1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO,
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_BG_GC 0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
80 #define F2FS_MOUNT_DISCARD 0x00000004
81 #define F2FS_MOUNT_NOHEAP 0x00000008
82 #define F2FS_MOUNT_XATTR_USER 0x00000010
83 #define F2FS_MOUNT_POSIX_ACL 0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
86 #define F2FS_MOUNT_INLINE_DATA 0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
89 #define F2FS_MOUNT_NOBARRIER 0x00000800
90 #define F2FS_MOUNT_FASTBOOT 0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
95 #define F2FS_MOUNT_ADAPTIVE 0x00020000
96 #define F2FS_MOUNT_LFS 0x00040000
97 #define F2FS_MOUNT_USRQUOTA 0x00080000
98 #define F2FS_MOUNT_GRPQUOTA 0x00100000
99 #define F2FS_MOUNT_PRJQUOTA 0x00200000
100 #define F2FS_MOUNT_QUOTA 0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134 #endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 bool test_dummy_encryption; /* test dummy encryption */
140 };
141
142 #define F2FS_FEATURE_ENCRYPT 0x0001
143 #define F2FS_FEATURE_BLKZONED 0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
146 #define F2FS_FEATURE_PRJQUOTA 0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
149 #define F2FS_FEATURE_QUOTA_INO 0x0080
150 #define F2FS_FEATURE_INODE_CRTIME 0x0100
151 #define F2FS_FEATURE_LOST_FOUND 0x0200
152 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
153
154 #define F2FS_HAS_FEATURE(sb, mask) \
155 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_SET_FEATURE(sb, mask) \
157 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
158 #define F2FS_CLEAR_FEATURE(sb, mask) \
159 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
160
161 /*
162 * Default values for user and/or group using reserved blocks
163 */
164 #define F2FS_DEF_RESUID 0
165 #define F2FS_DEF_RESGID 0
166
167 /*
168 * For checkpoint manager
169 */
170 enum {
171 NAT_BITMAP,
172 SIT_BITMAP
173 };
174
175 #define CP_UMOUNT 0x00000001
176 #define CP_FASTBOOT 0x00000002
177 #define CP_SYNC 0x00000004
178 #define CP_RECOVERY 0x00000008
179 #define CP_DISCARD 0x00000010
180 #define CP_TRIMMED 0x00000020
181
182 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
183 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
184 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
185 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
186 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
187 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
188 #define DEF_CP_INTERVAL 60 /* 60 secs */
189 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
190
191 struct cp_control {
192 int reason;
193 __u64 trim_start;
194 __u64 trim_end;
195 __u64 trim_minlen;
196 };
197
198 /*
199 * indicate meta/data type
200 */
201 enum {
202 META_CP,
203 META_NAT,
204 META_SIT,
205 META_SSA,
206 META_POR,
207 DATA_GENERIC,
208 META_GENERIC,
209 };
210
211 /* for the list of ino */
212 enum {
213 ORPHAN_INO, /* for orphan ino list */
214 APPEND_INO, /* for append ino list */
215 UPDATE_INO, /* for update ino list */
216 TRANS_DIR_INO, /* for trasactions dir ino list */
217 FLUSH_INO, /* for multiple device flushing */
218 MAX_INO_ENTRY, /* max. list */
219 };
220
221 struct ino_entry {
222 struct list_head list; /* list head */
223 nid_t ino; /* inode number */
224 unsigned int dirty_device; /* dirty device bitmap */
225 };
226
227 /* for the list of inodes to be GCed */
228 struct inode_entry {
229 struct list_head list; /* list head */
230 struct inode *inode; /* vfs inode pointer */
231 };
232
233 struct fsync_node_entry {
234 struct list_head list; /* list head */
235 struct page *page; /* warm node page pointer */
236 unsigned int seq_id; /* sequence id */
237 };
238
239 /* for the bitmap indicate blocks to be discarded */
240 struct discard_entry {
241 struct list_head list; /* list head */
242 block_t start_blkaddr; /* start blockaddr of current segment */
243 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
244 };
245
246 /* default discard granularity of inner discard thread, unit: block count */
247 #define DEFAULT_DISCARD_GRANULARITY 16
248
249 /* max discard pend list number */
250 #define MAX_PLIST_NUM 512
251 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
252 (MAX_PLIST_NUM - 1) : (blk_num - 1))
253
254 enum {
255 D_PREP, /* initial */
256 D_PARTIAL, /* partially submitted */
257 D_SUBMIT, /* all submitted */
258 D_DONE, /* finished */
259 };
260
261 struct discard_info {
262 block_t lstart; /* logical start address */
263 block_t len; /* length */
264 block_t start; /* actual start address in dev */
265 };
266
267 struct discard_cmd {
268 struct rb_node rb_node; /* rb node located in rb-tree */
269 union {
270 struct {
271 block_t lstart; /* logical start address */
272 block_t len; /* length */
273 block_t start; /* actual start address in dev */
274 };
275 struct discard_info di; /* discard info */
276
277 };
278 struct list_head list; /* command list */
279 struct completion wait; /* compleation */
280 struct block_device *bdev; /* bdev */
281 unsigned short ref; /* reference count */
282 unsigned char state; /* state */
283 unsigned char issuing; /* issuing discard */
284 int error; /* bio error */
285 spinlock_t lock; /* for state/bio_ref updating */
286 unsigned short bio_ref; /* bio reference count */
287 };
288
289 enum {
290 DPOLICY_BG,
291 DPOLICY_FORCE,
292 DPOLICY_FSTRIM,
293 DPOLICY_UMOUNT,
294 MAX_DPOLICY,
295 };
296
297 struct discard_policy {
298 int type; /* type of discard */
299 unsigned int min_interval; /* used for candidates exist */
300 unsigned int mid_interval; /* used for device busy */
301 unsigned int max_interval; /* used for candidates not exist */
302 unsigned int max_requests; /* # of discards issued per round */
303 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
304 bool io_aware; /* issue discard in idle time */
305 bool sync; /* submit discard with REQ_SYNC flag */
306 bool ordered; /* issue discard by lba order */
307 unsigned int granularity; /* discard granularity */
308 };
309
310 struct discard_cmd_control {
311 struct task_struct *f2fs_issue_discard; /* discard thread */
312 struct list_head entry_list; /* 4KB discard entry list */
313 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
314 struct list_head wait_list; /* store on-flushing entries */
315 struct list_head fstrim_list; /* in-flight discard from fstrim */
316 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
317 unsigned int discard_wake; /* to wake up discard thread */
318 struct mutex cmd_lock;
319 unsigned int nr_discards; /* # of discards in the list */
320 unsigned int max_discards; /* max. discards to be issued */
321 unsigned int discard_granularity; /* discard granularity */
322 unsigned int undiscard_blks; /* # of undiscard blocks */
323 unsigned int next_pos; /* next discard position */
324 atomic_t issued_discard; /* # of issued discard */
325 atomic_t issing_discard; /* # of issing discard */
326 atomic_t discard_cmd_cnt; /* # of cached cmd count */
327 struct rb_root root; /* root of discard rb-tree */
328 bool rbtree_check; /* config for consistence check */
329 };
330
331 /* for the list of fsync inodes, used only during recovery */
332 struct fsync_inode_entry {
333 struct list_head list; /* list head */
334 struct inode *inode; /* vfs inode pointer */
335 block_t blkaddr; /* block address locating the last fsync */
336 block_t last_dentry; /* block address locating the last dentry */
337 };
338
339 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
340 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
341
342 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
343 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
344 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
345 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
346
347 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
348 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
349
update_nats_in_cursum(struct f2fs_journal * journal,int i)350 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
351 {
352 int before = nats_in_cursum(journal);
353
354 journal->n_nats = cpu_to_le16(before + i);
355 return before;
356 }
357
update_sits_in_cursum(struct f2fs_journal * journal,int i)358 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 int before = sits_in_cursum(journal);
361
362 journal->n_sits = cpu_to_le16(before + i);
363 return before;
364 }
365
__has_cursum_space(struct f2fs_journal * journal,int size,int type)366 static inline bool __has_cursum_space(struct f2fs_journal *journal,
367 int size, int type)
368 {
369 if (type == NAT_JOURNAL)
370 return size <= MAX_NAT_JENTRIES(journal);
371 return size <= MAX_SIT_JENTRIES(journal);
372 }
373
374 /*
375 * ioctl commands
376 */
377 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
378 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
379 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
380
381 #define F2FS_IOCTL_MAGIC 0xf5
382 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
383 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
384 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
385 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
386 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
387 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
388 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
389 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
390 struct f2fs_defragment)
391 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
392 struct f2fs_move_range)
393 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
394 struct f2fs_flush_device)
395 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
396 struct f2fs_gc_range)
397 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
398 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
399 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
400 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
401
402 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
403 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
404 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
405
406 /*
407 * should be same as XFS_IOC_GOINGDOWN.
408 * Flags for going down operation used by FS_IOC_GOINGDOWN
409 */
410 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
411 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
412 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
413 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
414 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
415
416 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
417 /*
418 * ioctl commands in 32 bit emulation
419 */
420 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
421 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
422 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
423 #endif
424
425 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
426 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
427
428 struct f2fs_gc_range {
429 u32 sync;
430 u64 start;
431 u64 len;
432 };
433
434 struct f2fs_defragment {
435 u64 start;
436 u64 len;
437 };
438
439 struct f2fs_move_range {
440 u32 dst_fd; /* destination fd */
441 u64 pos_in; /* start position in src_fd */
442 u64 pos_out; /* start position in dst_fd */
443 u64 len; /* size to move */
444 };
445
446 struct f2fs_flush_device {
447 u32 dev_num; /* device number to flush */
448 u32 segments; /* # of segments to flush */
449 };
450
451 /* for inline stuff */
452 #define DEF_INLINE_RESERVED_SIZE 1
453 static inline int get_extra_isize(struct inode *inode);
454 static inline int get_inline_xattr_addrs(struct inode *inode);
455 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
456 (CUR_ADDRS_PER_INODE(inode) - \
457 get_inline_xattr_addrs(inode) - \
458 DEF_INLINE_RESERVED_SIZE))
459
460 /* for inline dir */
461 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
462 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
463 BITS_PER_BYTE + 1))
464 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
465 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
466 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
467 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
468 NR_INLINE_DENTRY(inode) + \
469 INLINE_DENTRY_BITMAP_SIZE(inode)))
470
471 /*
472 * For INODE and NODE manager
473 */
474 /* for directory operations */
475 struct f2fs_dentry_ptr {
476 struct inode *inode;
477 void *bitmap;
478 struct f2fs_dir_entry *dentry;
479 __u8 (*filename)[F2FS_SLOT_LEN];
480 int max;
481 int nr_bitmap;
482 };
483
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)484 static inline void make_dentry_ptr_block(struct inode *inode,
485 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
486 {
487 d->inode = inode;
488 d->max = NR_DENTRY_IN_BLOCK;
489 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
490 d->bitmap = t->dentry_bitmap;
491 d->dentry = t->dentry;
492 d->filename = t->filename;
493 }
494
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)495 static inline void make_dentry_ptr_inline(struct inode *inode,
496 struct f2fs_dentry_ptr *d, void *t)
497 {
498 int entry_cnt = NR_INLINE_DENTRY(inode);
499 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
500 int reserved_size = INLINE_RESERVED_SIZE(inode);
501
502 d->inode = inode;
503 d->max = entry_cnt;
504 d->nr_bitmap = bitmap_size;
505 d->bitmap = t;
506 d->dentry = t + bitmap_size + reserved_size;
507 d->filename = t + bitmap_size + reserved_size +
508 SIZE_OF_DIR_ENTRY * entry_cnt;
509 }
510
511 /*
512 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
513 * as its node offset to distinguish from index node blocks.
514 * But some bits are used to mark the node block.
515 */
516 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
517 >> OFFSET_BIT_SHIFT)
518 enum {
519 ALLOC_NODE, /* allocate a new node page if needed */
520 LOOKUP_NODE, /* look up a node without readahead */
521 LOOKUP_NODE_RA, /*
522 * look up a node with readahead called
523 * by get_data_block.
524 */
525 };
526
527 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
528
529 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
530
531 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
532
533 /* for in-memory extent cache entry */
534 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
535
536 /* number of extent info in extent cache we try to shrink */
537 #define EXTENT_CACHE_SHRINK_NUMBER 128
538
539 struct rb_entry {
540 struct rb_node rb_node; /* rb node located in rb-tree */
541 unsigned int ofs; /* start offset of the entry */
542 unsigned int len; /* length of the entry */
543 };
544
545 struct extent_info {
546 unsigned int fofs; /* start offset in a file */
547 unsigned int len; /* length of the extent */
548 u32 blk; /* start block address of the extent */
549 };
550
551 struct extent_node {
552 struct rb_node rb_node;
553 union {
554 struct {
555 unsigned int fofs;
556 unsigned int len;
557 u32 blk;
558 };
559 struct extent_info ei; /* extent info */
560
561 };
562 struct list_head list; /* node in global extent list of sbi */
563 struct extent_tree *et; /* extent tree pointer */
564 };
565
566 struct extent_tree {
567 nid_t ino; /* inode number */
568 struct rb_root root; /* root of extent info rb-tree */
569 struct extent_node *cached_en; /* recently accessed extent node */
570 struct extent_info largest; /* largested extent info */
571 struct list_head list; /* to be used by sbi->zombie_list */
572 rwlock_t lock; /* protect extent info rb-tree */
573 atomic_t node_cnt; /* # of extent node in rb-tree*/
574 bool largest_updated; /* largest extent updated */
575 };
576
577 /*
578 * This structure is taken from ext4_map_blocks.
579 *
580 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
581 */
582 #define F2FS_MAP_NEW (1 << BH_New)
583 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
584 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
585 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
586 F2FS_MAP_UNWRITTEN)
587
588 struct f2fs_map_blocks {
589 block_t m_pblk;
590 block_t m_lblk;
591 unsigned int m_len;
592 unsigned int m_flags;
593 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
594 pgoff_t *m_next_extent; /* point to next possible extent */
595 int m_seg_type;
596 };
597
598 /* for flag in get_data_block */
599 enum {
600 F2FS_GET_BLOCK_DEFAULT,
601 F2FS_GET_BLOCK_FIEMAP,
602 F2FS_GET_BLOCK_BMAP,
603 F2FS_GET_BLOCK_DIO,
604 F2FS_GET_BLOCK_PRE_DIO,
605 F2FS_GET_BLOCK_PRE_AIO,
606 F2FS_GET_BLOCK_PRECACHE,
607 };
608
609 /*
610 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
611 */
612 #define FADVISE_COLD_BIT 0x01
613 #define FADVISE_LOST_PINO_BIT 0x02
614 #define FADVISE_ENCRYPT_BIT 0x04
615 #define FADVISE_ENC_NAME_BIT 0x08
616 #define FADVISE_KEEP_SIZE_BIT 0x10
617 #define FADVISE_HOT_BIT 0x20
618 #define FADVISE_VERITY_BIT 0x40 /* reserved */
619
620 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
621
622 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
623 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
625 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
626 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
627 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
628 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
629 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
630 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
631 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
632 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
633 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
634 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
635 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
636 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
637 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
638
639 #define DEF_DIR_LEVEL 0
640
641 enum {
642 GC_FAILURE_PIN,
643 GC_FAILURE_ATOMIC,
644 MAX_GC_FAILURE
645 };
646
647 struct f2fs_inode_info {
648 struct inode vfs_inode; /* serve a vfs inode */
649 unsigned long i_flags; /* keep an inode flags for ioctl */
650 unsigned char i_advise; /* use to give file attribute hints */
651 unsigned char i_dir_level; /* use for dentry level for large dir */
652 unsigned int i_current_depth; /* only for directory depth */
653 /* for gc failure statistic */
654 unsigned int i_gc_failures[MAX_GC_FAILURE];
655 unsigned int i_pino; /* parent inode number */
656 umode_t i_acl_mode; /* keep file acl mode temporarily */
657
658 /* Use below internally in f2fs*/
659 unsigned long flags; /* use to pass per-file flags */
660 struct rw_semaphore i_sem; /* protect fi info */
661 atomic_t dirty_pages; /* # of dirty pages */
662 f2fs_hash_t chash; /* hash value of given file name */
663 unsigned int clevel; /* maximum level of given file name */
664 struct task_struct *task; /* lookup and create consistency */
665 struct task_struct *cp_task; /* separate cp/wb IO stats*/
666 nid_t i_xattr_nid; /* node id that contains xattrs */
667 loff_t last_disk_size; /* lastly written file size */
668
669 #ifdef CONFIG_QUOTA
670 struct dquot *i_dquot[MAXQUOTAS];
671
672 /* quota space reservation, managed internally by quota code */
673 qsize_t i_reserved_quota;
674 #endif
675 struct list_head dirty_list; /* dirty list for dirs and files */
676 struct list_head gdirty_list; /* linked in global dirty list */
677 struct list_head inmem_ilist; /* list for inmem inodes */
678 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
679 struct task_struct *inmem_task; /* store inmemory task */
680 struct mutex inmem_lock; /* lock for inmemory pages */
681 struct extent_tree *extent_tree; /* cached extent_tree entry */
682
683 /* avoid racing between foreground op and gc */
684 struct rw_semaphore i_gc_rwsem[2];
685 struct rw_semaphore i_mmap_sem;
686 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
687
688 int i_extra_isize; /* size of extra space located in i_addr */
689 kprojid_t i_projid; /* id for project quota */
690 int i_inline_xattr_size; /* inline xattr size */
691 struct timespec64 i_crtime; /* inode creation time */
692 struct timespec64 i_disk_time[4];/* inode disk times */
693 };
694
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)695 static inline void get_extent_info(struct extent_info *ext,
696 struct f2fs_extent *i_ext)
697 {
698 ext->fofs = le32_to_cpu(i_ext->fofs);
699 ext->blk = le32_to_cpu(i_ext->blk);
700 ext->len = le32_to_cpu(i_ext->len);
701 }
702
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)703 static inline void set_raw_extent(struct extent_info *ext,
704 struct f2fs_extent *i_ext)
705 {
706 i_ext->fofs = cpu_to_le32(ext->fofs);
707 i_ext->blk = cpu_to_le32(ext->blk);
708 i_ext->len = cpu_to_le32(ext->len);
709 }
710
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)711 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
712 u32 blk, unsigned int len)
713 {
714 ei->fofs = fofs;
715 ei->blk = blk;
716 ei->len = len;
717 }
718
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)719 static inline bool __is_discard_mergeable(struct discard_info *back,
720 struct discard_info *front, unsigned int max_len)
721 {
722 return (back->lstart + back->len == front->lstart) &&
723 (back->len + front->len <= max_len);
724 }
725
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)726 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
727 struct discard_info *back, unsigned int max_len)
728 {
729 return __is_discard_mergeable(back, cur, max_len);
730 }
731
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)732 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
733 struct discard_info *front, unsigned int max_len)
734 {
735 return __is_discard_mergeable(cur, front, max_len);
736 }
737
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)738 static inline bool __is_extent_mergeable(struct extent_info *back,
739 struct extent_info *front)
740 {
741 return (back->fofs + back->len == front->fofs &&
742 back->blk + back->len == front->blk);
743 }
744
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)745 static inline bool __is_back_mergeable(struct extent_info *cur,
746 struct extent_info *back)
747 {
748 return __is_extent_mergeable(back, cur);
749 }
750
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)751 static inline bool __is_front_mergeable(struct extent_info *cur,
752 struct extent_info *front)
753 {
754 return __is_extent_mergeable(cur, front);
755 }
756
757 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)758 static inline void __try_update_largest_extent(struct extent_tree *et,
759 struct extent_node *en)
760 {
761 if (en->ei.len > et->largest.len) {
762 et->largest = en->ei;
763 et->largest_updated = true;
764 }
765 }
766
767 /*
768 * For free nid management
769 */
770 enum nid_state {
771 FREE_NID, /* newly added to free nid list */
772 PREALLOC_NID, /* it is preallocated */
773 MAX_NID_STATE,
774 };
775
776 struct f2fs_nm_info {
777 block_t nat_blkaddr; /* base disk address of NAT */
778 nid_t max_nid; /* maximum possible node ids */
779 nid_t available_nids; /* # of available node ids */
780 nid_t next_scan_nid; /* the next nid to be scanned */
781 unsigned int ram_thresh; /* control the memory footprint */
782 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
783 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
784
785 /* NAT cache management */
786 struct radix_tree_root nat_root;/* root of the nat entry cache */
787 struct radix_tree_root nat_set_root;/* root of the nat set cache */
788 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
789 struct list_head nat_entries; /* cached nat entry list (clean) */
790 spinlock_t nat_list_lock; /* protect clean nat entry list */
791 unsigned int nat_cnt; /* the # of cached nat entries */
792 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
793 unsigned int nat_blocks; /* # of nat blocks */
794
795 /* free node ids management */
796 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
797 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
798 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
799 spinlock_t nid_list_lock; /* protect nid lists ops */
800 struct mutex build_lock; /* lock for build free nids */
801 unsigned char **free_nid_bitmap;
802 unsigned char *nat_block_bitmap;
803 unsigned short *free_nid_count; /* free nid count of NAT block */
804
805 /* for checkpoint */
806 char *nat_bitmap; /* NAT bitmap pointer */
807
808 unsigned int nat_bits_blocks; /* # of nat bits blocks */
809 unsigned char *nat_bits; /* NAT bits blocks */
810 unsigned char *full_nat_bits; /* full NAT pages */
811 unsigned char *empty_nat_bits; /* empty NAT pages */
812 #ifdef CONFIG_F2FS_CHECK_FS
813 char *nat_bitmap_mir; /* NAT bitmap mirror */
814 #endif
815 int bitmap_size; /* bitmap size */
816 };
817
818 /*
819 * this structure is used as one of function parameters.
820 * all the information are dedicated to a given direct node block determined
821 * by the data offset in a file.
822 */
823 struct dnode_of_data {
824 struct inode *inode; /* vfs inode pointer */
825 struct page *inode_page; /* its inode page, NULL is possible */
826 struct page *node_page; /* cached direct node page */
827 nid_t nid; /* node id of the direct node block */
828 unsigned int ofs_in_node; /* data offset in the node page */
829 bool inode_page_locked; /* inode page is locked or not */
830 bool node_changed; /* is node block changed */
831 char cur_level; /* level of hole node page */
832 char max_level; /* level of current page located */
833 block_t data_blkaddr; /* block address of the node block */
834 };
835
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)836 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
837 struct page *ipage, struct page *npage, nid_t nid)
838 {
839 memset(dn, 0, sizeof(*dn));
840 dn->inode = inode;
841 dn->inode_page = ipage;
842 dn->node_page = npage;
843 dn->nid = nid;
844 }
845
846 /*
847 * For SIT manager
848 *
849 * By default, there are 6 active log areas across the whole main area.
850 * When considering hot and cold data separation to reduce cleaning overhead,
851 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
852 * respectively.
853 * In the current design, you should not change the numbers intentionally.
854 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
855 * logs individually according to the underlying devices. (default: 6)
856 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
857 * data and 8 for node logs.
858 */
859 #define NR_CURSEG_DATA_TYPE (3)
860 #define NR_CURSEG_NODE_TYPE (3)
861 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
862
863 enum {
864 CURSEG_HOT_DATA = 0, /* directory entry blocks */
865 CURSEG_WARM_DATA, /* data blocks */
866 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
867 CURSEG_HOT_NODE, /* direct node blocks of directory files */
868 CURSEG_WARM_NODE, /* direct node blocks of normal files */
869 CURSEG_COLD_NODE, /* indirect node blocks */
870 NO_CHECK_TYPE,
871 };
872
873 struct flush_cmd {
874 struct completion wait;
875 struct llist_node llnode;
876 nid_t ino;
877 int ret;
878 };
879
880 struct flush_cmd_control {
881 struct task_struct *f2fs_issue_flush; /* flush thread */
882 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
883 atomic_t issued_flush; /* # of issued flushes */
884 atomic_t issing_flush; /* # of issing flushes */
885 struct llist_head issue_list; /* list for command issue */
886 struct llist_node *dispatch_list; /* list for command dispatch */
887 };
888
889 struct f2fs_sm_info {
890 struct sit_info *sit_info; /* whole segment information */
891 struct free_segmap_info *free_info; /* free segment information */
892 struct dirty_seglist_info *dirty_info; /* dirty segment information */
893 struct curseg_info *curseg_array; /* active segment information */
894
895 struct rw_semaphore curseg_lock; /* for preventing curseg change */
896
897 block_t seg0_blkaddr; /* block address of 0'th segment */
898 block_t main_blkaddr; /* start block address of main area */
899 block_t ssa_blkaddr; /* start block address of SSA area */
900
901 unsigned int segment_count; /* total # of segments */
902 unsigned int main_segments; /* # of segments in main area */
903 unsigned int reserved_segments; /* # of reserved segments */
904 unsigned int ovp_segments; /* # of overprovision segments */
905
906 /* a threshold to reclaim prefree segments */
907 unsigned int rec_prefree_segments;
908
909 /* for batched trimming */
910 unsigned int trim_sections; /* # of sections to trim */
911
912 struct list_head sit_entry_set; /* sit entry set list */
913
914 unsigned int ipu_policy; /* in-place-update policy */
915 unsigned int min_ipu_util; /* in-place-update threshold */
916 unsigned int min_fsync_blocks; /* threshold for fsync */
917 unsigned int min_seq_blocks; /* threshold for sequential blocks */
918 unsigned int min_hot_blocks; /* threshold for hot block allocation */
919 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
920
921 /* for flush command control */
922 struct flush_cmd_control *fcc_info;
923
924 /* for discard command control */
925 struct discard_cmd_control *dcc_info;
926 };
927
928 /*
929 * For superblock
930 */
931 /*
932 * COUNT_TYPE for monitoring
933 *
934 * f2fs monitors the number of several block types such as on-writeback,
935 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
936 */
937 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
938 enum count_type {
939 F2FS_DIRTY_DENTS,
940 F2FS_DIRTY_DATA,
941 F2FS_DIRTY_QDATA,
942 F2FS_DIRTY_NODES,
943 F2FS_DIRTY_META,
944 F2FS_INMEM_PAGES,
945 F2FS_DIRTY_IMETA,
946 F2FS_WB_CP_DATA,
947 F2FS_WB_DATA,
948 NR_COUNT_TYPE,
949 };
950
951 /*
952 * The below are the page types of bios used in submit_bio().
953 * The available types are:
954 * DATA User data pages. It operates as async mode.
955 * NODE Node pages. It operates as async mode.
956 * META FS metadata pages such as SIT, NAT, CP.
957 * NR_PAGE_TYPE The number of page types.
958 * META_FLUSH Make sure the previous pages are written
959 * with waiting the bio's completion
960 * ... Only can be used with META.
961 */
962 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
963 enum page_type {
964 DATA,
965 NODE,
966 META,
967 NR_PAGE_TYPE,
968 META_FLUSH,
969 INMEM, /* the below types are used by tracepoints only. */
970 INMEM_DROP,
971 INMEM_INVALIDATE,
972 INMEM_REVOKE,
973 IPU,
974 OPU,
975 };
976
977 enum temp_type {
978 HOT = 0, /* must be zero for meta bio */
979 WARM,
980 COLD,
981 NR_TEMP_TYPE,
982 };
983
984 enum need_lock_type {
985 LOCK_REQ = 0,
986 LOCK_DONE,
987 LOCK_RETRY,
988 };
989
990 enum cp_reason_type {
991 CP_NO_NEEDED,
992 CP_NON_REGULAR,
993 CP_HARDLINK,
994 CP_SB_NEED_CP,
995 CP_WRONG_PINO,
996 CP_NO_SPC_ROLL,
997 CP_NODE_NEED_CP,
998 CP_FASTBOOT_MODE,
999 CP_SPEC_LOG_NUM,
1000 CP_RECOVER_DIR,
1001 };
1002
1003 enum iostat_type {
1004 APP_DIRECT_IO, /* app direct IOs */
1005 APP_BUFFERED_IO, /* app buffered IOs */
1006 APP_WRITE_IO, /* app write IOs */
1007 APP_MAPPED_IO, /* app mapped IOs */
1008 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1009 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1010 FS_META_IO, /* meta IOs from kworker/reclaimer */
1011 FS_GC_DATA_IO, /* data IOs from forground gc */
1012 FS_GC_NODE_IO, /* node IOs from forground gc */
1013 FS_CP_DATA_IO, /* data IOs from checkpoint */
1014 FS_CP_NODE_IO, /* node IOs from checkpoint */
1015 FS_CP_META_IO, /* meta IOs from checkpoint */
1016 FS_DISCARD, /* discard */
1017 NR_IO_TYPE,
1018 };
1019
1020 struct f2fs_io_info {
1021 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1022 nid_t ino; /* inode number */
1023 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1024 enum temp_type temp; /* contains HOT/WARM/COLD */
1025 int op; /* contains REQ_OP_ */
1026 int op_flags; /* req_flag_bits */
1027 block_t new_blkaddr; /* new block address to be written */
1028 block_t old_blkaddr; /* old block address before Cow */
1029 struct page *page; /* page to be written */
1030 struct page *encrypted_page; /* encrypted page */
1031 struct list_head list; /* serialize IOs */
1032 bool submitted; /* indicate IO submission */
1033 int need_lock; /* indicate we need to lock cp_rwsem */
1034 bool in_list; /* indicate fio is in io_list */
1035 bool is_meta; /* indicate borrow meta inode mapping or not */
1036 bool retry; /* need to reallocate block address */
1037 enum iostat_type io_type; /* io type */
1038 struct writeback_control *io_wbc; /* writeback control */
1039 unsigned char version; /* version of the node */
1040 };
1041
1042 #define is_read_io(rw) ((rw) == READ)
1043 struct f2fs_bio_info {
1044 struct f2fs_sb_info *sbi; /* f2fs superblock */
1045 struct bio *bio; /* bios to merge */
1046 sector_t last_block_in_bio; /* last block number */
1047 struct f2fs_io_info fio; /* store buffered io info. */
1048 struct rw_semaphore io_rwsem; /* blocking op for bio */
1049 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1050 struct list_head io_list; /* track fios */
1051 };
1052
1053 #define FDEV(i) (sbi->devs[i])
1054 #define RDEV(i) (raw_super->devs[i])
1055 struct f2fs_dev_info {
1056 struct block_device *bdev;
1057 char path[MAX_PATH_LEN];
1058 unsigned int total_segments;
1059 block_t start_blk;
1060 block_t end_blk;
1061 #ifdef CONFIG_BLK_DEV_ZONED
1062 unsigned int nr_blkz; /* Total number of zones */
1063 u8 *blkz_type; /* Array of zones type */
1064 #endif
1065 };
1066
1067 enum inode_type {
1068 DIR_INODE, /* for dirty dir inode */
1069 FILE_INODE, /* for dirty regular/symlink inode */
1070 DIRTY_META, /* for all dirtied inode metadata */
1071 ATOMIC_FILE, /* for all atomic files */
1072 NR_INODE_TYPE,
1073 };
1074
1075 /* for inner inode cache management */
1076 struct inode_management {
1077 struct radix_tree_root ino_root; /* ino entry array */
1078 spinlock_t ino_lock; /* for ino entry lock */
1079 struct list_head ino_list; /* inode list head */
1080 unsigned long ino_num; /* number of entries */
1081 };
1082
1083 /* For s_flag in struct f2fs_sb_info */
1084 enum {
1085 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1086 SBI_IS_CLOSE, /* specify unmounting */
1087 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1088 SBI_POR_DOING, /* recovery is doing or not */
1089 SBI_NEED_SB_WRITE, /* need to recover superblock */
1090 SBI_NEED_CP, /* need to checkpoint */
1091 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1092 SBI_IS_RECOVERED, /* recovered orphan/data */
1093 };
1094
1095 enum {
1096 CP_TIME,
1097 REQ_TIME,
1098 MAX_TIME,
1099 };
1100
1101 enum {
1102 GC_NORMAL,
1103 GC_IDLE_CB,
1104 GC_IDLE_GREEDY,
1105 GC_URGENT,
1106 };
1107
1108 enum {
1109 WHINT_MODE_OFF, /* not pass down write hints */
1110 WHINT_MODE_USER, /* try to pass down hints given by users */
1111 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1112 };
1113
1114 enum {
1115 ALLOC_MODE_DEFAULT, /* stay default */
1116 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1117 };
1118
1119 enum fsync_mode {
1120 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1121 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1122 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1123 };
1124
1125 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1126 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1127 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1128 #else
1129 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1130 #endif
1131
1132 struct f2fs_sb_info {
1133 struct super_block *sb; /* pointer to VFS super block */
1134 struct proc_dir_entry *s_proc; /* proc entry */
1135 struct f2fs_super_block *raw_super; /* raw super block pointer */
1136 struct rw_semaphore sb_lock; /* lock for raw super block */
1137 int valid_super_block; /* valid super block no */
1138 unsigned long s_flag; /* flags for sbi */
1139 struct mutex writepages; /* mutex for writepages() */
1140
1141 #ifdef CONFIG_BLK_DEV_ZONED
1142 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1143 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1144 #endif
1145
1146 /* for node-related operations */
1147 struct f2fs_nm_info *nm_info; /* node manager */
1148 struct inode *node_inode; /* cache node blocks */
1149
1150 /* for segment-related operations */
1151 struct f2fs_sm_info *sm_info; /* segment manager */
1152
1153 /* for bio operations */
1154 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1155 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1156 /* bio ordering for NODE/DATA */
1157 /* keep migration IO order for LFS mode */
1158 struct rw_semaphore io_order_lock;
1159 mempool_t *write_io_dummy; /* Dummy pages */
1160
1161 /* for checkpoint */
1162 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1163 int cur_cp_pack; /* remain current cp pack */
1164 spinlock_t cp_lock; /* for flag in ckpt */
1165 struct inode *meta_inode; /* cache meta blocks */
1166 struct mutex cp_mutex; /* checkpoint procedure lock */
1167 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1168 struct rw_semaphore node_write; /* locking node writes */
1169 struct rw_semaphore node_change; /* locking node change */
1170 wait_queue_head_t cp_wait;
1171 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1172 long interval_time[MAX_TIME]; /* to store thresholds */
1173
1174 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1175
1176 spinlock_t fsync_node_lock; /* for node entry lock */
1177 struct list_head fsync_node_list; /* node list head */
1178 unsigned int fsync_seg_id; /* sequence id */
1179 unsigned int fsync_node_num; /* number of node entries */
1180
1181 /* for orphan inode, use 0'th array */
1182 unsigned int max_orphans; /* max orphan inodes */
1183
1184 /* for inode management */
1185 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1186 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1187
1188 /* for extent tree cache */
1189 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1190 struct mutex extent_tree_lock; /* locking extent radix tree */
1191 struct list_head extent_list; /* lru list for shrinker */
1192 spinlock_t extent_lock; /* locking extent lru list */
1193 atomic_t total_ext_tree; /* extent tree count */
1194 struct list_head zombie_list; /* extent zombie tree list */
1195 atomic_t total_zombie_tree; /* extent zombie tree count */
1196 atomic_t total_ext_node; /* extent info count */
1197
1198 /* basic filesystem units */
1199 unsigned int log_sectors_per_block; /* log2 sectors per block */
1200 unsigned int log_blocksize; /* log2 block size */
1201 unsigned int blocksize; /* block size */
1202 unsigned int root_ino_num; /* root inode number*/
1203 unsigned int node_ino_num; /* node inode number*/
1204 unsigned int meta_ino_num; /* meta inode number*/
1205 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1206 unsigned int blocks_per_seg; /* blocks per segment */
1207 unsigned int segs_per_sec; /* segments per section */
1208 unsigned int secs_per_zone; /* sections per zone */
1209 unsigned int total_sections; /* total section count */
1210 unsigned int total_node_count; /* total node block count */
1211 unsigned int total_valid_node_count; /* valid node block count */
1212 loff_t max_file_blocks; /* max block index of file */
1213 int dir_level; /* directory level */
1214 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1215 int readdir_ra; /* readahead inode in readdir */
1216
1217 block_t user_block_count; /* # of user blocks */
1218 block_t total_valid_block_count; /* # of valid blocks */
1219 block_t discard_blks; /* discard command candidats */
1220 block_t last_valid_block_count; /* for recovery */
1221 block_t reserved_blocks; /* configurable reserved blocks */
1222 block_t current_reserved_blocks; /* current reserved blocks */
1223
1224 unsigned int nquota_files; /* # of quota sysfile */
1225
1226 u32 s_next_generation; /* for NFS support */
1227
1228 /* # of pages, see count_type */
1229 atomic_t nr_pages[NR_COUNT_TYPE];
1230 /* # of allocated blocks */
1231 struct percpu_counter alloc_valid_block_count;
1232
1233 /* writeback control */
1234 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1235
1236 /* valid inode count */
1237 struct percpu_counter total_valid_inode_count;
1238
1239 struct f2fs_mount_info mount_opt; /* mount options */
1240
1241 /* for cleaning operations */
1242 struct mutex gc_mutex; /* mutex for GC */
1243 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1244 unsigned int cur_victim_sec; /* current victim section num */
1245 unsigned int gc_mode; /* current GC state */
1246 /* for skip statistic */
1247 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1248 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1249
1250 /* threshold for gc trials on pinned files */
1251 u64 gc_pin_file_threshold;
1252
1253 /* maximum # of trials to find a victim segment for SSR and GC */
1254 unsigned int max_victim_search;
1255
1256 /*
1257 * for stat information.
1258 * one is for the LFS mode, and the other is for the SSR mode.
1259 */
1260 #ifdef CONFIG_F2FS_STAT_FS
1261 struct f2fs_stat_info *stat_info; /* FS status information */
1262 unsigned int segment_count[2]; /* # of allocated segments */
1263 unsigned int block_count[2]; /* # of allocated blocks */
1264 atomic_t inplace_count; /* # of inplace update */
1265 atomic64_t total_hit_ext; /* # of lookup extent cache */
1266 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1267 atomic64_t read_hit_largest; /* # of hit largest extent node */
1268 atomic64_t read_hit_cached; /* # of hit cached extent node */
1269 atomic_t inline_xattr; /* # of inline_xattr inodes */
1270 atomic_t inline_inode; /* # of inline_data inodes */
1271 atomic_t inline_dir; /* # of inline_dentry inodes */
1272 atomic_t aw_cnt; /* # of atomic writes */
1273 atomic_t vw_cnt; /* # of volatile writes */
1274 atomic_t max_aw_cnt; /* max # of atomic writes */
1275 atomic_t max_vw_cnt; /* max # of volatile writes */
1276 int bg_gc; /* background gc calls */
1277 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1278 #endif
1279 spinlock_t stat_lock; /* lock for stat operations */
1280
1281 /* For app/fs IO statistics */
1282 spinlock_t iostat_lock;
1283 unsigned long long write_iostat[NR_IO_TYPE];
1284 bool iostat_enable;
1285
1286 /* For sysfs suppport */
1287 struct kobject s_kobj;
1288 struct completion s_kobj_unregister;
1289
1290 /* For shrinker support */
1291 struct list_head s_list;
1292 int s_ndevs; /* number of devices */
1293 struct f2fs_dev_info *devs; /* for device list */
1294 unsigned int dirty_device; /* for checkpoint data flush */
1295 spinlock_t dev_lock; /* protect dirty_device */
1296 struct mutex umount_mutex;
1297 unsigned int shrinker_run_no;
1298
1299 /* For write statistics */
1300 u64 sectors_written_start;
1301 u64 kbytes_written;
1302
1303 /* Reference to checksum algorithm driver via cryptoapi */
1304 struct crypto_shash *s_chksum_driver;
1305
1306 /* Precomputed FS UUID checksum for seeding other checksums */
1307 __u32 s_chksum_seed;
1308 };
1309
1310 #ifdef CONFIG_F2FS_FAULT_INJECTION
1311 #define f2fs_show_injection_info(type) \
1312 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1313 KERN_INFO, f2fs_fault_name[type], \
1314 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1315 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1316 {
1317 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1318
1319 if (!ffi->inject_rate)
1320 return false;
1321
1322 if (!IS_FAULT_SET(ffi, type))
1323 return false;
1324
1325 atomic_inc(&ffi->inject_ops);
1326 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1327 atomic_set(&ffi->inject_ops, 0);
1328 return true;
1329 }
1330 return false;
1331 }
1332 #else
1333 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1334 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1335 {
1336 return false;
1337 }
1338 #endif
1339
1340 /*
1341 * Test if the mounted volume is a multi-device volume.
1342 * - For a single regular disk volume, sbi->s_ndevs is 0.
1343 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1344 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1345 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1346 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1347 {
1348 return sbi->s_ndevs > 1;
1349 }
1350
1351 /* For write statistics. Suppose sector size is 512 bytes,
1352 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1353 */
1354 #define BD_PART_WRITTEN(s) \
1355 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1356 (s)->sectors_written_start) >> 1)
1357
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1358 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1359 {
1360 sbi->last_time[type] = jiffies;
1361 }
1362
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1363 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1364 {
1365 unsigned long interval = sbi->interval_time[type] * HZ;
1366
1367 return time_after(jiffies, sbi->last_time[type] + interval);
1368 }
1369
is_idle(struct f2fs_sb_info * sbi)1370 static inline bool is_idle(struct f2fs_sb_info *sbi)
1371 {
1372 struct block_device *bdev = sbi->sb->s_bdev;
1373 struct request_queue *q = bdev_get_queue(bdev);
1374 struct request_list *rl = &q->root_rl;
1375
1376 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1377 return false;
1378
1379 return f2fs_time_over(sbi, REQ_TIME);
1380 }
1381
1382 /*
1383 * Inline functions
1384 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1385 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1386 const void *address, unsigned int length)
1387 {
1388 struct {
1389 struct shash_desc shash;
1390 char ctx[4];
1391 } desc;
1392 int err;
1393
1394 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1395
1396 desc.shash.tfm = sbi->s_chksum_driver;
1397 desc.shash.flags = 0;
1398 *(u32 *)desc.ctx = crc;
1399
1400 err = crypto_shash_update(&desc.shash, address, length);
1401 BUG_ON(err);
1402
1403 return *(u32 *)desc.ctx;
1404 }
1405
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1406 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1407 unsigned int length)
1408 {
1409 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1410 }
1411
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1412 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1413 void *buf, size_t buf_size)
1414 {
1415 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1416 }
1417
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1418 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1419 const void *address, unsigned int length)
1420 {
1421 return __f2fs_crc32(sbi, crc, address, length);
1422 }
1423
F2FS_I(struct inode * inode)1424 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1425 {
1426 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1427 }
1428
F2FS_SB(struct super_block * sb)1429 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1430 {
1431 return sb->s_fs_info;
1432 }
1433
F2FS_I_SB(struct inode * inode)1434 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1435 {
1436 return F2FS_SB(inode->i_sb);
1437 }
1438
F2FS_M_SB(struct address_space * mapping)1439 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1440 {
1441 return F2FS_I_SB(mapping->host);
1442 }
1443
F2FS_P_SB(struct page * page)1444 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1445 {
1446 return F2FS_M_SB(page->mapping);
1447 }
1448
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1449 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1450 {
1451 return (struct f2fs_super_block *)(sbi->raw_super);
1452 }
1453
F2FS_CKPT(struct f2fs_sb_info * sbi)1454 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1455 {
1456 return (struct f2fs_checkpoint *)(sbi->ckpt);
1457 }
1458
F2FS_NODE(struct page * page)1459 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1460 {
1461 return (struct f2fs_node *)page_address(page);
1462 }
1463
F2FS_INODE(struct page * page)1464 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1465 {
1466 return &((struct f2fs_node *)page_address(page))->i;
1467 }
1468
NM_I(struct f2fs_sb_info * sbi)1469 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1470 {
1471 return (struct f2fs_nm_info *)(sbi->nm_info);
1472 }
1473
SM_I(struct f2fs_sb_info * sbi)1474 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1475 {
1476 return (struct f2fs_sm_info *)(sbi->sm_info);
1477 }
1478
SIT_I(struct f2fs_sb_info * sbi)1479 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1480 {
1481 return (struct sit_info *)(SM_I(sbi)->sit_info);
1482 }
1483
FREE_I(struct f2fs_sb_info * sbi)1484 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1485 {
1486 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1487 }
1488
DIRTY_I(struct f2fs_sb_info * sbi)1489 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1490 {
1491 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1492 }
1493
META_MAPPING(struct f2fs_sb_info * sbi)1494 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1495 {
1496 return sbi->meta_inode->i_mapping;
1497 }
1498
NODE_MAPPING(struct f2fs_sb_info * sbi)1499 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1500 {
1501 return sbi->node_inode->i_mapping;
1502 }
1503
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1504 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1505 {
1506 return test_bit(type, &sbi->s_flag);
1507 }
1508
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1509 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1510 {
1511 set_bit(type, &sbi->s_flag);
1512 }
1513
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1514 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1515 {
1516 clear_bit(type, &sbi->s_flag);
1517 }
1518
cur_cp_version(struct f2fs_checkpoint * cp)1519 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1520 {
1521 return le64_to_cpu(cp->checkpoint_ver);
1522 }
1523
f2fs_qf_ino(struct super_block * sb,int type)1524 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1525 {
1526 if (type < F2FS_MAX_QUOTAS)
1527 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1528 return 0;
1529 }
1530
cur_cp_crc(struct f2fs_checkpoint * cp)1531 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1532 {
1533 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1534 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1535 }
1536
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1537 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1538 {
1539 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1540
1541 return ckpt_flags & f;
1542 }
1543
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1544 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1545 {
1546 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1547 }
1548
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1549 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1550 {
1551 unsigned int ckpt_flags;
1552
1553 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1554 ckpt_flags |= f;
1555 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1556 }
1557
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1558 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1559 {
1560 unsigned long flags;
1561
1562 spin_lock_irqsave(&sbi->cp_lock, flags);
1563 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1564 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1565 }
1566
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1567 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1568 {
1569 unsigned int ckpt_flags;
1570
1571 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1572 ckpt_flags &= (~f);
1573 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1574 }
1575
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1576 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1577 {
1578 unsigned long flags;
1579
1580 spin_lock_irqsave(&sbi->cp_lock, flags);
1581 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1582 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1583 }
1584
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1585 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1586 {
1587 unsigned long flags;
1588
1589 set_sbi_flag(sbi, SBI_NEED_FSCK);
1590
1591 if (lock)
1592 spin_lock_irqsave(&sbi->cp_lock, flags);
1593 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1594 kfree(NM_I(sbi)->nat_bits);
1595 NM_I(sbi)->nat_bits = NULL;
1596 if (lock)
1597 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1598 }
1599
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1600 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1601 struct cp_control *cpc)
1602 {
1603 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1604
1605 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1606 }
1607
f2fs_lock_op(struct f2fs_sb_info * sbi)1608 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1609 {
1610 down_read(&sbi->cp_rwsem);
1611 }
1612
f2fs_trylock_op(struct f2fs_sb_info * sbi)1613 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1614 {
1615 return down_read_trylock(&sbi->cp_rwsem);
1616 }
1617
f2fs_unlock_op(struct f2fs_sb_info * sbi)1618 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1619 {
1620 up_read(&sbi->cp_rwsem);
1621 }
1622
f2fs_lock_all(struct f2fs_sb_info * sbi)1623 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1624 {
1625 down_write(&sbi->cp_rwsem);
1626 }
1627
f2fs_unlock_all(struct f2fs_sb_info * sbi)1628 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1629 {
1630 up_write(&sbi->cp_rwsem);
1631 }
1632
__get_cp_reason(struct f2fs_sb_info * sbi)1633 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1634 {
1635 int reason = CP_SYNC;
1636
1637 if (test_opt(sbi, FASTBOOT))
1638 reason = CP_FASTBOOT;
1639 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1640 reason = CP_UMOUNT;
1641 return reason;
1642 }
1643
__remain_node_summaries(int reason)1644 static inline bool __remain_node_summaries(int reason)
1645 {
1646 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1647 }
1648
__exist_node_summaries(struct f2fs_sb_info * sbi)1649 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1650 {
1651 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1652 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1653 }
1654
1655 /*
1656 * Check whether the inode has blocks or not
1657 */
F2FS_HAS_BLOCKS(struct inode * inode)1658 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1659 {
1660 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1661
1662 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1663 }
1664
f2fs_has_xattr_block(unsigned int ofs)1665 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1666 {
1667 return ofs == XATTR_NODE_OFFSET;
1668 }
1669
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1670 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1671 struct inode *inode, bool cap)
1672 {
1673 if (!inode)
1674 return true;
1675 if (!test_opt(sbi, RESERVE_ROOT))
1676 return false;
1677 if (IS_NOQUOTA(inode))
1678 return true;
1679 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1680 return true;
1681 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1682 in_group_p(F2FS_OPTION(sbi).s_resgid))
1683 return true;
1684 if (cap && capable(CAP_SYS_RESOURCE))
1685 return true;
1686 return false;
1687 }
1688
1689 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1690 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1691 struct inode *inode, blkcnt_t *count)
1692 {
1693 blkcnt_t diff = 0, release = 0;
1694 block_t avail_user_block_count;
1695 int ret;
1696
1697 ret = dquot_reserve_block(inode, *count);
1698 if (ret)
1699 return ret;
1700
1701 if (time_to_inject(sbi, FAULT_BLOCK)) {
1702 f2fs_show_injection_info(FAULT_BLOCK);
1703 release = *count;
1704 goto release_quota;
1705 }
1706
1707 /*
1708 * let's increase this in prior to actual block count change in order
1709 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1710 */
1711 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1712
1713 spin_lock(&sbi->stat_lock);
1714 sbi->total_valid_block_count += (block_t)(*count);
1715 avail_user_block_count = sbi->user_block_count -
1716 sbi->current_reserved_blocks;
1717
1718 if (!__allow_reserved_blocks(sbi, inode, true))
1719 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1720
1721 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1722 diff = sbi->total_valid_block_count - avail_user_block_count;
1723 if (diff > *count)
1724 diff = *count;
1725 *count -= diff;
1726 release = diff;
1727 sbi->total_valid_block_count -= diff;
1728 if (!*count) {
1729 spin_unlock(&sbi->stat_lock);
1730 goto enospc;
1731 }
1732 }
1733 spin_unlock(&sbi->stat_lock);
1734
1735 if (unlikely(release)) {
1736 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1737 dquot_release_reservation_block(inode, release);
1738 }
1739 f2fs_i_blocks_write(inode, *count, true, true);
1740 return 0;
1741
1742 enospc:
1743 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1744 release_quota:
1745 dquot_release_reservation_block(inode, release);
1746 return -ENOSPC;
1747 }
1748
1749 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1750 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1751 struct inode *inode,
1752 block_t count)
1753 {
1754 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1755
1756 spin_lock(&sbi->stat_lock);
1757 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1758 sbi->total_valid_block_count -= (block_t)count;
1759 if (sbi->reserved_blocks &&
1760 sbi->current_reserved_blocks < sbi->reserved_blocks)
1761 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1762 sbi->current_reserved_blocks + count);
1763 spin_unlock(&sbi->stat_lock);
1764 if (unlikely(inode->i_blocks < sectors)) {
1765 f2fs_msg(sbi->sb, KERN_WARNING,
1766 "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1767 inode->i_ino,
1768 (unsigned long long)inode->i_blocks,
1769 (unsigned long long)sectors);
1770 set_sbi_flag(sbi, SBI_NEED_FSCK);
1771 return;
1772 }
1773 f2fs_i_blocks_write(inode, count, false, true);
1774 }
1775
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1776 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1777 {
1778 atomic_inc(&sbi->nr_pages[count_type]);
1779
1780 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1781 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1782 return;
1783
1784 set_sbi_flag(sbi, SBI_IS_DIRTY);
1785 }
1786
inode_inc_dirty_pages(struct inode * inode)1787 static inline void inode_inc_dirty_pages(struct inode *inode)
1788 {
1789 atomic_inc(&F2FS_I(inode)->dirty_pages);
1790 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1791 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1792 if (IS_NOQUOTA(inode))
1793 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1794 }
1795
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1796 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1797 {
1798 atomic_dec(&sbi->nr_pages[count_type]);
1799 }
1800
inode_dec_dirty_pages(struct inode * inode)1801 static inline void inode_dec_dirty_pages(struct inode *inode)
1802 {
1803 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1804 !S_ISLNK(inode->i_mode))
1805 return;
1806
1807 atomic_dec(&F2FS_I(inode)->dirty_pages);
1808 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1809 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1810 if (IS_NOQUOTA(inode))
1811 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1812 }
1813
get_pages(struct f2fs_sb_info * sbi,int count_type)1814 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1815 {
1816 return atomic_read(&sbi->nr_pages[count_type]);
1817 }
1818
get_dirty_pages(struct inode * inode)1819 static inline int get_dirty_pages(struct inode *inode)
1820 {
1821 return atomic_read(&F2FS_I(inode)->dirty_pages);
1822 }
1823
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1824 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1825 {
1826 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1827 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1828 sbi->log_blocks_per_seg;
1829
1830 return segs / sbi->segs_per_sec;
1831 }
1832
valid_user_blocks(struct f2fs_sb_info * sbi)1833 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1834 {
1835 return sbi->total_valid_block_count;
1836 }
1837
discard_blocks(struct f2fs_sb_info * sbi)1838 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1839 {
1840 return sbi->discard_blks;
1841 }
1842
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1843 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1844 {
1845 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1846
1847 /* return NAT or SIT bitmap */
1848 if (flag == NAT_BITMAP)
1849 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1850 else if (flag == SIT_BITMAP)
1851 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1852
1853 return 0;
1854 }
1855
__cp_payload(struct f2fs_sb_info * sbi)1856 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1857 {
1858 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1859 }
1860
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1861 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1862 {
1863 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1864 int offset;
1865
1866 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1867 offset = (flag == SIT_BITMAP) ?
1868 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1869 return &ckpt->sit_nat_version_bitmap + offset;
1870 }
1871
1872 if (__cp_payload(sbi) > 0) {
1873 if (flag == NAT_BITMAP)
1874 return &ckpt->sit_nat_version_bitmap;
1875 else
1876 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1877 } else {
1878 offset = (flag == NAT_BITMAP) ?
1879 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1880 return &ckpt->sit_nat_version_bitmap + offset;
1881 }
1882 }
1883
__start_cp_addr(struct f2fs_sb_info * sbi)1884 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1885 {
1886 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1887
1888 if (sbi->cur_cp_pack == 2)
1889 start_addr += sbi->blocks_per_seg;
1890 return start_addr;
1891 }
1892
__start_cp_next_addr(struct f2fs_sb_info * sbi)1893 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1894 {
1895 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1896
1897 if (sbi->cur_cp_pack == 1)
1898 start_addr += sbi->blocks_per_seg;
1899 return start_addr;
1900 }
1901
__set_cp_next_pack(struct f2fs_sb_info * sbi)1902 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1903 {
1904 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1905 }
1906
__start_sum_addr(struct f2fs_sb_info * sbi)1907 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1908 {
1909 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1910 }
1911
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1912 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1913 struct inode *inode, bool is_inode)
1914 {
1915 block_t valid_block_count;
1916 unsigned int valid_node_count;
1917 bool quota = inode && !is_inode;
1918
1919 if (quota) {
1920 int ret = dquot_reserve_block(inode, 1);
1921 if (ret)
1922 return ret;
1923 }
1924
1925 if (time_to_inject(sbi, FAULT_BLOCK)) {
1926 f2fs_show_injection_info(FAULT_BLOCK);
1927 goto enospc;
1928 }
1929
1930 spin_lock(&sbi->stat_lock);
1931
1932 valid_block_count = sbi->total_valid_block_count +
1933 sbi->current_reserved_blocks + 1;
1934
1935 if (!__allow_reserved_blocks(sbi, inode, false))
1936 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1937
1938 if (unlikely(valid_block_count > sbi->user_block_count)) {
1939 spin_unlock(&sbi->stat_lock);
1940 goto enospc;
1941 }
1942
1943 valid_node_count = sbi->total_valid_node_count + 1;
1944 if (unlikely(valid_node_count > sbi->total_node_count)) {
1945 spin_unlock(&sbi->stat_lock);
1946 goto enospc;
1947 }
1948
1949 sbi->total_valid_node_count++;
1950 sbi->total_valid_block_count++;
1951 spin_unlock(&sbi->stat_lock);
1952
1953 if (inode) {
1954 if (is_inode)
1955 f2fs_mark_inode_dirty_sync(inode, true);
1956 else
1957 f2fs_i_blocks_write(inode, 1, true, true);
1958 }
1959
1960 percpu_counter_inc(&sbi->alloc_valid_block_count);
1961 return 0;
1962
1963 enospc:
1964 if (quota)
1965 dquot_release_reservation_block(inode, 1);
1966 return -ENOSPC;
1967 }
1968
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1969 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1970 struct inode *inode, bool is_inode)
1971 {
1972 spin_lock(&sbi->stat_lock);
1973
1974 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1975 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1976 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1977
1978 sbi->total_valid_node_count--;
1979 sbi->total_valid_block_count--;
1980 if (sbi->reserved_blocks &&
1981 sbi->current_reserved_blocks < sbi->reserved_blocks)
1982 sbi->current_reserved_blocks++;
1983
1984 spin_unlock(&sbi->stat_lock);
1985
1986 if (!is_inode)
1987 f2fs_i_blocks_write(inode, 1, false, true);
1988 }
1989
valid_node_count(struct f2fs_sb_info * sbi)1990 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1991 {
1992 return sbi->total_valid_node_count;
1993 }
1994
inc_valid_inode_count(struct f2fs_sb_info * sbi)1995 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1996 {
1997 percpu_counter_inc(&sbi->total_valid_inode_count);
1998 }
1999
dec_valid_inode_count(struct f2fs_sb_info * sbi)2000 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2001 {
2002 percpu_counter_dec(&sbi->total_valid_inode_count);
2003 }
2004
valid_inode_count(struct f2fs_sb_info * sbi)2005 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2006 {
2007 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2008 }
2009
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2010 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2011 pgoff_t index, bool for_write)
2012 {
2013 struct page *page;
2014
2015 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2016 if (!for_write)
2017 page = find_get_page_flags(mapping, index,
2018 FGP_LOCK | FGP_ACCESSED);
2019 else
2020 page = find_lock_page(mapping, index);
2021 if (page)
2022 return page;
2023
2024 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2025 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2026 return NULL;
2027 }
2028 }
2029
2030 if (!for_write)
2031 return grab_cache_page(mapping, index);
2032 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2033 }
2034
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2035 static inline struct page *f2fs_pagecache_get_page(
2036 struct address_space *mapping, pgoff_t index,
2037 int fgp_flags, gfp_t gfp_mask)
2038 {
2039 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2040 f2fs_show_injection_info(FAULT_PAGE_GET);
2041 return NULL;
2042 }
2043
2044 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2045 }
2046
f2fs_copy_page(struct page * src,struct page * dst)2047 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2048 {
2049 char *src_kaddr = kmap(src);
2050 char *dst_kaddr = kmap(dst);
2051
2052 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2053 kunmap(dst);
2054 kunmap(src);
2055 }
2056
f2fs_put_page(struct page * page,int unlock)2057 static inline void f2fs_put_page(struct page *page, int unlock)
2058 {
2059 if (!page)
2060 return;
2061
2062 if (unlock) {
2063 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2064 unlock_page(page);
2065 }
2066 put_page(page);
2067 }
2068
f2fs_put_dnode(struct dnode_of_data * dn)2069 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2070 {
2071 if (dn->node_page)
2072 f2fs_put_page(dn->node_page, 1);
2073 if (dn->inode_page && dn->node_page != dn->inode_page)
2074 f2fs_put_page(dn->inode_page, 0);
2075 dn->node_page = NULL;
2076 dn->inode_page = NULL;
2077 }
2078
f2fs_kmem_cache_create(const char * name,size_t size)2079 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2080 size_t size)
2081 {
2082 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2083 }
2084
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2085 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2086 gfp_t flags)
2087 {
2088 void *entry;
2089
2090 entry = kmem_cache_alloc(cachep, flags);
2091 if (!entry)
2092 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2093 return entry;
2094 }
2095
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2096 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2097 int npages, bool no_fail)
2098 {
2099 struct bio *bio;
2100
2101 if (no_fail) {
2102 /* No failure on bio allocation */
2103 bio = bio_alloc(GFP_NOIO, npages);
2104 if (!bio)
2105 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2106 return bio;
2107 }
2108 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2109 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2110 return NULL;
2111 }
2112
2113 return bio_alloc(GFP_KERNEL, npages);
2114 }
2115
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2116 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2117 unsigned long index, void *item)
2118 {
2119 while (radix_tree_insert(root, index, item))
2120 cond_resched();
2121 }
2122
2123 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2124
IS_INODE(struct page * page)2125 static inline bool IS_INODE(struct page *page)
2126 {
2127 struct f2fs_node *p = F2FS_NODE(page);
2128
2129 return RAW_IS_INODE(p);
2130 }
2131
offset_in_addr(struct f2fs_inode * i)2132 static inline int offset_in_addr(struct f2fs_inode *i)
2133 {
2134 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2135 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2136 }
2137
blkaddr_in_node(struct f2fs_node * node)2138 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2139 {
2140 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2141 }
2142
2143 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2144 static inline block_t datablock_addr(struct inode *inode,
2145 struct page *node_page, unsigned int offset)
2146 {
2147 struct f2fs_node *raw_node;
2148 __le32 *addr_array;
2149 int base = 0;
2150 bool is_inode = IS_INODE(node_page);
2151
2152 raw_node = F2FS_NODE(node_page);
2153
2154 /* from GC path only */
2155 if (is_inode) {
2156 if (!inode)
2157 base = offset_in_addr(&raw_node->i);
2158 else if (f2fs_has_extra_attr(inode))
2159 base = get_extra_isize(inode);
2160 }
2161
2162 addr_array = blkaddr_in_node(raw_node);
2163 return le32_to_cpu(addr_array[base + offset]);
2164 }
2165
f2fs_test_bit(unsigned int nr,char * addr)2166 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2167 {
2168 int mask;
2169
2170 addr += (nr >> 3);
2171 mask = 1 << (7 - (nr & 0x07));
2172 return mask & *addr;
2173 }
2174
f2fs_set_bit(unsigned int nr,char * addr)2175 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2176 {
2177 int mask;
2178
2179 addr += (nr >> 3);
2180 mask = 1 << (7 - (nr & 0x07));
2181 *addr |= mask;
2182 }
2183
f2fs_clear_bit(unsigned int nr,char * addr)2184 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2185 {
2186 int mask;
2187
2188 addr += (nr >> 3);
2189 mask = 1 << (7 - (nr & 0x07));
2190 *addr &= ~mask;
2191 }
2192
f2fs_test_and_set_bit(unsigned int nr,char * addr)2193 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2194 {
2195 int mask;
2196 int ret;
2197
2198 addr += (nr >> 3);
2199 mask = 1 << (7 - (nr & 0x07));
2200 ret = mask & *addr;
2201 *addr |= mask;
2202 return ret;
2203 }
2204
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2205 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2206 {
2207 int mask;
2208 int ret;
2209
2210 addr += (nr >> 3);
2211 mask = 1 << (7 - (nr & 0x07));
2212 ret = mask & *addr;
2213 *addr &= ~mask;
2214 return ret;
2215 }
2216
f2fs_change_bit(unsigned int nr,char * addr)2217 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2218 {
2219 int mask;
2220
2221 addr += (nr >> 3);
2222 mask = 1 << (7 - (nr & 0x07));
2223 *addr ^= mask;
2224 }
2225
2226 /*
2227 * Inode flags
2228 */
2229 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2230 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2231 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2232 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2233 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2234 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2235 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2236 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2237 /* Reserved for compression usage... */
2238 #define F2FS_DIRTY_FL 0x00000100
2239 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2240 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2241 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2242 /* End compression flags --- maybe not all used */
2243 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2244 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2245 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2246 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2247 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2248 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2249 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2250 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2251 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2252 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2253 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2254 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2255 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2256
2257 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */
2258 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2259
2260 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2261 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2262 F2FS_IMMUTABLE_FL | \
2263 F2FS_APPEND_FL | \
2264 F2FS_NODUMP_FL | \
2265 F2FS_NOATIME_FL | \
2266 F2FS_PROJINHERIT_FL)
2267
2268 /* Flags that should be inherited by new inodes from their parent. */
2269 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2270 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2271 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2272 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2273 F2FS_PROJINHERIT_FL)
2274
2275 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2276 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2277
2278 /* Flags that are appropriate for non-directories/regular files. */
2279 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2280
f2fs_mask_flags(umode_t mode,__u32 flags)2281 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2282 {
2283 if (S_ISDIR(mode))
2284 return flags;
2285 else if (S_ISREG(mode))
2286 return flags & F2FS_REG_FLMASK;
2287 else
2288 return flags & F2FS_OTHER_FLMASK;
2289 }
2290
2291 /* used for f2fs_inode_info->flags */
2292 enum {
2293 FI_NEW_INODE, /* indicate newly allocated inode */
2294 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2295 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2296 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2297 FI_INC_LINK, /* need to increment i_nlink */
2298 FI_ACL_MODE, /* indicate acl mode */
2299 FI_NO_ALLOC, /* should not allocate any blocks */
2300 FI_FREE_NID, /* free allocated nide */
2301 FI_NO_EXTENT, /* not to use the extent cache */
2302 FI_INLINE_XATTR, /* used for inline xattr */
2303 FI_INLINE_DATA, /* used for inline data*/
2304 FI_INLINE_DENTRY, /* used for inline dentry */
2305 FI_APPEND_WRITE, /* inode has appended data */
2306 FI_UPDATE_WRITE, /* inode has in-place-update data */
2307 FI_NEED_IPU, /* used for ipu per file */
2308 FI_ATOMIC_FILE, /* indicate atomic file */
2309 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2310 FI_VOLATILE_FILE, /* indicate volatile file */
2311 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2312 FI_DROP_CACHE, /* drop dirty page cache */
2313 FI_DATA_EXIST, /* indicate data exists */
2314 FI_INLINE_DOTS, /* indicate inline dot dentries */
2315 FI_DO_DEFRAG, /* indicate defragment is running */
2316 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2317 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2318 FI_HOT_DATA, /* indicate file is hot */
2319 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2320 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2321 FI_PIN_FILE, /* indicate file should not be gced */
2322 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2323 };
2324
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2325 static inline void __mark_inode_dirty_flag(struct inode *inode,
2326 int flag, bool set)
2327 {
2328 switch (flag) {
2329 case FI_INLINE_XATTR:
2330 case FI_INLINE_DATA:
2331 case FI_INLINE_DENTRY:
2332 case FI_NEW_INODE:
2333 if (set)
2334 return;
2335 case FI_DATA_EXIST:
2336 case FI_INLINE_DOTS:
2337 case FI_PIN_FILE:
2338 f2fs_mark_inode_dirty_sync(inode, true);
2339 }
2340 }
2341
set_inode_flag(struct inode * inode,int flag)2342 static inline void set_inode_flag(struct inode *inode, int flag)
2343 {
2344 if (!test_bit(flag, &F2FS_I(inode)->flags))
2345 set_bit(flag, &F2FS_I(inode)->flags);
2346 __mark_inode_dirty_flag(inode, flag, true);
2347 }
2348
is_inode_flag_set(struct inode * inode,int flag)2349 static inline int is_inode_flag_set(struct inode *inode, int flag)
2350 {
2351 return test_bit(flag, &F2FS_I(inode)->flags);
2352 }
2353
clear_inode_flag(struct inode * inode,int flag)2354 static inline void clear_inode_flag(struct inode *inode, int flag)
2355 {
2356 if (test_bit(flag, &F2FS_I(inode)->flags))
2357 clear_bit(flag, &F2FS_I(inode)->flags);
2358 __mark_inode_dirty_flag(inode, flag, false);
2359 }
2360
set_acl_inode(struct inode * inode,umode_t mode)2361 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2362 {
2363 F2FS_I(inode)->i_acl_mode = mode;
2364 set_inode_flag(inode, FI_ACL_MODE);
2365 f2fs_mark_inode_dirty_sync(inode, false);
2366 }
2367
f2fs_i_links_write(struct inode * inode,bool inc)2368 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2369 {
2370 if (inc)
2371 inc_nlink(inode);
2372 else
2373 drop_nlink(inode);
2374 f2fs_mark_inode_dirty_sync(inode, true);
2375 }
2376
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2377 static inline void f2fs_i_blocks_write(struct inode *inode,
2378 block_t diff, bool add, bool claim)
2379 {
2380 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2381 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2382
2383 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2384 if (add) {
2385 if (claim)
2386 dquot_claim_block(inode, diff);
2387 else
2388 dquot_alloc_block_nofail(inode, diff);
2389 } else {
2390 dquot_free_block(inode, diff);
2391 }
2392
2393 f2fs_mark_inode_dirty_sync(inode, true);
2394 if (clean || recover)
2395 set_inode_flag(inode, FI_AUTO_RECOVER);
2396 }
2397
f2fs_i_size_write(struct inode * inode,loff_t i_size)2398 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2399 {
2400 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2401 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2402
2403 if (i_size_read(inode) == i_size)
2404 return;
2405
2406 i_size_write(inode, i_size);
2407 f2fs_mark_inode_dirty_sync(inode, true);
2408 if (clean || recover)
2409 set_inode_flag(inode, FI_AUTO_RECOVER);
2410 }
2411
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2412 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2413 {
2414 F2FS_I(inode)->i_current_depth = depth;
2415 f2fs_mark_inode_dirty_sync(inode, true);
2416 }
2417
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2418 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2419 unsigned int count)
2420 {
2421 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2422 f2fs_mark_inode_dirty_sync(inode, true);
2423 }
2424
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2425 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2426 {
2427 F2FS_I(inode)->i_xattr_nid = xnid;
2428 f2fs_mark_inode_dirty_sync(inode, true);
2429 }
2430
f2fs_i_pino_write(struct inode * inode,nid_t pino)2431 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2432 {
2433 F2FS_I(inode)->i_pino = pino;
2434 f2fs_mark_inode_dirty_sync(inode, true);
2435 }
2436
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2437 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2438 {
2439 struct f2fs_inode_info *fi = F2FS_I(inode);
2440
2441 if (ri->i_inline & F2FS_INLINE_XATTR)
2442 set_bit(FI_INLINE_XATTR, &fi->flags);
2443 if (ri->i_inline & F2FS_INLINE_DATA)
2444 set_bit(FI_INLINE_DATA, &fi->flags);
2445 if (ri->i_inline & F2FS_INLINE_DENTRY)
2446 set_bit(FI_INLINE_DENTRY, &fi->flags);
2447 if (ri->i_inline & F2FS_DATA_EXIST)
2448 set_bit(FI_DATA_EXIST, &fi->flags);
2449 if (ri->i_inline & F2FS_INLINE_DOTS)
2450 set_bit(FI_INLINE_DOTS, &fi->flags);
2451 if (ri->i_inline & F2FS_EXTRA_ATTR)
2452 set_bit(FI_EXTRA_ATTR, &fi->flags);
2453 if (ri->i_inline & F2FS_PIN_FILE)
2454 set_bit(FI_PIN_FILE, &fi->flags);
2455 }
2456
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2457 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2458 {
2459 ri->i_inline = 0;
2460
2461 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2462 ri->i_inline |= F2FS_INLINE_XATTR;
2463 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2464 ri->i_inline |= F2FS_INLINE_DATA;
2465 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2466 ri->i_inline |= F2FS_INLINE_DENTRY;
2467 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2468 ri->i_inline |= F2FS_DATA_EXIST;
2469 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2470 ri->i_inline |= F2FS_INLINE_DOTS;
2471 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2472 ri->i_inline |= F2FS_EXTRA_ATTR;
2473 if (is_inode_flag_set(inode, FI_PIN_FILE))
2474 ri->i_inline |= F2FS_PIN_FILE;
2475 }
2476
f2fs_has_extra_attr(struct inode * inode)2477 static inline int f2fs_has_extra_attr(struct inode *inode)
2478 {
2479 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2480 }
2481
f2fs_has_inline_xattr(struct inode * inode)2482 static inline int f2fs_has_inline_xattr(struct inode *inode)
2483 {
2484 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2485 }
2486
addrs_per_inode(struct inode * inode)2487 static inline unsigned int addrs_per_inode(struct inode *inode)
2488 {
2489 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2490 }
2491
inline_xattr_addr(struct inode * inode,struct page * page)2492 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2493 {
2494 struct f2fs_inode *ri = F2FS_INODE(page);
2495
2496 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2497 get_inline_xattr_addrs(inode)]);
2498 }
2499
inline_xattr_size(struct inode * inode)2500 static inline int inline_xattr_size(struct inode *inode)
2501 {
2502 if (f2fs_has_inline_xattr(inode))
2503 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2504 return 0;
2505 }
2506
f2fs_has_inline_data(struct inode * inode)2507 static inline int f2fs_has_inline_data(struct inode *inode)
2508 {
2509 return is_inode_flag_set(inode, FI_INLINE_DATA);
2510 }
2511
f2fs_exist_data(struct inode * inode)2512 static inline int f2fs_exist_data(struct inode *inode)
2513 {
2514 return is_inode_flag_set(inode, FI_DATA_EXIST);
2515 }
2516
f2fs_has_inline_dots(struct inode * inode)2517 static inline int f2fs_has_inline_dots(struct inode *inode)
2518 {
2519 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2520 }
2521
f2fs_is_pinned_file(struct inode * inode)2522 static inline bool f2fs_is_pinned_file(struct inode *inode)
2523 {
2524 return is_inode_flag_set(inode, FI_PIN_FILE);
2525 }
2526
f2fs_is_atomic_file(struct inode * inode)2527 static inline bool f2fs_is_atomic_file(struct inode *inode)
2528 {
2529 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2530 }
2531
f2fs_is_commit_atomic_write(struct inode * inode)2532 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2533 {
2534 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2535 }
2536
f2fs_is_volatile_file(struct inode * inode)2537 static inline bool f2fs_is_volatile_file(struct inode *inode)
2538 {
2539 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2540 }
2541
f2fs_is_first_block_written(struct inode * inode)2542 static inline bool f2fs_is_first_block_written(struct inode *inode)
2543 {
2544 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2545 }
2546
f2fs_is_drop_cache(struct inode * inode)2547 static inline bool f2fs_is_drop_cache(struct inode *inode)
2548 {
2549 return is_inode_flag_set(inode, FI_DROP_CACHE);
2550 }
2551
inline_data_addr(struct inode * inode,struct page * page)2552 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2553 {
2554 struct f2fs_inode *ri = F2FS_INODE(page);
2555 int extra_size = get_extra_isize(inode);
2556
2557 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2558 }
2559
f2fs_has_inline_dentry(struct inode * inode)2560 static inline int f2fs_has_inline_dentry(struct inode *inode)
2561 {
2562 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2563 }
2564
is_file(struct inode * inode,int type)2565 static inline int is_file(struct inode *inode, int type)
2566 {
2567 return F2FS_I(inode)->i_advise & type;
2568 }
2569
set_file(struct inode * inode,int type)2570 static inline void set_file(struct inode *inode, int type)
2571 {
2572 F2FS_I(inode)->i_advise |= type;
2573 f2fs_mark_inode_dirty_sync(inode, true);
2574 }
2575
clear_file(struct inode * inode,int type)2576 static inline void clear_file(struct inode *inode, int type)
2577 {
2578 F2FS_I(inode)->i_advise &= ~type;
2579 f2fs_mark_inode_dirty_sync(inode, true);
2580 }
2581
f2fs_is_time_consistent(struct inode * inode)2582 static inline bool f2fs_is_time_consistent(struct inode *inode)
2583 {
2584 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2585 return false;
2586 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2587 return false;
2588 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2589 return false;
2590 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2591 &F2FS_I(inode)->i_crtime))
2592 return false;
2593 return true;
2594 }
2595
f2fs_skip_inode_update(struct inode * inode,int dsync)2596 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2597 {
2598 bool ret;
2599
2600 if (dsync) {
2601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2602
2603 spin_lock(&sbi->inode_lock[DIRTY_META]);
2604 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2605 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2606 return ret;
2607 }
2608 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2609 file_keep_isize(inode) ||
2610 i_size_read(inode) & ~PAGE_MASK)
2611 return false;
2612
2613 if (!f2fs_is_time_consistent(inode))
2614 return false;
2615
2616 down_read(&F2FS_I(inode)->i_sem);
2617 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2618 up_read(&F2FS_I(inode)->i_sem);
2619
2620 return ret;
2621 }
2622
f2fs_readonly(struct super_block * sb)2623 static inline bool f2fs_readonly(struct super_block *sb)
2624 {
2625 return sb_rdonly(sb);
2626 }
2627
f2fs_cp_error(struct f2fs_sb_info * sbi)2628 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2629 {
2630 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2631 }
2632
is_dot_dotdot(const struct qstr * str)2633 static inline bool is_dot_dotdot(const struct qstr *str)
2634 {
2635 if (str->len == 1 && str->name[0] == '.')
2636 return true;
2637
2638 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2639 return true;
2640
2641 return false;
2642 }
2643
f2fs_may_extent_tree(struct inode * inode)2644 static inline bool f2fs_may_extent_tree(struct inode *inode)
2645 {
2646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2647
2648 if (!test_opt(sbi, EXTENT_CACHE) ||
2649 is_inode_flag_set(inode, FI_NO_EXTENT))
2650 return false;
2651
2652 /*
2653 * for recovered files during mount do not create extents
2654 * if shrinker is not registered.
2655 */
2656 if (list_empty(&sbi->s_list))
2657 return false;
2658
2659 return S_ISREG(inode->i_mode);
2660 }
2661
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2662 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2663 size_t size, gfp_t flags)
2664 {
2665 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2666 f2fs_show_injection_info(FAULT_KMALLOC);
2667 return NULL;
2668 }
2669
2670 return kmalloc(size, flags);
2671 }
2672
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2673 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2674 size_t size, gfp_t flags)
2675 {
2676 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2677 }
2678
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2679 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2680 size_t size, gfp_t flags)
2681 {
2682 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2683 f2fs_show_injection_info(FAULT_KVMALLOC);
2684 return NULL;
2685 }
2686
2687 return kvmalloc(size, flags);
2688 }
2689
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2690 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2691 size_t size, gfp_t flags)
2692 {
2693 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2694 }
2695
get_extra_isize(struct inode * inode)2696 static inline int get_extra_isize(struct inode *inode)
2697 {
2698 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2699 }
2700
get_inline_xattr_addrs(struct inode * inode)2701 static inline int get_inline_xattr_addrs(struct inode *inode)
2702 {
2703 return F2FS_I(inode)->i_inline_xattr_size;
2704 }
2705
2706 #define f2fs_get_inode_mode(i) \
2707 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2708 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2709
2710 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2711 (offsetof(struct f2fs_inode, i_extra_end) - \
2712 offsetof(struct f2fs_inode, i_extra_isize)) \
2713
2714 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2715 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2716 ((offsetof(typeof(*f2fs_inode), field) + \
2717 sizeof((f2fs_inode)->field)) \
2718 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2719
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2720 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2721 {
2722 int i;
2723
2724 spin_lock(&sbi->iostat_lock);
2725 for (i = 0; i < NR_IO_TYPE; i++)
2726 sbi->write_iostat[i] = 0;
2727 spin_unlock(&sbi->iostat_lock);
2728 }
2729
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2730 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2731 enum iostat_type type, unsigned long long io_bytes)
2732 {
2733 if (!sbi->iostat_enable)
2734 return;
2735 spin_lock(&sbi->iostat_lock);
2736 sbi->write_iostat[type] += io_bytes;
2737
2738 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2739 sbi->write_iostat[APP_BUFFERED_IO] =
2740 sbi->write_iostat[APP_WRITE_IO] -
2741 sbi->write_iostat[APP_DIRECT_IO];
2742 spin_unlock(&sbi->iostat_lock);
2743 }
2744
2745 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \
2746 (!is_read_io(fio->op) || fio->is_meta))
2747
2748 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2749 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2750 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2751 block_t blkaddr, int type)
2752 {
2753 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2754 f2fs_msg(sbi->sb, KERN_ERR,
2755 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2756 blkaddr, type);
2757 f2fs_bug_on(sbi, 1);
2758 }
2759 }
2760
__is_valid_data_blkaddr(block_t blkaddr)2761 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2762 {
2763 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2764 return false;
2765 return true;
2766 }
2767
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2768 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2769 block_t blkaddr)
2770 {
2771 if (!__is_valid_data_blkaddr(blkaddr))
2772 return false;
2773 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2774 return true;
2775 }
2776
2777 /*
2778 * file.c
2779 */
2780 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2781 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2782 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2783 int f2fs_truncate(struct inode *inode);
2784 int f2fs_getattr(const struct path *path, struct kstat *stat,
2785 u32 request_mask, unsigned int flags);
2786 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2787 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2788 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2789 int f2fs_precache_extents(struct inode *inode);
2790 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2791 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2792 int f2fs_pin_file_control(struct inode *inode, bool inc);
2793
2794 /*
2795 * inode.c
2796 */
2797 void f2fs_set_inode_flags(struct inode *inode);
2798 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2799 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2800 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2801 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2802 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2803 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2804 void f2fs_update_inode_page(struct inode *inode);
2805 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2806 void f2fs_evict_inode(struct inode *inode);
2807 void f2fs_handle_failed_inode(struct inode *inode);
2808
2809 /*
2810 * namei.c
2811 */
2812 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2813 bool hot, bool set);
2814 struct dentry *f2fs_get_parent(struct dentry *child);
2815
2816 /*
2817 * dir.c
2818 */
2819 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2820 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2821 f2fs_hash_t namehash, int *max_slots,
2822 struct f2fs_dentry_ptr *d);
2823 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2824 unsigned int start_pos, struct fscrypt_str *fstr);
2825 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2826 struct f2fs_dentry_ptr *d);
2827 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2828 const struct qstr *new_name,
2829 const struct qstr *orig_name, struct page *dpage);
2830 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2831 unsigned int current_depth);
2832 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2833 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2834 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2835 struct fscrypt_name *fname, struct page **res_page);
2836 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2837 const struct qstr *child, struct page **res_page);
2838 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2839 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2840 struct page **page);
2841 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2842 struct page *page, struct inode *inode);
2843 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2844 const struct qstr *name, f2fs_hash_t name_hash,
2845 unsigned int bit_pos);
2846 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2847 const struct qstr *orig_name,
2848 struct inode *inode, nid_t ino, umode_t mode);
2849 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2850 struct inode *inode, nid_t ino, umode_t mode);
2851 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2852 struct inode *inode, nid_t ino, umode_t mode);
2853 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2854 struct inode *dir, struct inode *inode);
2855 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2856 bool f2fs_empty_dir(struct inode *dir);
2857
f2fs_add_link(struct dentry * dentry,struct inode * inode)2858 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2859 {
2860 if (fscrypt_is_nokey_name(dentry))
2861 return -ENOKEY;
2862 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2863 inode, inode->i_ino, inode->i_mode);
2864 }
2865
2866 /*
2867 * super.c
2868 */
2869 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2870 void f2fs_inode_synced(struct inode *inode);
2871 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2872 void f2fs_quota_off_umount(struct super_block *sb);
2873 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2874 int f2fs_sync_fs(struct super_block *sb, int sync);
2875 extern __printf(3, 4)
2876 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2877 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2878
2879 /*
2880 * hash.c
2881 */
2882 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2883 struct fscrypt_name *fname);
2884
2885 /*
2886 * node.c
2887 */
2888 struct dnode_of_data;
2889 struct node_info;
2890
2891 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2892 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2893 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2894 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2895 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2896 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2897 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2898 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2899 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2900 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2901 struct node_info *ni);
2902 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2903 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2904 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2905 int f2fs_truncate_xattr_node(struct inode *inode);
2906 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2907 unsigned int seq_id);
2908 int f2fs_remove_inode_page(struct inode *inode);
2909 struct page *f2fs_new_inode_page(struct inode *inode);
2910 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2911 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2912 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2913 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2914 void f2fs_move_node_page(struct page *node_page, int gc_type);
2915 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2916 struct writeback_control *wbc, bool atomic,
2917 unsigned int *seq_id);
2918 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2919 struct writeback_control *wbc,
2920 bool do_balance, enum iostat_type io_type);
2921 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2922 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2923 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2924 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2925 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2926 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2927 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2928 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2929 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2930 unsigned int segno, struct f2fs_summary_block *sum);
2931 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2932 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2933 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2934 int __init f2fs_create_node_manager_caches(void);
2935 void f2fs_destroy_node_manager_caches(void);
2936
2937 /*
2938 * segment.c
2939 */
2940 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2941 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2942 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2943 void f2fs_drop_inmem_pages(struct inode *inode);
2944 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2945 int f2fs_commit_inmem_pages(struct inode *inode);
2946 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2947 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2948 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2949 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2950 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2951 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2952 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2953 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2954 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2955 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2956 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2957 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2958 struct cp_control *cpc);
2959 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2960 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2961 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2962 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2963 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2964 struct cp_control *cpc);
2965 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2966 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2967 block_t blk_addr);
2968 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2969 enum iostat_type io_type);
2970 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2971 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2972 struct f2fs_io_info *fio);
2973 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2974 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2975 block_t old_blkaddr, block_t new_blkaddr,
2976 bool recover_curseg, bool recover_newaddr);
2977 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2978 block_t old_addr, block_t new_addr,
2979 unsigned char version, bool recover_curseg,
2980 bool recover_newaddr);
2981 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2982 block_t old_blkaddr, block_t *new_blkaddr,
2983 struct f2fs_summary *sum, int type,
2984 struct f2fs_io_info *fio, bool add_list);
2985 void f2fs_wait_on_page_writeback(struct page *page,
2986 enum page_type type, bool ordered);
2987 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
2988 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2989 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2990 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2991 unsigned int val, int alloc);
2992 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2993 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2994 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2995 int __init f2fs_create_segment_manager_caches(void);
2996 void f2fs_destroy_segment_manager_caches(void);
2997 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2998 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2999 enum page_type type, enum temp_type temp);
3000
3001 /*
3002 * checkpoint.c
3003 */
3004 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3005 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3006 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3007 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3008 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3009 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3010 block_t blkaddr, int type);
3011 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3012 int type, bool sync);
3013 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3014 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3015 long nr_to_write, enum iostat_type io_type);
3016 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3017 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3018 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3019 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3020 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3021 unsigned int devidx, int type);
3022 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3023 unsigned int devidx, int type);
3024 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3025 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3026 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3027 void f2fs_add_orphan_inode(struct inode *inode);
3028 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3029 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3030 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3031 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3032 void f2fs_remove_dirty_inode(struct inode *inode);
3033 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3034 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3035 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3036 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3037 int __init f2fs_create_checkpoint_caches(void);
3038 void f2fs_destroy_checkpoint_caches(void);
3039
3040 /*
3041 * data.c
3042 */
3043 int f2fs_init_post_read_processing(void);
3044 void f2fs_destroy_post_read_processing(void);
3045 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3046 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3047 struct inode *inode, nid_t ino, pgoff_t idx,
3048 enum page_type type);
3049 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3050 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3051 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3052 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3053 block_t blk_addr, struct bio *bio);
3054 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3055 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3056 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3057 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3058 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3059 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3060 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3061 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3062 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3063 int op_flags, bool for_write);
3064 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3065 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3066 bool for_write);
3067 struct page *f2fs_get_new_data_page(struct inode *inode,
3068 struct page *ipage, pgoff_t index, bool new_i_size);
3069 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3070 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3071 int create, int flag);
3072 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3073 u64 start, u64 len);
3074 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3075 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3076 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3077 unsigned int length);
3078 int f2fs_release_page(struct page *page, gfp_t wait);
3079 #ifdef CONFIG_MIGRATION
3080 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3081 struct page *page, enum migrate_mode mode);
3082 #endif
3083 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3084 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3085
3086 /*
3087 * gc.c
3088 */
3089 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3090 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3091 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3092 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3093 unsigned int segno);
3094 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3095
3096 /*
3097 * recovery.c
3098 */
3099 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3100 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3101
3102 /*
3103 * debug.c
3104 */
3105 #ifdef CONFIG_F2FS_STAT_FS
3106 struct f2fs_stat_info {
3107 struct list_head stat_list;
3108 struct f2fs_sb_info *sbi;
3109 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3110 int main_area_segs, main_area_sections, main_area_zones;
3111 unsigned long long hit_largest, hit_cached, hit_rbtree;
3112 unsigned long long hit_total, total_ext;
3113 int ext_tree, zombie_tree, ext_node;
3114 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3115 int ndirty_data, ndirty_qdata;
3116 int inmem_pages;
3117 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3118 int nats, dirty_nats, sits, dirty_sits;
3119 int free_nids, avail_nids, alloc_nids;
3120 int total_count, utilization;
3121 int bg_gc, nr_wb_cp_data, nr_wb_data;
3122 int nr_flushing, nr_flushed, flush_list_empty;
3123 int nr_discarding, nr_discarded;
3124 int nr_discard_cmd;
3125 unsigned int undiscard_blks;
3126 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3127 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3128 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3129 unsigned int bimodal, avg_vblocks;
3130 int util_free, util_valid, util_invalid;
3131 int rsvd_segs, overp_segs;
3132 int dirty_count, node_pages, meta_pages;
3133 int prefree_count, call_count, cp_count, bg_cp_count;
3134 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3135 int bg_node_segs, bg_data_segs;
3136 int tot_blks, data_blks, node_blks;
3137 int bg_data_blks, bg_node_blks;
3138 unsigned long long skipped_atomic_files[2];
3139 int curseg[NR_CURSEG_TYPE];
3140 int cursec[NR_CURSEG_TYPE];
3141 int curzone[NR_CURSEG_TYPE];
3142
3143 unsigned int segment_count[2];
3144 unsigned int block_count[2];
3145 unsigned int inplace_count;
3146 unsigned long long base_mem, cache_mem, page_mem;
3147 };
3148
F2FS_STAT(struct f2fs_sb_info * sbi)3149 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3150 {
3151 return (struct f2fs_stat_info *)sbi->stat_info;
3152 }
3153
3154 #define stat_inc_cp_count(si) ((si)->cp_count++)
3155 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3156 #define stat_inc_call_count(si) ((si)->call_count++)
3157 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3158 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3159 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3160 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3161 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3162 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3163 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3164 #define stat_inc_inline_xattr(inode) \
3165 do { \
3166 if (f2fs_has_inline_xattr(inode)) \
3167 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3168 } while (0)
3169 #define stat_dec_inline_xattr(inode) \
3170 do { \
3171 if (f2fs_has_inline_xattr(inode)) \
3172 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3173 } while (0)
3174 #define stat_inc_inline_inode(inode) \
3175 do { \
3176 if (f2fs_has_inline_data(inode)) \
3177 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3178 } while (0)
3179 #define stat_dec_inline_inode(inode) \
3180 do { \
3181 if (f2fs_has_inline_data(inode)) \
3182 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3183 } while (0)
3184 #define stat_inc_inline_dir(inode) \
3185 do { \
3186 if (f2fs_has_inline_dentry(inode)) \
3187 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3188 } while (0)
3189 #define stat_dec_inline_dir(inode) \
3190 do { \
3191 if (f2fs_has_inline_dentry(inode)) \
3192 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3193 } while (0)
3194 #define stat_inc_seg_type(sbi, curseg) \
3195 ((sbi)->segment_count[(curseg)->alloc_type]++)
3196 #define stat_inc_block_count(sbi, curseg) \
3197 ((sbi)->block_count[(curseg)->alloc_type]++)
3198 #define stat_inc_inplace_blocks(sbi) \
3199 (atomic_inc(&(sbi)->inplace_count))
3200 #define stat_inc_atomic_write(inode) \
3201 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3202 #define stat_dec_atomic_write(inode) \
3203 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3204 #define stat_update_max_atomic_write(inode) \
3205 do { \
3206 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3207 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3208 if (cur > max) \
3209 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3210 } while (0)
3211 #define stat_inc_volatile_write(inode) \
3212 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3213 #define stat_dec_volatile_write(inode) \
3214 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3215 #define stat_update_max_volatile_write(inode) \
3216 do { \
3217 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3218 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3219 if (cur > max) \
3220 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3221 } while (0)
3222 #define stat_inc_seg_count(sbi, type, gc_type) \
3223 do { \
3224 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3225 si->tot_segs++; \
3226 if ((type) == SUM_TYPE_DATA) { \
3227 si->data_segs++; \
3228 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3229 } else { \
3230 si->node_segs++; \
3231 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3232 } \
3233 } while (0)
3234
3235 #define stat_inc_tot_blk_count(si, blks) \
3236 ((si)->tot_blks += (blks))
3237
3238 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3239 do { \
3240 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3241 stat_inc_tot_blk_count(si, blks); \
3242 si->data_blks += (blks); \
3243 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3244 } while (0)
3245
3246 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3247 do { \
3248 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3249 stat_inc_tot_blk_count(si, blks); \
3250 si->node_blks += (blks); \
3251 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3252 } while (0)
3253
3254 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3255 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3256 int __init f2fs_create_root_stats(void);
3257 void f2fs_destroy_root_stats(void);
3258 #else
3259 #define stat_inc_cp_count(si) do { } while (0)
3260 #define stat_inc_bg_cp_count(si) do { } while (0)
3261 #define stat_inc_call_count(si) do { } while (0)
3262 #define stat_inc_bggc_count(si) do { } while (0)
3263 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3264 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3265 #define stat_inc_total_hit(sb) do { } while (0)
3266 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3267 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3268 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3269 #define stat_inc_inline_xattr(inode) do { } while (0)
3270 #define stat_dec_inline_xattr(inode) do { } while (0)
3271 #define stat_inc_inline_inode(inode) do { } while (0)
3272 #define stat_dec_inline_inode(inode) do { } while (0)
3273 #define stat_inc_inline_dir(inode) do { } while (0)
3274 #define stat_dec_inline_dir(inode) do { } while (0)
3275 #define stat_inc_atomic_write(inode) do { } while (0)
3276 #define stat_dec_atomic_write(inode) do { } while (0)
3277 #define stat_update_max_atomic_write(inode) do { } while (0)
3278 #define stat_inc_volatile_write(inode) do { } while (0)
3279 #define stat_dec_volatile_write(inode) do { } while (0)
3280 #define stat_update_max_volatile_write(inode) do { } while (0)
3281 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3282 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3283 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3284 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3285 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3286 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3287 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3288
f2fs_build_stats(struct f2fs_sb_info * sbi)3289 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3290 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3291 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3292 static inline void f2fs_destroy_root_stats(void) { }
3293 #endif
3294
3295 extern const struct file_operations f2fs_dir_operations;
3296 extern const struct file_operations f2fs_file_operations;
3297 extern const struct inode_operations f2fs_file_inode_operations;
3298 extern const struct address_space_operations f2fs_dblock_aops;
3299 extern const struct address_space_operations f2fs_node_aops;
3300 extern const struct address_space_operations f2fs_meta_aops;
3301 extern const struct inode_operations f2fs_dir_inode_operations;
3302 extern const struct inode_operations f2fs_symlink_inode_operations;
3303 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3304 extern const struct inode_operations f2fs_special_inode_operations;
3305 extern struct kmem_cache *f2fs_inode_entry_slab;
3306
3307 /*
3308 * inline.c
3309 */
3310 bool f2fs_may_inline_data(struct inode *inode);
3311 bool f2fs_may_inline_dentry(struct inode *inode);
3312 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3313 void f2fs_truncate_inline_inode(struct inode *inode,
3314 struct page *ipage, u64 from);
3315 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3316 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3317 int f2fs_convert_inline_inode(struct inode *inode);
3318 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3319 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3320 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3321 struct fscrypt_name *fname, struct page **res_page);
3322 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3323 struct page *ipage);
3324 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3325 const struct qstr *orig_name,
3326 struct inode *inode, nid_t ino, umode_t mode);
3327 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3328 struct page *page, struct inode *dir,
3329 struct inode *inode);
3330 bool f2fs_empty_inline_dir(struct inode *dir);
3331 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3332 struct fscrypt_str *fstr);
3333 int f2fs_inline_data_fiemap(struct inode *inode,
3334 struct fiemap_extent_info *fieinfo,
3335 __u64 start, __u64 len);
3336
3337 /*
3338 * shrinker.c
3339 */
3340 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3341 struct shrink_control *sc);
3342 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3343 struct shrink_control *sc);
3344 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3345 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3346
3347 /*
3348 * extent_cache.c
3349 */
3350 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3351 struct rb_entry *cached_re, unsigned int ofs);
3352 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3353 struct rb_root *root, struct rb_node **parent,
3354 unsigned int ofs);
3355 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3356 struct rb_entry *cached_re, unsigned int ofs,
3357 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3358 struct rb_node ***insert_p, struct rb_node **insert_parent,
3359 bool force);
3360 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3361 struct rb_root *root);
3362 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3363 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3364 void f2fs_drop_extent_tree(struct inode *inode);
3365 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3366 void f2fs_destroy_extent_tree(struct inode *inode);
3367 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3368 struct extent_info *ei);
3369 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3370 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3371 pgoff_t fofs, block_t blkaddr, unsigned int len);
3372 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3373 int __init f2fs_create_extent_cache(void);
3374 void f2fs_destroy_extent_cache(void);
3375
3376 /*
3377 * sysfs.c
3378 */
3379 int __init f2fs_init_sysfs(void);
3380 void f2fs_exit_sysfs(void);
3381 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3382 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3383
3384 /*
3385 * crypto support
3386 */
f2fs_encrypted_inode(struct inode * inode)3387 static inline bool f2fs_encrypted_inode(struct inode *inode)
3388 {
3389 return file_is_encrypt(inode);
3390 }
3391
f2fs_encrypted_file(struct inode * inode)3392 static inline bool f2fs_encrypted_file(struct inode *inode)
3393 {
3394 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3395 }
3396
f2fs_set_encrypted_inode(struct inode * inode)3397 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3398 {
3399 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3400 file_set_encrypt(inode);
3401 f2fs_set_inode_flags(inode);
3402 #endif
3403 }
3404
3405 /*
3406 * Returns true if the reads of the inode's data need to undergo some
3407 * postprocessing step, like decryption or authenticity verification.
3408 */
f2fs_post_read_required(struct inode * inode)3409 static inline bool f2fs_post_read_required(struct inode *inode)
3410 {
3411 return f2fs_encrypted_file(inode);
3412 }
3413
3414 #define F2FS_FEATURE_FUNCS(name, flagname) \
3415 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3416 { \
3417 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3418 }
3419
3420 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3421 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3422 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3423 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3424 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3425 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3426 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3427 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3428 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3429
3430 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3431 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3432 struct block_device *bdev, block_t blkaddr)
3433 {
3434 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3435 int i;
3436
3437 for (i = 0; i < sbi->s_ndevs; i++)
3438 if (FDEV(i).bdev == bdev)
3439 return FDEV(i).blkz_type[zno];
3440 return -EINVAL;
3441 }
3442 #endif
3443
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3444 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3445 {
3446 return f2fs_sb_has_blkzoned(sbi->sb);
3447 }
3448
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3449 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3450 {
3451 return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3452 }
3453
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3454 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3455 {
3456 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3457 f2fs_hw_should_discard(sbi);
3458 }
3459
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3460 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3461 {
3462 clear_opt(sbi, ADAPTIVE);
3463 clear_opt(sbi, LFS);
3464
3465 switch (mt) {
3466 case F2FS_MOUNT_ADAPTIVE:
3467 set_opt(sbi, ADAPTIVE);
3468 break;
3469 case F2FS_MOUNT_LFS:
3470 set_opt(sbi, LFS);
3471 break;
3472 }
3473 }
3474
f2fs_may_encrypt(struct inode * inode)3475 static inline bool f2fs_may_encrypt(struct inode *inode)
3476 {
3477 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3478 umode_t mode = inode->i_mode;
3479
3480 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3481 #else
3482 return false;
3483 #endif
3484 }
3485
f2fs_force_buffered_io(struct inode * inode,int rw)3486 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3487 {
3488 return (f2fs_post_read_required(inode) ||
3489 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3490 f2fs_is_multi_device(F2FS_I_SB(inode)));
3491 }
3492
3493 #ifdef CONFIG_F2FS_FAULT_INJECTION
3494 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3495 unsigned int type);
3496 #else
3497 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3498 #endif
3499
3500 #endif
3501
3502 #define EFSBADCRC EBADMSG /* Bad CRC detected */
3503 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
3504
3505