1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free:1; /* free on completion */
55 enum wb_reason reason; /* why was writeback initiated? */
56
57 struct list_head list; /* pending work list */
58 struct wb_completion *done; /* set if the caller waits */
59 };
60
61 /*
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
67 */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
71 }
72
73
74 /*
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
83 */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85
wb_inode(struct list_head * head)86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 return list_entry(head, struct inode, i_io_list);
89 }
90
91 /*
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
95 */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100
wb_io_lists_populated(struct bdi_writeback * wb)101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 if (wb_has_dirty_io(wb)) {
104 return false;
105 } else {
106 set_bit(WB_has_dirty_io, &wb->state);
107 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 atomic_long_add(wb->avg_write_bandwidth,
109 &wb->bdi->tot_write_bandwidth);
110 return true;
111 }
112 }
113
wb_io_lists_depopulated(struct bdi_writeback * wb)114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 clear_bit(WB_has_dirty_io, &wb->state);
119 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 &wb->bdi->tot_write_bandwidth) < 0);
121 }
122 }
123
124 /**
125 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
129 *
130 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
133 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)134 static bool inode_io_list_move_locked(struct inode *inode,
135 struct bdi_writeback *wb,
136 struct list_head *head)
137 {
138 assert_spin_locked(&wb->list_lock);
139
140 list_move(&inode->i_io_list, head);
141
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head != &wb->b_dirty_time)
144 return wb_io_lists_populated(wb);
145
146 wb_io_lists_depopulated(wb);
147 return false;
148 }
149
150 /**
151 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
154 *
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
157 */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)158 static void inode_io_list_del_locked(struct inode *inode,
159 struct bdi_writeback *wb)
160 {
161 assert_spin_locked(&wb->list_lock);
162 assert_spin_locked(&inode->i_lock);
163
164 inode->i_state &= ~I_SYNC_QUEUED;
165 list_del_init(&inode->i_io_list);
166 wb_io_lists_depopulated(wb);
167 }
168
wb_wakeup(struct bdi_writeback * wb)169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
175 }
176
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179 {
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)188 static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
190 {
191 trace_writeback_queue(wb, work);
192
193 if (work->done)
194 atomic_inc(&work->done->cnt);
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
204 spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220 {
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
__inode_attach_wb(struct inode * inode,struct page * page)244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
278 *
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
282 */
283 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
287 {
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
290
291 /*
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
296 */
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
300
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
305 }
306
307 spin_unlock(&wb->list_lock);
308 wb_put(wb);
309 cpu_relax();
310 spin_lock(&inode->i_lock);
311 }
312 }
313
314 /**
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
317 *
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
320 */
inode_to_wb_and_lock_list(struct inode * inode)321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
323 {
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
331
332 struct rcu_head rcu_head;
333 struct work_struct work;
334 };
335
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 down_write(&bdi->wb_switch_rwsem);
339 }
340
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 up_write(&bdi->wb_switch_rwsem);
344 }
345
inode_switch_wbs_work_fn(struct work_struct * work)346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
351 struct backing_dev_info *bdi = inode_to_bdi(inode);
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
354 struct bdi_writeback *new_wb = isw->new_wb;
355 struct radix_tree_iter iter;
356 bool switched = false;
357 void **slot;
358
359 /*
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
362 */
363 down_read(&bdi->wb_switch_rwsem);
364
365 /*
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against the i_pages lock.
370 *
371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
374 */
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 }
382 spin_lock(&inode->i_lock);
383 xa_lock_irq(&mapping->i_pages);
384
385 /*
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
388 */
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
391
392 /*
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under writeback.
396 */
397 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
398 PAGECACHE_TAG_DIRTY) {
399 struct page *page = radix_tree_deref_slot_protected(slot,
400 &mapping->i_pages.xa_lock);
401 if (likely(page) && PageDirty(page)) {
402 dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 inc_wb_stat(new_wb, WB_RECLAIMABLE);
404 }
405 }
406
407 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
408 PAGECACHE_TAG_WRITEBACK) {
409 struct page *page = radix_tree_deref_slot_protected(slot,
410 &mapping->i_pages.xa_lock);
411 if (likely(page)) {
412 WARN_ON_ONCE(!PageWriteback(page));
413 dec_wb_stat(old_wb, WB_WRITEBACK);
414 inc_wb_stat(new_wb, WB_WRITEBACK);
415 }
416 }
417
418 wb_get(new_wb);
419
420 /*
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
425 */
426 if (!list_empty(&inode->i_io_list)) {
427 struct inode *pos;
428
429 inode_io_list_del_locked(inode, old_wb);
430 inode->i_wb = new_wb;
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 } else {
437 inode->i_wb = new_wb;
438 }
439
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode->i_wb_frn_winner = 0;
442 inode->i_wb_frn_avg_time = 0;
443 inode->i_wb_frn_history = 0;
444 switched = true;
445 skip_switch:
446 /*
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 */
450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452 xa_unlock_irq(&mapping->i_pages);
453 spin_unlock(&inode->i_lock);
454 spin_unlock(&new_wb->list_lock);
455 spin_unlock(&old_wb->list_lock);
456
457 up_read(&bdi->wb_switch_rwsem);
458
459 if (switched) {
460 wb_wakeup(new_wb);
461 wb_put(old_wb);
462 }
463 wb_put(new_wb);
464
465 iput(inode);
466 kfree(isw);
467
468 atomic_dec(&isw_nr_in_flight);
469 }
470
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 struct inode_switch_wbs_context, rcu_head);
475
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
485 *
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
488 */
inode_switch_wbs(struct inode * inode,int new_wb_id)489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 struct backing_dev_info *bdi = inode_to_bdi(inode);
492 struct cgroup_subsys_state *memcg_css;
493 struct inode_switch_wbs_context *isw;
494
495 /* noop if seems to be already in progress */
496 if (inode->i_state & I_WB_SWITCH)
497 return;
498
499 /*
500 * Avoid starting new switches while sync_inodes_sb() is in
501 * progress. Otherwise, if the down_write protected issue path
502 * blocks heavily, we might end up starting a large number of
503 * switches which will block on the rwsem.
504 */
505 if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 return;
507
508 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 if (!isw)
510 goto out_unlock;
511
512 /* find and pin the new wb */
513 rcu_read_lock();
514 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 if (memcg_css && !css_tryget(memcg_css))
516 memcg_css = NULL;
517 rcu_read_unlock();
518 if (!memcg_css)
519 goto out_free;
520
521 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522 css_put(memcg_css);
523 if (!isw->new_wb)
524 goto out_free;
525
526 /* while holding I_WB_SWITCH, no one else can update the association */
527 spin_lock(&inode->i_lock);
528 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
529 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530 inode_to_wb(inode) == isw->new_wb) {
531 spin_unlock(&inode->i_lock);
532 goto out_free;
533 }
534 inode->i_state |= I_WB_SWITCH;
535 __iget(inode);
536 spin_unlock(&inode->i_lock);
537
538 isw->inode = inode;
539
540 /*
541 * In addition to synchronizing among switchers, I_WB_SWITCH tells
542 * the RCU protected stat update paths to grab the i_page
543 * lock so that stat transfer can synchronize against them.
544 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545 */
546 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547
548 atomic_inc(&isw_nr_in_flight);
549
550 goto out_unlock;
551
552 out_free:
553 if (isw->new_wb)
554 wb_put(isw->new_wb);
555 kfree(isw);
556 out_unlock:
557 up_read(&bdi->wb_switch_rwsem);
558 }
559
560 /**
561 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562 * @wbc: writeback_control of interest
563 * @inode: target inode
564 *
565 * @inode is locked and about to be written back under the control of @wbc.
566 * Record @inode's writeback context into @wbc and unlock the i_lock. On
567 * writeback completion, wbc_detach_inode() should be called. This is used
568 * to track the cgroup writeback context.
569 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571 struct inode *inode)
572 {
573 if (!inode_cgwb_enabled(inode)) {
574 spin_unlock(&inode->i_lock);
575 return;
576 }
577
578 wbc->wb = inode_to_wb(inode);
579 wbc->inode = inode;
580
581 wbc->wb_id = wbc->wb->memcg_css->id;
582 wbc->wb_lcand_id = inode->i_wb_frn_winner;
583 wbc->wb_tcand_id = 0;
584 wbc->wb_bytes = 0;
585 wbc->wb_lcand_bytes = 0;
586 wbc->wb_tcand_bytes = 0;
587
588 wb_get(wbc->wb);
589 spin_unlock(&inode->i_lock);
590
591 /*
592 * A dying wb indicates that either the blkcg associated with the
593 * memcg changed or the associated memcg is dying. In the first
594 * case, a replacement wb should already be available and we should
595 * refresh the wb immediately. In the second case, trying to
596 * refresh will keep failing.
597 */
598 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599 inode_switch_wbs(inode, wbc->wb_id);
600 }
601
602 /**
603 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604 * @wbc: writeback_control of the just finished writeback
605 *
606 * To be called after a writeback attempt of an inode finishes and undoes
607 * wbc_attach_and_unlock_inode(). Can be called under any context.
608 *
609 * As concurrent write sharing of an inode is expected to be very rare and
610 * memcg only tracks page ownership on first-use basis severely confining
611 * the usefulness of such sharing, cgroup writeback tracks ownership
612 * per-inode. While the support for concurrent write sharing of an inode
613 * is deemed unnecessary, an inode being written to by different cgroups at
614 * different points in time is a lot more common, and, more importantly,
615 * charging only by first-use can too readily lead to grossly incorrect
616 * behaviors (single foreign page can lead to gigabytes of writeback to be
617 * incorrectly attributed).
618 *
619 * To resolve this issue, cgroup writeback detects the majority dirtier of
620 * an inode and transfers the ownership to it. To avoid unnnecessary
621 * oscillation, the detection mechanism keeps track of history and gives
622 * out the switch verdict only if the foreign usage pattern is stable over
623 * a certain amount of time and/or writeback attempts.
624 *
625 * On each writeback attempt, @wbc tries to detect the majority writer
626 * using Boyer-Moore majority vote algorithm. In addition to the byte
627 * count from the majority voting, it also counts the bytes written for the
628 * current wb and the last round's winner wb (max of last round's current
629 * wb, the winner from two rounds ago, and the last round's majority
630 * candidate). Keeping track of the historical winner helps the algorithm
631 * to semi-reliably detect the most active writer even when it's not the
632 * absolute majority.
633 *
634 * Once the winner of the round is determined, whether the winner is
635 * foreign or not and how much IO time the round consumed is recorded in
636 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
637 * over a certain threshold, the switch verdict is given.
638 */
wbc_detach_inode(struct writeback_control * wbc)639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641 struct bdi_writeback *wb = wbc->wb;
642 struct inode *inode = wbc->inode;
643 unsigned long avg_time, max_bytes, max_time;
644 u16 history;
645 int max_id;
646
647 if (!wb)
648 return;
649
650 history = inode->i_wb_frn_history;
651 avg_time = inode->i_wb_frn_avg_time;
652
653 /* pick the winner of this round */
654 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656 max_id = wbc->wb_id;
657 max_bytes = wbc->wb_bytes;
658 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659 max_id = wbc->wb_lcand_id;
660 max_bytes = wbc->wb_lcand_bytes;
661 } else {
662 max_id = wbc->wb_tcand_id;
663 max_bytes = wbc->wb_tcand_bytes;
664 }
665
666 /*
667 * Calculate the amount of IO time the winner consumed and fold it
668 * into the running average kept per inode. If the consumed IO
669 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670 * deciding whether to switch or not. This is to prevent one-off
671 * small dirtiers from skewing the verdict.
672 */
673 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674 wb->avg_write_bandwidth);
675 if (avg_time)
676 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678 else
679 avg_time = max_time; /* immediate catch up on first run */
680
681 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682 int slots;
683
684 /*
685 * The switch verdict is reached if foreign wb's consume
686 * more than a certain proportion of IO time in a
687 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
688 * history mask where each bit represents one sixteenth of
689 * the period. Determine the number of slots to shift into
690 * history from @max_time.
691 */
692 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694 history <<= slots;
695 if (wbc->wb_id != max_id)
696 history |= (1U << slots) - 1;
697
698 /*
699 * Switch if the current wb isn't the consistent winner.
700 * If there are multiple closely competing dirtiers, the
701 * inode may switch across them repeatedly over time, which
702 * is okay. The main goal is avoiding keeping an inode on
703 * the wrong wb for an extended period of time.
704 */
705 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
706 inode_switch_wbs(inode, max_id);
707 }
708
709 /*
710 * Multiple instances of this function may race to update the
711 * following fields but we don't mind occassional inaccuracies.
712 */
713 inode->i_wb_frn_winner = max_id;
714 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715 inode->i_wb_frn_history = history;
716
717 wb_put(wbc->wb);
718 wbc->wb = NULL;
719 }
720
721 /**
722 * wbc_account_io - account IO issued during writeback
723 * @wbc: writeback_control of the writeback in progress
724 * @page: page being written out
725 * @bytes: number of bytes being written out
726 *
727 * @bytes from @page are about to written out during the writeback
728 * controlled by @wbc. Keep the book for foreign inode detection. See
729 * wbc_detach_inode().
730 */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732 size_t bytes)
733 {
734 struct cgroup_subsys_state *css;
735 int id;
736
737 /*
738 * pageout() path doesn't attach @wbc to the inode being written
739 * out. This is intentional as we don't want the function to block
740 * behind a slow cgroup. Ultimately, we want pageout() to kick off
741 * regular writeback instead of writing things out itself.
742 */
743 if (!wbc->wb)
744 return;
745
746 css = mem_cgroup_css_from_page(page);
747 /* dead cgroups shouldn't contribute to inode ownership arbitration */
748 if (!(css->flags & CSS_ONLINE))
749 return;
750
751 id = css->id;
752
753 if (id == wbc->wb_id) {
754 wbc->wb_bytes += bytes;
755 return;
756 }
757
758 if (id == wbc->wb_lcand_id)
759 wbc->wb_lcand_bytes += bytes;
760
761 /* Boyer-Moore majority vote algorithm */
762 if (!wbc->wb_tcand_bytes)
763 wbc->wb_tcand_id = id;
764 if (id == wbc->wb_tcand_id)
765 wbc->wb_tcand_bytes += bytes;
766 else
767 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
768 }
769 EXPORT_SYMBOL_GPL(wbc_account_io);
770
771 /**
772 * inode_congested - test whether an inode is congested
773 * @inode: inode to test for congestion (may be NULL)
774 * @cong_bits: mask of WB_[a]sync_congested bits to test
775 *
776 * Tests whether @inode is congested. @cong_bits is the mask of congestion
777 * bits to test and the return value is the mask of set bits.
778 *
779 * If cgroup writeback is enabled for @inode, the congestion state is
780 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
781 * associated with @inode is congested; otherwise, the root wb's congestion
782 * state is used.
783 *
784 * @inode is allowed to be NULL as this function is often called on
785 * mapping->host which is NULL for the swapper space.
786 */
inode_congested(struct inode * inode,int cong_bits)787 int inode_congested(struct inode *inode, int cong_bits)
788 {
789 /*
790 * Once set, ->i_wb never becomes NULL while the inode is alive.
791 * Start transaction iff ->i_wb is visible.
792 */
793 if (inode && inode_to_wb_is_valid(inode)) {
794 struct bdi_writeback *wb;
795 struct wb_lock_cookie lock_cookie = {};
796 bool congested;
797
798 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
799 congested = wb_congested(wb, cong_bits);
800 unlocked_inode_to_wb_end(inode, &lock_cookie);
801 return congested;
802 }
803
804 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
805 }
806 EXPORT_SYMBOL_GPL(inode_congested);
807
808 /**
809 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
810 * @wb: target bdi_writeback to split @nr_pages to
811 * @nr_pages: number of pages to write for the whole bdi
812 *
813 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
814 * relation to the total write bandwidth of all wb's w/ dirty inodes on
815 * @wb->bdi.
816 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)817 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
818 {
819 unsigned long this_bw = wb->avg_write_bandwidth;
820 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
821
822 if (nr_pages == LONG_MAX)
823 return LONG_MAX;
824
825 /*
826 * This may be called on clean wb's and proportional distribution
827 * may not make sense, just use the original @nr_pages in those
828 * cases. In general, we wanna err on the side of writing more.
829 */
830 if (!tot_bw || this_bw >= tot_bw)
831 return nr_pages;
832 else
833 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
834 }
835
836 /**
837 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
838 * @bdi: target backing_dev_info
839 * @base_work: wb_writeback_work to issue
840 * @skip_if_busy: skip wb's which already have writeback in progress
841 *
842 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
843 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
844 * distributed to the busy wbs according to each wb's proportion in the
845 * total active write bandwidth of @bdi.
846 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)847 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
848 struct wb_writeback_work *base_work,
849 bool skip_if_busy)
850 {
851 struct bdi_writeback *last_wb = NULL;
852 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
853 struct bdi_writeback, bdi_node);
854
855 might_sleep();
856 restart:
857 rcu_read_lock();
858 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
859 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
860 struct wb_writeback_work fallback_work;
861 struct wb_writeback_work *work;
862 long nr_pages;
863
864 if (last_wb) {
865 wb_put(last_wb);
866 last_wb = NULL;
867 }
868
869 /* SYNC_ALL writes out I_DIRTY_TIME too */
870 if (!wb_has_dirty_io(wb) &&
871 (base_work->sync_mode == WB_SYNC_NONE ||
872 list_empty(&wb->b_dirty_time)))
873 continue;
874 if (skip_if_busy && writeback_in_progress(wb))
875 continue;
876
877 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
878
879 work = kmalloc(sizeof(*work), GFP_ATOMIC);
880 if (work) {
881 *work = *base_work;
882 work->nr_pages = nr_pages;
883 work->auto_free = 1;
884 wb_queue_work(wb, work);
885 continue;
886 }
887
888 /* alloc failed, execute synchronously using on-stack fallback */
889 work = &fallback_work;
890 *work = *base_work;
891 work->nr_pages = nr_pages;
892 work->auto_free = 0;
893 work->done = &fallback_work_done;
894
895 wb_queue_work(wb, work);
896
897 /*
898 * Pin @wb so that it stays on @bdi->wb_list. This allows
899 * continuing iteration from @wb after dropping and
900 * regrabbing rcu read lock.
901 */
902 wb_get(wb);
903 last_wb = wb;
904
905 rcu_read_unlock();
906 wb_wait_for_completion(bdi, &fallback_work_done);
907 goto restart;
908 }
909 rcu_read_unlock();
910
911 if (last_wb)
912 wb_put(last_wb);
913 }
914
915 /**
916 * cgroup_writeback_umount - flush inode wb switches for umount
917 *
918 * This function is called when a super_block is about to be destroyed and
919 * flushes in-flight inode wb switches. An inode wb switch goes through
920 * RCU and then workqueue, so the two need to be flushed in order to ensure
921 * that all previously scheduled switches are finished. As wb switches are
922 * rare occurrences and synchronize_rcu() can take a while, perform
923 * flushing iff wb switches are in flight.
924 */
cgroup_writeback_umount(void)925 void cgroup_writeback_umount(void)
926 {
927 if (atomic_read(&isw_nr_in_flight)) {
928 /*
929 * Use rcu_barrier() to wait for all pending callbacks to
930 * ensure that all in-flight wb switches are in the workqueue.
931 */
932 rcu_barrier();
933 flush_workqueue(isw_wq);
934 }
935 }
936
cgroup_writeback_init(void)937 static int __init cgroup_writeback_init(void)
938 {
939 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
940 if (!isw_wq)
941 return -ENOMEM;
942 return 0;
943 }
944 fs_initcall(cgroup_writeback_init);
945
946 #else /* CONFIG_CGROUP_WRITEBACK */
947
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)948 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)949 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
950
951 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)952 locked_inode_to_wb_and_lock_list(struct inode *inode)
953 __releases(&inode->i_lock)
954 __acquires(&wb->list_lock)
955 {
956 struct bdi_writeback *wb = inode_to_wb(inode);
957
958 spin_unlock(&inode->i_lock);
959 spin_lock(&wb->list_lock);
960 return wb;
961 }
962
inode_to_wb_and_lock_list(struct inode * inode)963 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
964 __acquires(&wb->list_lock)
965 {
966 struct bdi_writeback *wb = inode_to_wb(inode);
967
968 spin_lock(&wb->list_lock);
969 return wb;
970 }
971
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)972 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
973 {
974 return nr_pages;
975 }
976
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)977 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
978 struct wb_writeback_work *base_work,
979 bool skip_if_busy)
980 {
981 might_sleep();
982
983 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
984 base_work->auto_free = 0;
985 wb_queue_work(&bdi->wb, base_work);
986 }
987 }
988
989 #endif /* CONFIG_CGROUP_WRITEBACK */
990
991 /*
992 * Add in the number of potentially dirty inodes, because each inode
993 * write can dirty pagecache in the underlying blockdev.
994 */
get_nr_dirty_pages(void)995 static unsigned long get_nr_dirty_pages(void)
996 {
997 return global_node_page_state(NR_FILE_DIRTY) +
998 global_node_page_state(NR_UNSTABLE_NFS) +
999 get_nr_dirty_inodes();
1000 }
1001
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1002 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1003 {
1004 if (!wb_has_dirty_io(wb))
1005 return;
1006
1007 /*
1008 * All callers of this function want to start writeback of all
1009 * dirty pages. Places like vmscan can call this at a very
1010 * high frequency, causing pointless allocations of tons of
1011 * work items and keeping the flusher threads busy retrieving
1012 * that work. Ensure that we only allow one of them pending and
1013 * inflight at the time.
1014 */
1015 if (test_bit(WB_start_all, &wb->state) ||
1016 test_and_set_bit(WB_start_all, &wb->state))
1017 return;
1018
1019 wb->start_all_reason = reason;
1020 wb_wakeup(wb);
1021 }
1022
1023 /**
1024 * wb_start_background_writeback - start background writeback
1025 * @wb: bdi_writback to write from
1026 *
1027 * Description:
1028 * This makes sure WB_SYNC_NONE background writeback happens. When
1029 * this function returns, it is only guaranteed that for given wb
1030 * some IO is happening if we are over background dirty threshold.
1031 * Caller need not hold sb s_umount semaphore.
1032 */
wb_start_background_writeback(struct bdi_writeback * wb)1033 void wb_start_background_writeback(struct bdi_writeback *wb)
1034 {
1035 /*
1036 * We just wake up the flusher thread. It will perform background
1037 * writeback as soon as there is no other work to do.
1038 */
1039 trace_writeback_wake_background(wb);
1040 wb_wakeup(wb);
1041 }
1042
1043 /*
1044 * Remove the inode from the writeback list it is on.
1045 */
inode_io_list_del(struct inode * inode)1046 void inode_io_list_del(struct inode *inode)
1047 {
1048 struct bdi_writeback *wb;
1049
1050 wb = inode_to_wb_and_lock_list(inode);
1051 spin_lock(&inode->i_lock);
1052 inode_io_list_del_locked(inode, wb);
1053 spin_unlock(&inode->i_lock);
1054 spin_unlock(&wb->list_lock);
1055 }
1056
1057 /*
1058 * mark an inode as under writeback on the sb
1059 */
sb_mark_inode_writeback(struct inode * inode)1060 void sb_mark_inode_writeback(struct inode *inode)
1061 {
1062 struct super_block *sb = inode->i_sb;
1063 unsigned long flags;
1064
1065 if (list_empty(&inode->i_wb_list)) {
1066 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067 if (list_empty(&inode->i_wb_list)) {
1068 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1069 trace_sb_mark_inode_writeback(inode);
1070 }
1071 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072 }
1073 }
1074
1075 /*
1076 * clear an inode as under writeback on the sb
1077 */
sb_clear_inode_writeback(struct inode * inode)1078 void sb_clear_inode_writeback(struct inode *inode)
1079 {
1080 struct super_block *sb = inode->i_sb;
1081 unsigned long flags;
1082
1083 if (!list_empty(&inode->i_wb_list)) {
1084 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1085 if (!list_empty(&inode->i_wb_list)) {
1086 list_del_init(&inode->i_wb_list);
1087 trace_sb_clear_inode_writeback(inode);
1088 }
1089 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1090 }
1091 }
1092
1093 /*
1094 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1095 * furthest end of its superblock's dirty-inode list.
1096 *
1097 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1098 * already the most-recently-dirtied inode on the b_dirty list. If that is
1099 * the case then the inode must have been redirtied while it was being written
1100 * out and we don't reset its dirtied_when.
1101 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1102 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104 assert_spin_locked(&inode->i_lock);
1105
1106 if (!list_empty(&wb->b_dirty)) {
1107 struct inode *tail;
1108
1109 tail = wb_inode(wb->b_dirty.next);
1110 if (time_before(inode->dirtied_when, tail->dirtied_when))
1111 inode->dirtied_when = jiffies;
1112 }
1113 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1114 inode->i_state &= ~I_SYNC_QUEUED;
1115 }
1116
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1117 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1118 {
1119 spin_lock(&inode->i_lock);
1120 redirty_tail_locked(inode, wb);
1121 spin_unlock(&inode->i_lock);
1122 }
1123
1124 /*
1125 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1126 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1127 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1128 {
1129 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1130 }
1131
inode_sync_complete(struct inode * inode)1132 static void inode_sync_complete(struct inode *inode)
1133 {
1134 inode->i_state &= ~I_SYNC;
1135 /* If inode is clean an unused, put it into LRU now... */
1136 inode_add_lru(inode);
1137 /* Waiters must see I_SYNC cleared before being woken up */
1138 smp_mb();
1139 wake_up_bit(&inode->i_state, __I_SYNC);
1140 }
1141
inode_dirtied_after(struct inode * inode,unsigned long t)1142 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1143 {
1144 bool ret = time_after(inode->dirtied_when, t);
1145 #ifndef CONFIG_64BIT
1146 /*
1147 * For inodes being constantly redirtied, dirtied_when can get stuck.
1148 * It _appears_ to be in the future, but is actually in distant past.
1149 * This test is necessary to prevent such wrapped-around relative times
1150 * from permanently stopping the whole bdi writeback.
1151 */
1152 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1153 #endif
1154 return ret;
1155 }
1156
1157 #define EXPIRE_DIRTY_ATIME 0x0001
1158
1159 /*
1160 * Move expired (dirtied before dirtied_before) dirty inodes from
1161 * @delaying_queue to @dispatch_queue.
1162 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1163 static int move_expired_inodes(struct list_head *delaying_queue,
1164 struct list_head *dispatch_queue,
1165 unsigned long dirtied_before)
1166 {
1167 LIST_HEAD(tmp);
1168 struct list_head *pos, *node;
1169 struct super_block *sb = NULL;
1170 struct inode *inode;
1171 int do_sb_sort = 0;
1172 int moved = 0;
1173
1174 while (!list_empty(delaying_queue)) {
1175 inode = wb_inode(delaying_queue->prev);
1176 if (inode_dirtied_after(inode, dirtied_before))
1177 break;
1178 list_move(&inode->i_io_list, &tmp);
1179 moved++;
1180 spin_lock(&inode->i_lock);
1181 inode->i_state |= I_SYNC_QUEUED;
1182 spin_unlock(&inode->i_lock);
1183 if (sb_is_blkdev_sb(inode->i_sb))
1184 continue;
1185 if (sb && sb != inode->i_sb)
1186 do_sb_sort = 1;
1187 sb = inode->i_sb;
1188 }
1189
1190 /* just one sb in list, splice to dispatch_queue and we're done */
1191 if (!do_sb_sort) {
1192 list_splice(&tmp, dispatch_queue);
1193 goto out;
1194 }
1195
1196 /* Move inodes from one superblock together */
1197 while (!list_empty(&tmp)) {
1198 sb = wb_inode(tmp.prev)->i_sb;
1199 list_for_each_prev_safe(pos, node, &tmp) {
1200 inode = wb_inode(pos);
1201 if (inode->i_sb == sb)
1202 list_move(&inode->i_io_list, dispatch_queue);
1203 }
1204 }
1205 out:
1206 return moved;
1207 }
1208
1209 /*
1210 * Queue all expired dirty inodes for io, eldest first.
1211 * Before
1212 * newly dirtied b_dirty b_io b_more_io
1213 * =============> gf edc BA
1214 * After
1215 * newly dirtied b_dirty b_io b_more_io
1216 * =============> g fBAedc
1217 * |
1218 * +--> dequeue for IO
1219 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1220 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1221 unsigned long dirtied_before)
1222 {
1223 int moved;
1224 unsigned long time_expire_jif = dirtied_before;
1225
1226 assert_spin_locked(&wb->list_lock);
1227 list_splice_init(&wb->b_more_io, &wb->b_io);
1228 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1229 if (!work->for_sync)
1230 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1231 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1232 time_expire_jif);
1233 if (moved)
1234 wb_io_lists_populated(wb);
1235 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1236 }
1237
write_inode(struct inode * inode,struct writeback_control * wbc)1238 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1239 {
1240 int ret;
1241
1242 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1243 trace_writeback_write_inode_start(inode, wbc);
1244 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1245 trace_writeback_write_inode(inode, wbc);
1246 return ret;
1247 }
1248 return 0;
1249 }
1250
1251 /*
1252 * Wait for writeback on an inode to complete. Called with i_lock held.
1253 * Caller must make sure inode cannot go away when we drop i_lock.
1254 */
__inode_wait_for_writeback(struct inode * inode)1255 static void __inode_wait_for_writeback(struct inode *inode)
1256 __releases(inode->i_lock)
1257 __acquires(inode->i_lock)
1258 {
1259 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1260 wait_queue_head_t *wqh;
1261
1262 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1263 while (inode->i_state & I_SYNC) {
1264 spin_unlock(&inode->i_lock);
1265 __wait_on_bit(wqh, &wq, bit_wait,
1266 TASK_UNINTERRUPTIBLE);
1267 spin_lock(&inode->i_lock);
1268 }
1269 }
1270
1271 /*
1272 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1273 */
inode_wait_for_writeback(struct inode * inode)1274 void inode_wait_for_writeback(struct inode *inode)
1275 {
1276 spin_lock(&inode->i_lock);
1277 __inode_wait_for_writeback(inode);
1278 spin_unlock(&inode->i_lock);
1279 }
1280
1281 /*
1282 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1283 * held and drops it. It is aimed for callers not holding any inode reference
1284 * so once i_lock is dropped, inode can go away.
1285 */
inode_sleep_on_writeback(struct inode * inode)1286 static void inode_sleep_on_writeback(struct inode *inode)
1287 __releases(inode->i_lock)
1288 {
1289 DEFINE_WAIT(wait);
1290 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1291 int sleep;
1292
1293 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1294 sleep = inode->i_state & I_SYNC;
1295 spin_unlock(&inode->i_lock);
1296 if (sleep)
1297 schedule();
1298 finish_wait(wqh, &wait);
1299 }
1300
1301 /*
1302 * Find proper writeback list for the inode depending on its current state and
1303 * possibly also change of its state while we were doing writeback. Here we
1304 * handle things such as livelock prevention or fairness of writeback among
1305 * inodes. This function can be called only by flusher thread - noone else
1306 * processes all inodes in writeback lists and requeueing inodes behind flusher
1307 * thread's back can have unexpected consequences.
1308 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1309 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1310 struct writeback_control *wbc)
1311 {
1312 if (inode->i_state & I_FREEING)
1313 return;
1314
1315 /*
1316 * Sync livelock prevention. Each inode is tagged and synced in one
1317 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1318 * the dirty time to prevent enqueue and sync it again.
1319 */
1320 if ((inode->i_state & I_DIRTY) &&
1321 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1322 inode->dirtied_when = jiffies;
1323
1324 if (wbc->pages_skipped) {
1325 /*
1326 * writeback is not making progress due to locked
1327 * buffers. Skip this inode for now.
1328 */
1329 redirty_tail_locked(inode, wb);
1330 return;
1331 }
1332
1333 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1334 /*
1335 * We didn't write back all the pages. nfs_writepages()
1336 * sometimes bales out without doing anything.
1337 */
1338 if (wbc->nr_to_write <= 0) {
1339 /* Slice used up. Queue for next turn. */
1340 requeue_io(inode, wb);
1341 } else {
1342 /*
1343 * Writeback blocked by something other than
1344 * congestion. Delay the inode for some time to
1345 * avoid spinning on the CPU (100% iowait)
1346 * retrying writeback of the dirty page/inode
1347 * that cannot be performed immediately.
1348 */
1349 redirty_tail_locked(inode, wb);
1350 }
1351 } else if (inode->i_state & I_DIRTY) {
1352 /*
1353 * Filesystems can dirty the inode during writeback operations,
1354 * such as delayed allocation during submission or metadata
1355 * updates after data IO completion.
1356 */
1357 redirty_tail_locked(inode, wb);
1358 } else if (inode->i_state & I_DIRTY_TIME) {
1359 inode->dirtied_when = jiffies;
1360 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1361 inode->i_state &= ~I_SYNC_QUEUED;
1362 } else {
1363 /* The inode is clean. Remove from writeback lists. */
1364 inode_io_list_del_locked(inode, wb);
1365 }
1366 }
1367
1368 /*
1369 * Write out an inode and its dirty pages. Do not update the writeback list
1370 * linkage. That is left to the caller. The caller is also responsible for
1371 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1372 */
1373 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1374 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1375 {
1376 struct address_space *mapping = inode->i_mapping;
1377 long nr_to_write = wbc->nr_to_write;
1378 unsigned dirty;
1379 int ret;
1380
1381 WARN_ON(!(inode->i_state & I_SYNC));
1382
1383 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1384
1385 ret = do_writepages(mapping, wbc);
1386
1387 /*
1388 * Make sure to wait on the data before writing out the metadata.
1389 * This is important for filesystems that modify metadata on data
1390 * I/O completion. We don't do it for sync(2) writeback because it has a
1391 * separate, external IO completion path and ->sync_fs for guaranteeing
1392 * inode metadata is written back correctly.
1393 */
1394 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1395 int err = filemap_fdatawait(mapping);
1396 if (ret == 0)
1397 ret = err;
1398 }
1399
1400 /*
1401 * If the inode has dirty timestamps and we need to write them, call
1402 * mark_inode_dirty_sync() to notify the filesystem about it and to
1403 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1404 */
1405 if ((inode->i_state & I_DIRTY_TIME) &&
1406 (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1407 time_after(jiffies, inode->dirtied_time_when +
1408 dirtytime_expire_interval * HZ))) {
1409 trace_writeback_lazytime(inode);
1410 mark_inode_dirty_sync(inode);
1411 }
1412
1413 /*
1414 * Some filesystems may redirty the inode during the writeback
1415 * due to delalloc, clear dirty metadata flags right before
1416 * write_inode()
1417 */
1418 spin_lock(&inode->i_lock);
1419 dirty = inode->i_state & I_DIRTY;
1420 inode->i_state &= ~dirty;
1421
1422 /*
1423 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1424 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1425 * either they see the I_DIRTY bits cleared or we see the dirtied
1426 * inode.
1427 *
1428 * I_DIRTY_PAGES is always cleared together above even if @mapping
1429 * still has dirty pages. The flag is reinstated after smp_mb() if
1430 * necessary. This guarantees that either __mark_inode_dirty()
1431 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1432 */
1433 smp_mb();
1434
1435 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1436 inode->i_state |= I_DIRTY_PAGES;
1437
1438 spin_unlock(&inode->i_lock);
1439
1440 /* Don't write the inode if only I_DIRTY_PAGES was set */
1441 if (dirty & ~I_DIRTY_PAGES) {
1442 int err = write_inode(inode, wbc);
1443 if (ret == 0)
1444 ret = err;
1445 }
1446 trace_writeback_single_inode(inode, wbc, nr_to_write);
1447 return ret;
1448 }
1449
1450 /*
1451 * Write out an inode's dirty pages. Either the caller has an active reference
1452 * on the inode or the inode has I_WILL_FREE set.
1453 *
1454 * This function is designed to be called for writing back one inode which
1455 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1456 * and does more profound writeback list handling in writeback_sb_inodes().
1457 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1458 static int writeback_single_inode(struct inode *inode,
1459 struct writeback_control *wbc)
1460 {
1461 struct bdi_writeback *wb;
1462 int ret = 0;
1463
1464 spin_lock(&inode->i_lock);
1465 if (!atomic_read(&inode->i_count))
1466 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1467 else
1468 WARN_ON(inode->i_state & I_WILL_FREE);
1469
1470 if (inode->i_state & I_SYNC) {
1471 if (wbc->sync_mode != WB_SYNC_ALL)
1472 goto out;
1473 /*
1474 * It's a data-integrity sync. We must wait. Since callers hold
1475 * inode reference or inode has I_WILL_FREE set, it cannot go
1476 * away under us.
1477 */
1478 __inode_wait_for_writeback(inode);
1479 }
1480 WARN_ON(inode->i_state & I_SYNC);
1481 /*
1482 * Skip inode if it is clean and we have no outstanding writeback in
1483 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1484 * function since flusher thread may be doing for example sync in
1485 * parallel and if we move the inode, it could get skipped. So here we
1486 * make sure inode is on some writeback list and leave it there unless
1487 * we have completely cleaned the inode.
1488 */
1489 if (!(inode->i_state & I_DIRTY_ALL) &&
1490 (wbc->sync_mode != WB_SYNC_ALL ||
1491 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1492 goto out;
1493 inode->i_state |= I_SYNC;
1494 wbc_attach_and_unlock_inode(wbc, inode);
1495
1496 ret = __writeback_single_inode(inode, wbc);
1497
1498 wbc_detach_inode(wbc);
1499
1500 wb = inode_to_wb_and_lock_list(inode);
1501 spin_lock(&inode->i_lock);
1502 /*
1503 * If inode is clean, remove it from writeback lists. Otherwise don't
1504 * touch it. See comment above for explanation.
1505 */
1506 if (!(inode->i_state & I_DIRTY_ALL))
1507 inode_io_list_del_locked(inode, wb);
1508 spin_unlock(&wb->list_lock);
1509 inode_sync_complete(inode);
1510 out:
1511 spin_unlock(&inode->i_lock);
1512 return ret;
1513 }
1514
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1515 static long writeback_chunk_size(struct bdi_writeback *wb,
1516 struct wb_writeback_work *work)
1517 {
1518 long pages;
1519
1520 /*
1521 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1522 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1523 * here avoids calling into writeback_inodes_wb() more than once.
1524 *
1525 * The intended call sequence for WB_SYNC_ALL writeback is:
1526 *
1527 * wb_writeback()
1528 * writeback_sb_inodes() <== called only once
1529 * write_cache_pages() <== called once for each inode
1530 * (quickly) tag currently dirty pages
1531 * (maybe slowly) sync all tagged pages
1532 */
1533 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1534 pages = LONG_MAX;
1535 else {
1536 pages = min(wb->avg_write_bandwidth / 2,
1537 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1538 pages = min(pages, work->nr_pages);
1539 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1540 MIN_WRITEBACK_PAGES);
1541 }
1542
1543 return pages;
1544 }
1545
1546 /*
1547 * Write a portion of b_io inodes which belong to @sb.
1548 *
1549 * Return the number of pages and/or inodes written.
1550 *
1551 * NOTE! This is called with wb->list_lock held, and will
1552 * unlock and relock that for each inode it ends up doing
1553 * IO for.
1554 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1555 static long writeback_sb_inodes(struct super_block *sb,
1556 struct bdi_writeback *wb,
1557 struct wb_writeback_work *work)
1558 {
1559 struct writeback_control wbc = {
1560 .sync_mode = work->sync_mode,
1561 .tagged_writepages = work->tagged_writepages,
1562 .for_kupdate = work->for_kupdate,
1563 .for_background = work->for_background,
1564 .for_sync = work->for_sync,
1565 .range_cyclic = work->range_cyclic,
1566 .range_start = 0,
1567 .range_end = LLONG_MAX,
1568 };
1569 unsigned long start_time = jiffies;
1570 long write_chunk;
1571 long total_wrote = 0; /* count both pages and inodes */
1572
1573 while (!list_empty(&wb->b_io)) {
1574 struct inode *inode = wb_inode(wb->b_io.prev);
1575 struct bdi_writeback *tmp_wb;
1576 long wrote;
1577
1578 if (inode->i_sb != sb) {
1579 if (work->sb) {
1580 /*
1581 * We only want to write back data for this
1582 * superblock, move all inodes not belonging
1583 * to it back onto the dirty list.
1584 */
1585 redirty_tail(inode, wb);
1586 continue;
1587 }
1588
1589 /*
1590 * The inode belongs to a different superblock.
1591 * Bounce back to the caller to unpin this and
1592 * pin the next superblock.
1593 */
1594 break;
1595 }
1596
1597 /*
1598 * Don't bother with new inodes or inodes being freed, first
1599 * kind does not need periodic writeout yet, and for the latter
1600 * kind writeout is handled by the freer.
1601 */
1602 spin_lock(&inode->i_lock);
1603 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1604 redirty_tail_locked(inode, wb);
1605 spin_unlock(&inode->i_lock);
1606 continue;
1607 }
1608 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1609 /*
1610 * If this inode is locked for writeback and we are not
1611 * doing writeback-for-data-integrity, move it to
1612 * b_more_io so that writeback can proceed with the
1613 * other inodes on s_io.
1614 *
1615 * We'll have another go at writing back this inode
1616 * when we completed a full scan of b_io.
1617 */
1618 spin_unlock(&inode->i_lock);
1619 requeue_io(inode, wb);
1620 trace_writeback_sb_inodes_requeue(inode);
1621 continue;
1622 }
1623 spin_unlock(&wb->list_lock);
1624
1625 /*
1626 * We already requeued the inode if it had I_SYNC set and we
1627 * are doing WB_SYNC_NONE writeback. So this catches only the
1628 * WB_SYNC_ALL case.
1629 */
1630 if (inode->i_state & I_SYNC) {
1631 /* Wait for I_SYNC. This function drops i_lock... */
1632 inode_sleep_on_writeback(inode);
1633 /* Inode may be gone, start again */
1634 spin_lock(&wb->list_lock);
1635 continue;
1636 }
1637 inode->i_state |= I_SYNC;
1638 wbc_attach_and_unlock_inode(&wbc, inode);
1639
1640 write_chunk = writeback_chunk_size(wb, work);
1641 wbc.nr_to_write = write_chunk;
1642 wbc.pages_skipped = 0;
1643
1644 /*
1645 * We use I_SYNC to pin the inode in memory. While it is set
1646 * evict_inode() will wait so the inode cannot be freed.
1647 */
1648 __writeback_single_inode(inode, &wbc);
1649
1650 wbc_detach_inode(&wbc);
1651 work->nr_pages -= write_chunk - wbc.nr_to_write;
1652 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1653 wrote = wrote < 0 ? 0 : wrote;
1654 total_wrote += wrote;
1655
1656 if (need_resched()) {
1657 /*
1658 * We're trying to balance between building up a nice
1659 * long list of IOs to improve our merge rate, and
1660 * getting those IOs out quickly for anyone throttling
1661 * in balance_dirty_pages(). cond_resched() doesn't
1662 * unplug, so get our IOs out the door before we
1663 * give up the CPU.
1664 */
1665 blk_flush_plug(current);
1666 cond_resched();
1667 }
1668
1669 /*
1670 * Requeue @inode if still dirty. Be careful as @inode may
1671 * have been switched to another wb in the meantime.
1672 */
1673 tmp_wb = inode_to_wb_and_lock_list(inode);
1674 spin_lock(&inode->i_lock);
1675 if (!(inode->i_state & I_DIRTY_ALL))
1676 total_wrote++;
1677 requeue_inode(inode, tmp_wb, &wbc);
1678 inode_sync_complete(inode);
1679 spin_unlock(&inode->i_lock);
1680
1681 if (unlikely(tmp_wb != wb)) {
1682 spin_unlock(&tmp_wb->list_lock);
1683 spin_lock(&wb->list_lock);
1684 }
1685
1686 /*
1687 * bail out to wb_writeback() often enough to check
1688 * background threshold and other termination conditions.
1689 */
1690 if (total_wrote) {
1691 if (time_is_before_jiffies(start_time + HZ / 10UL))
1692 break;
1693 if (work->nr_pages <= 0)
1694 break;
1695 }
1696 }
1697 return total_wrote;
1698 }
1699
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1701 struct wb_writeback_work *work)
1702 {
1703 unsigned long start_time = jiffies;
1704 long wrote = 0;
1705
1706 while (!list_empty(&wb->b_io)) {
1707 struct inode *inode = wb_inode(wb->b_io.prev);
1708 struct super_block *sb = inode->i_sb;
1709
1710 if (!trylock_super(sb)) {
1711 /*
1712 * trylock_super() may fail consistently due to
1713 * s_umount being grabbed by someone else. Don't use
1714 * requeue_io() to avoid busy retrying the inode/sb.
1715 */
1716 redirty_tail(inode, wb);
1717 continue;
1718 }
1719 wrote += writeback_sb_inodes(sb, wb, work);
1720 up_read(&sb->s_umount);
1721
1722 /* refer to the same tests at the end of writeback_sb_inodes */
1723 if (wrote) {
1724 if (time_is_before_jiffies(start_time + HZ / 10UL))
1725 break;
1726 if (work->nr_pages <= 0)
1727 break;
1728 }
1729 }
1730 /* Leave any unwritten inodes on b_io */
1731 return wrote;
1732 }
1733
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1734 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1735 enum wb_reason reason)
1736 {
1737 struct wb_writeback_work work = {
1738 .nr_pages = nr_pages,
1739 .sync_mode = WB_SYNC_NONE,
1740 .range_cyclic = 1,
1741 .reason = reason,
1742 };
1743 struct blk_plug plug;
1744
1745 blk_start_plug(&plug);
1746 spin_lock(&wb->list_lock);
1747 if (list_empty(&wb->b_io))
1748 queue_io(wb, &work, jiffies);
1749 __writeback_inodes_wb(wb, &work);
1750 spin_unlock(&wb->list_lock);
1751 blk_finish_plug(&plug);
1752
1753 return nr_pages - work.nr_pages;
1754 }
1755
1756 /*
1757 * Explicit flushing or periodic writeback of "old" data.
1758 *
1759 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1760 * dirtying-time in the inode's address_space. So this periodic writeback code
1761 * just walks the superblock inode list, writing back any inodes which are
1762 * older than a specific point in time.
1763 *
1764 * Try to run once per dirty_writeback_interval. But if a writeback event
1765 * takes longer than a dirty_writeback_interval interval, then leave a
1766 * one-second gap.
1767 *
1768 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1769 * all dirty pages if they are all attached to "old" mappings.
1770 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1771 static long wb_writeback(struct bdi_writeback *wb,
1772 struct wb_writeback_work *work)
1773 {
1774 unsigned long wb_start = jiffies;
1775 long nr_pages = work->nr_pages;
1776 unsigned long dirtied_before = jiffies;
1777 struct inode *inode;
1778 long progress;
1779 struct blk_plug plug;
1780
1781 blk_start_plug(&plug);
1782 spin_lock(&wb->list_lock);
1783 for (;;) {
1784 /*
1785 * Stop writeback when nr_pages has been consumed
1786 */
1787 if (work->nr_pages <= 0)
1788 break;
1789
1790 /*
1791 * Background writeout and kupdate-style writeback may
1792 * run forever. Stop them if there is other work to do
1793 * so that e.g. sync can proceed. They'll be restarted
1794 * after the other works are all done.
1795 */
1796 if ((work->for_background || work->for_kupdate) &&
1797 !list_empty(&wb->work_list))
1798 break;
1799
1800 /*
1801 * For background writeout, stop when we are below the
1802 * background dirty threshold
1803 */
1804 if (work->for_background && !wb_over_bg_thresh(wb))
1805 break;
1806
1807 /*
1808 * Kupdate and background works are special and we want to
1809 * include all inodes that need writing. Livelock avoidance is
1810 * handled by these works yielding to any other work so we are
1811 * safe.
1812 */
1813 if (work->for_kupdate) {
1814 dirtied_before = jiffies -
1815 msecs_to_jiffies(dirty_expire_interval * 10);
1816 } else if (work->for_background)
1817 dirtied_before = jiffies;
1818
1819 trace_writeback_start(wb, work);
1820 if (list_empty(&wb->b_io))
1821 queue_io(wb, work, dirtied_before);
1822 if (work->sb)
1823 progress = writeback_sb_inodes(work->sb, wb, work);
1824 else
1825 progress = __writeback_inodes_wb(wb, work);
1826 trace_writeback_written(wb, work);
1827
1828 wb_update_bandwidth(wb, wb_start);
1829
1830 /*
1831 * Did we write something? Try for more
1832 *
1833 * Dirty inodes are moved to b_io for writeback in batches.
1834 * The completion of the current batch does not necessarily
1835 * mean the overall work is done. So we keep looping as long
1836 * as made some progress on cleaning pages or inodes.
1837 */
1838 if (progress)
1839 continue;
1840 /*
1841 * No more inodes for IO, bail
1842 */
1843 if (list_empty(&wb->b_more_io))
1844 break;
1845 /*
1846 * Nothing written. Wait for some inode to
1847 * become available for writeback. Otherwise
1848 * we'll just busyloop.
1849 */
1850 trace_writeback_wait(wb, work);
1851 inode = wb_inode(wb->b_more_io.prev);
1852 spin_lock(&inode->i_lock);
1853 spin_unlock(&wb->list_lock);
1854 /* This function drops i_lock... */
1855 inode_sleep_on_writeback(inode);
1856 spin_lock(&wb->list_lock);
1857 }
1858 spin_unlock(&wb->list_lock);
1859 blk_finish_plug(&plug);
1860
1861 return nr_pages - work->nr_pages;
1862 }
1863
1864 /*
1865 * Return the next wb_writeback_work struct that hasn't been processed yet.
1866 */
get_next_work_item(struct bdi_writeback * wb)1867 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1868 {
1869 struct wb_writeback_work *work = NULL;
1870
1871 spin_lock_bh(&wb->work_lock);
1872 if (!list_empty(&wb->work_list)) {
1873 work = list_entry(wb->work_list.next,
1874 struct wb_writeback_work, list);
1875 list_del_init(&work->list);
1876 }
1877 spin_unlock_bh(&wb->work_lock);
1878 return work;
1879 }
1880
wb_check_background_flush(struct bdi_writeback * wb)1881 static long wb_check_background_flush(struct bdi_writeback *wb)
1882 {
1883 if (wb_over_bg_thresh(wb)) {
1884
1885 struct wb_writeback_work work = {
1886 .nr_pages = LONG_MAX,
1887 .sync_mode = WB_SYNC_NONE,
1888 .for_background = 1,
1889 .range_cyclic = 1,
1890 .reason = WB_REASON_BACKGROUND,
1891 };
1892
1893 return wb_writeback(wb, &work);
1894 }
1895
1896 return 0;
1897 }
1898
wb_check_old_data_flush(struct bdi_writeback * wb)1899 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1900 {
1901 unsigned long expired;
1902 long nr_pages;
1903
1904 /*
1905 * When set to zero, disable periodic writeback
1906 */
1907 if (!dirty_writeback_interval)
1908 return 0;
1909
1910 expired = wb->last_old_flush +
1911 msecs_to_jiffies(dirty_writeback_interval * 10);
1912 if (time_before(jiffies, expired))
1913 return 0;
1914
1915 wb->last_old_flush = jiffies;
1916 nr_pages = get_nr_dirty_pages();
1917
1918 if (nr_pages) {
1919 struct wb_writeback_work work = {
1920 .nr_pages = nr_pages,
1921 .sync_mode = WB_SYNC_NONE,
1922 .for_kupdate = 1,
1923 .range_cyclic = 1,
1924 .reason = WB_REASON_PERIODIC,
1925 };
1926
1927 return wb_writeback(wb, &work);
1928 }
1929
1930 return 0;
1931 }
1932
wb_check_start_all(struct bdi_writeback * wb)1933 static long wb_check_start_all(struct bdi_writeback *wb)
1934 {
1935 long nr_pages;
1936
1937 if (!test_bit(WB_start_all, &wb->state))
1938 return 0;
1939
1940 nr_pages = get_nr_dirty_pages();
1941 if (nr_pages) {
1942 struct wb_writeback_work work = {
1943 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1944 .sync_mode = WB_SYNC_NONE,
1945 .range_cyclic = 1,
1946 .reason = wb->start_all_reason,
1947 };
1948
1949 nr_pages = wb_writeback(wb, &work);
1950 }
1951
1952 clear_bit(WB_start_all, &wb->state);
1953 return nr_pages;
1954 }
1955
1956
1957 /*
1958 * Retrieve work items and do the writeback they describe
1959 */
wb_do_writeback(struct bdi_writeback * wb)1960 static long wb_do_writeback(struct bdi_writeback *wb)
1961 {
1962 struct wb_writeback_work *work;
1963 long wrote = 0;
1964
1965 set_bit(WB_writeback_running, &wb->state);
1966 while ((work = get_next_work_item(wb)) != NULL) {
1967 trace_writeback_exec(wb, work);
1968 wrote += wb_writeback(wb, work);
1969 finish_writeback_work(wb, work);
1970 }
1971
1972 /*
1973 * Check for a flush-everything request
1974 */
1975 wrote += wb_check_start_all(wb);
1976
1977 /*
1978 * Check for periodic writeback, kupdated() style
1979 */
1980 wrote += wb_check_old_data_flush(wb);
1981 wrote += wb_check_background_flush(wb);
1982 clear_bit(WB_writeback_running, &wb->state);
1983
1984 return wrote;
1985 }
1986
1987 /*
1988 * Handle writeback of dirty data for the device backed by this bdi. Also
1989 * reschedules periodically and does kupdated style flushing.
1990 */
wb_workfn(struct work_struct * work)1991 void wb_workfn(struct work_struct *work)
1992 {
1993 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1994 struct bdi_writeback, dwork);
1995 long pages_written;
1996
1997 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1998 current->flags |= PF_SWAPWRITE;
1999
2000 if (likely(!current_is_workqueue_rescuer() ||
2001 !test_bit(WB_registered, &wb->state))) {
2002 /*
2003 * The normal path. Keep writing back @wb until its
2004 * work_list is empty. Note that this path is also taken
2005 * if @wb is shutting down even when we're running off the
2006 * rescuer as work_list needs to be drained.
2007 */
2008 do {
2009 pages_written = wb_do_writeback(wb);
2010 trace_writeback_pages_written(pages_written);
2011 } while (!list_empty(&wb->work_list));
2012 } else {
2013 /*
2014 * bdi_wq can't get enough workers and we're running off
2015 * the emergency worker. Don't hog it. Hopefully, 1024 is
2016 * enough for efficient IO.
2017 */
2018 pages_written = writeback_inodes_wb(wb, 1024,
2019 WB_REASON_FORKER_THREAD);
2020 trace_writeback_pages_written(pages_written);
2021 }
2022
2023 if (!list_empty(&wb->work_list))
2024 wb_wakeup(wb);
2025 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2026 wb_wakeup_delayed(wb);
2027
2028 current->flags &= ~PF_SWAPWRITE;
2029 }
2030
2031 /*
2032 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2033 * write back the whole world.
2034 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2035 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2036 enum wb_reason reason)
2037 {
2038 struct bdi_writeback *wb;
2039
2040 if (!bdi_has_dirty_io(bdi))
2041 return;
2042
2043 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2044 wb_start_writeback(wb, reason);
2045 }
2046
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2047 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2048 enum wb_reason reason)
2049 {
2050 rcu_read_lock();
2051 __wakeup_flusher_threads_bdi(bdi, reason);
2052 rcu_read_unlock();
2053 }
2054
2055 /*
2056 * Wakeup the flusher threads to start writeback of all currently dirty pages
2057 */
wakeup_flusher_threads(enum wb_reason reason)2058 void wakeup_flusher_threads(enum wb_reason reason)
2059 {
2060 struct backing_dev_info *bdi;
2061
2062 /*
2063 * If we are expecting writeback progress we must submit plugged IO.
2064 */
2065 if (blk_needs_flush_plug(current))
2066 blk_schedule_flush_plug(current);
2067
2068 rcu_read_lock();
2069 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2070 __wakeup_flusher_threads_bdi(bdi, reason);
2071 rcu_read_unlock();
2072 }
2073
2074 /*
2075 * Wake up bdi's periodically to make sure dirtytime inodes gets
2076 * written back periodically. We deliberately do *not* check the
2077 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2078 * kernel to be constantly waking up once there are any dirtytime
2079 * inodes on the system. So instead we define a separate delayed work
2080 * function which gets called much more rarely. (By default, only
2081 * once every 12 hours.)
2082 *
2083 * If there is any other write activity going on in the file system,
2084 * this function won't be necessary. But if the only thing that has
2085 * happened on the file system is a dirtytime inode caused by an atime
2086 * update, we need this infrastructure below to make sure that inode
2087 * eventually gets pushed out to disk.
2088 */
2089 static void wakeup_dirtytime_writeback(struct work_struct *w);
2090 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2091
wakeup_dirtytime_writeback(struct work_struct * w)2092 static void wakeup_dirtytime_writeback(struct work_struct *w)
2093 {
2094 struct backing_dev_info *bdi;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2098 struct bdi_writeback *wb;
2099
2100 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2101 if (!list_empty(&wb->b_dirty_time))
2102 wb_wakeup(wb);
2103 }
2104 rcu_read_unlock();
2105 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2106 }
2107
start_dirtytime_writeback(void)2108 static int __init start_dirtytime_writeback(void)
2109 {
2110 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2111 return 0;
2112 }
2113 __initcall(start_dirtytime_writeback);
2114
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2115 int dirtytime_interval_handler(struct ctl_table *table, int write,
2116 void __user *buffer, size_t *lenp, loff_t *ppos)
2117 {
2118 int ret;
2119
2120 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2121 if (ret == 0 && write)
2122 mod_delayed_work(system_wq, &dirtytime_work, 0);
2123 return ret;
2124 }
2125
2126 /**
2127 * __mark_inode_dirty - internal function
2128 *
2129 * @inode: inode to mark
2130 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131 *
2132 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133 * mark_inode_dirty_sync.
2134 *
2135 * Put the inode on the super block's dirty list.
2136 *
2137 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138 * dirty list only if it is hashed or if it refers to a blockdev.
2139 * If it was not hashed, it will never be added to the dirty list
2140 * even if it is later hashed, as it will have been marked dirty already.
2141 *
2142 * In short, make sure you hash any inodes _before_ you start marking
2143 * them dirty.
2144 *
2145 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2147 * the kernel-internal blockdev inode represents the dirtying time of the
2148 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2149 * page->mapping->host, so the page-dirtying time is recorded in the internal
2150 * blockdev inode.
2151 */
__mark_inode_dirty(struct inode * inode,int flags)2152 void __mark_inode_dirty(struct inode *inode, int flags)
2153 {
2154 struct super_block *sb = inode->i_sb;
2155 int dirtytime;
2156
2157 trace_writeback_mark_inode_dirty(inode, flags);
2158
2159 /*
2160 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161 * dirty the inode itself
2162 */
2163 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2164 trace_writeback_dirty_inode_start(inode, flags);
2165
2166 if (sb->s_op->dirty_inode)
2167 sb->s_op->dirty_inode(inode, flags);
2168
2169 trace_writeback_dirty_inode(inode, flags);
2170 }
2171 if (flags & I_DIRTY_INODE)
2172 flags &= ~I_DIRTY_TIME;
2173 dirtytime = flags & I_DIRTY_TIME;
2174
2175 /*
2176 * Paired with smp_mb() in __writeback_single_inode() for the
2177 * following lockless i_state test. See there for details.
2178 */
2179 smp_mb();
2180
2181 if (((inode->i_state & flags) == flags) ||
2182 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2183 return;
2184
2185 spin_lock(&inode->i_lock);
2186 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2187 goto out_unlock_inode;
2188 if ((inode->i_state & flags) != flags) {
2189 const int was_dirty = inode->i_state & I_DIRTY;
2190
2191 inode_attach_wb(inode, NULL);
2192
2193 if (flags & I_DIRTY_INODE)
2194 inode->i_state &= ~I_DIRTY_TIME;
2195 inode->i_state |= flags;
2196
2197 /*
2198 * If the inode is queued for writeback by flush worker, just
2199 * update its dirty state. Once the flush worker is done with
2200 * the inode it will place it on the appropriate superblock
2201 * list, based upon its state.
2202 */
2203 if (inode->i_state & I_SYNC_QUEUED)
2204 goto out_unlock_inode;
2205
2206 /*
2207 * Only add valid (hashed) inodes to the superblock's
2208 * dirty list. Add blockdev inodes as well.
2209 */
2210 if (!S_ISBLK(inode->i_mode)) {
2211 if (inode_unhashed(inode))
2212 goto out_unlock_inode;
2213 }
2214 if (inode->i_state & I_FREEING)
2215 goto out_unlock_inode;
2216
2217 /*
2218 * If the inode was already on b_dirty/b_io/b_more_io, don't
2219 * reposition it (that would break b_dirty time-ordering).
2220 */
2221 if (!was_dirty) {
2222 struct bdi_writeback *wb;
2223 struct list_head *dirty_list;
2224 bool wakeup_bdi = false;
2225
2226 wb = locked_inode_to_wb_and_lock_list(inode);
2227
2228 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2229 !test_bit(WB_registered, &wb->state),
2230 "bdi-%s not registered\n", wb->bdi->name);
2231
2232 inode->dirtied_when = jiffies;
2233 if (dirtytime)
2234 inode->dirtied_time_when = jiffies;
2235
2236 if (inode->i_state & I_DIRTY)
2237 dirty_list = &wb->b_dirty;
2238 else
2239 dirty_list = &wb->b_dirty_time;
2240
2241 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2242 dirty_list);
2243
2244 spin_unlock(&wb->list_lock);
2245 trace_writeback_dirty_inode_enqueue(inode);
2246
2247 /*
2248 * If this is the first dirty inode for this bdi,
2249 * we have to wake-up the corresponding bdi thread
2250 * to make sure background write-back happens
2251 * later.
2252 */
2253 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2254 wb_wakeup_delayed(wb);
2255 return;
2256 }
2257 }
2258 out_unlock_inode:
2259 spin_unlock(&inode->i_lock);
2260 }
2261 EXPORT_SYMBOL(__mark_inode_dirty);
2262
2263 /*
2264 * The @s_sync_lock is used to serialise concurrent sync operations
2265 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2266 * Concurrent callers will block on the s_sync_lock rather than doing contending
2267 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2268 * has been issued up to the time this function is enter is guaranteed to be
2269 * completed by the time we have gained the lock and waited for all IO that is
2270 * in progress regardless of the order callers are granted the lock.
2271 */
wait_sb_inodes(struct super_block * sb)2272 static void wait_sb_inodes(struct super_block *sb)
2273 {
2274 LIST_HEAD(sync_list);
2275
2276 /*
2277 * We need to be protected against the filesystem going from
2278 * r/o to r/w or vice versa.
2279 */
2280 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2281
2282 mutex_lock(&sb->s_sync_lock);
2283
2284 /*
2285 * Splice the writeback list onto a temporary list to avoid waiting on
2286 * inodes that have started writeback after this point.
2287 *
2288 * Use rcu_read_lock() to keep the inodes around until we have a
2289 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2290 * the local list because inodes can be dropped from either by writeback
2291 * completion.
2292 */
2293 rcu_read_lock();
2294 spin_lock_irq(&sb->s_inode_wblist_lock);
2295 list_splice_init(&sb->s_inodes_wb, &sync_list);
2296
2297 /*
2298 * Data integrity sync. Must wait for all pages under writeback, because
2299 * there may have been pages dirtied before our sync call, but which had
2300 * writeout started before we write it out. In which case, the inode
2301 * may not be on the dirty list, but we still have to wait for that
2302 * writeout.
2303 */
2304 while (!list_empty(&sync_list)) {
2305 struct inode *inode = list_first_entry(&sync_list, struct inode,
2306 i_wb_list);
2307 struct address_space *mapping = inode->i_mapping;
2308
2309 /*
2310 * Move each inode back to the wb list before we drop the lock
2311 * to preserve consistency between i_wb_list and the mapping
2312 * writeback tag. Writeback completion is responsible to remove
2313 * the inode from either list once the writeback tag is cleared.
2314 */
2315 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2316
2317 /*
2318 * The mapping can appear untagged while still on-list since we
2319 * do not have the mapping lock. Skip it here, wb completion
2320 * will remove it.
2321 */
2322 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2323 continue;
2324
2325 spin_unlock_irq(&sb->s_inode_wblist_lock);
2326
2327 spin_lock(&inode->i_lock);
2328 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2329 spin_unlock(&inode->i_lock);
2330
2331 spin_lock_irq(&sb->s_inode_wblist_lock);
2332 continue;
2333 }
2334 __iget(inode);
2335 spin_unlock(&inode->i_lock);
2336 rcu_read_unlock();
2337
2338 /*
2339 * We keep the error status of individual mapping so that
2340 * applications can catch the writeback error using fsync(2).
2341 * See filemap_fdatawait_keep_errors() for details.
2342 */
2343 filemap_fdatawait_keep_errors(mapping);
2344
2345 cond_resched();
2346
2347 iput(inode);
2348
2349 rcu_read_lock();
2350 spin_lock_irq(&sb->s_inode_wblist_lock);
2351 }
2352 spin_unlock_irq(&sb->s_inode_wblist_lock);
2353 rcu_read_unlock();
2354 mutex_unlock(&sb->s_sync_lock);
2355 }
2356
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2357 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2358 enum wb_reason reason, bool skip_if_busy)
2359 {
2360 DEFINE_WB_COMPLETION_ONSTACK(done);
2361 struct wb_writeback_work work = {
2362 .sb = sb,
2363 .sync_mode = WB_SYNC_NONE,
2364 .tagged_writepages = 1,
2365 .done = &done,
2366 .nr_pages = nr,
2367 .reason = reason,
2368 };
2369 struct backing_dev_info *bdi = sb->s_bdi;
2370
2371 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2372 return;
2373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374
2375 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2376 wb_wait_for_completion(bdi, &done);
2377 }
2378
2379 /**
2380 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2381 * @sb: the superblock
2382 * @nr: the number of pages to write
2383 * @reason: reason why some writeback work initiated
2384 *
2385 * Start writeback on some inodes on this super_block. No guarantees are made
2386 * on how many (if any) will be written, and this function does not wait
2387 * for IO completion of submitted IO.
2388 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2389 void writeback_inodes_sb_nr(struct super_block *sb,
2390 unsigned long nr,
2391 enum wb_reason reason)
2392 {
2393 __writeback_inodes_sb_nr(sb, nr, reason, false);
2394 }
2395 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2396
2397 /**
2398 * writeback_inodes_sb - writeback dirty inodes from given super_block
2399 * @sb: the superblock
2400 * @reason: reason why some writeback work was initiated
2401 *
2402 * Start writeback on some inodes on this super_block. No guarantees are made
2403 * on how many (if any) will be written, and this function does not wait
2404 * for IO completion of submitted IO.
2405 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2406 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2407 {
2408 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2409 }
2410 EXPORT_SYMBOL(writeback_inodes_sb);
2411
2412 /**
2413 * try_to_writeback_inodes_sb - try to start writeback if none underway
2414 * @sb: the superblock
2415 * @reason: reason why some writeback work was initiated
2416 *
2417 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2418 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2419 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2420 {
2421 if (!down_read_trylock(&sb->s_umount))
2422 return;
2423
2424 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2425 up_read(&sb->s_umount);
2426 }
2427 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2428
2429 /**
2430 * sync_inodes_sb - sync sb inode pages
2431 * @sb: the superblock
2432 *
2433 * This function writes and waits on any dirty inode belonging to this
2434 * super_block.
2435 */
sync_inodes_sb(struct super_block * sb)2436 void sync_inodes_sb(struct super_block *sb)
2437 {
2438 DEFINE_WB_COMPLETION_ONSTACK(done);
2439 struct wb_writeback_work work = {
2440 .sb = sb,
2441 .sync_mode = WB_SYNC_ALL,
2442 .nr_pages = LONG_MAX,
2443 .range_cyclic = 0,
2444 .done = &done,
2445 .reason = WB_REASON_SYNC,
2446 .for_sync = 1,
2447 };
2448 struct backing_dev_info *bdi = sb->s_bdi;
2449
2450 /*
2451 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2452 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2453 * bdi_has_dirty() need to be written out too.
2454 */
2455 if (bdi == &noop_backing_dev_info)
2456 return;
2457 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2458
2459 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2460 bdi_down_write_wb_switch_rwsem(bdi);
2461 bdi_split_work_to_wbs(bdi, &work, false);
2462 wb_wait_for_completion(bdi, &done);
2463 bdi_up_write_wb_switch_rwsem(bdi);
2464
2465 wait_sb_inodes(sb);
2466 }
2467 EXPORT_SYMBOL(sync_inodes_sb);
2468
2469 /**
2470 * write_inode_now - write an inode to disk
2471 * @inode: inode to write to disk
2472 * @sync: whether the write should be synchronous or not
2473 *
2474 * This function commits an inode to disk immediately if it is dirty. This is
2475 * primarily needed by knfsd.
2476 *
2477 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2478 */
write_inode_now(struct inode * inode,int sync)2479 int write_inode_now(struct inode *inode, int sync)
2480 {
2481 struct writeback_control wbc = {
2482 .nr_to_write = LONG_MAX,
2483 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2484 .range_start = 0,
2485 .range_end = LLONG_MAX,
2486 };
2487
2488 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2489 wbc.nr_to_write = 0;
2490
2491 might_sleep();
2492 return writeback_single_inode(inode, &wbc);
2493 }
2494 EXPORT_SYMBOL(write_inode_now);
2495
2496 /**
2497 * sync_inode - write an inode and its pages to disk.
2498 * @inode: the inode to sync
2499 * @wbc: controls the writeback mode
2500 *
2501 * sync_inode() will write an inode and its pages to disk. It will also
2502 * correctly update the inode on its superblock's dirty inode lists and will
2503 * update inode->i_state.
2504 *
2505 * The caller must have a ref on the inode.
2506 */
sync_inode(struct inode * inode,struct writeback_control * wbc)2507 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2508 {
2509 return writeback_single_inode(inode, wbc);
2510 }
2511 EXPORT_SYMBOL(sync_inode);
2512
2513 /**
2514 * sync_inode_metadata - write an inode to disk
2515 * @inode: the inode to sync
2516 * @wait: wait for I/O to complete.
2517 *
2518 * Write an inode to disk and adjust its dirty state after completion.
2519 *
2520 * Note: only writes the actual inode, no associated data or other metadata.
2521 */
sync_inode_metadata(struct inode * inode,int wait)2522 int sync_inode_metadata(struct inode *inode, int wait)
2523 {
2524 struct writeback_control wbc = {
2525 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2526 .nr_to_write = 0, /* metadata-only */
2527 };
2528
2529 return sync_inode(inode, &wbc);
2530 }
2531 EXPORT_SYMBOL(sync_inode_metadata);
2532