1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/fs.h>
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
19 
20 #include "incore.h"
21 #include "glock.h"
22 #include "util.h"
23 #include "sys.h"
24 #include "trace_gfs2.h"
25 
26 /**
27  * gfs2_update_stats - Update time based stats
28  * @mv: Pointer to mean/variance structure to update
29  * @sample: New data to include
30  *
31  * @delta is the difference between the current rtt sample and the
32  * running average srtt. We add 1/8 of that to the srtt in order to
33  * update the current srtt estimate. The variance estimate is a bit
34  * more complicated. We subtract the current variance estimate from
35  * the abs value of the @delta and add 1/4 of that to the running
36  * total.  That's equivalent to 3/4 of the current variance
37  * estimate plus 1/4 of the abs of @delta.
38  *
39  * Note that the index points at the array entry containing the smoothed
40  * mean value, and the variance is always in the following entry
41  *
42  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
43  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
44  * they are not scaled fixed point.
45  */
46 
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)47 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
48 				     s64 sample)
49 {
50 	s64 delta = sample - s->stats[index];
51 	s->stats[index] += (delta >> 3);
52 	index++;
53 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
54 }
55 
56 /**
57  * gfs2_update_reply_times - Update locking statistics
58  * @gl: The glock to update
59  *
60  * This assumes that gl->gl_dstamp has been set earlier.
61  *
62  * The rtt (lock round trip time) is an estimate of the time
63  * taken to perform a dlm lock request. We update it on each
64  * reply from the dlm.
65  *
66  * The blocking flag is set on the glock for all dlm requests
67  * which may potentially block due to lock requests from other nodes.
68  * DLM requests where the current lock state is exclusive, the
69  * requested state is null (or unlocked) or where the TRY or
70  * TRY_1CB flags are set are classified as non-blocking. All
71  * other DLM requests are counted as (potentially) blocking.
72  */
gfs2_update_reply_times(struct gfs2_glock * gl)73 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
74 {
75 	struct gfs2_pcpu_lkstats *lks;
76 	const unsigned gltype = gl->gl_name.ln_type;
77 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
78 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
79 	s64 rtt;
80 
81 	preempt_disable();
82 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
83 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
84 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
85 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
86 	preempt_enable();
87 
88 	trace_gfs2_glock_lock_time(gl, rtt);
89 }
90 
91 /**
92  * gfs2_update_request_times - Update locking statistics
93  * @gl: The glock to update
94  *
95  * The irt (lock inter-request times) measures the average time
96  * between requests to the dlm. It is updated immediately before
97  * each dlm call.
98  */
99 
gfs2_update_request_times(struct gfs2_glock * gl)100 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
101 {
102 	struct gfs2_pcpu_lkstats *lks;
103 	const unsigned gltype = gl->gl_name.ln_type;
104 	ktime_t dstamp;
105 	s64 irt;
106 
107 	preempt_disable();
108 	dstamp = gl->gl_dstamp;
109 	gl->gl_dstamp = ktime_get_real();
110 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
111 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
112 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
113 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
114 	preempt_enable();
115 }
116 
gdlm_ast(void * arg)117 static void gdlm_ast(void *arg)
118 {
119 	struct gfs2_glock *gl = arg;
120 	unsigned ret = gl->gl_state;
121 
122 	gfs2_update_reply_times(gl);
123 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
124 
125 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
126 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
127 
128 	switch (gl->gl_lksb.sb_status) {
129 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
130 		gfs2_glock_free(gl);
131 		return;
132 	case -DLM_ECANCEL: /* Cancel while getting lock */
133 		ret |= LM_OUT_CANCELED;
134 		goto out;
135 	case -EAGAIN: /* Try lock fails */
136 	case -EDEADLK: /* Deadlock detected */
137 		goto out;
138 	case -ETIMEDOUT: /* Canceled due to timeout */
139 		ret |= LM_OUT_ERROR;
140 		goto out;
141 	case 0: /* Success */
142 		break;
143 	default: /* Something unexpected */
144 		BUG();
145 	}
146 
147 	ret = gl->gl_req;
148 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
149 		if (gl->gl_req == LM_ST_SHARED)
150 			ret = LM_ST_DEFERRED;
151 		else if (gl->gl_req == LM_ST_DEFERRED)
152 			ret = LM_ST_SHARED;
153 		else
154 			BUG();
155 	}
156 
157 	set_bit(GLF_INITIAL, &gl->gl_flags);
158 	gfs2_glock_complete(gl, ret);
159 	return;
160 out:
161 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
162 		gl->gl_lksb.sb_lkid = 0;
163 	gfs2_glock_complete(gl, ret);
164 }
165 
gdlm_bast(void * arg,int mode)166 static void gdlm_bast(void *arg, int mode)
167 {
168 	struct gfs2_glock *gl = arg;
169 
170 	switch (mode) {
171 	case DLM_LOCK_EX:
172 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
173 		break;
174 	case DLM_LOCK_CW:
175 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
176 		break;
177 	case DLM_LOCK_PR:
178 		gfs2_glock_cb(gl, LM_ST_SHARED);
179 		break;
180 	default:
181 		pr_err("unknown bast mode %d\n", mode);
182 		BUG();
183 	}
184 }
185 
186 /* convert gfs lock-state to dlm lock-mode */
187 
make_mode(const unsigned int lmstate)188 static int make_mode(const unsigned int lmstate)
189 {
190 	switch (lmstate) {
191 	case LM_ST_UNLOCKED:
192 		return DLM_LOCK_NL;
193 	case LM_ST_EXCLUSIVE:
194 		return DLM_LOCK_EX;
195 	case LM_ST_DEFERRED:
196 		return DLM_LOCK_CW;
197 	case LM_ST_SHARED:
198 		return DLM_LOCK_PR;
199 	}
200 	pr_err("unknown LM state %d\n", lmstate);
201 	BUG();
202 	return -1;
203 }
204 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)205 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
206 		      const int req)
207 {
208 	u32 lkf = 0;
209 
210 	if (gl->gl_lksb.sb_lvbptr)
211 		lkf |= DLM_LKF_VALBLK;
212 
213 	if (gfs_flags & LM_FLAG_TRY)
214 		lkf |= DLM_LKF_NOQUEUE;
215 
216 	if (gfs_flags & LM_FLAG_TRY_1CB) {
217 		lkf |= DLM_LKF_NOQUEUE;
218 		lkf |= DLM_LKF_NOQUEUEBAST;
219 	}
220 
221 	if (gfs_flags & LM_FLAG_PRIORITY) {
222 		lkf |= DLM_LKF_NOORDER;
223 		lkf |= DLM_LKF_HEADQUE;
224 	}
225 
226 	if (gfs_flags & LM_FLAG_ANY) {
227 		if (req == DLM_LOCK_PR)
228 			lkf |= DLM_LKF_ALTCW;
229 		else if (req == DLM_LOCK_CW)
230 			lkf |= DLM_LKF_ALTPR;
231 		else
232 			BUG();
233 	}
234 
235 	if (gl->gl_lksb.sb_lkid != 0) {
236 		lkf |= DLM_LKF_CONVERT;
237 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
238 			lkf |= DLM_LKF_QUECVT;
239 	}
240 
241 	return lkf;
242 }
243 
gfs2_reverse_hex(char * c,u64 value)244 static void gfs2_reverse_hex(char *c, u64 value)
245 {
246 	*c = '0';
247 	while (value) {
248 		*c-- = hex_asc[value & 0x0f];
249 		value >>= 4;
250 	}
251 }
252 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)253 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
254 		     unsigned int flags)
255 {
256 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
257 	int req;
258 	u32 lkf;
259 	char strname[GDLM_STRNAME_BYTES] = "";
260 
261 	req = make_mode(req_state);
262 	lkf = make_flags(gl, flags, req);
263 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
264 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
265 	if (gl->gl_lksb.sb_lkid) {
266 		gfs2_update_request_times(gl);
267 	} else {
268 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
270 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
271 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
272 		gl->gl_dstamp = ktime_get_real();
273 	}
274 	/*
275 	 * Submit the actual lock request.
276 	 */
277 
278 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
279 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
280 }
281 
gdlm_put_lock(struct gfs2_glock * gl)282 static void gdlm_put_lock(struct gfs2_glock *gl)
283 {
284 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
285 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
286 	int error;
287 
288 	if (gl->gl_lksb.sb_lkid == 0) {
289 		gfs2_glock_free(gl);
290 		return;
291 	}
292 
293 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
294 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
295 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
296 	gfs2_update_request_times(gl);
297 
298 	/* don't want to call dlm if we've unmounted the lock protocol */
299 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
300 		gfs2_glock_free(gl);
301 		return;
302 	}
303 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
304 
305 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
306 	    !gl->gl_lksb.sb_lvbptr) {
307 		gfs2_glock_free(gl);
308 		return;
309 	}
310 
311 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
312 			   NULL, gl);
313 	if (error) {
314 		pr_err("gdlm_unlock %x,%llx err=%d\n",
315 		       gl->gl_name.ln_type,
316 		       (unsigned long long)gl->gl_name.ln_number, error);
317 		return;
318 	}
319 }
320 
gdlm_cancel(struct gfs2_glock * gl)321 static void gdlm_cancel(struct gfs2_glock *gl)
322 {
323 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
324 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
325 }
326 
327 /*
328  * dlm/gfs2 recovery coordination using dlm_recover callbacks
329  *
330  *  1. dlm_controld sees lockspace members change
331  *  2. dlm_controld blocks dlm-kernel locking activity
332  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333  *  4. dlm_controld starts and finishes its own user level recovery
334  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336  *  7. dlm_recoverd does its own lock recovery
337  *  8. dlm_recoverd unblocks dlm-kernel locking activity
338  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341  * 12. gfs2_recover dequeues and recovers journals of failed nodes
342  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344  * 15. gfs2_control unblocks normal locking when all journals are recovered
345  *
346  * - failures during recovery
347  *
348  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350  * recovering for a prior failure.  gfs2_control needs a way to detect
351  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
352  * the recover_block and recover_start values.
353  *
354  * recover_done() provides a new lockspace generation number each time it
355  * is called (step 9).  This generation number is saved as recover_start.
356  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357  * recover_block = recover_start.  So, while recover_block is equal to
358  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
359  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
360  *
361  * - more specific gfs2 steps in sequence above
362  *
363  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364  *  6. recover_slot records any failed jids (maybe none)
365  *  9. recover_done sets recover_start = new generation number
366  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367  * 12. gfs2_recover does journal recoveries for failed jids identified above
368  * 14. gfs2_control clears control_lock lvb bits for recovered jids
369  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370  *     again) then do nothing, otherwise if recover_start > recover_block
371  *     then clear BLOCK_LOCKS.
372  *
373  * - parallel recovery steps across all nodes
374  *
375  * All nodes attempt to update the control_lock lvb with the new generation
376  * number and jid bits, but only the first to get the control_lock EX will
377  * do so; others will see that it's already done (lvb already contains new
378  * generation number.)
379  *
380  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382  * . One node gets control_lock first and writes the lvb, others see it's done
383  * . All nodes attempt to recover jids for which they see control_lock bits set
384  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385  * . All nodes will eventually see all lvb bits clear and unblock locks
386  *
387  * - is there a problem with clearing an lvb bit that should be set
388  *   and missing a journal recovery?
389  *
390  * 1. jid fails
391  * 2. lvb bit set for step 1
392  * 3. jid recovered for step 1
393  * 4. jid taken again (new mount)
394  * 5. jid fails (for step 4)
395  * 6. lvb bit set for step 5 (will already be set)
396  * 7. lvb bit cleared for step 3
397  *
398  * This is not a problem because the failure in step 5 does not
399  * require recovery, because the mount in step 4 could not have
400  * progressed far enough to unblock locks and access the fs.  The
401  * control_mount() function waits for all recoveries to be complete
402  * for the latest lockspace generation before ever unblocking locks
403  * and returning.  The mount in step 4 waits until the recovery in
404  * step 1 is done.
405  *
406  * - special case of first mounter: first node to mount the fs
407  *
408  * The first node to mount a gfs2 fs needs to check all the journals
409  * and recover any that need recovery before other nodes are allowed
410  * to mount the fs.  (Others may begin mounting, but they must wait
411  * for the first mounter to be done before taking locks on the fs
412  * or accessing the fs.)  This has two parts:
413  *
414  * 1. The mounted_lock tells a node it's the first to mount the fs.
415  * Each node holds the mounted_lock in PR while it's mounted.
416  * Each node tries to acquire the mounted_lock in EX when it mounts.
417  * If a node is granted the mounted_lock EX it means there are no
418  * other mounted nodes (no PR locks exist), and it is the first mounter.
419  * The mounted_lock is demoted to PR when first recovery is done, so
420  * others will fail to get an EX lock, but will get a PR lock.
421  *
422  * 2. The control_lock blocks others in control_mount() while the first
423  * mounter is doing first mount recovery of all journals.
424  * A mounting node needs to acquire control_lock in EX mode before
425  * it can proceed.  The first mounter holds control_lock in EX while doing
426  * the first mount recovery, blocking mounts from other nodes, then demotes
427  * control_lock to NL when it's done (others_may_mount/first_done),
428  * allowing other nodes to continue mounting.
429  *
430  * first mounter:
431  * control_lock EX/NOQUEUE success
432  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
433  * set first=1
434  * do first mounter recovery
435  * mounted_lock EX->PR
436  * control_lock EX->NL, write lvb generation
437  *
438  * other mounter:
439  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441  * mounted_lock PR/NOQUEUE success
442  * read lvb generation
443  * control_lock EX->NL
444  * set first=0
445  *
446  * - mount during recovery
447  *
448  * If a node mounts while others are doing recovery (not first mounter),
449  * the mounting node will get its initial recover_done() callback without
450  * having seen any previous failures/callbacks.
451  *
452  * It must wait for all recoveries preceding its mount to be finished
453  * before it unblocks locks.  It does this by repeating the "other mounter"
454  * steps above until the lvb generation number is >= its mount generation
455  * number (from initial recover_done) and all lvb bits are clear.
456  *
457  * - control_lock lvb format
458  *
459  * 4 bytes generation number: the latest dlm lockspace generation number
460  * from recover_done callback.  Indicates the jid bitmap has been updated
461  * to reflect all slot failures through that generation.
462  * 4 bytes unused.
463  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464  * that jid N needs recovery.
465  */
466 
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
468 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
470 			     char *lvb_bits)
471 {
472 	__le32 gen;
473 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
474 	memcpy(&gen, lvb_bits, sizeof(__le32));
475 	*lvb_gen = le32_to_cpu(gen);
476 }
477 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
479 			      char *lvb_bits)
480 {
481 	__le32 gen;
482 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
483 	gen = cpu_to_le32(lvb_gen);
484 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
485 }
486 
all_jid_bits_clear(char * lvb)487 static int all_jid_bits_clear(char *lvb)
488 {
489 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
490 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
491 }
492 
sync_wait_cb(void * arg)493 static void sync_wait_cb(void *arg)
494 {
495 	struct lm_lockstruct *ls = arg;
496 	complete(&ls->ls_sync_wait);
497 }
498 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
500 {
501 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
502 	int error;
503 
504 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
505 	if (error) {
506 		fs_err(sdp, "%s lkid %x error %d\n",
507 		       name, lksb->sb_lkid, error);
508 		return error;
509 	}
510 
511 	wait_for_completion(&ls->ls_sync_wait);
512 
513 	if (lksb->sb_status != -DLM_EUNLOCK) {
514 		fs_err(sdp, "%s lkid %x status %d\n",
515 		       name, lksb->sb_lkid, lksb->sb_status);
516 		return -1;
517 	}
518 	return 0;
519 }
520 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
522 		     unsigned int num, struct dlm_lksb *lksb, char *name)
523 {
524 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
525 	char strname[GDLM_STRNAME_BYTES];
526 	int error, status;
527 
528 	memset(strname, 0, GDLM_STRNAME_BYTES);
529 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
530 
531 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
532 			 strname, GDLM_STRNAME_BYTES - 1,
533 			 0, sync_wait_cb, ls, NULL);
534 	if (error) {
535 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
536 		       name, lksb->sb_lkid, flags, mode, error);
537 		return error;
538 	}
539 
540 	wait_for_completion(&ls->ls_sync_wait);
541 
542 	status = lksb->sb_status;
543 
544 	if (status && status != -EAGAIN) {
545 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
546 		       name, lksb->sb_lkid, flags, mode, status);
547 	}
548 
549 	return status;
550 }
551 
mounted_unlock(struct gfs2_sbd * sdp)552 static int mounted_unlock(struct gfs2_sbd *sdp)
553 {
554 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
556 }
557 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
559 {
560 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
562 			 &ls->ls_mounted_lksb, "mounted_lock");
563 }
564 
control_unlock(struct gfs2_sbd * sdp)565 static int control_unlock(struct gfs2_sbd *sdp)
566 {
567 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
569 }
570 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
572 {
573 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
574 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
575 			 &ls->ls_control_lksb, "control_lock");
576 }
577 
gfs2_control_func(struct work_struct * work)578 static void gfs2_control_func(struct work_struct *work)
579 {
580 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
581 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
582 	uint32_t block_gen, start_gen, lvb_gen, flags;
583 	int recover_set = 0;
584 	int write_lvb = 0;
585 	int recover_size;
586 	int i, error;
587 
588 	spin_lock(&ls->ls_recover_spin);
589 	/*
590 	 * No MOUNT_DONE means we're still mounting; control_mount()
591 	 * will set this flag, after which this thread will take over
592 	 * all further clearing of BLOCK_LOCKS.
593 	 *
594 	 * FIRST_MOUNT means this node is doing first mounter recovery,
595 	 * for which recovery control is handled by
596 	 * control_mount()/control_first_done(), not this thread.
597 	 */
598 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
599 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
600 		spin_unlock(&ls->ls_recover_spin);
601 		return;
602 	}
603 	block_gen = ls->ls_recover_block;
604 	start_gen = ls->ls_recover_start;
605 	spin_unlock(&ls->ls_recover_spin);
606 
607 	/*
608 	 * Equal block_gen and start_gen implies we are between
609 	 * recover_prep and recover_done callbacks, which means
610 	 * dlm recovery is in progress and dlm locking is blocked.
611 	 * There's no point trying to do any work until recover_done.
612 	 */
613 
614 	if (block_gen == start_gen)
615 		return;
616 
617 	/*
618 	 * Propagate recover_submit[] and recover_result[] to lvb:
619 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
620 	 * gfs2_recover adds to recover_result[] journal recovery results
621 	 *
622 	 * set lvb bit for jids in recover_submit[] if the lvb has not
623 	 * yet been updated for the generation of the failure
624 	 *
625 	 * clear lvb bit for jids in recover_result[] if the result of
626 	 * the journal recovery is SUCCESS
627 	 */
628 
629 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
630 	if (error) {
631 		fs_err(sdp, "control lock EX error %d\n", error);
632 		return;
633 	}
634 
635 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
636 
637 	spin_lock(&ls->ls_recover_spin);
638 	if (block_gen != ls->ls_recover_block ||
639 	    start_gen != ls->ls_recover_start) {
640 		fs_info(sdp, "recover generation %u block1 %u %u\n",
641 			start_gen, block_gen, ls->ls_recover_block);
642 		spin_unlock(&ls->ls_recover_spin);
643 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
644 		return;
645 	}
646 
647 	recover_size = ls->ls_recover_size;
648 
649 	if (lvb_gen <= start_gen) {
650 		/*
651 		 * Clear lvb bits for jids we've successfully recovered.
652 		 * Because all nodes attempt to recover failed journals,
653 		 * a journal can be recovered multiple times successfully
654 		 * in succession.  Only the first will really do recovery,
655 		 * the others find it clean, but still report a successful
656 		 * recovery.  So, another node may have already recovered
657 		 * the jid and cleared the lvb bit for it.
658 		 */
659 		for (i = 0; i < recover_size; i++) {
660 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
661 				continue;
662 
663 			ls->ls_recover_result[i] = 0;
664 
665 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
666 				continue;
667 
668 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
669 			write_lvb = 1;
670 		}
671 	}
672 
673 	if (lvb_gen == start_gen) {
674 		/*
675 		 * Failed slots before start_gen are already set in lvb.
676 		 */
677 		for (i = 0; i < recover_size; i++) {
678 			if (!ls->ls_recover_submit[i])
679 				continue;
680 			if (ls->ls_recover_submit[i] < lvb_gen)
681 				ls->ls_recover_submit[i] = 0;
682 		}
683 	} else if (lvb_gen < start_gen) {
684 		/*
685 		 * Failed slots before start_gen are not yet set in lvb.
686 		 */
687 		for (i = 0; i < recover_size; i++) {
688 			if (!ls->ls_recover_submit[i])
689 				continue;
690 			if (ls->ls_recover_submit[i] < start_gen) {
691 				ls->ls_recover_submit[i] = 0;
692 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
693 			}
694 		}
695 		/* even if there are no bits to set, we need to write the
696 		   latest generation to the lvb */
697 		write_lvb = 1;
698 	} else {
699 		/*
700 		 * we should be getting a recover_done() for lvb_gen soon
701 		 */
702 	}
703 	spin_unlock(&ls->ls_recover_spin);
704 
705 	if (write_lvb) {
706 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
707 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
708 	} else {
709 		flags = DLM_LKF_CONVERT;
710 	}
711 
712 	error = control_lock(sdp, DLM_LOCK_NL, flags);
713 	if (error) {
714 		fs_err(sdp, "control lock NL error %d\n", error);
715 		return;
716 	}
717 
718 	/*
719 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
720 	 * and clear a jid bit in the lvb if the recovery is a success.
721 	 * Eventually all journals will be recovered, all jid bits will
722 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
723 	 */
724 
725 	for (i = 0; i < recover_size; i++) {
726 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
727 			fs_info(sdp, "recover generation %u jid %d\n",
728 				start_gen, i);
729 			gfs2_recover_set(sdp, i);
730 			recover_set++;
731 		}
732 	}
733 	if (recover_set)
734 		return;
735 
736 	/*
737 	 * No more jid bits set in lvb, all recovery is done, unblock locks
738 	 * (unless a new recover_prep callback has occured blocking locks
739 	 * again while working above)
740 	 */
741 
742 	spin_lock(&ls->ls_recover_spin);
743 	if (ls->ls_recover_block == block_gen &&
744 	    ls->ls_recover_start == start_gen) {
745 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
746 		spin_unlock(&ls->ls_recover_spin);
747 		fs_info(sdp, "recover generation %u done\n", start_gen);
748 		gfs2_glock_thaw(sdp);
749 	} else {
750 		fs_info(sdp, "recover generation %u block2 %u %u\n",
751 			start_gen, block_gen, ls->ls_recover_block);
752 		spin_unlock(&ls->ls_recover_spin);
753 	}
754 }
755 
control_mount(struct gfs2_sbd * sdp)756 static int control_mount(struct gfs2_sbd *sdp)
757 {
758 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
759 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
760 	int mounted_mode;
761 	int retries = 0;
762 	int error;
763 
764 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
765 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
766 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
767 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
768 	init_completion(&ls->ls_sync_wait);
769 
770 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
771 
772 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
773 	if (error) {
774 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
775 		return error;
776 	}
777 
778 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
779 	if (error) {
780 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
781 		control_unlock(sdp);
782 		return error;
783 	}
784 	mounted_mode = DLM_LOCK_NL;
785 
786 restart:
787 	if (retries++ && signal_pending(current)) {
788 		error = -EINTR;
789 		goto fail;
790 	}
791 
792 	/*
793 	 * We always start with both locks in NL. control_lock is
794 	 * demoted to NL below so we don't need to do it here.
795 	 */
796 
797 	if (mounted_mode != DLM_LOCK_NL) {
798 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
799 		if (error)
800 			goto fail;
801 		mounted_mode = DLM_LOCK_NL;
802 	}
803 
804 	/*
805 	 * Other nodes need to do some work in dlm recovery and gfs2_control
806 	 * before the recover_done and control_lock will be ready for us below.
807 	 * A delay here is not required but often avoids having to retry.
808 	 */
809 
810 	msleep_interruptible(500);
811 
812 	/*
813 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
814 	 * control_lock lvb keeps track of any pending journal recoveries.
815 	 * mounted_lock indicates if any other nodes have the fs mounted.
816 	 */
817 
818 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
819 	if (error == -EAGAIN) {
820 		goto restart;
821 	} else if (error) {
822 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
823 		goto fail;
824 	}
825 
826 	/**
827 	 * If we're a spectator, we don't want to take the lock in EX because
828 	 * we cannot do the first-mount responsibility it implies: recovery.
829 	 */
830 	if (sdp->sd_args.ar_spectator)
831 		goto locks_done;
832 
833 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
834 	if (!error) {
835 		mounted_mode = DLM_LOCK_EX;
836 		goto locks_done;
837 	} else if (error != -EAGAIN) {
838 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
839 		goto fail;
840 	}
841 
842 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
843 	if (!error) {
844 		mounted_mode = DLM_LOCK_PR;
845 		goto locks_done;
846 	} else {
847 		/* not even -EAGAIN should happen here */
848 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
849 		goto fail;
850 	}
851 
852 locks_done:
853 	/*
854 	 * If we got both locks above in EX, then we're the first mounter.
855 	 * If not, then we need to wait for the control_lock lvb to be
856 	 * updated by other mounted nodes to reflect our mount generation.
857 	 *
858 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
859 	 * but in cases where all existing nodes leave/fail before mounting
860 	 * nodes finish control_mount, then all nodes will be mounting and
861 	 * lvb_gen will be non-zero.
862 	 */
863 
864 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
865 
866 	if (lvb_gen == 0xFFFFFFFF) {
867 		/* special value to force mount attempts to fail */
868 		fs_err(sdp, "control_mount control_lock disabled\n");
869 		error = -EINVAL;
870 		goto fail;
871 	}
872 
873 	if (mounted_mode == DLM_LOCK_EX) {
874 		/* first mounter, keep both EX while doing first recovery */
875 		spin_lock(&ls->ls_recover_spin);
876 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
877 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
878 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
879 		spin_unlock(&ls->ls_recover_spin);
880 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
881 		return 0;
882 	}
883 
884 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
885 	if (error)
886 		goto fail;
887 
888 	/*
889 	 * We are not first mounter, now we need to wait for the control_lock
890 	 * lvb generation to be >= the generation from our first recover_done
891 	 * and all lvb bits to be clear (no pending journal recoveries.)
892 	 */
893 
894 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
895 		/* journals need recovery, wait until all are clear */
896 		fs_info(sdp, "control_mount wait for journal recovery\n");
897 		goto restart;
898 	}
899 
900 	spin_lock(&ls->ls_recover_spin);
901 	block_gen = ls->ls_recover_block;
902 	start_gen = ls->ls_recover_start;
903 	mount_gen = ls->ls_recover_mount;
904 
905 	if (lvb_gen < mount_gen) {
906 		/* wait for mounted nodes to update control_lock lvb to our
907 		   generation, which might include new recovery bits set */
908 		if (sdp->sd_args.ar_spectator) {
909 			fs_info(sdp, "Recovery is required. Waiting for a "
910 				"non-spectator to mount.\n");
911 			msleep_interruptible(1000);
912 		} else {
913 			fs_info(sdp, "control_mount wait1 block %u start %u "
914 				"mount %u lvb %u flags %lx\n", block_gen,
915 				start_gen, mount_gen, lvb_gen,
916 				ls->ls_recover_flags);
917 		}
918 		spin_unlock(&ls->ls_recover_spin);
919 		goto restart;
920 	}
921 
922 	if (lvb_gen != start_gen) {
923 		/* wait for mounted nodes to update control_lock lvb to the
924 		   latest recovery generation */
925 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
926 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
927 			lvb_gen, ls->ls_recover_flags);
928 		spin_unlock(&ls->ls_recover_spin);
929 		goto restart;
930 	}
931 
932 	if (block_gen == start_gen) {
933 		/* dlm recovery in progress, wait for it to finish */
934 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
935 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
936 			lvb_gen, ls->ls_recover_flags);
937 		spin_unlock(&ls->ls_recover_spin);
938 		goto restart;
939 	}
940 
941 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
942 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
943 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
944 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
945 	spin_unlock(&ls->ls_recover_spin);
946 	return 0;
947 
948 fail:
949 	mounted_unlock(sdp);
950 	control_unlock(sdp);
951 	return error;
952 }
953 
control_first_done(struct gfs2_sbd * sdp)954 static int control_first_done(struct gfs2_sbd *sdp)
955 {
956 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
957 	uint32_t start_gen, block_gen;
958 	int error;
959 
960 restart:
961 	spin_lock(&ls->ls_recover_spin);
962 	start_gen = ls->ls_recover_start;
963 	block_gen = ls->ls_recover_block;
964 
965 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
966 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
967 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
968 		/* sanity check, should not happen */
969 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
970 		       start_gen, block_gen, ls->ls_recover_flags);
971 		spin_unlock(&ls->ls_recover_spin);
972 		control_unlock(sdp);
973 		return -1;
974 	}
975 
976 	if (start_gen == block_gen) {
977 		/*
978 		 * Wait for the end of a dlm recovery cycle to switch from
979 		 * first mounter recovery.  We can ignore any recover_slot
980 		 * callbacks between the recover_prep and next recover_done
981 		 * because we are still the first mounter and any failed nodes
982 		 * have not fully mounted, so they don't need recovery.
983 		 */
984 		spin_unlock(&ls->ls_recover_spin);
985 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
986 
987 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
988 			    TASK_UNINTERRUPTIBLE);
989 		goto restart;
990 	}
991 
992 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
993 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
994 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
995 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
996 	spin_unlock(&ls->ls_recover_spin);
997 
998 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
999 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1000 
1001 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1002 	if (error)
1003 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1004 
1005 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1006 	if (error)
1007 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1008 
1009 	return error;
1010 }
1011 
1012 /*
1013  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1014  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1015  * gfs2 jids start at 0, so jid = slot - 1)
1016  */
1017 
1018 #define RECOVER_SIZE_INC 16
1019 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1020 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1021 			    int num_slots)
1022 {
1023 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1024 	uint32_t *submit = NULL;
1025 	uint32_t *result = NULL;
1026 	uint32_t old_size, new_size;
1027 	int i, max_jid;
1028 
1029 	if (!ls->ls_lvb_bits) {
1030 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1031 		if (!ls->ls_lvb_bits)
1032 			return -ENOMEM;
1033 	}
1034 
1035 	max_jid = 0;
1036 	for (i = 0; i < num_slots; i++) {
1037 		if (max_jid < slots[i].slot - 1)
1038 			max_jid = slots[i].slot - 1;
1039 	}
1040 
1041 	old_size = ls->ls_recover_size;
1042 
1043 	if (old_size >= max_jid + 1)
1044 		return 0;
1045 
1046 	new_size = old_size + RECOVER_SIZE_INC;
1047 
1048 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1049 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1050 	if (!submit || !result) {
1051 		kfree(submit);
1052 		kfree(result);
1053 		return -ENOMEM;
1054 	}
1055 
1056 	spin_lock(&ls->ls_recover_spin);
1057 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1058 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1059 	kfree(ls->ls_recover_submit);
1060 	kfree(ls->ls_recover_result);
1061 	ls->ls_recover_submit = submit;
1062 	ls->ls_recover_result = result;
1063 	ls->ls_recover_size = new_size;
1064 	spin_unlock(&ls->ls_recover_spin);
1065 	return 0;
1066 }
1067 
free_recover_size(struct lm_lockstruct * ls)1068 static void free_recover_size(struct lm_lockstruct *ls)
1069 {
1070 	kfree(ls->ls_lvb_bits);
1071 	kfree(ls->ls_recover_submit);
1072 	kfree(ls->ls_recover_result);
1073 	ls->ls_recover_submit = NULL;
1074 	ls->ls_recover_result = NULL;
1075 	ls->ls_recover_size = 0;
1076 	ls->ls_lvb_bits = NULL;
1077 }
1078 
1079 /* dlm calls before it does lock recovery */
1080 
gdlm_recover_prep(void * arg)1081 static void gdlm_recover_prep(void *arg)
1082 {
1083 	struct gfs2_sbd *sdp = arg;
1084 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1085 
1086 	spin_lock(&ls->ls_recover_spin);
1087 	ls->ls_recover_block = ls->ls_recover_start;
1088 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1089 
1090 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1091 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1092 		spin_unlock(&ls->ls_recover_spin);
1093 		return;
1094 	}
1095 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1096 	spin_unlock(&ls->ls_recover_spin);
1097 }
1098 
1099 /* dlm calls after recover_prep has been completed on all lockspace members;
1100    identifies slot/jid of failed member */
1101 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1102 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1103 {
1104 	struct gfs2_sbd *sdp = arg;
1105 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1106 	int jid = slot->slot - 1;
1107 
1108 	spin_lock(&ls->ls_recover_spin);
1109 	if (ls->ls_recover_size < jid + 1) {
1110 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1111 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1112 		spin_unlock(&ls->ls_recover_spin);
1113 		return;
1114 	}
1115 
1116 	if (ls->ls_recover_submit[jid]) {
1117 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1118 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1119 	}
1120 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1121 	spin_unlock(&ls->ls_recover_spin);
1122 }
1123 
1124 /* dlm calls after recover_slot and after it completes lock recovery */
1125 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1126 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1127 			      int our_slot, uint32_t generation)
1128 {
1129 	struct gfs2_sbd *sdp = arg;
1130 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1131 
1132 	/* ensure the ls jid arrays are large enough */
1133 	set_recover_size(sdp, slots, num_slots);
1134 
1135 	spin_lock(&ls->ls_recover_spin);
1136 	ls->ls_recover_start = generation;
1137 
1138 	if (!ls->ls_recover_mount) {
1139 		ls->ls_recover_mount = generation;
1140 		ls->ls_jid = our_slot - 1;
1141 	}
1142 
1143 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1144 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1145 
1146 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1147 	smp_mb__after_atomic();
1148 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1149 	spin_unlock(&ls->ls_recover_spin);
1150 }
1151 
1152 /* gfs2_recover thread has a journal recovery result */
1153 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1154 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1155 				 unsigned int result)
1156 {
1157 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1158 
1159 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1160 		return;
1161 
1162 	/* don't care about the recovery of own journal during mount */
1163 	if (jid == ls->ls_jid)
1164 		return;
1165 
1166 	spin_lock(&ls->ls_recover_spin);
1167 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1168 		spin_unlock(&ls->ls_recover_spin);
1169 		return;
1170 	}
1171 	if (ls->ls_recover_size < jid + 1) {
1172 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1173 		       jid, ls->ls_recover_size);
1174 		spin_unlock(&ls->ls_recover_spin);
1175 		return;
1176 	}
1177 
1178 	fs_info(sdp, "recover jid %d result %s\n", jid,
1179 		result == LM_RD_GAVEUP ? "busy" : "success");
1180 
1181 	ls->ls_recover_result[jid] = result;
1182 
1183 	/* GAVEUP means another node is recovering the journal; delay our
1184 	   next attempt to recover it, to give the other node a chance to
1185 	   finish before trying again */
1186 
1187 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1188 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1189 				   result == LM_RD_GAVEUP ? HZ : 0);
1190 	spin_unlock(&ls->ls_recover_spin);
1191 }
1192 
1193 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1194 	.recover_prep = gdlm_recover_prep,
1195 	.recover_slot = gdlm_recover_slot,
1196 	.recover_done = gdlm_recover_done,
1197 };
1198 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1199 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1200 {
1201 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1202 	char cluster[GFS2_LOCKNAME_LEN];
1203 	const char *fsname;
1204 	uint32_t flags;
1205 	int error, ops_result;
1206 
1207 	/*
1208 	 * initialize everything
1209 	 */
1210 
1211 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1212 	spin_lock_init(&ls->ls_recover_spin);
1213 	ls->ls_recover_flags = 0;
1214 	ls->ls_recover_mount = 0;
1215 	ls->ls_recover_start = 0;
1216 	ls->ls_recover_block = 0;
1217 	ls->ls_recover_size = 0;
1218 	ls->ls_recover_submit = NULL;
1219 	ls->ls_recover_result = NULL;
1220 	ls->ls_lvb_bits = NULL;
1221 
1222 	error = set_recover_size(sdp, NULL, 0);
1223 	if (error)
1224 		goto fail;
1225 
1226 	/*
1227 	 * prepare dlm_new_lockspace args
1228 	 */
1229 
1230 	fsname = strchr(table, ':');
1231 	if (!fsname) {
1232 		fs_info(sdp, "no fsname found\n");
1233 		error = -EINVAL;
1234 		goto fail_free;
1235 	}
1236 	memset(cluster, 0, sizeof(cluster));
1237 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1238 	fsname++;
1239 
1240 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1241 
1242 	/*
1243 	 * create/join lockspace
1244 	 */
1245 
1246 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1247 				  &gdlm_lockspace_ops, sdp, &ops_result,
1248 				  &ls->ls_dlm);
1249 	if (error) {
1250 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1251 		goto fail_free;
1252 	}
1253 
1254 	if (ops_result < 0) {
1255 		/*
1256 		 * dlm does not support ops callbacks,
1257 		 * old dlm_controld/gfs_controld are used, try without ops.
1258 		 */
1259 		fs_info(sdp, "dlm lockspace ops not used\n");
1260 		free_recover_size(ls);
1261 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1262 		return 0;
1263 	}
1264 
1265 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1266 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1267 		error = -EINVAL;
1268 		goto fail_release;
1269 	}
1270 
1271 	/*
1272 	 * control_mount() uses control_lock to determine first mounter,
1273 	 * and for later mounts, waits for any recoveries to be cleared.
1274 	 */
1275 
1276 	error = control_mount(sdp);
1277 	if (error) {
1278 		fs_err(sdp, "mount control error %d\n", error);
1279 		goto fail_release;
1280 	}
1281 
1282 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1283 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1284 	smp_mb__after_atomic();
1285 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1286 	return 0;
1287 
1288 fail_release:
1289 	dlm_release_lockspace(ls->ls_dlm, 2);
1290 fail_free:
1291 	free_recover_size(ls);
1292 fail:
1293 	return error;
1294 }
1295 
gdlm_first_done(struct gfs2_sbd * sdp)1296 static void gdlm_first_done(struct gfs2_sbd *sdp)
1297 {
1298 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1299 	int error;
1300 
1301 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1302 		return;
1303 
1304 	error = control_first_done(sdp);
1305 	if (error)
1306 		fs_err(sdp, "mount first_done error %d\n", error);
1307 }
1308 
gdlm_unmount(struct gfs2_sbd * sdp)1309 static void gdlm_unmount(struct gfs2_sbd *sdp)
1310 {
1311 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1312 
1313 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1314 		goto release;
1315 
1316 	/* wait for gfs2_control_wq to be done with this mount */
1317 
1318 	spin_lock(&ls->ls_recover_spin);
1319 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1320 	spin_unlock(&ls->ls_recover_spin);
1321 	flush_delayed_work(&sdp->sd_control_work);
1322 
1323 	/* mounted_lock and control_lock will be purged in dlm recovery */
1324 release:
1325 	if (ls->ls_dlm) {
1326 		dlm_release_lockspace(ls->ls_dlm, 2);
1327 		ls->ls_dlm = NULL;
1328 	}
1329 
1330 	free_recover_size(ls);
1331 }
1332 
1333 static const match_table_t dlm_tokens = {
1334 	{ Opt_jid, "jid=%d"},
1335 	{ Opt_id, "id=%d"},
1336 	{ Opt_first, "first=%d"},
1337 	{ Opt_nodir, "nodir=%d"},
1338 	{ Opt_err, NULL },
1339 };
1340 
1341 const struct lm_lockops gfs2_dlm_ops = {
1342 	.lm_proto_name = "lock_dlm",
1343 	.lm_mount = gdlm_mount,
1344 	.lm_first_done = gdlm_first_done,
1345 	.lm_recovery_result = gdlm_recovery_result,
1346 	.lm_unmount = gdlm_unmount,
1347 	.lm_put_lock = gdlm_put_lock,
1348 	.lm_lock = gdlm_lock,
1349 	.lm_cancel = gdlm_cancel,
1350 	.lm_tokens = &dlm_tokens,
1351 };
1352 
1353