1 /*
2  * Copyright (C) 2010 Red Hat, Inc.
3  * Copyright (c) 2016-2018 Christoph Hellwig.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #include <linux/module.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
21 #include <linux/mm.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
34 
35 #include "internal.h"
36 
37 /*
38  * Execute a iomap write on a segment of the mapping that spans a
39  * contiguous range of pages that have identical block mapping state.
40  *
41  * This avoids the need to map pages individually, do individual allocations
42  * for each page and most importantly avoid the need for filesystem specific
43  * locking per page. Instead, all the operations are amortised over the entire
44  * range of pages. It is assumed that the filesystems will lock whatever
45  * resources they require in the iomap_begin call, and release them in the
46  * iomap_end call.
47  */
48 loff_t
iomap_apply(struct inode * inode,loff_t pos,loff_t length,unsigned flags,const struct iomap_ops * ops,void * data,iomap_actor_t actor)49 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
50 		const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 {
52 	struct iomap iomap = { 0 };
53 	loff_t written = 0, ret;
54 
55 	/*
56 	 * Need to map a range from start position for length bytes. This can
57 	 * span multiple pages - it is only guaranteed to return a range of a
58 	 * single type of pages (e.g. all into a hole, all mapped or all
59 	 * unwritten). Failure at this point has nothing to undo.
60 	 *
61 	 * If allocation is required for this range, reserve the space now so
62 	 * that the allocation is guaranteed to succeed later on. Once we copy
63 	 * the data into the page cache pages, then we cannot fail otherwise we
64 	 * expose transient stale data. If the reserve fails, we can safely
65 	 * back out at this point as there is nothing to undo.
66 	 */
67 	ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
68 	if (ret)
69 		return ret;
70 	if (WARN_ON(iomap.offset > pos))
71 		return -EIO;
72 	if (WARN_ON(iomap.length == 0))
73 		return -EIO;
74 
75 	/*
76 	 * Cut down the length to the one actually provided by the filesystem,
77 	 * as it might not be able to give us the whole size that we requested.
78 	 */
79 	if (iomap.offset + iomap.length < pos + length)
80 		length = iomap.offset + iomap.length - pos;
81 
82 	/*
83 	 * Now that we have guaranteed that the space allocation will succeed.
84 	 * we can do the copy-in page by page without having to worry about
85 	 * failures exposing transient data.
86 	 */
87 	written = actor(inode, pos, length, data, &iomap);
88 
89 	/*
90 	 * Now the data has been copied, commit the range we've copied.  This
91 	 * should not fail unless the filesystem has had a fatal error.
92 	 */
93 	if (ops->iomap_end) {
94 		ret = ops->iomap_end(inode, pos, length,
95 				     written > 0 ? written : 0,
96 				     flags, &iomap);
97 	}
98 
99 	return written ? written : ret;
100 }
101 
102 static sector_t
iomap_sector(struct iomap * iomap,loff_t pos)103 iomap_sector(struct iomap *iomap, loff_t pos)
104 {
105 	return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
106 }
107 
108 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)109 iomap_page_create(struct inode *inode, struct page *page)
110 {
111 	struct iomap_page *iop = to_iomap_page(page);
112 
113 	if (iop || i_blocksize(inode) == PAGE_SIZE)
114 		return iop;
115 
116 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
117 	atomic_set(&iop->read_count, 0);
118 	atomic_set(&iop->write_count, 0);
119 	spin_lock_init(&iop->uptodate_lock);
120 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
121 
122 	/*
123 	 * migrate_page_move_mapping() assumes that pages with private data have
124 	 * their count elevated by 1.
125 	 */
126 	get_page(page);
127 	set_page_private(page, (unsigned long)iop);
128 	SetPagePrivate(page);
129 	return iop;
130 }
131 
132 static void
iomap_page_release(struct page * page)133 iomap_page_release(struct page *page)
134 {
135 	struct iomap_page *iop = to_iomap_page(page);
136 
137 	if (!iop)
138 		return;
139 	WARN_ON_ONCE(atomic_read(&iop->read_count));
140 	WARN_ON_ONCE(atomic_read(&iop->write_count));
141 	ClearPagePrivate(page);
142 	set_page_private(page, 0);
143 	put_page(page);
144 	kfree(iop);
145 }
146 
147 /*
148  * Calculate the range inside the page that we actually need to read.
149  */
150 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)151 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
152 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
153 {
154 	loff_t orig_pos = *pos;
155 	loff_t isize = i_size_read(inode);
156 	unsigned block_bits = inode->i_blkbits;
157 	unsigned block_size = (1 << block_bits);
158 	unsigned poff = offset_in_page(*pos);
159 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
160 	unsigned first = poff >> block_bits;
161 	unsigned last = (poff + plen - 1) >> block_bits;
162 
163 	/*
164 	 * If the block size is smaller than the page size we need to check the
165 	 * per-block uptodate status and adjust the offset and length if needed
166 	 * to avoid reading in already uptodate ranges.
167 	 */
168 	if (iop) {
169 		unsigned int i;
170 
171 		/* move forward for each leading block marked uptodate */
172 		for (i = first; i <= last; i++) {
173 			if (!test_bit(i, iop->uptodate))
174 				break;
175 			*pos += block_size;
176 			poff += block_size;
177 			plen -= block_size;
178 			first++;
179 		}
180 
181 		/* truncate len if we find any trailing uptodate block(s) */
182 		for ( ; i <= last; i++) {
183 			if (test_bit(i, iop->uptodate)) {
184 				plen -= (last - i + 1) * block_size;
185 				last = i - 1;
186 				break;
187 			}
188 		}
189 	}
190 
191 	/*
192 	 * If the extent spans the block that contains the i_size we need to
193 	 * handle both halves separately so that we properly zero data in the
194 	 * page cache for blocks that are entirely outside of i_size.
195 	 */
196 	if (orig_pos <= isize && orig_pos + length > isize) {
197 		unsigned end = offset_in_page(isize - 1) >> block_bits;
198 
199 		if (first <= end && last > end)
200 			plen -= (last - end) * block_size;
201 	}
202 
203 	*offp = poff;
204 	*lenp = plen;
205 }
206 
207 static void
iomap_iop_set_range_uptodate(struct page * page,unsigned off,unsigned len)208 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
209 {
210 	struct iomap_page *iop = to_iomap_page(page);
211 	struct inode *inode = page->mapping->host;
212 	unsigned first = off >> inode->i_blkbits;
213 	unsigned last = (off + len - 1) >> inode->i_blkbits;
214 	bool uptodate = true;
215 	unsigned long flags;
216 	unsigned int i;
217 
218 	spin_lock_irqsave(&iop->uptodate_lock, flags);
219 	for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
220 		if (i >= first && i <= last)
221 			set_bit(i, iop->uptodate);
222 		else if (!test_bit(i, iop->uptodate))
223 			uptodate = false;
224 	}
225 
226 	if (uptodate)
227 		SetPageUptodate(page);
228 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
229 }
230 
231 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)232 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
233 {
234 	if (PageError(page))
235 		return;
236 
237 	if (page_has_private(page))
238 		iomap_iop_set_range_uptodate(page, off, len);
239 	else
240 		SetPageUptodate(page);
241 }
242 
243 static void
iomap_read_finish(struct iomap_page * iop,struct page * page)244 iomap_read_finish(struct iomap_page *iop, struct page *page)
245 {
246 	if (!iop || atomic_dec_and_test(&iop->read_count))
247 		unlock_page(page);
248 }
249 
250 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)251 iomap_read_page_end_io(struct bio_vec *bvec, int error)
252 {
253 	struct page *page = bvec->bv_page;
254 	struct iomap_page *iop = to_iomap_page(page);
255 
256 	if (unlikely(error)) {
257 		ClearPageUptodate(page);
258 		SetPageError(page);
259 	} else {
260 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
261 	}
262 
263 	iomap_read_finish(iop, page);
264 }
265 
266 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)267 iomap_read_inline_data(struct inode *inode, struct page *page,
268 		struct iomap *iomap)
269 {
270 	size_t size = i_size_read(inode);
271 	void *addr;
272 
273 	if (PageUptodate(page))
274 		return;
275 
276 	BUG_ON(page->index);
277 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
278 
279 	addr = kmap_atomic(page);
280 	memcpy(addr, iomap->inline_data, size);
281 	memset(addr + size, 0, PAGE_SIZE - size);
282 	kunmap_atomic(addr);
283 	SetPageUptodate(page);
284 }
285 
286 static void
iomap_read_end_io(struct bio * bio)287 iomap_read_end_io(struct bio *bio)
288 {
289 	int error = blk_status_to_errno(bio->bi_status);
290 	struct bio_vec *bvec;
291 	int i;
292 
293 	bio_for_each_segment_all(bvec, bio, i)
294 		iomap_read_page_end_io(bvec, error);
295 	bio_put(bio);
296 }
297 
298 struct iomap_readpage_ctx {
299 	struct page		*cur_page;
300 	bool			cur_page_in_bio;
301 	bool			is_readahead;
302 	struct bio		*bio;
303 	struct list_head	*pages;
304 };
305 
306 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)307 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
308 		struct iomap *iomap)
309 {
310 	struct iomap_readpage_ctx *ctx = data;
311 	struct page *page = ctx->cur_page;
312 	struct iomap_page *iop = iomap_page_create(inode, page);
313 	bool is_contig = false;
314 	loff_t orig_pos = pos;
315 	unsigned poff, plen;
316 	sector_t sector;
317 
318 	if (iomap->type == IOMAP_INLINE) {
319 		WARN_ON_ONCE(pos);
320 		iomap_read_inline_data(inode, page, iomap);
321 		return PAGE_SIZE;
322 	}
323 
324 	/* zero post-eof blocks as the page may be mapped */
325 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
326 	if (plen == 0)
327 		goto done;
328 
329 	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
330 		zero_user(page, poff, plen);
331 		iomap_set_range_uptodate(page, poff, plen);
332 		goto done;
333 	}
334 
335 	ctx->cur_page_in_bio = true;
336 
337 	/*
338 	 * Try to merge into a previous segment if we can.
339 	 */
340 	sector = iomap_sector(iomap, pos);
341 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
342 		if (__bio_try_merge_page(ctx->bio, page, plen, poff))
343 			goto done;
344 		is_contig = true;
345 	}
346 
347 	/*
348 	 * If we start a new segment we need to increase the read count, and we
349 	 * need to do so before submitting any previous full bio to make sure
350 	 * that we don't prematurely unlock the page.
351 	 */
352 	if (iop)
353 		atomic_inc(&iop->read_count);
354 
355 	if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
356 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
357 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
358 
359 		if (ctx->bio)
360 			submit_bio(ctx->bio);
361 
362 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
363 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
364 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
365 		ctx->bio->bi_opf = REQ_OP_READ;
366 		if (ctx->is_readahead)
367 			ctx->bio->bi_opf |= REQ_RAHEAD;
368 		ctx->bio->bi_iter.bi_sector = sector;
369 		bio_set_dev(ctx->bio, iomap->bdev);
370 		ctx->bio->bi_end_io = iomap_read_end_io;
371 	}
372 
373 	__bio_add_page(ctx->bio, page, plen, poff);
374 done:
375 	/*
376 	 * Move the caller beyond our range so that it keeps making progress.
377 	 * For that we have to include any leading non-uptodate ranges, but
378 	 * we can skip trailing ones as they will be handled in the next
379 	 * iteration.
380 	 */
381 	return pos - orig_pos + plen;
382 }
383 
384 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)385 iomap_readpage(struct page *page, const struct iomap_ops *ops)
386 {
387 	struct iomap_readpage_ctx ctx = { .cur_page = page };
388 	struct inode *inode = page->mapping->host;
389 	unsigned poff;
390 	loff_t ret;
391 
392 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
393 		ret = iomap_apply(inode, page_offset(page) + poff,
394 				PAGE_SIZE - poff, 0, ops, &ctx,
395 				iomap_readpage_actor);
396 		if (ret <= 0) {
397 			WARN_ON_ONCE(ret == 0);
398 			SetPageError(page);
399 			break;
400 		}
401 	}
402 
403 	if (ctx.bio) {
404 		submit_bio(ctx.bio);
405 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
406 	} else {
407 		WARN_ON_ONCE(ctx.cur_page_in_bio);
408 		unlock_page(page);
409 	}
410 
411 	/*
412 	 * Just like mpage_readpages and block_read_full_page we always
413 	 * return 0 and just mark the page as PageError on errors.  This
414 	 * should be cleaned up all through the stack eventually.
415 	 */
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(iomap_readpage);
419 
420 static struct page *
iomap_next_page(struct inode * inode,struct list_head * pages,loff_t pos,loff_t length,loff_t * done)421 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
422 		loff_t length, loff_t *done)
423 {
424 	while (!list_empty(pages)) {
425 		struct page *page = lru_to_page(pages);
426 
427 		if (page_offset(page) >= (u64)pos + length)
428 			break;
429 
430 		list_del(&page->lru);
431 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
432 				GFP_NOFS))
433 			return page;
434 
435 		/*
436 		 * If we already have a page in the page cache at index we are
437 		 * done.  Upper layers don't care if it is uptodate after the
438 		 * readpages call itself as every page gets checked again once
439 		 * actually needed.
440 		 */
441 		*done += PAGE_SIZE;
442 		put_page(page);
443 	}
444 
445 	return NULL;
446 }
447 
448 static loff_t
iomap_readpages_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)449 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
450 		void *data, struct iomap *iomap)
451 {
452 	struct iomap_readpage_ctx *ctx = data;
453 	loff_t done, ret;
454 
455 	for (done = 0; done < length; done += ret) {
456 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
457 			if (!ctx->cur_page_in_bio)
458 				unlock_page(ctx->cur_page);
459 			put_page(ctx->cur_page);
460 			ctx->cur_page = NULL;
461 		}
462 		if (!ctx->cur_page) {
463 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
464 					pos, length, &done);
465 			if (!ctx->cur_page)
466 				break;
467 			ctx->cur_page_in_bio = false;
468 		}
469 		ret = iomap_readpage_actor(inode, pos + done, length - done,
470 				ctx, iomap);
471 	}
472 
473 	return done;
474 }
475 
476 int
iomap_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,const struct iomap_ops * ops)477 iomap_readpages(struct address_space *mapping, struct list_head *pages,
478 		unsigned nr_pages, const struct iomap_ops *ops)
479 {
480 	struct iomap_readpage_ctx ctx = {
481 		.pages		= pages,
482 		.is_readahead	= true,
483 	};
484 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
485 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
486 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
487 
488 	while (length > 0) {
489 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
490 				&ctx, iomap_readpages_actor);
491 		if (ret <= 0) {
492 			WARN_ON_ONCE(ret == 0);
493 			goto done;
494 		}
495 		pos += ret;
496 		length -= ret;
497 	}
498 	ret = 0;
499 done:
500 	if (ctx.bio)
501 		submit_bio(ctx.bio);
502 	if (ctx.cur_page) {
503 		if (!ctx.cur_page_in_bio)
504 			unlock_page(ctx.cur_page);
505 		put_page(ctx.cur_page);
506 	}
507 
508 	/*
509 	 * Check that we didn't lose a page due to the arcance calling
510 	 * conventions..
511 	 */
512 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
513 	return ret;
514 }
515 EXPORT_SYMBOL_GPL(iomap_readpages);
516 
517 /*
518  * iomap_is_partially_uptodate checks whether blocks within a page are
519  * uptodate or not.
520  *
521  * Returns true if all blocks which correspond to a file portion
522  * we want to read within the page are uptodate.
523  */
524 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)525 iomap_is_partially_uptodate(struct page *page, unsigned long from,
526 		unsigned long count)
527 {
528 	struct iomap_page *iop = to_iomap_page(page);
529 	struct inode *inode = page->mapping->host;
530 	unsigned len, first, last;
531 	unsigned i;
532 
533 	/* Limit range to one page */
534 	len = min_t(unsigned, PAGE_SIZE - from, count);
535 
536 	/* First and last blocks in range within page */
537 	first = from >> inode->i_blkbits;
538 	last = (from + len - 1) >> inode->i_blkbits;
539 
540 	if (iop) {
541 		for (i = first; i <= last; i++)
542 			if (!test_bit(i, iop->uptodate))
543 				return 0;
544 		return 1;
545 	}
546 
547 	return 0;
548 }
549 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
550 
551 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)552 iomap_releasepage(struct page *page, gfp_t gfp_mask)
553 {
554 	/*
555 	 * mm accommodates an old ext3 case where clean pages might not have had
556 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
557 	 * ->releasepage() via shrink_active_list(), skip those here.
558 	 */
559 	if (PageDirty(page) || PageWriteback(page))
560 		return 0;
561 	iomap_page_release(page);
562 	return 1;
563 }
564 EXPORT_SYMBOL_GPL(iomap_releasepage);
565 
566 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)567 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
568 {
569 	/*
570 	 * If we are invalidating the entire page, clear the dirty state from it
571 	 * and release it to avoid unnecessary buildup of the LRU.
572 	 */
573 	if (offset == 0 && len == PAGE_SIZE) {
574 		WARN_ON_ONCE(PageWriteback(page));
575 		cancel_dirty_page(page);
576 		iomap_page_release(page);
577 	}
578 }
579 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
580 
581 #ifdef CONFIG_MIGRATION
582 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)583 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
584 		struct page *page, enum migrate_mode mode)
585 {
586 	int ret;
587 
588 	ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
589 	if (ret != MIGRATEPAGE_SUCCESS)
590 		return ret;
591 
592 	if (page_has_private(page)) {
593 		ClearPagePrivate(page);
594 		get_page(newpage);
595 		set_page_private(newpage, page_private(page));
596 		set_page_private(page, 0);
597 		put_page(page);
598 		SetPagePrivate(newpage);
599 	}
600 
601 	if (mode != MIGRATE_SYNC_NO_COPY)
602 		migrate_page_copy(newpage, page);
603 	else
604 		migrate_page_states(newpage, page);
605 	return MIGRATEPAGE_SUCCESS;
606 }
607 EXPORT_SYMBOL_GPL(iomap_migrate_page);
608 #endif /* CONFIG_MIGRATION */
609 
610 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)611 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
612 {
613 	loff_t i_size = i_size_read(inode);
614 
615 	/*
616 	 * Only truncate newly allocated pages beyoned EOF, even if the
617 	 * write started inside the existing inode size.
618 	 */
619 	if (pos + len > i_size)
620 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
621 }
622 
623 static int
iomap_read_page_sync(struct inode * inode,loff_t block_start,struct page * page,unsigned poff,unsigned plen,unsigned from,unsigned to,struct iomap * iomap)624 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
625 		unsigned poff, unsigned plen, unsigned from, unsigned to,
626 		struct iomap *iomap)
627 {
628 	struct bio_vec bvec;
629 	struct bio bio;
630 
631 	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
632 		zero_user_segments(page, poff, from, to, poff + plen);
633 		iomap_set_range_uptodate(page, poff, plen);
634 		return 0;
635 	}
636 
637 	bio_init(&bio, &bvec, 1);
638 	bio.bi_opf = REQ_OP_READ;
639 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
640 	bio_set_dev(&bio, iomap->bdev);
641 	__bio_add_page(&bio, page, plen, poff);
642 	return submit_bio_wait(&bio);
643 }
644 
645 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,struct page * page,struct iomap * iomap)646 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
647 		struct page *page, struct iomap *iomap)
648 {
649 	struct iomap_page *iop = iomap_page_create(inode, page);
650 	loff_t block_size = i_blocksize(inode);
651 	loff_t block_start = pos & ~(block_size - 1);
652 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
653 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
654 	int status = 0;
655 
656 	if (PageUptodate(page))
657 		return 0;
658 
659 	do {
660 		iomap_adjust_read_range(inode, iop, &block_start,
661 				block_end - block_start, &poff, &plen);
662 		if (plen == 0)
663 			break;
664 
665 		if ((from > poff && from < poff + plen) ||
666 		    (to > poff && to < poff + plen)) {
667 			status = iomap_read_page_sync(inode, block_start, page,
668 					poff, plen, from, to, iomap);
669 			if (status)
670 				break;
671 		}
672 
673 	} while ((block_start += plen) < block_end);
674 
675 	return status;
676 }
677 
678 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap)679 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
680 		struct page **pagep, struct iomap *iomap)
681 {
682 	pgoff_t index = pos >> PAGE_SHIFT;
683 	struct page *page;
684 	int status = 0;
685 
686 	BUG_ON(pos + len > iomap->offset + iomap->length);
687 
688 	if (fatal_signal_pending(current))
689 		return -EINTR;
690 
691 	page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
692 	if (!page)
693 		return -ENOMEM;
694 
695 	if (iomap->type == IOMAP_INLINE)
696 		iomap_read_inline_data(inode, page, iomap);
697 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
698 		status = __block_write_begin_int(page, pos, len, NULL, iomap);
699 	else
700 		status = __iomap_write_begin(inode, pos, len, page, iomap);
701 	if (unlikely(status)) {
702 		unlock_page(page);
703 		put_page(page);
704 		page = NULL;
705 
706 		iomap_write_failed(inode, pos, len);
707 	}
708 
709 	*pagep = page;
710 	return status;
711 }
712 
713 int
iomap_set_page_dirty(struct page * page)714 iomap_set_page_dirty(struct page *page)
715 {
716 	struct address_space *mapping = page_mapping(page);
717 	int newly_dirty;
718 
719 	if (unlikely(!mapping))
720 		return !TestSetPageDirty(page);
721 
722 	/*
723 	 * Lock out page->mem_cgroup migration to keep PageDirty
724 	 * synchronized with per-memcg dirty page counters.
725 	 */
726 	lock_page_memcg(page);
727 	newly_dirty = !TestSetPageDirty(page);
728 	if (newly_dirty)
729 		__set_page_dirty(page, mapping, 0);
730 	unlock_page_memcg(page);
731 
732 	if (newly_dirty)
733 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
734 	return newly_dirty;
735 }
736 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
737 
738 static int
__iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)739 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
740 		unsigned copied, struct page *page, struct iomap *iomap)
741 {
742 	flush_dcache_page(page);
743 
744 	/*
745 	 * The blocks that were entirely written will now be uptodate, so we
746 	 * don't have to worry about a readpage reading them and overwriting a
747 	 * partial write.  However if we have encountered a short write and only
748 	 * partially written into a block, it will not be marked uptodate, so a
749 	 * readpage might come in and destroy our partial write.
750 	 *
751 	 * Do the simplest thing, and just treat any short write to a non
752 	 * uptodate page as a zero-length write, and force the caller to redo
753 	 * the whole thing.
754 	 */
755 	if (unlikely(copied < len && !PageUptodate(page))) {
756 		copied = 0;
757 	} else {
758 		iomap_set_range_uptodate(page, offset_in_page(pos), len);
759 		iomap_set_page_dirty(page);
760 	}
761 	return __generic_write_end(inode, pos, copied, page);
762 }
763 
764 static int
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,unsigned copied)765 iomap_write_end_inline(struct inode *inode, struct page *page,
766 		struct iomap *iomap, loff_t pos, unsigned copied)
767 {
768 	void *addr;
769 
770 	WARN_ON_ONCE(!PageUptodate(page));
771 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
772 
773 	addr = kmap_atomic(page);
774 	memcpy(iomap->inline_data + pos, addr + pos, copied);
775 	kunmap_atomic(addr);
776 
777 	mark_inode_dirty(inode);
778 	__generic_write_end(inode, pos, copied, page);
779 	return copied;
780 }
781 
782 static int
iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)783 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
784 		unsigned copied, struct page *page, struct iomap *iomap)
785 {
786 	int ret;
787 
788 	if (iomap->type == IOMAP_INLINE) {
789 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
790 	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
791 		ret = generic_write_end(NULL, inode->i_mapping, pos, len,
792 				copied, page, NULL);
793 	} else {
794 		ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
795 	}
796 
797 	if (iomap->page_done)
798 		iomap->page_done(inode, pos, copied, page, iomap);
799 
800 	if (ret < len)
801 		iomap_write_failed(inode, pos, len);
802 	return ret;
803 }
804 
805 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)806 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
807 		struct iomap *iomap)
808 {
809 	struct iov_iter *i = data;
810 	long status = 0;
811 	ssize_t written = 0;
812 	unsigned int flags = AOP_FLAG_NOFS;
813 
814 	do {
815 		struct page *page;
816 		unsigned long offset;	/* Offset into pagecache page */
817 		unsigned long bytes;	/* Bytes to write to page */
818 		size_t copied;		/* Bytes copied from user */
819 
820 		offset = offset_in_page(pos);
821 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
822 						iov_iter_count(i));
823 again:
824 		if (bytes > length)
825 			bytes = length;
826 
827 		/*
828 		 * Bring in the user page that we will copy from _first_.
829 		 * Otherwise there's a nasty deadlock on copying from the
830 		 * same page as we're writing to, without it being marked
831 		 * up-to-date.
832 		 *
833 		 * Not only is this an optimisation, but it is also required
834 		 * to check that the address is actually valid, when atomic
835 		 * usercopies are used, below.
836 		 */
837 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
838 			status = -EFAULT;
839 			break;
840 		}
841 
842 		status = iomap_write_begin(inode, pos, bytes, flags, &page,
843 				iomap);
844 		if (unlikely(status))
845 			break;
846 
847 		if (mapping_writably_mapped(inode->i_mapping))
848 			flush_dcache_page(page);
849 
850 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
851 
852 		flush_dcache_page(page);
853 
854 		status = iomap_write_end(inode, pos, bytes, copied, page,
855 				iomap);
856 		if (unlikely(status < 0))
857 			break;
858 		copied = status;
859 
860 		cond_resched();
861 
862 		iov_iter_advance(i, copied);
863 		if (unlikely(copied == 0)) {
864 			/*
865 			 * If we were unable to copy any data at all, we must
866 			 * fall back to a single segment length write.
867 			 *
868 			 * If we didn't fallback here, we could livelock
869 			 * because not all segments in the iov can be copied at
870 			 * once without a pagefault.
871 			 */
872 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
873 						iov_iter_single_seg_count(i));
874 			goto again;
875 		}
876 		pos += copied;
877 		written += copied;
878 		length -= copied;
879 
880 		balance_dirty_pages_ratelimited(inode->i_mapping);
881 	} while (iov_iter_count(i) && length);
882 
883 	return written ? written : status;
884 }
885 
886 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)887 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
888 		const struct iomap_ops *ops)
889 {
890 	struct inode *inode = iocb->ki_filp->f_mapping->host;
891 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
892 
893 	while (iov_iter_count(iter)) {
894 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
895 				IOMAP_WRITE, ops, iter, iomap_write_actor);
896 		if (ret <= 0)
897 			break;
898 		pos += ret;
899 		written += ret;
900 	}
901 
902 	return written ? written : ret;
903 }
904 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
905 
906 static struct page *
__iomap_read_page(struct inode * inode,loff_t offset)907 __iomap_read_page(struct inode *inode, loff_t offset)
908 {
909 	struct address_space *mapping = inode->i_mapping;
910 	struct page *page;
911 
912 	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
913 	if (IS_ERR(page))
914 		return page;
915 	if (!PageUptodate(page)) {
916 		put_page(page);
917 		return ERR_PTR(-EIO);
918 	}
919 	return page;
920 }
921 
922 static loff_t
iomap_dirty_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)923 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
924 		struct iomap *iomap)
925 {
926 	long status = 0;
927 	ssize_t written = 0;
928 
929 	do {
930 		struct page *page, *rpage;
931 		unsigned long offset;	/* Offset into pagecache page */
932 		unsigned long bytes;	/* Bytes to write to page */
933 
934 		offset = offset_in_page(pos);
935 		bytes = min_t(loff_t, PAGE_SIZE - offset, length);
936 
937 		rpage = __iomap_read_page(inode, pos);
938 		if (IS_ERR(rpage))
939 			return PTR_ERR(rpage);
940 
941 		status = iomap_write_begin(inode, pos, bytes,
942 					   AOP_FLAG_NOFS, &page, iomap);
943 		put_page(rpage);
944 		if (unlikely(status))
945 			return status;
946 
947 		WARN_ON_ONCE(!PageUptodate(page));
948 
949 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
950 		if (unlikely(status <= 0)) {
951 			if (WARN_ON_ONCE(status == 0))
952 				return -EIO;
953 			return status;
954 		}
955 
956 		cond_resched();
957 
958 		pos += status;
959 		written += status;
960 		length -= status;
961 
962 		balance_dirty_pages_ratelimited(inode->i_mapping);
963 	} while (length);
964 
965 	return written;
966 }
967 
968 int
iomap_file_dirty(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)969 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
970 		const struct iomap_ops *ops)
971 {
972 	loff_t ret;
973 
974 	while (len) {
975 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
976 				iomap_dirty_actor);
977 		if (ret <= 0)
978 			return ret;
979 		pos += ret;
980 		len -= ret;
981 	}
982 
983 	return 0;
984 }
985 EXPORT_SYMBOL_GPL(iomap_file_dirty);
986 
iomap_zero(struct inode * inode,loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)987 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
988 		unsigned bytes, struct iomap *iomap)
989 {
990 	struct page *page;
991 	int status;
992 
993 	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
994 				   iomap);
995 	if (status)
996 		return status;
997 
998 	zero_user(page, offset, bytes);
999 	mark_page_accessed(page);
1000 
1001 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
1002 }
1003 
iomap_dax_zero(loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)1004 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
1005 		struct iomap *iomap)
1006 {
1007 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
1008 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
1009 }
1010 
1011 static loff_t
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)1012 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
1013 		void *data, struct iomap *iomap)
1014 {
1015 	bool *did_zero = data;
1016 	loff_t written = 0;
1017 	int status;
1018 
1019 	/* already zeroed?  we're done. */
1020 	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1021 	    	return count;
1022 
1023 	do {
1024 		unsigned offset, bytes;
1025 
1026 		offset = offset_in_page(pos);
1027 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1028 
1029 		if (IS_DAX(inode))
1030 			status = iomap_dax_zero(pos, offset, bytes, iomap);
1031 		else
1032 			status = iomap_zero(inode, pos, offset, bytes, iomap);
1033 		if (status < 0)
1034 			return status;
1035 
1036 		pos += bytes;
1037 		count -= bytes;
1038 		written += bytes;
1039 		if (did_zero)
1040 			*did_zero = true;
1041 	} while (count > 0);
1042 
1043 	return written;
1044 }
1045 
1046 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1047 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1048 		const struct iomap_ops *ops)
1049 {
1050 	loff_t ret;
1051 
1052 	while (len > 0) {
1053 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1054 				ops, did_zero, iomap_zero_range_actor);
1055 		if (ret <= 0)
1056 			return ret;
1057 
1058 		pos += ret;
1059 		len -= ret;
1060 	}
1061 
1062 	return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(iomap_zero_range);
1065 
1066 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1067 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1068 		const struct iomap_ops *ops)
1069 {
1070 	unsigned int blocksize = i_blocksize(inode);
1071 	unsigned int off = pos & (blocksize - 1);
1072 
1073 	/* Block boundary? Nothing to do */
1074 	if (!off)
1075 		return 0;
1076 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1077 }
1078 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1079 
1080 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1081 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1082 		void *data, struct iomap *iomap)
1083 {
1084 	struct page *page = data;
1085 	int ret;
1086 
1087 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1088 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1089 		if (ret)
1090 			return ret;
1091 		block_commit_write(page, 0, length);
1092 	} else {
1093 		WARN_ON_ONCE(!PageUptodate(page));
1094 		iomap_page_create(inode, page);
1095 		set_page_dirty(page);
1096 	}
1097 
1098 	return length;
1099 }
1100 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1101 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1102 {
1103 	struct page *page = vmf->page;
1104 	struct inode *inode = file_inode(vmf->vma->vm_file);
1105 	unsigned long length;
1106 	loff_t offset, size;
1107 	ssize_t ret;
1108 
1109 	lock_page(page);
1110 	size = i_size_read(inode);
1111 	if ((page->mapping != inode->i_mapping) ||
1112 	    (page_offset(page) > size)) {
1113 		/* We overload EFAULT to mean page got truncated */
1114 		ret = -EFAULT;
1115 		goto out_unlock;
1116 	}
1117 
1118 	/* page is wholly or partially inside EOF */
1119 	if (((page->index + 1) << PAGE_SHIFT) > size)
1120 		length = offset_in_page(size);
1121 	else
1122 		length = PAGE_SIZE;
1123 
1124 	offset = page_offset(page);
1125 	while (length > 0) {
1126 		ret = iomap_apply(inode, offset, length,
1127 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1128 				iomap_page_mkwrite_actor);
1129 		if (unlikely(ret <= 0))
1130 			goto out_unlock;
1131 		offset += ret;
1132 		length -= ret;
1133 	}
1134 
1135 	wait_for_stable_page(page);
1136 	return VM_FAULT_LOCKED;
1137 out_unlock:
1138 	unlock_page(page);
1139 	return block_page_mkwrite_return(ret);
1140 }
1141 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1142 
1143 struct fiemap_ctx {
1144 	struct fiemap_extent_info *fi;
1145 	struct iomap prev;
1146 };
1147 
iomap_to_fiemap(struct fiemap_extent_info * fi,struct iomap * iomap,u32 flags)1148 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1149 		struct iomap *iomap, u32 flags)
1150 {
1151 	switch (iomap->type) {
1152 	case IOMAP_HOLE:
1153 		/* skip holes */
1154 		return 0;
1155 	case IOMAP_DELALLOC:
1156 		flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1157 		break;
1158 	case IOMAP_MAPPED:
1159 		break;
1160 	case IOMAP_UNWRITTEN:
1161 		flags |= FIEMAP_EXTENT_UNWRITTEN;
1162 		break;
1163 	case IOMAP_INLINE:
1164 		flags |= FIEMAP_EXTENT_DATA_INLINE;
1165 		break;
1166 	}
1167 
1168 	if (iomap->flags & IOMAP_F_MERGED)
1169 		flags |= FIEMAP_EXTENT_MERGED;
1170 	if (iomap->flags & IOMAP_F_SHARED)
1171 		flags |= FIEMAP_EXTENT_SHARED;
1172 
1173 	return fiemap_fill_next_extent(fi, iomap->offset,
1174 			iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1175 			iomap->length, flags);
1176 }
1177 
1178 static loff_t
iomap_fiemap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1179 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1180 		struct iomap *iomap)
1181 {
1182 	struct fiemap_ctx *ctx = data;
1183 	loff_t ret = length;
1184 
1185 	if (iomap->type == IOMAP_HOLE)
1186 		return length;
1187 
1188 	ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1189 	ctx->prev = *iomap;
1190 	switch (ret) {
1191 	case 0:		/* success */
1192 		return length;
1193 	case 1:		/* extent array full */
1194 		return 0;
1195 	default:
1196 		return ret;
1197 	}
1198 }
1199 
iomap_fiemap(struct inode * inode,struct fiemap_extent_info * fi,loff_t start,loff_t len,const struct iomap_ops * ops)1200 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1201 		loff_t start, loff_t len, const struct iomap_ops *ops)
1202 {
1203 	struct fiemap_ctx ctx;
1204 	loff_t ret;
1205 
1206 	memset(&ctx, 0, sizeof(ctx));
1207 	ctx.fi = fi;
1208 	ctx.prev.type = IOMAP_HOLE;
1209 
1210 	ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1211 	if (ret)
1212 		return ret;
1213 
1214 	if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1215 		ret = filemap_write_and_wait(inode->i_mapping);
1216 		if (ret)
1217 			return ret;
1218 	}
1219 
1220 	while (len > 0) {
1221 		ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1222 				iomap_fiemap_actor);
1223 		/* inode with no (attribute) mapping will give ENOENT */
1224 		if (ret == -ENOENT)
1225 			break;
1226 		if (ret < 0)
1227 			return ret;
1228 		if (ret == 0)
1229 			break;
1230 
1231 		start += ret;
1232 		len -= ret;
1233 	}
1234 
1235 	if (ctx.prev.type != IOMAP_HOLE) {
1236 		ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1237 		if (ret < 0)
1238 			return ret;
1239 	}
1240 
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL_GPL(iomap_fiemap);
1244 
1245 /*
1246  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1247  * Returns true if found and updates @lastoff to the offset in file.
1248  */
1249 static bool
page_seek_hole_data(struct inode * inode,struct page * page,loff_t * lastoff,int whence)1250 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1251 		int whence)
1252 {
1253 	const struct address_space_operations *ops = inode->i_mapping->a_ops;
1254 	unsigned int bsize = i_blocksize(inode), off;
1255 	bool seek_data = whence == SEEK_DATA;
1256 	loff_t poff = page_offset(page);
1257 
1258 	if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1259 		return false;
1260 
1261 	if (*lastoff < poff) {
1262 		/*
1263 		 * Last offset smaller than the start of the page means we found
1264 		 * a hole:
1265 		 */
1266 		if (whence == SEEK_HOLE)
1267 			return true;
1268 		*lastoff = poff;
1269 	}
1270 
1271 	/*
1272 	 * Just check the page unless we can and should check block ranges:
1273 	 */
1274 	if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1275 		return PageUptodate(page) == seek_data;
1276 
1277 	lock_page(page);
1278 	if (unlikely(page->mapping != inode->i_mapping))
1279 		goto out_unlock_not_found;
1280 
1281 	for (off = 0; off < PAGE_SIZE; off += bsize) {
1282 		if (offset_in_page(*lastoff) >= off + bsize)
1283 			continue;
1284 		if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1285 			unlock_page(page);
1286 			return true;
1287 		}
1288 		*lastoff = poff + off + bsize;
1289 	}
1290 
1291 out_unlock_not_found:
1292 	unlock_page(page);
1293 	return false;
1294 }
1295 
1296 /*
1297  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1298  *
1299  * Within unwritten extents, the page cache determines which parts are holes
1300  * and which are data: uptodate buffer heads count as data; everything else
1301  * counts as a hole.
1302  *
1303  * Returns the resulting offset on successs, and -ENOENT otherwise.
1304  */
1305 static loff_t
page_cache_seek_hole_data(struct inode * inode,loff_t offset,loff_t length,int whence)1306 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1307 		int whence)
1308 {
1309 	pgoff_t index = offset >> PAGE_SHIFT;
1310 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1311 	loff_t lastoff = offset;
1312 	struct pagevec pvec;
1313 
1314 	if (length <= 0)
1315 		return -ENOENT;
1316 
1317 	pagevec_init(&pvec);
1318 
1319 	do {
1320 		unsigned nr_pages, i;
1321 
1322 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1323 						end - 1);
1324 		if (nr_pages == 0)
1325 			break;
1326 
1327 		for (i = 0; i < nr_pages; i++) {
1328 			struct page *page = pvec.pages[i];
1329 
1330 			if (page_seek_hole_data(inode, page, &lastoff, whence))
1331 				goto check_range;
1332 			lastoff = page_offset(page) + PAGE_SIZE;
1333 		}
1334 		pagevec_release(&pvec);
1335 	} while (index < end);
1336 
1337 	/* When no page at lastoff and we are not done, we found a hole. */
1338 	if (whence != SEEK_HOLE)
1339 		goto not_found;
1340 
1341 check_range:
1342 	if (lastoff < offset + length)
1343 		goto out;
1344 not_found:
1345 	lastoff = -ENOENT;
1346 out:
1347 	pagevec_release(&pvec);
1348 	return lastoff;
1349 }
1350 
1351 
1352 static loff_t
iomap_seek_hole_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1353 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1354 		      void *data, struct iomap *iomap)
1355 {
1356 	switch (iomap->type) {
1357 	case IOMAP_UNWRITTEN:
1358 		offset = page_cache_seek_hole_data(inode, offset, length,
1359 						   SEEK_HOLE);
1360 		if (offset < 0)
1361 			return length;
1362 		/* fall through */
1363 	case IOMAP_HOLE:
1364 		*(loff_t *)data = offset;
1365 		return 0;
1366 	default:
1367 		return length;
1368 	}
1369 }
1370 
1371 loff_t
iomap_seek_hole(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1372 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1373 {
1374 	loff_t size = i_size_read(inode);
1375 	loff_t length = size - offset;
1376 	loff_t ret;
1377 
1378 	/* Nothing to be found before or beyond the end of the file. */
1379 	if (offset < 0 || offset >= size)
1380 		return -ENXIO;
1381 
1382 	while (length > 0) {
1383 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1384 				  &offset, iomap_seek_hole_actor);
1385 		if (ret < 0)
1386 			return ret;
1387 		if (ret == 0)
1388 			break;
1389 
1390 		offset += ret;
1391 		length -= ret;
1392 	}
1393 
1394 	return offset;
1395 }
1396 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1397 
1398 static loff_t
iomap_seek_data_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1399 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1400 		      void *data, struct iomap *iomap)
1401 {
1402 	switch (iomap->type) {
1403 	case IOMAP_HOLE:
1404 		return length;
1405 	case IOMAP_UNWRITTEN:
1406 		offset = page_cache_seek_hole_data(inode, offset, length,
1407 						   SEEK_DATA);
1408 		if (offset < 0)
1409 			return length;
1410 		/*FALLTHRU*/
1411 	default:
1412 		*(loff_t *)data = offset;
1413 		return 0;
1414 	}
1415 }
1416 
1417 loff_t
iomap_seek_data(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1418 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1419 {
1420 	loff_t size = i_size_read(inode);
1421 	loff_t length = size - offset;
1422 	loff_t ret;
1423 
1424 	/* Nothing to be found before or beyond the end of the file. */
1425 	if (offset < 0 || offset >= size)
1426 		return -ENXIO;
1427 
1428 	while (length > 0) {
1429 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1430 				  &offset, iomap_seek_data_actor);
1431 		if (ret < 0)
1432 			return ret;
1433 		if (ret == 0)
1434 			break;
1435 
1436 		offset += ret;
1437 		length -= ret;
1438 	}
1439 
1440 	if (length <= 0)
1441 		return -ENXIO;
1442 	return offset;
1443 }
1444 EXPORT_SYMBOL_GPL(iomap_seek_data);
1445 
1446 /*
1447  * Private flags for iomap_dio, must not overlap with the public ones in
1448  * iomap.h:
1449  */
1450 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
1451 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
1452 #define IOMAP_DIO_WRITE		(1 << 30)
1453 #define IOMAP_DIO_DIRTY		(1 << 31)
1454 
1455 struct iomap_dio {
1456 	struct kiocb		*iocb;
1457 	iomap_dio_end_io_t	*end_io;
1458 	loff_t			i_size;
1459 	loff_t			size;
1460 	atomic_t		ref;
1461 	unsigned		flags;
1462 	int			error;
1463 	bool			wait_for_completion;
1464 
1465 	union {
1466 		/* used during submission and for synchronous completion: */
1467 		struct {
1468 			struct iov_iter		*iter;
1469 			struct task_struct	*waiter;
1470 			struct request_queue	*last_queue;
1471 			blk_qc_t		cookie;
1472 		} submit;
1473 
1474 		/* used for aio completion: */
1475 		struct {
1476 			struct work_struct	work;
1477 		} aio;
1478 	};
1479 };
1480 
iomap_dio_complete(struct iomap_dio * dio)1481 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1482 {
1483 	struct kiocb *iocb = dio->iocb;
1484 	struct inode *inode = file_inode(iocb->ki_filp);
1485 	loff_t offset = iocb->ki_pos;
1486 	ssize_t ret;
1487 
1488 	if (dio->end_io) {
1489 		ret = dio->end_io(iocb,
1490 				dio->error ? dio->error : dio->size,
1491 				dio->flags);
1492 	} else {
1493 		ret = dio->error;
1494 	}
1495 
1496 	if (likely(!ret)) {
1497 		ret = dio->size;
1498 		/* check for short read */
1499 		if (offset + ret > dio->i_size &&
1500 		    !(dio->flags & IOMAP_DIO_WRITE))
1501 			ret = dio->i_size - offset;
1502 		iocb->ki_pos += ret;
1503 	}
1504 
1505 	/*
1506 	 * Try again to invalidate clean pages which might have been cached by
1507 	 * non-direct readahead, or faulted in by get_user_pages() if the source
1508 	 * of the write was an mmap'ed region of the file we're writing.  Either
1509 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
1510 	 * this invalidation fails, tough, the write still worked...
1511 	 *
1512 	 * And this page cache invalidation has to be after dio->end_io(), as
1513 	 * some filesystems convert unwritten extents to real allocations in
1514 	 * end_io() when necessary, otherwise a racing buffer read would cache
1515 	 * zeros from unwritten extents.
1516 	 */
1517 	if (!dio->error &&
1518 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1519 		int err;
1520 		err = invalidate_inode_pages2_range(inode->i_mapping,
1521 				offset >> PAGE_SHIFT,
1522 				(offset + dio->size - 1) >> PAGE_SHIFT);
1523 		if (err)
1524 			dio_warn_stale_pagecache(iocb->ki_filp);
1525 	}
1526 
1527 	/*
1528 	 * If this is a DSYNC write, make sure we push it to stable storage now
1529 	 * that we've written data.
1530 	 */
1531 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1532 		ret = generic_write_sync(iocb, ret);
1533 
1534 	inode_dio_end(file_inode(iocb->ki_filp));
1535 	kfree(dio);
1536 
1537 	return ret;
1538 }
1539 
iomap_dio_complete_work(struct work_struct * work)1540 static void iomap_dio_complete_work(struct work_struct *work)
1541 {
1542 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1543 	struct kiocb *iocb = dio->iocb;
1544 
1545 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1546 }
1547 
1548 /*
1549  * Set an error in the dio if none is set yet.  We have to use cmpxchg
1550  * as the submission context and the completion context(s) can race to
1551  * update the error.
1552  */
iomap_dio_set_error(struct iomap_dio * dio,int ret)1553 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1554 {
1555 	cmpxchg(&dio->error, 0, ret);
1556 }
1557 
iomap_dio_bio_end_io(struct bio * bio)1558 static void iomap_dio_bio_end_io(struct bio *bio)
1559 {
1560 	struct iomap_dio *dio = bio->bi_private;
1561 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1562 
1563 	if (bio->bi_status)
1564 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1565 
1566 	if (atomic_dec_and_test(&dio->ref)) {
1567 		if (dio->wait_for_completion) {
1568 			struct task_struct *waiter = dio->submit.waiter;
1569 			WRITE_ONCE(dio->submit.waiter, NULL);
1570 			wake_up_process(waiter);
1571 		} else if (dio->flags & IOMAP_DIO_WRITE) {
1572 			struct inode *inode = file_inode(dio->iocb->ki_filp);
1573 
1574 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1575 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1576 		} else {
1577 			iomap_dio_complete_work(&dio->aio.work);
1578 		}
1579 	}
1580 
1581 	if (should_dirty) {
1582 		bio_check_pages_dirty(bio);
1583 	} else {
1584 		struct bio_vec *bvec;
1585 		int i;
1586 
1587 		bio_for_each_segment_all(bvec, bio, i)
1588 			put_page(bvec->bv_page);
1589 		bio_put(bio);
1590 	}
1591 }
1592 
1593 static blk_qc_t
iomap_dio_zero(struct iomap_dio * dio,struct iomap * iomap,loff_t pos,unsigned len)1594 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1595 		unsigned len)
1596 {
1597 	struct page *page = ZERO_PAGE(0);
1598 	struct bio *bio;
1599 
1600 	bio = bio_alloc(GFP_KERNEL, 1);
1601 	bio_set_dev(bio, iomap->bdev);
1602 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1603 	bio->bi_private = dio;
1604 	bio->bi_end_io = iomap_dio_bio_end_io;
1605 
1606 	get_page(page);
1607 	__bio_add_page(bio, page, len, 0);
1608 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1609 
1610 	atomic_inc(&dio->ref);
1611 	return submit_bio(bio);
1612 }
1613 
1614 static loff_t
iomap_dio_bio_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1615 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1616 		struct iomap_dio *dio, struct iomap *iomap)
1617 {
1618 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1619 	unsigned int fs_block_size = i_blocksize(inode), pad;
1620 	unsigned int align = iov_iter_alignment(dio->submit.iter);
1621 	struct iov_iter iter;
1622 	struct bio *bio;
1623 	bool need_zeroout = false;
1624 	bool use_fua = false;
1625 	int nr_pages, ret = 0;
1626 	size_t copied = 0;
1627 
1628 	if ((pos | length | align) & ((1 << blkbits) - 1))
1629 		return -EINVAL;
1630 
1631 	if (iomap->type == IOMAP_UNWRITTEN) {
1632 		dio->flags |= IOMAP_DIO_UNWRITTEN;
1633 		need_zeroout = true;
1634 	}
1635 
1636 	if (iomap->flags & IOMAP_F_SHARED)
1637 		dio->flags |= IOMAP_DIO_COW;
1638 
1639 	if (iomap->flags & IOMAP_F_NEW) {
1640 		need_zeroout = true;
1641 	} else if (iomap->type == IOMAP_MAPPED) {
1642 		/*
1643 		 * Use a FUA write if we need datasync semantics, this is a pure
1644 		 * data IO that doesn't require any metadata updates (including
1645 		 * after IO completion such as unwritten extent conversion) and
1646 		 * the underlying device supports FUA. This allows us to avoid
1647 		 * cache flushes on IO completion.
1648 		 */
1649 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1650 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1651 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
1652 			use_fua = true;
1653 	}
1654 
1655 	/*
1656 	 * Operate on a partial iter trimmed to the extent we were called for.
1657 	 * We'll update the iter in the dio once we're done with this extent.
1658 	 */
1659 	iter = *dio->submit.iter;
1660 	iov_iter_truncate(&iter, length);
1661 
1662 	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1663 	if (nr_pages <= 0)
1664 		return nr_pages;
1665 
1666 	if (need_zeroout) {
1667 		/* zero out from the start of the block to the write offset */
1668 		pad = pos & (fs_block_size - 1);
1669 		if (pad)
1670 			iomap_dio_zero(dio, iomap, pos - pad, pad);
1671 	}
1672 
1673 	do {
1674 		size_t n;
1675 		if (dio->error) {
1676 			iov_iter_revert(dio->submit.iter, copied);
1677 			return 0;
1678 		}
1679 
1680 		bio = bio_alloc(GFP_KERNEL, nr_pages);
1681 		bio_set_dev(bio, iomap->bdev);
1682 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1683 		bio->bi_write_hint = dio->iocb->ki_hint;
1684 		bio->bi_ioprio = dio->iocb->ki_ioprio;
1685 		bio->bi_private = dio;
1686 		bio->bi_end_io = iomap_dio_bio_end_io;
1687 
1688 		ret = bio_iov_iter_get_pages(bio, &iter);
1689 		if (unlikely(ret)) {
1690 			/*
1691 			 * We have to stop part way through an IO. We must fall
1692 			 * through to the sub-block tail zeroing here, otherwise
1693 			 * this short IO may expose stale data in the tail of
1694 			 * the block we haven't written data to.
1695 			 */
1696 			bio_put(bio);
1697 			goto zero_tail;
1698 		}
1699 
1700 		n = bio->bi_iter.bi_size;
1701 		if (dio->flags & IOMAP_DIO_WRITE) {
1702 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1703 			if (use_fua)
1704 				bio->bi_opf |= REQ_FUA;
1705 			else
1706 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1707 			task_io_account_write(n);
1708 		} else {
1709 			bio->bi_opf = REQ_OP_READ;
1710 			if (dio->flags & IOMAP_DIO_DIRTY)
1711 				bio_set_pages_dirty(bio);
1712 		}
1713 
1714 		iov_iter_advance(dio->submit.iter, n);
1715 
1716 		dio->size += n;
1717 		pos += n;
1718 		copied += n;
1719 
1720 		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1721 
1722 		atomic_inc(&dio->ref);
1723 
1724 		dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1725 		dio->submit.cookie = submit_bio(bio);
1726 	} while (nr_pages);
1727 
1728 	/*
1729 	 * We need to zeroout the tail of a sub-block write if the extent type
1730 	 * requires zeroing or the write extends beyond EOF. If we don't zero
1731 	 * the block tail in the latter case, we can expose stale data via mmap
1732 	 * reads of the EOF block.
1733 	 */
1734 zero_tail:
1735 	if (need_zeroout ||
1736 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1737 		/* zero out from the end of the write to the end of the block */
1738 		pad = pos & (fs_block_size - 1);
1739 		if (pad)
1740 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1741 	}
1742 	return copied ? copied : ret;
1743 }
1744 
1745 static loff_t
iomap_dio_hole_actor(loff_t length,struct iomap_dio * dio)1746 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1747 {
1748 	length = iov_iter_zero(length, dio->submit.iter);
1749 	dio->size += length;
1750 	return length;
1751 }
1752 
1753 static loff_t
iomap_dio_inline_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1754 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1755 		struct iomap_dio *dio, struct iomap *iomap)
1756 {
1757 	struct iov_iter *iter = dio->submit.iter;
1758 	size_t copied;
1759 
1760 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1761 
1762 	if (dio->flags & IOMAP_DIO_WRITE) {
1763 		loff_t size = inode->i_size;
1764 
1765 		if (pos > size)
1766 			memset(iomap->inline_data + size, 0, pos - size);
1767 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1768 		if (copied) {
1769 			if (pos + copied > size)
1770 				i_size_write(inode, pos + copied);
1771 			mark_inode_dirty(inode);
1772 		}
1773 	} else {
1774 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1775 	}
1776 	dio->size += copied;
1777 	return copied;
1778 }
1779 
1780 static loff_t
iomap_dio_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1781 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1782 		void *data, struct iomap *iomap)
1783 {
1784 	struct iomap_dio *dio = data;
1785 
1786 	switch (iomap->type) {
1787 	case IOMAP_HOLE:
1788 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1789 			return -EIO;
1790 		return iomap_dio_hole_actor(length, dio);
1791 	case IOMAP_UNWRITTEN:
1792 		if (!(dio->flags & IOMAP_DIO_WRITE))
1793 			return iomap_dio_hole_actor(length, dio);
1794 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1795 	case IOMAP_MAPPED:
1796 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1797 	case IOMAP_INLINE:
1798 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1799 	default:
1800 		WARN_ON_ONCE(1);
1801 		return -EIO;
1802 	}
1803 }
1804 
1805 /*
1806  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1807  * is being issued as AIO or not.  This allows us to optimise pure data writes
1808  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1809  * REQ_FLUSH post write. This is slightly tricky because a single request here
1810  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1811  * may be pure data writes. In that case, we still need to do a full data sync
1812  * completion.
1813  */
1814 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,iomap_dio_end_io_t end_io)1815 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1816 		const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1817 {
1818 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1819 	struct inode *inode = file_inode(iocb->ki_filp);
1820 	size_t count = iov_iter_count(iter);
1821 	loff_t pos = iocb->ki_pos, start = pos;
1822 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
1823 	unsigned int flags = IOMAP_DIRECT;
1824 	bool wait_for_completion = is_sync_kiocb(iocb);
1825 	struct blk_plug plug;
1826 	struct iomap_dio *dio;
1827 
1828 	lockdep_assert_held(&inode->i_rwsem);
1829 
1830 	if (!count)
1831 		return 0;
1832 
1833 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1834 	if (!dio)
1835 		return -ENOMEM;
1836 
1837 	dio->iocb = iocb;
1838 	atomic_set(&dio->ref, 1);
1839 	dio->size = 0;
1840 	dio->i_size = i_size_read(inode);
1841 	dio->end_io = end_io;
1842 	dio->error = 0;
1843 	dio->flags = 0;
1844 
1845 	dio->submit.iter = iter;
1846 	dio->submit.waiter = current;
1847 	dio->submit.cookie = BLK_QC_T_NONE;
1848 	dio->submit.last_queue = NULL;
1849 
1850 	if (iov_iter_rw(iter) == READ) {
1851 		if (pos >= dio->i_size)
1852 			goto out_free_dio;
1853 
1854 		if (iter->type == ITER_IOVEC)
1855 			dio->flags |= IOMAP_DIO_DIRTY;
1856 	} else {
1857 		flags |= IOMAP_WRITE;
1858 		dio->flags |= IOMAP_DIO_WRITE;
1859 
1860 		/* for data sync or sync, we need sync completion processing */
1861 		if (iocb->ki_flags & IOCB_DSYNC)
1862 			dio->flags |= IOMAP_DIO_NEED_SYNC;
1863 
1864 		/*
1865 		 * For datasync only writes, we optimistically try using FUA for
1866 		 * this IO.  Any non-FUA write that occurs will clear this flag,
1867 		 * hence we know before completion whether a cache flush is
1868 		 * necessary.
1869 		 */
1870 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1871 			dio->flags |= IOMAP_DIO_WRITE_FUA;
1872 	}
1873 
1874 	if (iocb->ki_flags & IOCB_NOWAIT) {
1875 		if (filemap_range_has_page(mapping, start, end)) {
1876 			ret = -EAGAIN;
1877 			goto out_free_dio;
1878 		}
1879 		flags |= IOMAP_NOWAIT;
1880 	}
1881 
1882 	ret = filemap_write_and_wait_range(mapping, start, end);
1883 	if (ret)
1884 		goto out_free_dio;
1885 
1886 	/*
1887 	 * Try to invalidate cache pages for the range we're direct
1888 	 * writing.  If this invalidation fails, tough, the write will
1889 	 * still work, but racing two incompatible write paths is a
1890 	 * pretty crazy thing to do, so we don't support it 100%.
1891 	 */
1892 	ret = invalidate_inode_pages2_range(mapping,
1893 			start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1894 	if (ret)
1895 		dio_warn_stale_pagecache(iocb->ki_filp);
1896 	ret = 0;
1897 
1898 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1899 	    !inode->i_sb->s_dio_done_wq) {
1900 		ret = sb_init_dio_done_wq(inode->i_sb);
1901 		if (ret < 0)
1902 			goto out_free_dio;
1903 	}
1904 
1905 	inode_dio_begin(inode);
1906 
1907 	blk_start_plug(&plug);
1908 	do {
1909 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
1910 				iomap_dio_actor);
1911 		if (ret <= 0) {
1912 			/* magic error code to fall back to buffered I/O */
1913 			if (ret == -ENOTBLK) {
1914 				wait_for_completion = true;
1915 				ret = 0;
1916 			}
1917 			break;
1918 		}
1919 		pos += ret;
1920 
1921 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
1922 			/*
1923 			 * We only report that we've read data up to i_size.
1924 			 * Revert iter to a state corresponding to that as
1925 			 * some callers (such as splice code) rely on it.
1926 			 */
1927 			iov_iter_revert(iter, pos - dio->i_size);
1928 			break;
1929 		}
1930 	} while ((count = iov_iter_count(iter)) > 0);
1931 	blk_finish_plug(&plug);
1932 
1933 	if (ret < 0)
1934 		iomap_dio_set_error(dio, ret);
1935 
1936 	/*
1937 	 * If all the writes we issued were FUA, we don't need to flush the
1938 	 * cache on IO completion. Clear the sync flag for this case.
1939 	 */
1940 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
1941 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1942 
1943 	/*
1944 	 * We are about to drop our additional submission reference, which
1945 	 * might be the last reference to the dio.  There are three three
1946 	 * different ways we can progress here:
1947 	 *
1948 	 *  (a) If this is the last reference we will always complete and free
1949 	 *	the dio ourselves.
1950 	 *  (b) If this is not the last reference, and we serve an asynchronous
1951 	 *	iocb, we must never touch the dio after the decrement, the
1952 	 *	I/O completion handler will complete and free it.
1953 	 *  (c) If this is not the last reference, but we serve a synchronous
1954 	 *	iocb, the I/O completion handler will wake us up on the drop
1955 	 *	of the final reference, and we will complete and free it here
1956 	 *	after we got woken by the I/O completion handler.
1957 	 */
1958 	dio->wait_for_completion = wait_for_completion;
1959 	if (!atomic_dec_and_test(&dio->ref)) {
1960 		if (!wait_for_completion)
1961 			return -EIOCBQUEUED;
1962 
1963 		for (;;) {
1964 			set_current_state(TASK_UNINTERRUPTIBLE);
1965 			if (!READ_ONCE(dio->submit.waiter))
1966 				break;
1967 
1968 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
1969 			    !dio->submit.last_queue ||
1970 			    !blk_poll(dio->submit.last_queue,
1971 					 dio->submit.cookie))
1972 				io_schedule();
1973 		}
1974 		__set_current_state(TASK_RUNNING);
1975 	}
1976 
1977 	return iomap_dio_complete(dio);
1978 
1979 out_free_dio:
1980 	kfree(dio);
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1984 
1985 /* Swapfile activation */
1986 
1987 #ifdef CONFIG_SWAP
1988 struct iomap_swapfile_info {
1989 	struct iomap iomap;		/* accumulated iomap */
1990 	struct swap_info_struct *sis;
1991 	uint64_t lowest_ppage;		/* lowest physical addr seen (pages) */
1992 	uint64_t highest_ppage;		/* highest physical addr seen (pages) */
1993 	unsigned long nr_pages;		/* number of pages collected */
1994 	int nr_extents;			/* extent count */
1995 };
1996 
1997 /*
1998  * Collect physical extents for this swap file.  Physical extents reported to
1999  * the swap code must be trimmed to align to a page boundary.  The logical
2000  * offset within the file is irrelevant since the swapfile code maps logical
2001  * page numbers of the swap device to the physical page-aligned extents.
2002  */
iomap_swapfile_add_extent(struct iomap_swapfile_info * isi)2003 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
2004 {
2005 	struct iomap *iomap = &isi->iomap;
2006 	unsigned long nr_pages;
2007 	uint64_t first_ppage;
2008 	uint64_t first_ppage_reported;
2009 	uint64_t next_ppage;
2010 	int error;
2011 
2012 	/*
2013 	 * Round the start up and the end down so that the physical
2014 	 * extent aligns to a page boundary.
2015 	 */
2016 	first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2017 	next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2018 			PAGE_SHIFT;
2019 
2020 	/* Skip too-short physical extents. */
2021 	if (first_ppage >= next_ppage)
2022 		return 0;
2023 	nr_pages = next_ppage - first_ppage;
2024 
2025 	/*
2026 	 * Calculate how much swap space we're adding; the first page contains
2027 	 * the swap header and doesn't count.  The mm still wants that first
2028 	 * page fed to add_swap_extent, however.
2029 	 */
2030 	first_ppage_reported = first_ppage;
2031 	if (iomap->offset == 0)
2032 		first_ppage_reported++;
2033 	if (isi->lowest_ppage > first_ppage_reported)
2034 		isi->lowest_ppage = first_ppage_reported;
2035 	if (isi->highest_ppage < (next_ppage - 1))
2036 		isi->highest_ppage = next_ppage - 1;
2037 
2038 	/* Add extent, set up for the next call. */
2039 	error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2040 	if (error < 0)
2041 		return error;
2042 	isi->nr_extents += error;
2043 	isi->nr_pages += nr_pages;
2044 	return 0;
2045 }
2046 
2047 /*
2048  * Accumulate iomaps for this swap file.  We have to accumulate iomaps because
2049  * swap only cares about contiguous page-aligned physical extents and makes no
2050  * distinction between written and unwritten extents.
2051  */
iomap_swapfile_activate_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)2052 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2053 		loff_t count, void *data, struct iomap *iomap)
2054 {
2055 	struct iomap_swapfile_info *isi = data;
2056 	int error;
2057 
2058 	switch (iomap->type) {
2059 	case IOMAP_MAPPED:
2060 	case IOMAP_UNWRITTEN:
2061 		/* Only real or unwritten extents. */
2062 		break;
2063 	case IOMAP_INLINE:
2064 		/* No inline data. */
2065 		pr_err("swapon: file is inline\n");
2066 		return -EINVAL;
2067 	default:
2068 		pr_err("swapon: file has unallocated extents\n");
2069 		return -EINVAL;
2070 	}
2071 
2072 	/* No uncommitted metadata or shared blocks. */
2073 	if (iomap->flags & IOMAP_F_DIRTY) {
2074 		pr_err("swapon: file is not committed\n");
2075 		return -EINVAL;
2076 	}
2077 	if (iomap->flags & IOMAP_F_SHARED) {
2078 		pr_err("swapon: file has shared extents\n");
2079 		return -EINVAL;
2080 	}
2081 
2082 	/* Only one bdev per swap file. */
2083 	if (iomap->bdev != isi->sis->bdev) {
2084 		pr_err("swapon: file is on multiple devices\n");
2085 		return -EINVAL;
2086 	}
2087 
2088 	if (isi->iomap.length == 0) {
2089 		/* No accumulated extent, so just store it. */
2090 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2091 	} else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2092 		/* Append this to the accumulated extent. */
2093 		isi->iomap.length += iomap->length;
2094 	} else {
2095 		/* Otherwise, add the retained iomap and store this one. */
2096 		error = iomap_swapfile_add_extent(isi);
2097 		if (error)
2098 			return error;
2099 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2100 	}
2101 	return count;
2102 }
2103 
2104 /*
2105  * Iterate a swap file's iomaps to construct physical extents that can be
2106  * passed to the swapfile subsystem.
2107  */
iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * pagespan,const struct iomap_ops * ops)2108 int iomap_swapfile_activate(struct swap_info_struct *sis,
2109 		struct file *swap_file, sector_t *pagespan,
2110 		const struct iomap_ops *ops)
2111 {
2112 	struct iomap_swapfile_info isi = {
2113 		.sis = sis,
2114 		.lowest_ppage = (sector_t)-1ULL,
2115 	};
2116 	struct address_space *mapping = swap_file->f_mapping;
2117 	struct inode *inode = mapping->host;
2118 	loff_t pos = 0;
2119 	loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2120 	loff_t ret;
2121 
2122 	/*
2123 	 * Persist all file mapping metadata so that we won't have any
2124 	 * IOMAP_F_DIRTY iomaps.
2125 	 */
2126 	ret = vfs_fsync(swap_file, 1);
2127 	if (ret)
2128 		return ret;
2129 
2130 	while (len > 0) {
2131 		ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2132 				ops, &isi, iomap_swapfile_activate_actor);
2133 		if (ret <= 0)
2134 			return ret;
2135 
2136 		pos += ret;
2137 		len -= ret;
2138 	}
2139 
2140 	if (isi.iomap.length) {
2141 		ret = iomap_swapfile_add_extent(&isi);
2142 		if (ret)
2143 			return ret;
2144 	}
2145 
2146 	*pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2147 	sis->max = isi.nr_pages;
2148 	sis->pages = isi.nr_pages - 1;
2149 	sis->highest_bit = isi.nr_pages - 1;
2150 	return isi.nr_extents;
2151 }
2152 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2153 #endif /* CONFIG_SWAP */
2154 
2155 static loff_t
iomap_bmap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)2156 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2157 		void *data, struct iomap *iomap)
2158 {
2159 	sector_t *bno = data, addr;
2160 
2161 	if (iomap->type == IOMAP_MAPPED) {
2162 		addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2163 		if (addr > INT_MAX)
2164 			WARN(1, "would truncate bmap result\n");
2165 		else
2166 			*bno = addr;
2167 	}
2168 	return 0;
2169 }
2170 
2171 /* legacy ->bmap interface.  0 is the error return (!) */
2172 sector_t
iomap_bmap(struct address_space * mapping,sector_t bno,const struct iomap_ops * ops)2173 iomap_bmap(struct address_space *mapping, sector_t bno,
2174 		const struct iomap_ops *ops)
2175 {
2176 	struct inode *inode = mapping->host;
2177 	loff_t pos = bno << inode->i_blkbits;
2178 	unsigned blocksize = i_blocksize(inode);
2179 
2180 	if (filemap_write_and_wait(mapping))
2181 		return 0;
2182 
2183 	bno = 0;
2184 	iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2185 	return bno;
2186 }
2187 EXPORT_SYMBOL_GPL(iomap_bmap);
2188