1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 f2fs_build_fault_attr(sbi, 0, 0);
32 set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 /*
57 * We guarantee no failure on the returned page.
58 */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
61 {
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
72 .is_meta = is_meta,
73 };
74 int err;
75
76 if (unlikely(!is_meta))
77 fio.op_flags &= ~REQ_META;
78 repeat:
79 page = f2fs_grab_cache_page(mapping, index, false);
80 if (!page) {
81 cond_resched();
82 goto repeat;
83 }
84 if (PageUptodate(page))
85 goto out;
86
87 fio.page = page;
88
89 err = f2fs_submit_page_bio(&fio);
90 if (err) {
91 f2fs_put_page(page, 1);
92 return ERR_PTR(err);
93 }
94
95 lock_page(page);
96 if (unlikely(page->mapping != mapping)) {
97 f2fs_put_page(page, 1);
98 goto repeat;
99 }
100
101 if (unlikely(!PageUptodate(page))) {
102 f2fs_put_page(page, 1);
103 return ERR_PTR(-EIO);
104 }
105 out:
106 return page;
107 }
108
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
f2fs_get_meta_page_nofail(struct f2fs_sb_info * sbi,pgoff_t index)114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 struct page *page;
117 int count = 0;
118
119 retry:
120 page = __get_meta_page(sbi, index, true);
121 if (IS_ERR(page)) {
122 if (PTR_ERR(page) == -EIO &&
123 ++count <= DEFAULT_RETRY_IO_COUNT)
124 goto retry;
125
126 f2fs_stop_checkpoint(sbi, false);
127 f2fs_bug_on(sbi, 1);
128 }
129
130 return page;
131 }
132
133 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
135 {
136 return __get_meta_page(sbi, index, false);
137 }
138
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
140 block_t blkaddr, int type)
141 {
142 switch (type) {
143 case META_NAT:
144 break;
145 case META_SIT:
146 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
147 return false;
148 break;
149 case META_SSA:
150 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
151 blkaddr < SM_I(sbi)->ssa_blkaddr))
152 return false;
153 break;
154 case META_CP:
155 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
156 blkaddr < __start_cp_addr(sbi)))
157 return false;
158 break;
159 case META_POR:
160 case DATA_GENERIC:
161 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
162 blkaddr < MAIN_BLKADDR(sbi))) {
163 if (type == DATA_GENERIC) {
164 f2fs_msg(sbi->sb, KERN_WARNING,
165 "access invalid blkaddr:%u", blkaddr);
166 WARN_ON(1);
167 }
168 return false;
169 }
170 break;
171 case META_GENERIC:
172 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
173 blkaddr >= MAIN_BLKADDR(sbi)))
174 return false;
175 break;
176 default:
177 BUG();
178 }
179
180 return true;
181 }
182
183 /*
184 * Readahead CP/NAT/SIT/SSA pages
185 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
187 int type, bool sync)
188 {
189 struct page *page;
190 block_t blkno = start;
191 struct f2fs_io_info fio = {
192 .sbi = sbi,
193 .type = META,
194 .op = REQ_OP_READ,
195 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
196 .encrypted_page = NULL,
197 .in_list = false,
198 .is_meta = (type != META_POR),
199 };
200 struct blk_plug plug;
201
202 if (unlikely(type == META_POR))
203 fio.op_flags &= ~REQ_META;
204
205 blk_start_plug(&plug);
206 for (; nrpages-- > 0; blkno++) {
207
208 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
209 goto out;
210
211 switch (type) {
212 case META_NAT:
213 if (unlikely(blkno >=
214 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
215 blkno = 0;
216 /* get nat block addr */
217 fio.new_blkaddr = current_nat_addr(sbi,
218 blkno * NAT_ENTRY_PER_BLOCK);
219 break;
220 case META_SIT:
221 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
222 goto out;
223 /* get sit block addr */
224 fio.new_blkaddr = current_sit_addr(sbi,
225 blkno * SIT_ENTRY_PER_BLOCK);
226 break;
227 case META_SSA:
228 case META_CP:
229 case META_POR:
230 fio.new_blkaddr = blkno;
231 break;
232 default:
233 BUG();
234 }
235
236 page = f2fs_grab_cache_page(META_MAPPING(sbi),
237 fio.new_blkaddr, false);
238 if (!page)
239 continue;
240 if (PageUptodate(page)) {
241 f2fs_put_page(page, 1);
242 continue;
243 }
244
245 fio.page = page;
246 f2fs_submit_page_bio(&fio);
247 f2fs_put_page(page, 0);
248 }
249 out:
250 blk_finish_plug(&plug);
251 return blkno - start;
252 }
253
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)254 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
255 {
256 struct page *page;
257 bool readahead = false;
258
259 page = find_get_page(META_MAPPING(sbi), index);
260 if (!page || !PageUptodate(page))
261 readahead = true;
262 f2fs_put_page(page, 0);
263
264 if (readahead)
265 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
266 }
267
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)268 static int __f2fs_write_meta_page(struct page *page,
269 struct writeback_control *wbc,
270 enum iostat_type io_type)
271 {
272 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
273
274 trace_f2fs_writepage(page, META);
275
276 if (unlikely(f2fs_cp_error(sbi))) {
277 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
278 ClearPageUptodate(page);
279 dec_page_count(sbi, F2FS_DIRTY_META);
280 unlock_page(page);
281 return 0;
282 }
283 goto redirty_out;
284 }
285 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
286 goto redirty_out;
287 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
288 goto redirty_out;
289
290 f2fs_do_write_meta_page(sbi, page, io_type);
291 dec_page_count(sbi, F2FS_DIRTY_META);
292
293 if (wbc->for_reclaim)
294 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
295 0, page->index, META);
296
297 unlock_page(page);
298
299 if (unlikely(f2fs_cp_error(sbi)))
300 f2fs_submit_merged_write(sbi, META);
301
302 return 0;
303
304 redirty_out:
305 redirty_page_for_writepage(wbc, page);
306 return AOP_WRITEPAGE_ACTIVATE;
307 }
308
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)309 static int f2fs_write_meta_page(struct page *page,
310 struct writeback_control *wbc)
311 {
312 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
313 }
314
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)315 static int f2fs_write_meta_pages(struct address_space *mapping,
316 struct writeback_control *wbc)
317 {
318 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
319 long diff, written;
320
321 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
322 goto skip_write;
323
324 /* collect a number of dirty meta pages and write together */
325 if (wbc->for_kupdate ||
326 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
327 goto skip_write;
328
329 /* if locked failed, cp will flush dirty pages instead */
330 if (!mutex_trylock(&sbi->cp_mutex))
331 goto skip_write;
332
333 trace_f2fs_writepages(mapping->host, wbc, META);
334 diff = nr_pages_to_write(sbi, META, wbc);
335 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
336 mutex_unlock(&sbi->cp_mutex);
337 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
338 return 0;
339
340 skip_write:
341 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
342 trace_f2fs_writepages(mapping->host, wbc, META);
343 return 0;
344 }
345
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)346 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
347 long nr_to_write, enum iostat_type io_type)
348 {
349 struct address_space *mapping = META_MAPPING(sbi);
350 pgoff_t index = 0, prev = ULONG_MAX;
351 struct pagevec pvec;
352 long nwritten = 0;
353 int nr_pages;
354 struct writeback_control wbc = {
355 .for_reclaim = 0,
356 };
357 struct blk_plug plug;
358
359 pagevec_init(&pvec);
360
361 blk_start_plug(&plug);
362
363 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
364 PAGECACHE_TAG_DIRTY))) {
365 int i;
366
367 for (i = 0; i < nr_pages; i++) {
368 struct page *page = pvec.pages[i];
369
370 if (prev == ULONG_MAX)
371 prev = page->index - 1;
372 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
373 pagevec_release(&pvec);
374 goto stop;
375 }
376
377 lock_page(page);
378
379 if (unlikely(page->mapping != mapping)) {
380 continue_unlock:
381 unlock_page(page);
382 continue;
383 }
384 if (!PageDirty(page)) {
385 /* someone wrote it for us */
386 goto continue_unlock;
387 }
388
389 f2fs_wait_on_page_writeback(page, META, true);
390
391 BUG_ON(PageWriteback(page));
392 if (!clear_page_dirty_for_io(page))
393 goto continue_unlock;
394
395 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
396 unlock_page(page);
397 break;
398 }
399 nwritten++;
400 prev = page->index;
401 if (unlikely(nwritten >= nr_to_write))
402 break;
403 }
404 pagevec_release(&pvec);
405 cond_resched();
406 }
407 stop:
408 if (nwritten)
409 f2fs_submit_merged_write(sbi, type);
410
411 blk_finish_plug(&plug);
412
413 return nwritten;
414 }
415
f2fs_set_meta_page_dirty(struct page * page)416 static int f2fs_set_meta_page_dirty(struct page *page)
417 {
418 trace_f2fs_set_page_dirty(page, META);
419
420 if (!PageUptodate(page))
421 SetPageUptodate(page);
422 if (!PageDirty(page)) {
423 __set_page_dirty_nobuffers(page);
424 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
425 SetPagePrivate(page);
426 f2fs_trace_pid(page);
427 return 1;
428 }
429 return 0;
430 }
431
432 const struct address_space_operations f2fs_meta_aops = {
433 .writepage = f2fs_write_meta_page,
434 .writepages = f2fs_write_meta_pages,
435 .set_page_dirty = f2fs_set_meta_page_dirty,
436 .invalidatepage = f2fs_invalidate_page,
437 .releasepage = f2fs_release_page,
438 #ifdef CONFIG_MIGRATION
439 .migratepage = f2fs_migrate_page,
440 #endif
441 };
442
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)443 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
444 unsigned int devidx, int type)
445 {
446 struct inode_management *im = &sbi->im[type];
447 struct ino_entry *e, *tmp;
448
449 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
450
451 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
452
453 spin_lock(&im->ino_lock);
454 e = radix_tree_lookup(&im->ino_root, ino);
455 if (!e) {
456 e = tmp;
457 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
458 f2fs_bug_on(sbi, 1);
459
460 memset(e, 0, sizeof(struct ino_entry));
461 e->ino = ino;
462
463 list_add_tail(&e->list, &im->ino_list);
464 if (type != ORPHAN_INO)
465 im->ino_num++;
466 }
467
468 if (type == FLUSH_INO)
469 f2fs_set_bit(devidx, (char *)&e->dirty_device);
470
471 spin_unlock(&im->ino_lock);
472 radix_tree_preload_end();
473
474 if (e != tmp)
475 kmem_cache_free(ino_entry_slab, tmp);
476 }
477
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)478 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
479 {
480 struct inode_management *im = &sbi->im[type];
481 struct ino_entry *e;
482
483 spin_lock(&im->ino_lock);
484 e = radix_tree_lookup(&im->ino_root, ino);
485 if (e) {
486 list_del(&e->list);
487 radix_tree_delete(&im->ino_root, ino);
488 im->ino_num--;
489 spin_unlock(&im->ino_lock);
490 kmem_cache_free(ino_entry_slab, e);
491 return;
492 }
493 spin_unlock(&im->ino_lock);
494 }
495
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)496 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
497 {
498 /* add new dirty ino entry into list */
499 __add_ino_entry(sbi, ino, 0, type);
500 }
501
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)502 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
503 {
504 /* remove dirty ino entry from list */
505 __remove_ino_entry(sbi, ino, type);
506 }
507
508 /* mode should be APPEND_INO or UPDATE_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)509 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
510 {
511 struct inode_management *im = &sbi->im[mode];
512 struct ino_entry *e;
513
514 spin_lock(&im->ino_lock);
515 e = radix_tree_lookup(&im->ino_root, ino);
516 spin_unlock(&im->ino_lock);
517 return e ? true : false;
518 }
519
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)520 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
521 {
522 struct ino_entry *e, *tmp;
523 int i;
524
525 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
526 struct inode_management *im = &sbi->im[i];
527
528 spin_lock(&im->ino_lock);
529 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
530 list_del(&e->list);
531 radix_tree_delete(&im->ino_root, e->ino);
532 kmem_cache_free(ino_entry_slab, e);
533 im->ino_num--;
534 }
535 spin_unlock(&im->ino_lock);
536 }
537 }
538
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)539 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
540 unsigned int devidx, int type)
541 {
542 __add_ino_entry(sbi, ino, devidx, type);
543 }
544
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)545 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
546 unsigned int devidx, int type)
547 {
548 struct inode_management *im = &sbi->im[type];
549 struct ino_entry *e;
550 bool is_dirty = false;
551
552 spin_lock(&im->ino_lock);
553 e = radix_tree_lookup(&im->ino_root, ino);
554 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
555 is_dirty = true;
556 spin_unlock(&im->ino_lock);
557 return is_dirty;
558 }
559
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)560 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
561 {
562 struct inode_management *im = &sbi->im[ORPHAN_INO];
563 int err = 0;
564
565 spin_lock(&im->ino_lock);
566
567 if (time_to_inject(sbi, FAULT_ORPHAN)) {
568 spin_unlock(&im->ino_lock);
569 f2fs_show_injection_info(FAULT_ORPHAN);
570 return -ENOSPC;
571 }
572
573 if (unlikely(im->ino_num >= sbi->max_orphans))
574 err = -ENOSPC;
575 else
576 im->ino_num++;
577 spin_unlock(&im->ino_lock);
578
579 return err;
580 }
581
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)582 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
583 {
584 struct inode_management *im = &sbi->im[ORPHAN_INO];
585
586 spin_lock(&im->ino_lock);
587 f2fs_bug_on(sbi, im->ino_num == 0);
588 im->ino_num--;
589 spin_unlock(&im->ino_lock);
590 }
591
f2fs_add_orphan_inode(struct inode * inode)592 void f2fs_add_orphan_inode(struct inode *inode)
593 {
594 /* add new orphan ino entry into list */
595 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
596 f2fs_update_inode_page(inode);
597 }
598
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)599 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
600 {
601 /* remove orphan entry from orphan list */
602 __remove_ino_entry(sbi, ino, ORPHAN_INO);
603 }
604
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)605 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
606 {
607 struct inode *inode;
608 struct node_info ni;
609 int err;
610
611 inode = f2fs_iget_retry(sbi->sb, ino);
612 if (IS_ERR(inode)) {
613 /*
614 * there should be a bug that we can't find the entry
615 * to orphan inode.
616 */
617 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
618 return PTR_ERR(inode);
619 }
620
621 err = dquot_initialize(inode);
622 if (err) {
623 iput(inode);
624 goto err_out;
625 }
626
627 clear_nlink(inode);
628
629 /* truncate all the data during iput */
630 iput(inode);
631
632 err = f2fs_get_node_info(sbi, ino, &ni);
633 if (err)
634 goto err_out;
635
636 /* ENOMEM was fully retried in f2fs_evict_inode. */
637 if (ni.blk_addr != NULL_ADDR) {
638 err = -EIO;
639 goto err_out;
640 }
641 return 0;
642
643 err_out:
644 set_sbi_flag(sbi, SBI_NEED_FSCK);
645 f2fs_msg(sbi->sb, KERN_WARNING,
646 "%s: orphan failed (ino=%x), run fsck to fix.",
647 __func__, ino);
648 return err;
649 }
650
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)651 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
652 {
653 block_t start_blk, orphan_blocks, i, j;
654 unsigned int s_flags = sbi->sb->s_flags;
655 int err = 0;
656 #ifdef CONFIG_QUOTA
657 int quota_enabled;
658 #endif
659
660 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
661 return 0;
662
663 if (s_flags & SB_RDONLY) {
664 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
665 sbi->sb->s_flags &= ~SB_RDONLY;
666 }
667
668 #ifdef CONFIG_QUOTA
669 /* Needed for iput() to work correctly and not trash data */
670 sbi->sb->s_flags |= SB_ACTIVE;
671
672 /*
673 * Turn on quotas which were not enabled for read-only mounts if
674 * filesystem has quota feature, so that they are updated correctly.
675 */
676 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
677 #endif
678
679 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
680 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
681
682 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
683
684 for (i = 0; i < orphan_blocks; i++) {
685 struct page *page;
686 struct f2fs_orphan_block *orphan_blk;
687
688 page = f2fs_get_meta_page(sbi, start_blk + i);
689 if (IS_ERR(page)) {
690 err = PTR_ERR(page);
691 goto out;
692 }
693
694 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
695 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
696 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
697 err = recover_orphan_inode(sbi, ino);
698 if (err) {
699 f2fs_put_page(page, 1);
700 goto out;
701 }
702 }
703 f2fs_put_page(page, 1);
704 }
705 /* clear Orphan Flag */
706 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
707 out:
708 set_sbi_flag(sbi, SBI_IS_RECOVERED);
709
710 #ifdef CONFIG_QUOTA
711 /* Turn quotas off */
712 if (quota_enabled)
713 f2fs_quota_off_umount(sbi->sb);
714 #endif
715 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
716
717 return err;
718 }
719
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)720 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
721 {
722 struct list_head *head;
723 struct f2fs_orphan_block *orphan_blk = NULL;
724 unsigned int nentries = 0;
725 unsigned short index = 1;
726 unsigned short orphan_blocks;
727 struct page *page = NULL;
728 struct ino_entry *orphan = NULL;
729 struct inode_management *im = &sbi->im[ORPHAN_INO];
730
731 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
732
733 /*
734 * we don't need to do spin_lock(&im->ino_lock) here, since all the
735 * orphan inode operations are covered under f2fs_lock_op().
736 * And, spin_lock should be avoided due to page operations below.
737 */
738 head = &im->ino_list;
739
740 /* loop for each orphan inode entry and write them in Jornal block */
741 list_for_each_entry(orphan, head, list) {
742 if (!page) {
743 page = f2fs_grab_meta_page(sbi, start_blk++);
744 orphan_blk =
745 (struct f2fs_orphan_block *)page_address(page);
746 memset(orphan_blk, 0, sizeof(*orphan_blk));
747 }
748
749 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
750
751 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
752 /*
753 * an orphan block is full of 1020 entries,
754 * then we need to flush current orphan blocks
755 * and bring another one in memory
756 */
757 orphan_blk->blk_addr = cpu_to_le16(index);
758 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
759 orphan_blk->entry_count = cpu_to_le32(nentries);
760 set_page_dirty(page);
761 f2fs_put_page(page, 1);
762 index++;
763 nentries = 0;
764 page = NULL;
765 }
766 }
767
768 if (page) {
769 orphan_blk->blk_addr = cpu_to_le16(index);
770 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
771 orphan_blk->entry_count = cpu_to_le32(nentries);
772 set_page_dirty(page);
773 f2fs_put_page(page, 1);
774 }
775 }
776
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)777 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
778 struct f2fs_checkpoint **cp_block, struct page **cp_page,
779 unsigned long long *version)
780 {
781 unsigned long blk_size = sbi->blocksize;
782 size_t crc_offset = 0;
783 __u32 crc = 0;
784
785 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
786 if (IS_ERR(*cp_page))
787 return PTR_ERR(*cp_page);
788
789 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
790
791 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
792 if (crc_offset > (blk_size - sizeof(__le32))) {
793 f2fs_put_page(*cp_page, 1);
794 f2fs_msg(sbi->sb, KERN_WARNING,
795 "invalid crc_offset: %zu", crc_offset);
796 return -EINVAL;
797 }
798
799 crc = cur_cp_crc(*cp_block);
800 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
801 f2fs_put_page(*cp_page, 1);
802 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
803 return -EINVAL;
804 }
805
806 *version = cur_cp_version(*cp_block);
807 return 0;
808 }
809
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)810 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
811 block_t cp_addr, unsigned long long *version)
812 {
813 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
814 struct f2fs_checkpoint *cp_block = NULL;
815 unsigned long long cur_version = 0, pre_version = 0;
816 int err;
817
818 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
819 &cp_page_1, version);
820 if (err)
821 return NULL;
822
823 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
824 sbi->blocks_per_seg) {
825 f2fs_msg(sbi->sb, KERN_WARNING,
826 "invalid cp_pack_total_block_count:%u",
827 le32_to_cpu(cp_block->cp_pack_total_block_count));
828 goto invalid_cp;
829 }
830 pre_version = *version;
831
832 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
833 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
834 &cp_page_2, version);
835 if (err)
836 goto invalid_cp;
837 cur_version = *version;
838
839 if (cur_version == pre_version) {
840 *version = cur_version;
841 f2fs_put_page(cp_page_2, 1);
842 return cp_page_1;
843 }
844 f2fs_put_page(cp_page_2, 1);
845 invalid_cp:
846 f2fs_put_page(cp_page_1, 1);
847 return NULL;
848 }
849
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)850 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
851 {
852 struct f2fs_checkpoint *cp_block;
853 struct f2fs_super_block *fsb = sbi->raw_super;
854 struct page *cp1, *cp2, *cur_page;
855 unsigned long blk_size = sbi->blocksize;
856 unsigned long long cp1_version = 0, cp2_version = 0;
857 unsigned long long cp_start_blk_no;
858 unsigned int cp_blks = 1 + __cp_payload(sbi);
859 block_t cp_blk_no;
860 int i;
861 int err;
862
863 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
864 GFP_KERNEL);
865 if (!sbi->ckpt)
866 return -ENOMEM;
867 /*
868 * Finding out valid cp block involves read both
869 * sets( cp pack1 and cp pack 2)
870 */
871 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
872 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
873
874 /* The second checkpoint pack should start at the next segment */
875 cp_start_blk_no += ((unsigned long long)1) <<
876 le32_to_cpu(fsb->log_blocks_per_seg);
877 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
878
879 if (cp1 && cp2) {
880 if (ver_after(cp2_version, cp1_version))
881 cur_page = cp2;
882 else
883 cur_page = cp1;
884 } else if (cp1) {
885 cur_page = cp1;
886 } else if (cp2) {
887 cur_page = cp2;
888 } else {
889 err = -EFSCORRUPTED;
890 goto fail_no_cp;
891 }
892
893 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
894 memcpy(sbi->ckpt, cp_block, blk_size);
895
896 if (cur_page == cp1)
897 sbi->cur_cp_pack = 1;
898 else
899 sbi->cur_cp_pack = 2;
900
901 /* Sanity checking of checkpoint */
902 if (f2fs_sanity_check_ckpt(sbi)) {
903 err = -EFSCORRUPTED;
904 goto free_fail_no_cp;
905 }
906
907 if (cp_blks <= 1)
908 goto done;
909
910 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
911 if (cur_page == cp2)
912 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
913
914 for (i = 1; i < cp_blks; i++) {
915 void *sit_bitmap_ptr;
916 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
917
918 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
919 if (IS_ERR(cur_page)) {
920 err = PTR_ERR(cur_page);
921 goto free_fail_no_cp;
922 }
923 sit_bitmap_ptr = page_address(cur_page);
924 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
925 f2fs_put_page(cur_page, 1);
926 }
927 done:
928 f2fs_put_page(cp1, 1);
929 f2fs_put_page(cp2, 1);
930 return 0;
931
932 free_fail_no_cp:
933 f2fs_put_page(cp1, 1);
934 f2fs_put_page(cp2, 1);
935 fail_no_cp:
936 kfree(sbi->ckpt);
937 return err;
938 }
939
__add_dirty_inode(struct inode * inode,enum inode_type type)940 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
941 {
942 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
943 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
944
945 if (is_inode_flag_set(inode, flag))
946 return;
947
948 set_inode_flag(inode, flag);
949 if (!f2fs_is_volatile_file(inode))
950 list_add_tail(&F2FS_I(inode)->dirty_list,
951 &sbi->inode_list[type]);
952 stat_inc_dirty_inode(sbi, type);
953 }
954
__remove_dirty_inode(struct inode * inode,enum inode_type type)955 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
956 {
957 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
958
959 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
960 return;
961
962 list_del_init(&F2FS_I(inode)->dirty_list);
963 clear_inode_flag(inode, flag);
964 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
965 }
966
f2fs_update_dirty_page(struct inode * inode,struct page * page)967 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
968 {
969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
970 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
971
972 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
973 !S_ISLNK(inode->i_mode))
974 return;
975
976 spin_lock(&sbi->inode_lock[type]);
977 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
978 __add_dirty_inode(inode, type);
979 inode_inc_dirty_pages(inode);
980 spin_unlock(&sbi->inode_lock[type]);
981
982 SetPagePrivate(page);
983 f2fs_trace_pid(page);
984 }
985
f2fs_remove_dirty_inode(struct inode * inode)986 void f2fs_remove_dirty_inode(struct inode *inode)
987 {
988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
990
991 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
992 !S_ISLNK(inode->i_mode))
993 return;
994
995 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
996 return;
997
998 spin_lock(&sbi->inode_lock[type]);
999 __remove_dirty_inode(inode, type);
1000 spin_unlock(&sbi->inode_lock[type]);
1001 }
1002
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)1003 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1004 {
1005 struct list_head *head;
1006 struct inode *inode;
1007 struct f2fs_inode_info *fi;
1008 bool is_dir = (type == DIR_INODE);
1009 unsigned long ino = 0;
1010
1011 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1012 get_pages(sbi, is_dir ?
1013 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1014 retry:
1015 if (unlikely(f2fs_cp_error(sbi))) {
1016 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1017 get_pages(sbi, is_dir ?
1018 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1019 return -EIO;
1020 }
1021
1022 spin_lock(&sbi->inode_lock[type]);
1023
1024 head = &sbi->inode_list[type];
1025 if (list_empty(head)) {
1026 spin_unlock(&sbi->inode_lock[type]);
1027 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1028 get_pages(sbi, is_dir ?
1029 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1030 return 0;
1031 }
1032 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1033 inode = igrab(&fi->vfs_inode);
1034 spin_unlock(&sbi->inode_lock[type]);
1035 if (inode) {
1036 unsigned long cur_ino = inode->i_ino;
1037
1038 if (is_dir)
1039 F2FS_I(inode)->cp_task = current;
1040
1041 filemap_fdatawrite(inode->i_mapping);
1042
1043 if (is_dir)
1044 F2FS_I(inode)->cp_task = NULL;
1045
1046 iput(inode);
1047 /* We need to give cpu to another writers. */
1048 if (ino == cur_ino)
1049 cond_resched();
1050 else
1051 ino = cur_ino;
1052 } else {
1053 /*
1054 * We should submit bio, since it exists several
1055 * wribacking dentry pages in the freeing inode.
1056 */
1057 f2fs_submit_merged_write(sbi, DATA);
1058 cond_resched();
1059 }
1060 goto retry;
1061 }
1062
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1063 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1064 {
1065 struct list_head *head = &sbi->inode_list[DIRTY_META];
1066 struct inode *inode;
1067 struct f2fs_inode_info *fi;
1068 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1069
1070 while (total--) {
1071 if (unlikely(f2fs_cp_error(sbi)))
1072 return -EIO;
1073
1074 spin_lock(&sbi->inode_lock[DIRTY_META]);
1075 if (list_empty(head)) {
1076 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1077 return 0;
1078 }
1079 fi = list_first_entry(head, struct f2fs_inode_info,
1080 gdirty_list);
1081 inode = igrab(&fi->vfs_inode);
1082 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1083 if (inode) {
1084 sync_inode_metadata(inode, 0);
1085
1086 /* it's on eviction */
1087 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1088 f2fs_update_inode_page(inode);
1089 iput(inode);
1090 }
1091 }
1092 return 0;
1093 }
1094
__prepare_cp_block(struct f2fs_sb_info * sbi)1095 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1096 {
1097 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1098 struct f2fs_nm_info *nm_i = NM_I(sbi);
1099 nid_t last_nid = nm_i->next_scan_nid;
1100
1101 next_free_nid(sbi, &last_nid);
1102 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1103 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1104 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1105 ckpt->next_free_nid = cpu_to_le32(last_nid);
1106 }
1107
1108 /*
1109 * Freeze all the FS-operations for checkpoint.
1110 */
block_operations(struct f2fs_sb_info * sbi)1111 static int block_operations(struct f2fs_sb_info *sbi)
1112 {
1113 struct writeback_control wbc = {
1114 .sync_mode = WB_SYNC_ALL,
1115 .nr_to_write = LONG_MAX,
1116 .for_reclaim = 0,
1117 };
1118 struct blk_plug plug;
1119 int err = 0;
1120
1121 blk_start_plug(&plug);
1122
1123 retry_flush_dents:
1124 f2fs_lock_all(sbi);
1125 /* write all the dirty dentry pages */
1126 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1127 f2fs_unlock_all(sbi);
1128 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1129 if (err)
1130 goto out;
1131 cond_resched();
1132 goto retry_flush_dents;
1133 }
1134
1135 /*
1136 * POR: we should ensure that there are no dirty node pages
1137 * until finishing nat/sit flush. inode->i_blocks can be updated.
1138 */
1139 down_write(&sbi->node_change);
1140
1141 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1142 up_write(&sbi->node_change);
1143 f2fs_unlock_all(sbi);
1144 err = f2fs_sync_inode_meta(sbi);
1145 if (err)
1146 goto out;
1147 cond_resched();
1148 goto retry_flush_dents;
1149 }
1150
1151 retry_flush_nodes:
1152 down_write(&sbi->node_write);
1153
1154 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1155 up_write(&sbi->node_write);
1156 atomic_inc(&sbi->wb_sync_req[NODE]);
1157 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1158 atomic_dec(&sbi->wb_sync_req[NODE]);
1159 if (err) {
1160 up_write(&sbi->node_change);
1161 f2fs_unlock_all(sbi);
1162 goto out;
1163 }
1164 cond_resched();
1165 goto retry_flush_nodes;
1166 }
1167
1168 /*
1169 * sbi->node_change is used only for AIO write_begin path which produces
1170 * dirty node blocks and some checkpoint values by block allocation.
1171 */
1172 __prepare_cp_block(sbi);
1173 up_write(&sbi->node_change);
1174 out:
1175 blk_finish_plug(&plug);
1176 return err;
1177 }
1178
unblock_operations(struct f2fs_sb_info * sbi)1179 static void unblock_operations(struct f2fs_sb_info *sbi)
1180 {
1181 up_write(&sbi->node_write);
1182 f2fs_unlock_all(sbi);
1183 }
1184
f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1185 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1186 {
1187 DEFINE_WAIT(wait);
1188
1189 for (;;) {
1190 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1191
1192 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1193 break;
1194
1195 if (unlikely(f2fs_cp_error(sbi) &&
1196 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1197 break;
1198
1199 io_schedule_timeout(5*HZ);
1200 }
1201 finish_wait(&sbi->cp_wait, &wait);
1202 }
1203
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1204 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1205 {
1206 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1207 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&sbi->cp_lock, flags);
1211
1212 if ((cpc->reason & CP_UMOUNT) &&
1213 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1214 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1215 disable_nat_bits(sbi, false);
1216
1217 if (cpc->reason & CP_TRIMMED)
1218 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1219 else
1220 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1221
1222 if (cpc->reason & CP_UMOUNT)
1223 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1224 else
1225 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1226
1227 if (cpc->reason & CP_FASTBOOT)
1228 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1229 else
1230 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1231
1232 if (orphan_num)
1233 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1234 else
1235 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1236
1237 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1238 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1239
1240 /* set this flag to activate crc|cp_ver for recovery */
1241 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1242 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1243
1244 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1245 }
1246
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1247 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1248 void *src, block_t blk_addr)
1249 {
1250 struct writeback_control wbc = {
1251 .for_reclaim = 0,
1252 };
1253
1254 /*
1255 * pagevec_lookup_tag and lock_page again will take
1256 * some extra time. Therefore, f2fs_update_meta_pages and
1257 * f2fs_sync_meta_pages are combined in this function.
1258 */
1259 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1260 int err;
1261
1262 memcpy(page_address(page), src, PAGE_SIZE);
1263 set_page_dirty(page);
1264
1265 f2fs_wait_on_page_writeback(page, META, true);
1266 f2fs_bug_on(sbi, PageWriteback(page));
1267 if (unlikely(!clear_page_dirty_for_io(page)))
1268 f2fs_bug_on(sbi, 1);
1269
1270 /* writeout cp pack 2 page */
1271 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1272 if (unlikely(err && f2fs_cp_error(sbi))) {
1273 f2fs_put_page(page, 1);
1274 return;
1275 }
1276
1277 f2fs_bug_on(sbi, err);
1278 f2fs_put_page(page, 0);
1279
1280 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1281 f2fs_submit_merged_write(sbi, META_FLUSH);
1282 }
1283
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1284 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1285 {
1286 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1287 struct f2fs_nm_info *nm_i = NM_I(sbi);
1288 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1289 block_t start_blk;
1290 unsigned int data_sum_blocks, orphan_blocks;
1291 __u32 crc32 = 0;
1292 int i;
1293 int cp_payload_blks = __cp_payload(sbi);
1294 struct super_block *sb = sbi->sb;
1295 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1296 u64 kbytes_written;
1297 int err;
1298
1299 /* Flush all the NAT/SIT pages */
1300 while (get_pages(sbi, F2FS_DIRTY_META)) {
1301 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1302 if (unlikely(f2fs_cp_error(sbi)))
1303 break;
1304 }
1305
1306 /*
1307 * modify checkpoint
1308 * version number is already updated
1309 */
1310 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1311 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1312 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1313 ckpt->cur_node_segno[i] =
1314 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1315 ckpt->cur_node_blkoff[i] =
1316 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1317 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1318 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1319 }
1320 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1321 ckpt->cur_data_segno[i] =
1322 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1323 ckpt->cur_data_blkoff[i] =
1324 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1325 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1326 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1327 }
1328
1329 /* 2 cp + n data seg summary + orphan inode blocks */
1330 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1331 spin_lock_irqsave(&sbi->cp_lock, flags);
1332 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1333 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1334 else
1335 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1336 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1337
1338 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1339 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1340 orphan_blocks);
1341
1342 if (__remain_node_summaries(cpc->reason))
1343 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1344 cp_payload_blks + data_sum_blocks +
1345 orphan_blocks + NR_CURSEG_NODE_TYPE);
1346 else
1347 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1348 cp_payload_blks + data_sum_blocks +
1349 orphan_blocks);
1350
1351 /* update ckpt flag for checkpoint */
1352 update_ckpt_flags(sbi, cpc);
1353
1354 /* update SIT/NAT bitmap */
1355 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1356 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1357
1358 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1359 *((__le32 *)((unsigned char *)ckpt +
1360 le32_to_cpu(ckpt->checksum_offset)))
1361 = cpu_to_le32(crc32);
1362
1363 start_blk = __start_cp_next_addr(sbi);
1364
1365 /* write nat bits */
1366 if (enabled_nat_bits(sbi, cpc)) {
1367 __u64 cp_ver = cur_cp_version(ckpt);
1368 block_t blk;
1369
1370 cp_ver |= ((__u64)crc32 << 32);
1371 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1372
1373 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1374 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1375 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1376 (i << F2FS_BLKSIZE_BITS), blk + i);
1377
1378 /* Flush all the NAT BITS pages */
1379 while (get_pages(sbi, F2FS_DIRTY_META)) {
1380 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1381 FS_CP_META_IO);
1382 if (unlikely(f2fs_cp_error(sbi)))
1383 break;
1384 }
1385 }
1386
1387 /* write out checkpoint buffer at block 0 */
1388 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1389
1390 for (i = 1; i < 1 + cp_payload_blks; i++)
1391 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1392 start_blk++);
1393
1394 if (orphan_num) {
1395 write_orphan_inodes(sbi, start_blk);
1396 start_blk += orphan_blocks;
1397 }
1398
1399 f2fs_write_data_summaries(sbi, start_blk);
1400 start_blk += data_sum_blocks;
1401
1402 /* Record write statistics in the hot node summary */
1403 kbytes_written = sbi->kbytes_written;
1404 if (sb->s_bdev->bd_part)
1405 kbytes_written += BD_PART_WRITTEN(sbi);
1406
1407 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1408
1409 if (__remain_node_summaries(cpc->reason)) {
1410 f2fs_write_node_summaries(sbi, start_blk);
1411 start_blk += NR_CURSEG_NODE_TYPE;
1412 }
1413
1414 /* update user_block_counts */
1415 sbi->last_valid_block_count = sbi->total_valid_block_count;
1416 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1417
1418 /* Here, we have one bio having CP pack except cp pack 2 page */
1419 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1420
1421 /* wait for previous submitted meta pages writeback */
1422 f2fs_wait_on_all_pages_writeback(sbi);
1423
1424 /* flush all device cache */
1425 err = f2fs_flush_device_cache(sbi);
1426 if (err)
1427 return err;
1428
1429 /* barrier and flush checkpoint cp pack 2 page if it can */
1430 commit_checkpoint(sbi, ckpt, start_blk);
1431 f2fs_wait_on_all_pages_writeback(sbi);
1432
1433 /*
1434 * invalidate intermediate page cache borrowed from meta inode
1435 * which are used for migration of encrypted inode's blocks.
1436 */
1437 if (f2fs_sb_has_encrypt(sbi->sb))
1438 invalidate_mapping_pages(META_MAPPING(sbi),
1439 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1440
1441 f2fs_release_ino_entry(sbi, false);
1442
1443 f2fs_reset_fsync_node_info(sbi);
1444
1445 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1446 clear_sbi_flag(sbi, SBI_NEED_CP);
1447 __set_cp_next_pack(sbi);
1448
1449 /*
1450 * redirty superblock if metadata like node page or inode cache is
1451 * updated during writing checkpoint.
1452 */
1453 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1454 get_pages(sbi, F2FS_DIRTY_IMETA))
1455 set_sbi_flag(sbi, SBI_IS_DIRTY);
1456
1457 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1458
1459 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1460 }
1461
1462 /*
1463 * We guarantee that this checkpoint procedure will not fail.
1464 */
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1465 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1466 {
1467 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1468 unsigned long long ckpt_ver;
1469 int err = 0;
1470
1471 mutex_lock(&sbi->cp_mutex);
1472
1473 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1474 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1475 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1476 goto out;
1477 if (unlikely(f2fs_cp_error(sbi))) {
1478 err = -EIO;
1479 goto out;
1480 }
1481 if (f2fs_readonly(sbi->sb)) {
1482 err = -EROFS;
1483 goto out;
1484 }
1485
1486 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1487
1488 err = block_operations(sbi);
1489 if (err)
1490 goto out;
1491
1492 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1493
1494 f2fs_flush_merged_writes(sbi);
1495
1496 /* this is the case of multiple fstrims without any changes */
1497 if (cpc->reason & CP_DISCARD) {
1498 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1499 unblock_operations(sbi);
1500 goto out;
1501 }
1502
1503 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1504 SIT_I(sbi)->dirty_sentries == 0 &&
1505 prefree_segments(sbi) == 0) {
1506 f2fs_flush_sit_entries(sbi, cpc);
1507 f2fs_clear_prefree_segments(sbi, cpc);
1508 unblock_operations(sbi);
1509 goto out;
1510 }
1511 }
1512
1513 /*
1514 * update checkpoint pack index
1515 * Increase the version number so that
1516 * SIT entries and seg summaries are written at correct place
1517 */
1518 ckpt_ver = cur_cp_version(ckpt);
1519 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1520
1521 /* write cached NAT/SIT entries to NAT/SIT area */
1522 f2fs_flush_nat_entries(sbi, cpc);
1523 f2fs_flush_sit_entries(sbi, cpc);
1524
1525 /* unlock all the fs_lock[] in do_checkpoint() */
1526 err = do_checkpoint(sbi, cpc);
1527 if (err)
1528 f2fs_release_discard_addrs(sbi);
1529 else
1530 f2fs_clear_prefree_segments(sbi, cpc);
1531
1532 unblock_operations(sbi);
1533 stat_inc_cp_count(sbi->stat_info);
1534
1535 if (cpc->reason & CP_RECOVERY)
1536 f2fs_msg(sbi->sb, KERN_NOTICE,
1537 "checkpoint: version = %llx", ckpt_ver);
1538
1539 /* do checkpoint periodically */
1540 f2fs_update_time(sbi, CP_TIME);
1541 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1542 out:
1543 mutex_unlock(&sbi->cp_mutex);
1544 return err;
1545 }
1546
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1547 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1548 {
1549 int i;
1550
1551 for (i = 0; i < MAX_INO_ENTRY; i++) {
1552 struct inode_management *im = &sbi->im[i];
1553
1554 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1555 spin_lock_init(&im->ino_lock);
1556 INIT_LIST_HEAD(&im->ino_list);
1557 im->ino_num = 0;
1558 }
1559
1560 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1561 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1562 F2FS_ORPHANS_PER_BLOCK;
1563 }
1564
f2fs_create_checkpoint_caches(void)1565 int __init f2fs_create_checkpoint_caches(void)
1566 {
1567 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1568 sizeof(struct ino_entry));
1569 if (!ino_entry_slab)
1570 return -ENOMEM;
1571 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1572 sizeof(struct inode_entry));
1573 if (!f2fs_inode_entry_slab) {
1574 kmem_cache_destroy(ino_entry_slab);
1575 return -ENOMEM;
1576 }
1577 return 0;
1578 }
1579
f2fs_destroy_checkpoint_caches(void)1580 void f2fs_destroy_checkpoint_caches(void)
1581 {
1582 kmem_cache_destroy(ino_entry_slab);
1583 kmem_cache_destroy(f2fs_inode_entry_slab);
1584 }
1585