1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mm.h>
18 #include <linux/mount.h>
19 #include <linux/fs.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 #include <linux/backing-dev.h>
30
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45
46 /**
47 * gfs2_llseek - seek to a location in a file
48 * @file: the file
49 * @offset: the offset
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51 *
52 * SEEK_END requires the glock for the file because it references the
53 * file's size.
54 *
55 * Returns: The new offset, or errno
56 */
57
gfs2_llseek(struct file * file,loff_t offset,int whence)58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 struct gfs2_holder i_gh;
62 loff_t error;
63
64 switch (whence) {
65 case SEEK_END:
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 &i_gh);
68 if (!error) {
69 error = generic_file_llseek(file, offset, whence);
70 gfs2_glock_dq_uninit(&i_gh);
71 }
72 break;
73
74 case SEEK_DATA:
75 error = gfs2_seek_data(file, offset);
76 break;
77
78 case SEEK_HOLE:
79 error = gfs2_seek_hole(file, offset);
80 break;
81
82 case SEEK_CUR:
83 case SEEK_SET:
84 /*
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
87 */
88 error = generic_file_llseek(file, offset, whence);
89 break;
90 default:
91 error = -EINVAL;
92 }
93
94 return error;
95 }
96
97 /**
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
101 *
102 * Returns: errno
103 */
104
gfs2_readdir(struct file * file,struct dir_context * ctx)105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 struct inode *dir = file->f_mapping->host;
108 struct gfs2_inode *dip = GFS2_I(dir);
109 struct gfs2_holder d_gh;
110 int error;
111
112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 if (error)
114 return error;
115
116 error = gfs2_dir_read(dir, ctx, &file->f_ra);
117
118 gfs2_glock_dq_uninit(&d_gh);
119
120 return error;
121 }
122
123 /**
124 * fsflag_gfs2flag
125 *
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
128 */
129 static struct {
130 u32 fsflag;
131 u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 {FS_SYNC_FL, GFS2_DIF_SYNC},
134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 {FS_INDEX_FL, GFS2_DIF_EXHASH},
138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141
gfs2_get_flags(struct file * filp,u32 __user * ptr)142 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
143 {
144 struct inode *inode = file_inode(filp);
145 struct gfs2_inode *ip = GFS2_I(inode);
146 struct gfs2_holder gh;
147 int i, error;
148 u32 gfsflags, fsflags = 0;
149
150 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
151 error = gfs2_glock_nq(&gh);
152 if (error)
153 goto out_uninit;
154
155 gfsflags = ip->i_diskflags;
156 if (S_ISDIR(inode->i_mode))
157 gfsflags &= ~GFS2_DIF_JDATA;
158 else
159 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
160 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
161 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
162 fsflags |= fsflag_gfs2flag[i].fsflag;
163
164 if (put_user(fsflags, ptr))
165 error = -EFAULT;
166
167 gfs2_glock_dq(&gh);
168 out_uninit:
169 gfs2_holder_uninit(&gh);
170 return error;
171 }
172
gfs2_set_inode_flags(struct inode * inode)173 void gfs2_set_inode_flags(struct inode *inode)
174 {
175 struct gfs2_inode *ip = GFS2_I(inode);
176 unsigned int flags = inode->i_flags;
177
178 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
179 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
180 flags |= S_NOSEC;
181 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
182 flags |= S_IMMUTABLE;
183 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
184 flags |= S_APPEND;
185 if (ip->i_diskflags & GFS2_DIF_NOATIME)
186 flags |= S_NOATIME;
187 if (ip->i_diskflags & GFS2_DIF_SYNC)
188 flags |= S_SYNC;
189 inode->i_flags = flags;
190 }
191
192 /* Flags that can be set by user space */
193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
194 GFS2_DIF_IMMUTABLE| \
195 GFS2_DIF_APPENDONLY| \
196 GFS2_DIF_NOATIME| \
197 GFS2_DIF_SYNC| \
198 GFS2_DIF_TOPDIR| \
199 GFS2_DIF_INHERIT_JDATA)
200
201 /**
202 * do_gfs2_set_flags - set flags on an inode
203 * @filp: file pointer
204 * @reqflags: The flags to set
205 * @mask: Indicates which flags are valid
206 *
207 */
do_gfs2_set_flags(struct file * filp,u32 reqflags,u32 mask)208 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
209 {
210 struct inode *inode = file_inode(filp);
211 struct gfs2_inode *ip = GFS2_I(inode);
212 struct gfs2_sbd *sdp = GFS2_SB(inode);
213 struct buffer_head *bh;
214 struct gfs2_holder gh;
215 int error;
216 u32 new_flags, flags;
217
218 error = mnt_want_write_file(filp);
219 if (error)
220 return error;
221
222 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
223 if (error)
224 goto out_drop_write;
225
226 error = -EACCES;
227 if (!inode_owner_or_capable(inode))
228 goto out;
229
230 error = 0;
231 flags = ip->i_diskflags;
232 new_flags = (flags & ~mask) | (reqflags & mask);
233 if ((new_flags ^ flags) == 0)
234 goto out;
235
236 error = -EPERM;
237 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
238 goto out;
239 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
240 goto out;
241 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
242 !capable(CAP_LINUX_IMMUTABLE))
243 goto out;
244 if (!IS_IMMUTABLE(inode)) {
245 error = gfs2_permission(inode, MAY_WRITE);
246 if (error)
247 goto out;
248 }
249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
250 if (new_flags & GFS2_DIF_JDATA)
251 gfs2_log_flush(sdp, ip->i_gl,
252 GFS2_LOG_HEAD_FLUSH_NORMAL |
253 GFS2_LFC_SET_FLAGS);
254 error = filemap_fdatawrite(inode->i_mapping);
255 if (error)
256 goto out;
257 error = filemap_fdatawait(inode->i_mapping);
258 if (error)
259 goto out;
260 if (new_flags & GFS2_DIF_JDATA)
261 gfs2_ordered_del_inode(ip);
262 }
263 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
264 if (error)
265 goto out;
266 error = gfs2_meta_inode_buffer(ip, &bh);
267 if (error)
268 goto out_trans_end;
269 inode->i_ctime = current_time(inode);
270 gfs2_trans_add_meta(ip->i_gl, bh);
271 ip->i_diskflags = new_flags;
272 gfs2_dinode_out(ip, bh->b_data);
273 brelse(bh);
274 gfs2_set_inode_flags(inode);
275 gfs2_set_aops(inode);
276 out_trans_end:
277 gfs2_trans_end(sdp);
278 out:
279 gfs2_glock_dq_uninit(&gh);
280 out_drop_write:
281 mnt_drop_write_file(filp);
282 return error;
283 }
284
gfs2_set_flags(struct file * filp,u32 __user * ptr)285 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
286 {
287 struct inode *inode = file_inode(filp);
288 u32 fsflags, gfsflags = 0;
289 u32 mask;
290 int i;
291
292 if (get_user(fsflags, ptr))
293 return -EFAULT;
294
295 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
296 if (fsflags & fsflag_gfs2flag[i].fsflag) {
297 fsflags &= ~fsflag_gfs2flag[i].fsflag;
298 gfsflags |= fsflag_gfs2flag[i].gfsflag;
299 }
300 }
301 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
302 return -EINVAL;
303
304 mask = GFS2_FLAGS_USER_SET;
305 if (S_ISDIR(inode->i_mode)) {
306 mask &= ~GFS2_DIF_JDATA;
307 } else {
308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
309 if (gfsflags & GFS2_DIF_TOPDIR)
310 return -EINVAL;
311 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
312 }
313
314 return do_gfs2_set_flags(filp, gfsflags, mask);
315 }
316
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)317 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
318 {
319 switch(cmd) {
320 case FS_IOC_GETFLAGS:
321 return gfs2_get_flags(filp, (u32 __user *)arg);
322 case FS_IOC_SETFLAGS:
323 return gfs2_set_flags(filp, (u32 __user *)arg);
324 case FITRIM:
325 return gfs2_fitrim(filp, (void __user *)arg);
326 }
327 return -ENOTTY;
328 }
329
330 /**
331 * gfs2_size_hint - Give a hint to the size of a write request
332 * @filep: The struct file
333 * @offset: The file offset of the write
334 * @size: The length of the write
335 *
336 * When we are about to do a write, this function records the total
337 * write size in order to provide a suitable hint to the lower layers
338 * about how many blocks will be required.
339 *
340 */
341
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)342 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
343 {
344 struct inode *inode = file_inode(filep);
345 struct gfs2_sbd *sdp = GFS2_SB(inode);
346 struct gfs2_inode *ip = GFS2_I(inode);
347 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
348 int hint = min_t(size_t, INT_MAX, blks);
349
350 if (hint > atomic_read(&ip->i_res.rs_sizehint))
351 atomic_set(&ip->i_res.rs_sizehint, hint);
352 }
353
354 /**
355 * gfs2_allocate_page_backing - Use bmap to allocate blocks
356 * @page: The (locked) page to allocate backing for
357 *
358 * We try to allocate all the blocks required for the page in
359 * one go. This might fail for various reasons, so we keep
360 * trying until all the blocks to back this page are allocated.
361 * If some of the blocks are already allocated, thats ok too.
362 */
363
gfs2_allocate_page_backing(struct page * page)364 static int gfs2_allocate_page_backing(struct page *page)
365 {
366 struct inode *inode = page->mapping->host;
367 struct buffer_head bh;
368 unsigned long size = PAGE_SIZE;
369 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
370
371 do {
372 bh.b_state = 0;
373 bh.b_size = size;
374 gfs2_block_map(inode, lblock, &bh, 1);
375 if (!buffer_mapped(&bh))
376 return -EIO;
377 size -= bh.b_size;
378 lblock += (bh.b_size >> inode->i_blkbits);
379 } while(size > 0);
380 return 0;
381 }
382
383 /**
384 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
385 * @vma: The virtual memory area
386 * @vmf: The virtual memory fault containing the page to become writable
387 *
388 * When the page becomes writable, we need to ensure that we have
389 * blocks allocated on disk to back that page.
390 */
391
gfs2_page_mkwrite(struct vm_fault * vmf)392 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
393 {
394 struct page *page = vmf->page;
395 struct inode *inode = file_inode(vmf->vma->vm_file);
396 struct gfs2_inode *ip = GFS2_I(inode);
397 struct gfs2_sbd *sdp = GFS2_SB(inode);
398 struct gfs2_alloc_parms ap = { .aflags = 0, };
399 unsigned long last_index;
400 u64 pos = page->index << PAGE_SHIFT;
401 unsigned int data_blocks, ind_blocks, rblocks;
402 struct gfs2_holder gh;
403 loff_t size;
404 int ret;
405
406 sb_start_pagefault(inode->i_sb);
407
408 ret = gfs2_rsqa_alloc(ip);
409 if (ret)
410 goto out;
411
412 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
413
414 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
415 ret = gfs2_glock_nq(&gh);
416 if (ret)
417 goto out_uninit;
418
419 /* Update file times before taking page lock */
420 file_update_time(vmf->vma->vm_file);
421
422 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
423 set_bit(GIF_SW_PAGED, &ip->i_flags);
424
425 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
426 lock_page(page);
427 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
428 ret = -EAGAIN;
429 unlock_page(page);
430 }
431 goto out_unlock;
432 }
433
434 ret = gfs2_rindex_update(sdp);
435 if (ret)
436 goto out_unlock;
437
438 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
439 ap.target = data_blocks + ind_blocks;
440 ret = gfs2_quota_lock_check(ip, &ap);
441 if (ret)
442 goto out_unlock;
443 ret = gfs2_inplace_reserve(ip, &ap);
444 if (ret)
445 goto out_quota_unlock;
446
447 rblocks = RES_DINODE + ind_blocks;
448 if (gfs2_is_jdata(ip))
449 rblocks += data_blocks ? data_blocks : 1;
450 if (ind_blocks || data_blocks) {
451 rblocks += RES_STATFS + RES_QUOTA;
452 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
453 }
454 ret = gfs2_trans_begin(sdp, rblocks, 0);
455 if (ret)
456 goto out_trans_fail;
457
458 lock_page(page);
459 ret = -EINVAL;
460 size = i_size_read(inode);
461 last_index = (size - 1) >> PAGE_SHIFT;
462 /* Check page index against inode size */
463 if (size == 0 || (page->index > last_index))
464 goto out_trans_end;
465
466 ret = -EAGAIN;
467 /* If truncated, we must retry the operation, we may have raced
468 * with the glock demotion code.
469 */
470 if (!PageUptodate(page) || page->mapping != inode->i_mapping)
471 goto out_trans_end;
472
473 /* Unstuff, if required, and allocate backing blocks for page */
474 ret = 0;
475 if (gfs2_is_stuffed(ip))
476 ret = gfs2_unstuff_dinode(ip, page);
477 if (ret == 0)
478 ret = gfs2_allocate_page_backing(page);
479
480 out_trans_end:
481 if (ret)
482 unlock_page(page);
483 gfs2_trans_end(sdp);
484 out_trans_fail:
485 gfs2_inplace_release(ip);
486 out_quota_unlock:
487 gfs2_quota_unlock(ip);
488 out_unlock:
489 gfs2_glock_dq(&gh);
490 out_uninit:
491 gfs2_holder_uninit(&gh);
492 if (ret == 0) {
493 set_page_dirty(page);
494 wait_for_stable_page(page);
495 }
496 out:
497 sb_end_pagefault(inode->i_sb);
498 return block_page_mkwrite_return(ret);
499 }
500
501 static const struct vm_operations_struct gfs2_vm_ops = {
502 .fault = filemap_fault,
503 .map_pages = filemap_map_pages,
504 .page_mkwrite = gfs2_page_mkwrite,
505 };
506
507 /**
508 * gfs2_mmap -
509 * @file: The file to map
510 * @vma: The VMA which described the mapping
511 *
512 * There is no need to get a lock here unless we should be updating
513 * atime. We ignore any locking errors since the only consequence is
514 * a missed atime update (which will just be deferred until later).
515 *
516 * Returns: 0
517 */
518
gfs2_mmap(struct file * file,struct vm_area_struct * vma)519 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
522
523 if (!(file->f_flags & O_NOATIME) &&
524 !IS_NOATIME(&ip->i_inode)) {
525 struct gfs2_holder i_gh;
526 int error;
527
528 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
529 &i_gh);
530 if (error)
531 return error;
532 /* grab lock to update inode */
533 gfs2_glock_dq_uninit(&i_gh);
534 file_accessed(file);
535 }
536 vma->vm_ops = &gfs2_vm_ops;
537
538 return 0;
539 }
540
541 /**
542 * gfs2_open_common - This is common to open and atomic_open
543 * @inode: The inode being opened
544 * @file: The file being opened
545 *
546 * This maybe called under a glock or not depending upon how it has
547 * been called. We must always be called under a glock for regular
548 * files, however. For other file types, it does not matter whether
549 * we hold the glock or not.
550 *
551 * Returns: Error code or 0 for success
552 */
553
gfs2_open_common(struct inode * inode,struct file * file)554 int gfs2_open_common(struct inode *inode, struct file *file)
555 {
556 struct gfs2_file *fp;
557 int ret;
558
559 if (S_ISREG(inode->i_mode)) {
560 ret = generic_file_open(inode, file);
561 if (ret)
562 return ret;
563 }
564
565 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
566 if (!fp)
567 return -ENOMEM;
568
569 mutex_init(&fp->f_fl_mutex);
570
571 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
572 file->private_data = fp;
573 return 0;
574 }
575
576 /**
577 * gfs2_open - open a file
578 * @inode: the inode to open
579 * @file: the struct file for this opening
580 *
581 * After atomic_open, this function is only used for opening files
582 * which are already cached. We must still get the glock for regular
583 * files to ensure that we have the file size uptodate for the large
584 * file check which is in the common code. That is only an issue for
585 * regular files though.
586 *
587 * Returns: errno
588 */
589
gfs2_open(struct inode * inode,struct file * file)590 static int gfs2_open(struct inode *inode, struct file *file)
591 {
592 struct gfs2_inode *ip = GFS2_I(inode);
593 struct gfs2_holder i_gh;
594 int error;
595 bool need_unlock = false;
596
597 if (S_ISREG(ip->i_inode.i_mode)) {
598 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
599 &i_gh);
600 if (error)
601 return error;
602 need_unlock = true;
603 }
604
605 error = gfs2_open_common(inode, file);
606
607 if (need_unlock)
608 gfs2_glock_dq_uninit(&i_gh);
609
610 return error;
611 }
612
613 /**
614 * gfs2_release - called to close a struct file
615 * @inode: the inode the struct file belongs to
616 * @file: the struct file being closed
617 *
618 * Returns: errno
619 */
620
gfs2_release(struct inode * inode,struct file * file)621 static int gfs2_release(struct inode *inode, struct file *file)
622 {
623 struct gfs2_inode *ip = GFS2_I(inode);
624
625 kfree(file->private_data);
626 file->private_data = NULL;
627
628 if (!(file->f_mode & FMODE_WRITE))
629 return 0;
630
631 gfs2_rsqa_delete(ip, &inode->i_writecount);
632 return 0;
633 }
634
635 /**
636 * gfs2_fsync - sync the dirty data for a file (across the cluster)
637 * @file: the file that points to the dentry
638 * @start: the start position in the file to sync
639 * @end: the end position in the file to sync
640 * @datasync: set if we can ignore timestamp changes
641 *
642 * We split the data flushing here so that we don't wait for the data
643 * until after we've also sent the metadata to disk. Note that for
644 * data=ordered, we will write & wait for the data at the log flush
645 * stage anyway, so this is unlikely to make much of a difference
646 * except in the data=writeback case.
647 *
648 * If the fdatawrite fails due to any reason except -EIO, we will
649 * continue the remainder of the fsync, although we'll still report
650 * the error at the end. This is to match filemap_write_and_wait_range()
651 * behaviour.
652 *
653 * Returns: errno
654 */
655
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)656 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
657 int datasync)
658 {
659 struct address_space *mapping = file->f_mapping;
660 struct inode *inode = mapping->host;
661 int sync_state = inode->i_state & I_DIRTY_ALL;
662 struct gfs2_inode *ip = GFS2_I(inode);
663 int ret = 0, ret1 = 0;
664
665 if (mapping->nrpages) {
666 ret1 = filemap_fdatawrite_range(mapping, start, end);
667 if (ret1 == -EIO)
668 return ret1;
669 }
670
671 if (!gfs2_is_jdata(ip))
672 sync_state &= ~I_DIRTY_PAGES;
673 if (datasync)
674 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
675
676 if (sync_state) {
677 ret = sync_inode_metadata(inode, 1);
678 if (ret)
679 return ret;
680 if (gfs2_is_jdata(ip))
681 ret = file_write_and_wait(file);
682 if (ret)
683 return ret;
684 gfs2_ail_flush(ip->i_gl, 1);
685 }
686
687 if (mapping->nrpages)
688 ret = file_fdatawait_range(file, start, end);
689
690 return ret ? ret : ret1;
691 }
692
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to)693 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
694 {
695 struct file *file = iocb->ki_filp;
696 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
697 size_t count = iov_iter_count(to);
698 struct gfs2_holder gh;
699 ssize_t ret;
700
701 if (!count)
702 return 0; /* skip atime */
703
704 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
705 ret = gfs2_glock_nq(&gh);
706 if (ret)
707 goto out_uninit;
708
709 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
710
711 gfs2_glock_dq(&gh);
712 out_uninit:
713 gfs2_holder_uninit(&gh);
714 return ret;
715 }
716
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from)717 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
718 {
719 struct file *file = iocb->ki_filp;
720 struct inode *inode = file->f_mapping->host;
721 struct gfs2_inode *ip = GFS2_I(inode);
722 size_t len = iov_iter_count(from);
723 loff_t offset = iocb->ki_pos;
724 struct gfs2_holder gh;
725 ssize_t ret;
726
727 /*
728 * Deferred lock, even if its a write, since we do no allocation on
729 * this path. All we need to change is the atime, and this lock mode
730 * ensures that other nodes have flushed their buffered read caches
731 * (i.e. their page cache entries for this inode). We do not,
732 * unfortunately, have the option of only flushing a range like the
733 * VFS does.
734 */
735 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
736 ret = gfs2_glock_nq(&gh);
737 if (ret)
738 goto out_uninit;
739
740 /* Silently fall back to buffered I/O when writing beyond EOF */
741 if (offset + len > i_size_read(&ip->i_inode))
742 goto out;
743
744 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
745
746 out:
747 gfs2_glock_dq(&gh);
748 out_uninit:
749 gfs2_holder_uninit(&gh);
750 return ret;
751 }
752
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)753 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
754 {
755 ssize_t ret;
756
757 if (iocb->ki_flags & IOCB_DIRECT) {
758 ret = gfs2_file_direct_read(iocb, to);
759 if (likely(ret != -ENOTBLK))
760 return ret;
761 iocb->ki_flags &= ~IOCB_DIRECT;
762 }
763 return generic_file_read_iter(iocb, to);
764 }
765
766 /**
767 * gfs2_file_write_iter - Perform a write to a file
768 * @iocb: The io context
769 * @from: The data to write
770 *
771 * We have to do a lock/unlock here to refresh the inode size for
772 * O_APPEND writes, otherwise we can land up writing at the wrong
773 * offset. There is still a race, but provided the app is using its
774 * own file locking, this will make O_APPEND work as expected.
775 *
776 */
777
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)778 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
779 {
780 struct file *file = iocb->ki_filp;
781 struct inode *inode = file_inode(file);
782 struct gfs2_inode *ip = GFS2_I(inode);
783 ssize_t ret;
784
785 ret = gfs2_rsqa_alloc(ip);
786 if (ret)
787 return ret;
788
789 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
790
791 if (iocb->ki_flags & IOCB_APPEND) {
792 struct gfs2_holder gh;
793
794 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
795 if (ret)
796 return ret;
797 gfs2_glock_dq_uninit(&gh);
798 }
799
800 inode_lock(inode);
801 ret = generic_write_checks(iocb, from);
802 if (ret <= 0)
803 goto out_unlock;
804
805 ret = file_remove_privs(file);
806 if (ret)
807 goto out_unlock;
808
809 ret = file_update_time(file);
810 if (ret)
811 goto out_unlock;
812
813 if (iocb->ki_flags & IOCB_DIRECT) {
814 struct address_space *mapping = file->f_mapping;
815 ssize_t buffered, ret2;
816
817 ret = gfs2_file_direct_write(iocb, from);
818 if (ret < 0 || !iov_iter_count(from))
819 goto out_unlock;
820
821 iocb->ki_flags |= IOCB_DSYNC;
822 current->backing_dev_info = inode_to_bdi(inode);
823 buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
824 current->backing_dev_info = NULL;
825 if (unlikely(buffered <= 0)) {
826 if (!ret)
827 ret = buffered;
828 goto out_unlock;
829 }
830
831 /*
832 * We need to ensure that the page cache pages are written to
833 * disk and invalidated to preserve the expected O_DIRECT
834 * semantics. If the writeback or invalidate fails, only report
835 * the direct I/O range as we don't know if the buffered pages
836 * made it to disk.
837 */
838 iocb->ki_pos += buffered;
839 ret2 = generic_write_sync(iocb, buffered);
840 invalidate_mapping_pages(mapping,
841 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
842 (iocb->ki_pos - 1) >> PAGE_SHIFT);
843 if (!ret || ret2 > 0)
844 ret += ret2;
845 } else {
846 current->backing_dev_info = inode_to_bdi(inode);
847 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
848 current->backing_dev_info = NULL;
849 if (likely(ret > 0)) {
850 iocb->ki_pos += ret;
851 ret = generic_write_sync(iocb, ret);
852 }
853 }
854
855 out_unlock:
856 inode_unlock(inode);
857 return ret;
858 }
859
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)860 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
861 int mode)
862 {
863 struct super_block *sb = inode->i_sb;
864 struct gfs2_inode *ip = GFS2_I(inode);
865 loff_t end = offset + len;
866 struct buffer_head *dibh;
867 int error;
868
869 error = gfs2_meta_inode_buffer(ip, &dibh);
870 if (unlikely(error))
871 return error;
872
873 gfs2_trans_add_meta(ip->i_gl, dibh);
874
875 if (gfs2_is_stuffed(ip)) {
876 error = gfs2_unstuff_dinode(ip, NULL);
877 if (unlikely(error))
878 goto out;
879 }
880
881 while (offset < end) {
882 struct iomap iomap = { };
883
884 error = gfs2_iomap_get_alloc(inode, offset, end - offset,
885 &iomap);
886 if (error)
887 goto out;
888 offset = iomap.offset + iomap.length;
889 if (!(iomap.flags & IOMAP_F_NEW))
890 continue;
891 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
892 iomap.length >> inode->i_blkbits,
893 GFP_NOFS);
894 if (error) {
895 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
896 goto out;
897 }
898 }
899 out:
900 brelse(dibh);
901 return error;
902 }
903 /**
904 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
905 * blocks, determine how many bytes can be written.
906 * @ip: The inode in question.
907 * @len: Max cap of bytes. What we return in *len must be <= this.
908 * @data_blocks: Compute and return the number of data blocks needed
909 * @ind_blocks: Compute and return the number of indirect blocks needed
910 * @max_blocks: The total blocks available to work with.
911 *
912 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
913 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)914 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
915 unsigned int *data_blocks, unsigned int *ind_blocks,
916 unsigned int max_blocks)
917 {
918 loff_t max = *len;
919 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
920 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
921
922 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
923 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
924 max_data -= tmp;
925 }
926
927 *data_blocks = max_data;
928 *ind_blocks = max_blocks - max_data;
929 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
930 if (*len > max) {
931 *len = max;
932 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
933 }
934 }
935
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)936 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
937 {
938 struct inode *inode = file_inode(file);
939 struct gfs2_sbd *sdp = GFS2_SB(inode);
940 struct gfs2_inode *ip = GFS2_I(inode);
941 struct gfs2_alloc_parms ap = { .aflags = 0, };
942 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
943 loff_t bytes, max_bytes, max_blks;
944 int error;
945 const loff_t pos = offset;
946 const loff_t count = len;
947 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
948 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
949 loff_t max_chunk_size = UINT_MAX & bsize_mask;
950
951 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
952
953 offset &= bsize_mask;
954
955 len = next - offset;
956 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
957 if (!bytes)
958 bytes = UINT_MAX;
959 bytes &= bsize_mask;
960 if (bytes == 0)
961 bytes = sdp->sd_sb.sb_bsize;
962
963 gfs2_size_hint(file, offset, len);
964
965 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
966 ap.min_target = data_blocks + ind_blocks;
967
968 while (len > 0) {
969 if (len < bytes)
970 bytes = len;
971 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
972 len -= bytes;
973 offset += bytes;
974 continue;
975 }
976
977 /* We need to determine how many bytes we can actually
978 * fallocate without exceeding quota or going over the
979 * end of the fs. We start off optimistically by assuming
980 * we can write max_bytes */
981 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
982
983 /* Since max_bytes is most likely a theoretical max, we
984 * calculate a more realistic 'bytes' to serve as a good
985 * starting point for the number of bytes we may be able
986 * to write */
987 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
988 ap.target = data_blocks + ind_blocks;
989
990 error = gfs2_quota_lock_check(ip, &ap);
991 if (error)
992 return error;
993 /* ap.allowed tells us how many blocks quota will allow
994 * us to write. Check if this reduces max_blks */
995 max_blks = UINT_MAX;
996 if (ap.allowed)
997 max_blks = ap.allowed;
998
999 error = gfs2_inplace_reserve(ip, &ap);
1000 if (error)
1001 goto out_qunlock;
1002
1003 /* check if the selected rgrp limits our max_blks further */
1004 if (ap.allowed && ap.allowed < max_blks)
1005 max_blks = ap.allowed;
1006
1007 /* Almost done. Calculate bytes that can be written using
1008 * max_blks. We also recompute max_bytes, data_blocks and
1009 * ind_blocks */
1010 calc_max_reserv(ip, &max_bytes, &data_blocks,
1011 &ind_blocks, max_blks);
1012
1013 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1014 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1015 if (gfs2_is_jdata(ip))
1016 rblocks += data_blocks ? data_blocks : 1;
1017
1018 error = gfs2_trans_begin(sdp, rblocks,
1019 PAGE_SIZE/sdp->sd_sb.sb_bsize);
1020 if (error)
1021 goto out_trans_fail;
1022
1023 error = fallocate_chunk(inode, offset, max_bytes, mode);
1024 gfs2_trans_end(sdp);
1025
1026 if (error)
1027 goto out_trans_fail;
1028
1029 len -= max_bytes;
1030 offset += max_bytes;
1031 gfs2_inplace_release(ip);
1032 gfs2_quota_unlock(ip);
1033 }
1034
1035 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1036 i_size_write(inode, pos + count);
1037 file_update_time(file);
1038 mark_inode_dirty(inode);
1039 }
1040
1041 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1042 return vfs_fsync_range(file, pos, pos + count - 1,
1043 (file->f_flags & __O_SYNC) ? 0 : 1);
1044 return 0;
1045
1046 out_trans_fail:
1047 gfs2_inplace_release(ip);
1048 out_qunlock:
1049 gfs2_quota_unlock(ip);
1050 return error;
1051 }
1052
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1053 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1054 {
1055 struct inode *inode = file_inode(file);
1056 struct gfs2_sbd *sdp = GFS2_SB(inode);
1057 struct gfs2_inode *ip = GFS2_I(inode);
1058 struct gfs2_holder gh;
1059 int ret;
1060
1061 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1062 return -EOPNOTSUPP;
1063 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1064 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1065 return -EOPNOTSUPP;
1066
1067 inode_lock(inode);
1068
1069 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1070 ret = gfs2_glock_nq(&gh);
1071 if (ret)
1072 goto out_uninit;
1073
1074 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1075 (offset + len) > inode->i_size) {
1076 ret = inode_newsize_ok(inode, offset + len);
1077 if (ret)
1078 goto out_unlock;
1079 }
1080
1081 ret = get_write_access(inode);
1082 if (ret)
1083 goto out_unlock;
1084
1085 if (mode & FALLOC_FL_PUNCH_HOLE) {
1086 ret = __gfs2_punch_hole(file, offset, len);
1087 } else {
1088 ret = gfs2_rsqa_alloc(ip);
1089 if (ret)
1090 goto out_putw;
1091
1092 ret = __gfs2_fallocate(file, mode, offset, len);
1093
1094 if (ret)
1095 gfs2_rs_deltree(&ip->i_res);
1096 }
1097
1098 out_putw:
1099 put_write_access(inode);
1100 out_unlock:
1101 gfs2_glock_dq(&gh);
1102 out_uninit:
1103 gfs2_holder_uninit(&gh);
1104 inode_unlock(inode);
1105 return ret;
1106 }
1107
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1108 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1109 struct file *out, loff_t *ppos,
1110 size_t len, unsigned int flags)
1111 {
1112 int error;
1113 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1114
1115 error = gfs2_rsqa_alloc(ip);
1116 if (error)
1117 return (ssize_t)error;
1118
1119 gfs2_size_hint(out, *ppos, len);
1120
1121 return iter_file_splice_write(pipe, out, ppos, len, flags);
1122 }
1123
1124 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1125
1126 /**
1127 * gfs2_lock - acquire/release a posix lock on a file
1128 * @file: the file pointer
1129 * @cmd: either modify or retrieve lock state, possibly wait
1130 * @fl: type and range of lock
1131 *
1132 * Returns: errno
1133 */
1134
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1135 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1136 {
1137 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1138 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1139 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1140
1141 if (!(fl->fl_flags & FL_POSIX))
1142 return -ENOLCK;
1143 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1144 return -ENOLCK;
1145
1146 if (cmd == F_CANCELLK) {
1147 /* Hack: */
1148 cmd = F_SETLK;
1149 fl->fl_type = F_UNLCK;
1150 }
1151 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1152 if (fl->fl_type == F_UNLCK)
1153 locks_lock_file_wait(file, fl);
1154 return -EIO;
1155 }
1156 if (IS_GETLK(cmd))
1157 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1158 else if (fl->fl_type == F_UNLCK)
1159 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1160 else
1161 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1162 }
1163
do_flock(struct file * file,int cmd,struct file_lock * fl)1164 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1165 {
1166 struct gfs2_file *fp = file->private_data;
1167 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1168 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1169 struct gfs2_glock *gl;
1170 unsigned int state;
1171 u16 flags;
1172 int error = 0;
1173 int sleeptime;
1174
1175 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1176 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1177
1178 mutex_lock(&fp->f_fl_mutex);
1179
1180 if (gfs2_holder_initialized(fl_gh)) {
1181 if (fl_gh->gh_state == state)
1182 goto out;
1183 locks_lock_file_wait(file,
1184 &(struct file_lock) {
1185 .fl_type = F_UNLCK,
1186 .fl_flags = FL_FLOCK
1187 });
1188 gfs2_glock_dq(fl_gh);
1189 gfs2_holder_reinit(state, flags, fl_gh);
1190 } else {
1191 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1192 &gfs2_flock_glops, CREATE, &gl);
1193 if (error)
1194 goto out;
1195 gfs2_holder_init(gl, state, flags, fl_gh);
1196 gfs2_glock_put(gl);
1197 }
1198 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1199 error = gfs2_glock_nq(fl_gh);
1200 if (error != GLR_TRYFAILED)
1201 break;
1202 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1203 fl_gh->gh_error = 0;
1204 msleep(sleeptime);
1205 }
1206 if (error) {
1207 gfs2_holder_uninit(fl_gh);
1208 if (error == GLR_TRYFAILED)
1209 error = -EAGAIN;
1210 } else {
1211 error = locks_lock_file_wait(file, fl);
1212 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1213 }
1214
1215 out:
1216 mutex_unlock(&fp->f_fl_mutex);
1217 return error;
1218 }
1219
do_unflock(struct file * file,struct file_lock * fl)1220 static void do_unflock(struct file *file, struct file_lock *fl)
1221 {
1222 struct gfs2_file *fp = file->private_data;
1223 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1224
1225 mutex_lock(&fp->f_fl_mutex);
1226 locks_lock_file_wait(file, fl);
1227 if (gfs2_holder_initialized(fl_gh)) {
1228 gfs2_glock_dq(fl_gh);
1229 gfs2_holder_uninit(fl_gh);
1230 }
1231 mutex_unlock(&fp->f_fl_mutex);
1232 }
1233
1234 /**
1235 * gfs2_flock - acquire/release a flock lock on a file
1236 * @file: the file pointer
1237 * @cmd: either modify or retrieve lock state, possibly wait
1238 * @fl: type and range of lock
1239 *
1240 * Returns: errno
1241 */
1242
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1243 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1244 {
1245 if (!(fl->fl_flags & FL_FLOCK))
1246 return -ENOLCK;
1247 if (fl->fl_type & LOCK_MAND)
1248 return -EOPNOTSUPP;
1249
1250 if (fl->fl_type == F_UNLCK) {
1251 do_unflock(file, fl);
1252 return 0;
1253 } else {
1254 return do_flock(file, cmd, fl);
1255 }
1256 }
1257
1258 const struct file_operations gfs2_file_fops = {
1259 .llseek = gfs2_llseek,
1260 .read_iter = gfs2_file_read_iter,
1261 .write_iter = gfs2_file_write_iter,
1262 .unlocked_ioctl = gfs2_ioctl,
1263 .mmap = gfs2_mmap,
1264 .open = gfs2_open,
1265 .release = gfs2_release,
1266 .fsync = gfs2_fsync,
1267 .lock = gfs2_lock,
1268 .flock = gfs2_flock,
1269 .splice_read = generic_file_splice_read,
1270 .splice_write = gfs2_file_splice_write,
1271 .setlease = simple_nosetlease,
1272 .fallocate = gfs2_fallocate,
1273 };
1274
1275 const struct file_operations gfs2_dir_fops = {
1276 .iterate_shared = gfs2_readdir,
1277 .unlocked_ioctl = gfs2_ioctl,
1278 .open = gfs2_open,
1279 .release = gfs2_release,
1280 .fsync = gfs2_fsync,
1281 .lock = gfs2_lock,
1282 .flock = gfs2_flock,
1283 .llseek = default_llseek,
1284 };
1285
1286 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1287
1288 const struct file_operations gfs2_file_fops_nolock = {
1289 .llseek = gfs2_llseek,
1290 .read_iter = gfs2_file_read_iter,
1291 .write_iter = gfs2_file_write_iter,
1292 .unlocked_ioctl = gfs2_ioctl,
1293 .mmap = gfs2_mmap,
1294 .open = gfs2_open,
1295 .release = gfs2_release,
1296 .fsync = gfs2_fsync,
1297 .splice_read = generic_file_splice_read,
1298 .splice_write = gfs2_file_splice_write,
1299 .setlease = generic_setlease,
1300 .fallocate = gfs2_fallocate,
1301 };
1302
1303 const struct file_operations gfs2_dir_fops_nolock = {
1304 .iterate_shared = gfs2_readdir,
1305 .unlocked_ioctl = gfs2_ioctl,
1306 .open = gfs2_open,
1307 .release = gfs2_release,
1308 .fsync = gfs2_fsync,
1309 .llseek = default_llseek,
1310 };
1311
1312