j = 0; j < i; j++)
5299 kfree(old_opts.s_qf_names[j]);
5300 kfree(orig_data);
5301 return -ENOMEM;
5302 }
5303 } else
5304 old_opts.s_qf_names[i] = NULL;
5305 #endif
5306 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5307 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5308
5309 /*
5310 * Some options can be enabled by ext4 and/or by VFS mount flag
5311 * either way we need to make sure it matches in both *flags and
5312 * s_flags. Copy those selected flags from *flags to s_flags
5313 */
5314 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5315 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5316
5317 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5318 err = -EINVAL;
5319 goto restore_opts;
5320 }
5321
5322 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5323 test_opt(sb, JOURNAL_CHECKSUM)) {
5324 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5325 "during remount not supported; ignoring");
5326 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5327 }
5328
5329 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5330 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5331 ext4_msg(sb, KERN_ERR, "can't mount with "
5332 "both data=journal and delalloc");
5333 err = -EINVAL;
5334 goto restore_opts;
5335 }
5336 if (test_opt(sb, DIOREAD_NOLOCK)) {
5337 ext4_msg(sb, KERN_ERR, "can't mount with "
5338 "both data=journal and dioread_nolock");
5339 err = -EINVAL;
5340 goto restore_opts;
5341 }
5342 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5343 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5344 ext4_msg(sb, KERN_ERR, "can't mount with "
5345 "journal_async_commit in data=ordered mode");
5346 err = -EINVAL;
5347 goto restore_opts;
5348 }
5349 }
5350
5351 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5352 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5353 err = -EINVAL;
5354 goto restore_opts;
5355 }
5356
5357 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5358 ext4_abort(sb, "Abort forced by user");
5359
5360 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5361 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5362
5363 es = sbi->s_es;
5364
5365 if (sbi->s_journal) {
5366 ext4_init_journal_params(sb, sbi->s_journal);
5367 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5368 }
5369
5370 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5371 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5372 err = -EROFS;
5373 goto restore_opts;
5374 }
5375
5376 if (*flags & SB_RDONLY) {
5377 err = sync_filesystem(sb);
5378 if (err < 0)
5379 goto restore_opts;
5380 err = dquot_suspend(sb, -1);
5381 if (err < 0)
5382 goto restore_opts;
5383
5384 /*
5385 * First of all, the unconditional stuff we have to do
5386 * to disable replay of the journal when we next remount
5387 */
5388 sb->s_flags |= SB_RDONLY;
5389
5390 /*
5391 * OK, test if we are remounting a valid rw partition
5392 * readonly, and if so set the rdonly flag and then
5393 * mark the partition as valid again.
5394 */
5395 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5396 (sbi->s_mount_state & EXT4_VALID_FS))
5397 es->s_state = cpu_to_le16(sbi->s_mount_state);
5398
5399 if (sbi->s_journal) {
5400 /*
5401 * We let remount-ro finish even if marking fs
5402 * as clean failed...
5403 */
5404 ext4_mark_recovery_complete(sb, es);
5405 }
5406 if (sbi->s_mmp_tsk)
5407 kthread_stop(sbi->s_mmp_tsk);
5408 } else {
5409 /* Make sure we can mount this feature set readwrite */
5410 if (ext4_has_feature_readonly(sb) ||
5411 !ext4_feature_set_ok(sb, 0)) {
5412 err = -EROFS;
5413 goto restore_opts;
5414 }
5415 /*
5416 * Make sure the group descriptor checksums
5417 * are sane. If they aren't, refuse to remount r/w.
5418 */
5419 for (g = 0; g < sbi->s_groups_count; g++) {
5420 struct ext4_group_desc *gdp =
5421 ext4_get_group_desc(sb, g, NULL);
5422
5423 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5424 ext4_msg(sb, KERN_ERR,
5425 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5426 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5427 le16_to_cpu(gdp->bg_checksum));
5428 err = -EFSBADCRC;
5429 goto restore_opts;
5430 }
5431 }
5432
5433 /*
5434 * If we have an unprocessed orphan list hanging
5435 * around from a previously readonly bdev mount,
5436 * require a full umount/remount for now.
5437 */
5438 if (es->s_last_orphan) {
5439 ext4_msg(sb, KERN_WARNING, "Couldn't "
5440 "remount RDWR because of unprocessed "
5441 "orphan inode list. Please "
5442 "umount/remount instead");
5443 err = -EINVAL;
5444 goto restore_opts;
5445 }
5446
5447 /*
5448 * Mounting a RDONLY partition read-write, so reread
5449 * and store the current valid flag. (It may have
5450 * been changed by e2fsck since we originally mounted
5451 * the partition.)
5452 */
5453 if (sbi->s_journal) {
5454 err = ext4_clear_journal_err(sb, es);
5455 if (err)
5456 goto restore_opts;
5457 }
5458 sbi->s_mount_state = le16_to_cpu(es->s_state);
5459
5460 err = ext4_setup_super(sb, es, 0);
5461 if (err)
5462 goto restore_opts;
5463
5464 sb->s_flags &= ~SB_RDONLY;
5465 if (ext4_has_feature_mmp(sb))
5466 if (ext4_multi_mount_protect(sb,
5467 le64_to_cpu(es->s_mmp_block))) {
5468 err = -EROFS;
5469 goto restore_opts;
5470 }
5471 enable_quota = 1;
5472 }
5473 }
5474
5475 /*
5476 * Reinitialize lazy itable initialization thread based on
5477 * current settings
5478 */
5479 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5480 ext4_unregister_li_request(sb);
5481 else {
5482 ext4_group_t first_not_zeroed;
5483 first_not_zeroed = ext4_has_uninit_itable(sb);
5484 ext4_register_li_request(sb, first_not_zeroed);
5485 }
5486
5487 /*
5488 * Handle creation of system zone data early because it can fail.
5489 * Releasing of existing data is done when we are sure remount will
5490 * succeed.
5491 */
5492 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5493 err = ext4_setup_system_zone(sb);
5494 if (err)
5495 goto restore_opts;
5496 }
5497
5498 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5499 err = ext4_commit_super(sb, 1);
5500 if (err)
5501 goto restore_opts;
5502 }
5503
5504 #ifdef CONFIG_QUOTA
5505 if (enable_quota) {
5506 if (sb_any_quota_suspended(sb))
5507 dquot_resume(sb, -1);
5508 else if (ext4_has_feature_quota(sb)) {
5509 err = ext4_enable_quotas(sb);
5510 if (err)
5511 goto restore_opts;
5512 }
5513 }
5514 /* Release old quota file names */
5515 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5516 kfree(old_opts.s_qf_names[i]);
5517 #endif
5518 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5519 ext4_release_system_zone(sb);
5520
5521 /*
5522 * Some options can be enabled by ext4 and/or by VFS mount flag
5523 * either way we need to make sure it matches in both *flags and
5524 * s_flags. Copy those selected flags from s_flags to *flags
5525 */
5526 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5527
5528 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5529 kfree(orig_data);
5530 return 0;
5531
5532 restore_opts:
5533 /*
5534 * If there was a failing r/w to ro transition, we may need to
5535 * re-enable quota
5536 */
5537 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
5538 sb_any_quota_suspended(sb))
5539 dquot_resume(sb, -1);
5540 sb->s_flags = old_sb_flags;
5541 sbi->s_mount_opt = old_opts.s_mount_opt;
5542 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5543 sbi->s_resuid = old_opts.s_resuid;
5544 sbi->s_resgid = old_opts.s_resgid;
5545 sbi->s_commit_interval = old_opts.s_commit_interval;
5546 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5547 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5548 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5549 ext4_release_system_zone(sb);
5550 #ifdef CONFIG_QUOTA
5551 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5552 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5553 to_free[i] = get_qf_name(sb, sbi, i);
5554 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5555 }
5556 synchronize_rcu();
5557 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5558 kfree(to_free[i]);
5559 #endif
5560 kfree(orig_data);
5561 return err;
5562 }
5563
5564 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5565 static int ext4_statfs_project(struct super_block *sb,
5566 kprojid_t projid, struct kstatfs *buf)
5567 {
5568 struct kqid qid;
5569 struct dquot *dquot;
5570 u64 limit;
5571 u64 curblock;
5572
5573 qid = make_kqid_projid(projid);
5574 dquot = dqget(sb, qid);
5575 if (IS_ERR(dquot))
5576 return PTR_ERR(dquot);
5577 spin_lock(&dquot->dq_dqb_lock);
5578
5579 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5580 dquot->dq_dqb.dqb_bsoftlimit :
5581 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5582 if (limit && buf->f_blocks > limit) {
5583 curblock = (dquot->dq_dqb.dqb_curspace +
5584 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5585 buf->f_blocks = limit;
5586 buf->f_bfree = buf->f_bavail =
5587 (buf->f_blocks > curblock) ?
5588 (buf->f_blocks - curblock) : 0;
5589 }
5590
5591 limit = dquot->dq_dqb.dqb_isoftlimit ?
5592 dquot->dq_dqb.dqb_isoftlimit :
5593 dquot->dq_dqb.dqb_ihardlimit;
5594 if (limit && buf->f_files > limit) {
5595 buf->f_files = limit;
5596 buf->f_ffree =
5597 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5598 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5599 }
5600
5601 spin_unlock(&dquot->dq_dqb_lock);
5602 dqput(dquot);
5603 return 0;
5604 }
5605 #endif
5606
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5607 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5608 {
5609 struct super_block *sb = dentry->d_sb;
5610 struct ext4_sb_info *sbi = EXT4_SB(sb);
5611 struct ext4_super_block *es = sbi->s_es;
5612 ext4_fsblk_t overhead = 0, resv_blocks;
5613 u64 fsid;
5614 s64 bfree;
5615 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5616
5617 if (!test_opt(sb, MINIX_DF))
5618 overhead = sbi->s_overhead;
5619
5620 buf->f_type = EXT4_SUPER_MAGIC;
5621 buf->f_bsize = sb->s_blocksize;
5622 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5623 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5624 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5625 /* prevent underflow in case that few free space is available */
5626 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5627 buf->f_bavail = buf->f_bfree -
5628 (ext4_r_blocks_count(es) + resv_blocks);
5629 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5630 buf->f_bavail = 0;
5631 buf->f_files = le32_to_cpu(es->s_inodes_count);
5632 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5633 buf->f_namelen = EXT4_NAME_LEN;
5634 fsid = le64_to_cpup((void *)es->s_uuid) ^
5635 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5636 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5637 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5638
5639 #ifdef CONFIG_QUOTA
5640 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5641 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5642 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5643 #endif
5644 return 0;
5645 }
5646
5647
5648 #ifdef CONFIG_QUOTA
5649
5650 /*
5651 * Helper functions so that transaction is started before we acquire dqio_sem
5652 * to keep correct lock ordering of transaction > dqio_sem
5653 */
dquot_to_inode(struct dquot * dquot)5654 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5655 {
5656 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5657 }
5658
ext4_write_dquot(struct dquot * dquot)5659 static int ext4_write_dquot(struct dquot *dquot)
5660 {
5661 int ret, err;
5662 handle_t *handle;
5663 struct inode *inode;
5664
5665 inode = dquot_to_inode(dquot);
5666 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5667 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5668 if (IS_ERR(handle))
5669 return PTR_ERR(handle);
5670 ret = dquot_commit(dquot);
5671 err = ext4_journal_stop(handle);
5672 if (!ret)
5673 ret = err;
5674 return ret;
5675 }
5676
ext4_acquire_dquot(struct dquot * dquot)5677 static int ext4_acquire_dquot(struct dquot *dquot)
5678 {
5679 int ret, err;
5680 handle_t *handle;
5681
5682 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5683 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5684 if (IS_ERR(handle))
5685 return PTR_ERR(handle);
5686 ret = dquot_acquire(dquot);
5687 err = ext4_journal_stop(handle);
5688 if (!ret)
5689 ret = err;
5690 return ret;
5691 }
5692
ext4_release_dquot(struct dquot * dquot)5693 static int ext4_release_dquot(struct dquot *dquot)
5694 {
5695 int ret, err;
5696 handle_t *handle;
5697
5698 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5699 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5700 if (IS_ERR(handle)) {
5701 /* Release dquot anyway to avoid endless cycle in dqput() */
5702 dquot_release(dquot);
5703 return PTR_ERR(handle);
5704 }
5705 ret = dquot_release(dquot);
5706 err = ext4_journal_stop(handle);
5707 if (!ret)
5708 ret = err;
5709 return ret;
5710 }
5711
ext4_mark_dquot_dirty(struct dquot * dquot)5712 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5713 {
5714 struct super_block *sb = dquot->dq_sb;
5715 struct ext4_sb_info *sbi = EXT4_SB(sb);
5716
5717 /* Are we journaling quotas? */
5718 if (ext4_has_feature_quota(sb) ||
5719 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5720 dquot_mark_dquot_dirty(dquot);
5721 return ext4_write_dquot(dquot);
5722 } else {
5723 return dquot_mark_dquot_dirty(dquot);
5724 }
5725 }
5726
ext4_write_info(struct super_block * sb,int type)5727 static int ext4_write_info(struct super_block *sb, int type)
5728 {
5729 int ret, err;
5730 handle_t *handle;
5731
5732 /* Data block + inode block */
5733 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
5734 if (IS_ERR(handle))
5735 return PTR_ERR(handle);
5736 ret = dquot_commit_info(sb, type);
5737 err = ext4_journal_stop(handle);
5738 if (!ret)
5739 ret = err;
5740 return ret;
5741 }
5742
5743 /*
5744 * Turn on quotas during mount time - we need to find
5745 * the quota file and such...
5746 */
ext4_quota_on_mount(struct super_block * sb,int type)5747 static int ext4_quota_on_mount(struct super_block *sb, int type)
5748 {
5749 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5750 EXT4_SB(sb)->s_jquota_fmt, type);
5751 }
5752
lockdep_set_quota_inode(struct inode * inode,int subclass)5753 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5754 {
5755 struct ext4_inode_info *ei = EXT4_I(inode);
5756
5757 /* The first argument of lockdep_set_subclass has to be
5758 * *exactly* the same as the argument to init_rwsem() --- in
5759 * this case, in init_once() --- or lockdep gets unhappy
5760 * because the name of the lock is set using the
5761 * stringification of the argument to init_rwsem().
5762 */
5763 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5764 lockdep_set_subclass(&ei->i_data_sem, subclass);
5765 }
5766
5767 /*
5768 * Standard function to be called on quota_on
5769 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)5770 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5771 const struct path *path)
5772 {
5773 int err;
5774
5775 if (!test_opt(sb, QUOTA))
5776 return -EINVAL;
5777
5778 /* Quotafile not on the same filesystem? */
5779 if (path->dentry->d_sb != sb)
5780 return -EXDEV;
5781
5782 /* Quota already enabled for this file? */
5783 if (IS_NOQUOTA(d_inode(path->dentry)))
5784 return -EBUSY;
5785
5786 /* Journaling quota? */
5787 if (EXT4_SB(sb)->s_qf_names[type]) {
5788 /* Quotafile not in fs root? */
5789 if (path->dentry->d_parent != sb->s_root)
5790 ext4_msg(sb, KERN_WARNING,
5791 "Quota file not on filesystem root. "
5792 "Journaled quota will not work");
5793 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5794 } else {
5795 /*
5796 * Clear the flag just in case mount options changed since
5797 * last time.
5798 */
5799 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5800 }
5801
5802 /*
5803 * When we journal data on quota file, we have to flush journal to see
5804 * all updates to the file when we bypass pagecache...
5805 */
5806 if (EXT4_SB(sb)->s_journal &&
5807 ext4_should_journal_data(d_inode(path->dentry))) {
5808 /*
5809 * We don't need to lock updates but journal_flush() could
5810 * otherwise be livelocked...
5811 */
5812 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5813 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5814 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5815 if (err)
5816 return err;
5817 }
5818
5819 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5820 err = dquot_quota_on(sb, type, format_id, path);
5821 if (!err) {
5822 struct inode *inode = d_inode(path->dentry);
5823 handle_t *handle;
5824
5825 /*
5826 * Set inode flags to prevent userspace from messing with quota
5827 * files. If this fails, we return success anyway since quotas
5828 * are already enabled and this is not a hard failure.
5829 */
5830 inode_lock(inode);
5831 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5832 if (IS_ERR(handle))
5833 goto unlock_inode;
5834 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5835 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5836 S_NOATIME | S_IMMUTABLE);
5837 ext4_mark_inode_dirty(handle, inode);
5838 ext4_journal_stop(handle);
5839 unlock_inode:
5840 inode_unlock(inode);
5841 if (err)
5842 dquot_quota_off(sb, type);
5843 }
5844 if (err)
5845 lockdep_set_quota_inode(path->dentry->d_inode,
5846 I_DATA_SEM_NORMAL);
5847 return err;
5848 }
5849
ext4_check_quota_inum(int type,unsigned long qf_inum)5850 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
5851 {
5852 switch (type) {
5853 case USRQUOTA:
5854 return qf_inum == EXT4_USR_QUOTA_INO;
5855 case GRPQUOTA:
5856 return qf_inum == EXT4_GRP_QUOTA_INO;
5857 case PRJQUOTA:
5858 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
5859 default:
5860 BUG();
5861 }
5862 }
5863
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5864 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5865 unsigned int flags)
5866 {
5867 int err;
5868 struct inode *qf_inode;
5869 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5870 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5871 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5872 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5873 };
5874
5875 BUG_ON(!ext4_has_feature_quota(sb));
5876
5877 if (!qf_inums[type])
5878 return -EPERM;
5879
5880 if (!ext4_check_quota_inum(type, qf_inums[type])) {
5881 ext4_error(sb, "Bad quota inum: %lu, type: %d",
5882 qf_inums[type], type);
5883 return -EUCLEAN;
5884 }
5885
5886 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5887 if (IS_ERR(qf_inode)) {
5888 ext4_error(sb, "Bad quota inode: %lu, type: %d",
5889 qf_inums[type], type);
5890 return PTR_ERR(qf_inode);
5891 }
5892
5893 /* Don't account quota for quota files to avoid recursion */
5894 qf_inode->i_flags |= S_NOQUOTA;
5895 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5896 err = dquot_enable(qf_inode, type, format_id, flags);
5897 if (err)
5898 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5899 iput(qf_inode);
5900
5901 return err;
5902 }
5903
5904 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5905 static int ext4_enable_quotas(struct super_block *sb)
5906 {
5907 int type, err = 0;
5908 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5909 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5910 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5911 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5912 };
5913 bool quota_mopt[EXT4_MAXQUOTAS] = {
5914 test_opt(sb, USRQUOTA),
5915 test_opt(sb, GRPQUOTA),
5916 test_opt(sb, PRJQUOTA),
5917 };
5918
5919 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5920 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5921 if (qf_inums[type]) {
5922 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5923 DQUOT_USAGE_ENABLED |
5924 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5925 if (err) {
5926 ext4_warning(sb,
5927 "Failed to enable quota tracking "
5928 "(type=%d, err=%d, ino=%lu). "
5929 "Please run e2fsck to fix.", type,
5930 err, qf_inums[type]);
5931 for (type--; type >= 0; type--) {
5932 struct inode *inode;
5933
5934 inode = sb_dqopt(sb)->files[type];
5935 if (inode)
5936 inode = igrab(inode);
5937 dquot_quota_off(sb, type);
5938 if (inode) {
5939 lockdep_set_quota_inode(inode,
5940 I_DATA_SEM_NORMAL);
5941 iput(inode);
5942 }
5943 }
5944
5945 return err;
5946 }
5947 }
5948 }
5949 return 0;
5950 }
5951
ext4_quota_off(struct super_block * sb,int type)5952 static int ext4_quota_off(struct super_block *sb, int type)
5953 {
5954 struct inode *inode = sb_dqopt(sb)->files[type];
5955 handle_t *handle;
5956 int err;
5957
5958 /* Force all delayed allocation blocks to be allocated.
5959 * Caller already holds s_umount sem */
5960 if (test_opt(sb, DELALLOC))
5961 sync_filesystem(sb);
5962
5963 if (!inode || !igrab(inode))
5964 goto out;
5965
5966 err = dquot_quota_off(sb, type);
5967 if (err || ext4_has_feature_quota(sb))
5968 goto out_put;
5969
5970 inode_lock(inode);
5971 /*
5972 * Update modification times of quota files when userspace can
5973 * start looking at them. If we fail, we return success anyway since
5974 * this is not a hard failure and quotas are already disabled.
5975 */
5976 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5977 if (IS_ERR(handle))
5978 goto out_unlock;
5979 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5980 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5981 inode->i_mtime = inode->i_ctime = current_time(inode);
5982 ext4_mark_inode_dirty(handle, inode);
5983 ext4_journal_stop(handle);
5984 out_unlock:
5985 inode_unlock(inode);
5986 out_put:
5987 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5988 iput(inode);
5989 return err;
5990 out:
5991 return dquot_quota_off(sb, type);
5992 }
5993
5994 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5995 * acquiring the locks... As quota files are never truncated and quota code
5996 * itself serializes the operations (and no one else should touch the files)
5997 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5998 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5999 size_t len, loff_t off)
6000 {
6001 struct inode *inode = sb_dqopt(sb)->files[type];
6002 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6003 int offset = off & (sb->s_blocksize - 1);
6004 int tocopy;
6005 size_t toread;
6006 struct buffer_head *bh;
6007 loff_t i_size = i_size_read(inode);
6008
6009 if (off > i_size)
6010 return 0;
6011 if (off+len > i_size)
6012 len = i_size-off;
6013 toread = len;
6014 while (toread > 0) {
6015 tocopy = sb->s_blocksize - offset < toread ?
6016 sb->s_blocksize - offset : toread;
6017 bh = ext4_bread(NULL, inode, blk, 0);
6018 if (IS_ERR(bh))
6019 return PTR_ERR(bh);
6020 if (!bh) /* A hole? */
6021 memset(data, 0, tocopy);
6022 else
6023 memcpy(data, bh->b_data+offset, tocopy);
6024 brelse(bh);
6025 offset = 0;
6026 toread -= tocopy;
6027 data += tocopy;
6028 blk++;
6029 }
6030 return len;
6031 }
6032
6033 /* Write to quotafile (we know the transaction is already started and has
6034 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6035 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6036 const char *data, size_t len, loff_t off)
6037 {
6038 struct inode *inode = sb_dqopt(sb)->files[type];
6039 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6040 int err, offset = off & (sb->s_blocksize - 1);
6041 int retries = 0;
6042 struct buffer_head *bh;
6043 handle_t *handle = journal_current_handle();
6044
6045 if (!handle) {
6046 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6047 " cancelled because transaction is not started",
6048 (unsigned long long)off, (unsigned long long)len);
6049 return -EIO;
6050 }
6051 /*
6052 * Since we account only one data block in transaction credits,
6053 * then it is impossible to cross a block boundary.
6054 */
6055 if (sb->s_blocksize - offset < len) {
6056 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6057 " cancelled because not block aligned",
6058 (unsigned long long)off, (unsigned long long)len);
6059 return -EIO;
6060 }
6061
6062 do {
6063 bh = ext4_bread(handle, inode, blk,
6064 EXT4_GET_BLOCKS_CREATE |
6065 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6066 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
6067 ext4_should_retry_alloc(inode->i_sb, &retries));
6068 if (IS_ERR(bh))
6069 return PTR_ERR(bh);
6070 if (!bh)
6071 goto out;
6072 BUFFER_TRACE(bh, "get write access");
6073 err = ext4_journal_get_write_access(handle, bh);
6074 if (err) {
6075 brelse(bh);
6076 return err;
6077 }
6078 lock_buffer(bh);
6079 memcpy(bh->b_data+offset, data, len);
6080 flush_dcache_page(bh->b_page);
6081 unlock_buffer(bh);
6082 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6083 brelse(bh);
6084 out:
6085 if (inode->i_size < off + len) {
6086 i_size_write(inode, off + len);
6087 EXT4_I(inode)->i_disksize = inode->i_size;
6088 ext4_mark_inode_dirty(handle, inode);
6089 }
6090 return len;
6091 }
6092
ext4_get_next_id(struct super_block * sb,struct kqid * qid)6093 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6094 {
6095 const struct quota_format_ops *ops;
6096
6097 if (!sb_has_quota_loaded(sb, qid->type))
6098 return -ESRCH;
6099 ops = sb_dqopt(sb)->ops[qid->type];
6100 if (!ops || !ops->get_next_id)
6101 return -ENOSYS;
6102 return dquot_get_next_id(sb, qid);
6103 }
6104 #endif
6105
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6106 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6107 const char *dev_name, void *data)
6108 {
6109 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6110 }
6111
6112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6113 static inline void register_as_ext2(void)
6114 {
6115 int err = register_filesystem(&ext2_fs_type);
6116 if (err)
6117 printk(KERN_WARNING
6118 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6119 }
6120
unregister_as_ext2(void)6121 static inline void unregister_as_ext2(void)
6122 {
6123 unregister_filesystem(&ext2_fs_type);
6124 }
6125
ext2_feature_set_ok(struct super_block * sb)6126 static inline int ext2_feature_set_ok(struct super_block *sb)
6127 {
6128 if (ext4_has_unknown_ext2_incompat_features(sb))
6129 return 0;
6130 if (sb_rdonly(sb))
6131 return 1;
6132 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6133 return 0;
6134 return 1;
6135 }
6136 #else
register_as_ext2(void)6137 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6138 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6139 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6140 #endif
6141
register_as_ext3(void)6142 static inline void register_as_ext3(void)
6143 {
6144 int err = register_filesystem(&ext3_fs_type);
6145 if (err)
6146 printk(KERN_WARNING
6147 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6148 }
6149
unregister_as_ext3(void)6150 static inline void unregister_as_ext3(void)
6151 {
6152 unregister_filesystem(&ext3_fs_type);
6153 }
6154
ext3_feature_set_ok(struct super_block * sb)6155 static inline int ext3_feature_set_ok(struct super_block *sb)
6156 {
6157 if (ext4_has_unknown_ext3_incompat_features(sb))
6158 return 0;
6159 if (!ext4_has_feature_journal(sb))
6160 return 0;
6161 if (sb_rdonly(sb))
6162 return 1;
6163 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6164 return 0;
6165 return 1;
6166 }
6167
6168 static struct file_system_type ext4_fs_type = {
6169 .owner = THIS_MODULE,
6170 .name = "ext4",
6171 .mount = ext4_mount,
6172 .kill_sb = kill_block_super,
6173 .fs_flags = FS_REQUIRES_DEV,
6174 };
6175 MODULE_ALIAS_FS("ext4");
6176
6177 /* Shared across all ext4 file systems */
6178 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6179
ext4_init_fs(void)6180 static int __init ext4_init_fs(void)
6181 {
6182 int i, err;
6183
6184 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6185 ext4_li_info = NULL;
6186 mutex_init(&ext4_li_mtx);
6187
6188 /* Build-time check for flags consistency */
6189 ext4_check_flag_values();
6190
6191 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6192 init_waitqueue_head(&ext4__ioend_wq[i]);
6193
6194 err = ext4_init_es();
6195 if (err)
6196 return err;
6197
6198 err = ext4_init_pageio();
6199 if (err)
6200 goto out5;
6201
6202 err = ext4_init_system_zone();
6203 if (err)
6204 goto out4;
6205
6206 err = ext4_init_sysfs();
6207 if (err)
6208 goto out3;
6209
6210 err = ext4_init_mballoc();
6211 if (err)
6212 goto out2;
6213 err = init_inodecache();
6214 if (err)
6215 goto out1;
6216 register_as_ext3();
6217 register_as_ext2();
6218 err = register_filesystem(&ext4_fs_type);
6219 if (err)
6220 goto out;
6221
6222 return 0;
6223 out:
6224 unregister_as_ext2();
6225 unregister_as_ext3();
6226 destroy_inodecache();
6227 out1:
6228 ext4_exit_mballoc();
6229 out2:
6230 ext4_exit_sysfs();
6231 out3:
6232 ext4_exit_system_zone();
6233 out4:
6234 ext4_exit_pageio();
6235 out5:
6236 ext4_exit_es();
6237
6238 return err;
6239 }
6240
ext4_exit_fs(void)6241 static void __exit ext4_exit_fs(void)
6242 {
6243 ext4_destroy_lazyinit_thread();
6244 unregister_as_ext2();
6245 unregister_as_ext3();
6246 unregister_filesystem(&ext4_fs_type);
6247 destroy_inodecache();
6248 ext4_exit_mballoc();
6249 ext4_exit_sysfs();
6250 ext4_exit_system_zone();
6251 ext4_exit_pageio();
6252 ext4_exit_es();
6253 }
6254
6255 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6256 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6257 MODULE_LICENSE("GPL");
6258 MODULE_SOFTDEP("pre: crc32c");
6259 module_init(ext4_init_fs)
6260 module_exit(ext4_exit_fs)
6261