1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 /*
24  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
25  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
26  * will perform wakeups when releasing console_sem. Holding rename_lock
27  * will introduce deadlock if the scheduler reads the kernfs_name in the
28  * wakeup path.
29  */
30 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
31 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
32 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
33 
34 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
35 
kernfs_active(struct kernfs_node * kn)36 static bool kernfs_active(struct kernfs_node *kn)
37 {
38 	lockdep_assert_held(&kernfs_mutex);
39 	return atomic_read(&kn->active) >= 0;
40 }
41 
kernfs_lockdep(struct kernfs_node * kn)42 static bool kernfs_lockdep(struct kernfs_node *kn)
43 {
44 #ifdef CONFIG_DEBUG_LOCK_ALLOC
45 	return kn->flags & KERNFS_LOCKDEP;
46 #else
47 	return false;
48 #endif
49 }
50 
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)51 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
52 {
53 	if (!kn)
54 		return strlcpy(buf, "(null)", buflen);
55 
56 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
57 }
58 
59 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)60 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
61 {
62 	size_t depth = 0;
63 
64 	while (to->parent && to != from) {
65 		depth++;
66 		to = to->parent;
67 	}
68 	return depth;
69 }
70 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)71 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
72 						  struct kernfs_node *b)
73 {
74 	size_t da, db;
75 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
76 
77 	if (ra != rb)
78 		return NULL;
79 
80 	da = kernfs_depth(ra->kn, a);
81 	db = kernfs_depth(rb->kn, b);
82 
83 	while (da > db) {
84 		a = a->parent;
85 		da--;
86 	}
87 	while (db > da) {
88 		b = b->parent;
89 		db--;
90 	}
91 
92 	/* worst case b and a will be the same at root */
93 	while (b != a) {
94 		b = b->parent;
95 		a = a->parent;
96 	}
97 
98 	return a;
99 }
100 
101 /**
102  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
103  * where kn_from is treated as root of the path.
104  * @kn_from: kernfs node which should be treated as root for the path
105  * @kn_to: kernfs node to which path is needed
106  * @buf: buffer to copy the path into
107  * @buflen: size of @buf
108  *
109  * We need to handle couple of scenarios here:
110  * [1] when @kn_from is an ancestor of @kn_to at some level
111  * kn_from: /n1/n2/n3
112  * kn_to:   /n1/n2/n3/n4/n5
113  * result:  /n4/n5
114  *
115  * [2] when @kn_from is on a different hierarchy and we need to find common
116  * ancestor between @kn_from and @kn_to.
117  * kn_from: /n1/n2/n3/n4
118  * kn_to:   /n1/n2/n5
119  * result:  /../../n5
120  * OR
121  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
122  * kn_to:   /n1/n2/n3         [depth=3]
123  * result:  /../..
124  *
125  * [3] when @kn_to is NULL result will be "(null)"
126  *
127  * Returns the length of the full path.  If the full length is equal to or
128  * greater than @buflen, @buf contains the truncated path with the trailing
129  * '\0'.  On error, -errno is returned.
130  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)131 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
132 					struct kernfs_node *kn_from,
133 					char *buf, size_t buflen)
134 {
135 	struct kernfs_node *kn, *common;
136 	const char parent_str[] = "/..";
137 	size_t depth_from, depth_to, len = 0;
138 	int i, j;
139 
140 	if (!kn_to)
141 		return strlcpy(buf, "(null)", buflen);
142 
143 	if (!kn_from)
144 		kn_from = kernfs_root(kn_to)->kn;
145 
146 	if (kn_from == kn_to)
147 		return strlcpy(buf, "/", buflen);
148 
149 	common = kernfs_common_ancestor(kn_from, kn_to);
150 	if (WARN_ON(!common))
151 		return -EINVAL;
152 
153 	depth_to = kernfs_depth(common, kn_to);
154 	depth_from = kernfs_depth(common, kn_from);
155 
156 	if (buf)
157 		buf[0] = '\0';
158 
159 	for (i = 0; i < depth_from; i++)
160 		len += strlcpy(buf + len, parent_str,
161 			       len < buflen ? buflen - len : 0);
162 
163 	/* Calculate how many bytes we need for the rest */
164 	for (i = depth_to - 1; i >= 0; i--) {
165 		for (kn = kn_to, j = 0; j < i; j++)
166 			kn = kn->parent;
167 		len += strlcpy(buf + len, "/",
168 			       len < buflen ? buflen - len : 0);
169 		len += strlcpy(buf + len, kn->name,
170 			       len < buflen ? buflen - len : 0);
171 	}
172 
173 	return len;
174 }
175 
176 /**
177  * kernfs_name - obtain the name of a given node
178  * @kn: kernfs_node of interest
179  * @buf: buffer to copy @kn's name into
180  * @buflen: size of @buf
181  *
182  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
183  * similar to strlcpy().  It returns the length of @kn's name and if @buf
184  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
185  *
186  * Fills buffer with "(null)" if @kn is NULL.
187  *
188  * This function can be called from any context.
189  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)190 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
191 {
192 	unsigned long flags;
193 	int ret;
194 
195 	spin_lock_irqsave(&kernfs_rename_lock, flags);
196 	ret = kernfs_name_locked(kn, buf, buflen);
197 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
198 	return ret;
199 }
200 
201 /**
202  * kernfs_path_from_node - build path of node @to relative to @from.
203  * @from: parent kernfs_node relative to which we need to build the path
204  * @to: kernfs_node of interest
205  * @buf: buffer to copy @to's path into
206  * @buflen: size of @buf
207  *
208  * Builds @to's path relative to @from in @buf. @from and @to must
209  * be on the same kernfs-root. If @from is not parent of @to, then a relative
210  * path (which includes '..'s) as needed to reach from @from to @to is
211  * returned.
212  *
213  * Returns the length of the full path.  If the full length is equal to or
214  * greater than @buflen, @buf contains the truncated path with the trailing
215  * '\0'.  On error, -errno is returned.
216  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)217 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
218 			  char *buf, size_t buflen)
219 {
220 	unsigned long flags;
221 	int ret;
222 
223 	spin_lock_irqsave(&kernfs_rename_lock, flags);
224 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
225 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
229 
230 /**
231  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
232  * @kn: kernfs_node of interest
233  *
234  * This function can be called from any context.
235  */
pr_cont_kernfs_name(struct kernfs_node * kn)236 void pr_cont_kernfs_name(struct kernfs_node *kn)
237 {
238 	unsigned long flags;
239 
240 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
241 
242 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
243 	pr_cont("%s", kernfs_pr_cont_buf);
244 
245 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
246 }
247 
248 /**
249  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
250  * @kn: kernfs_node of interest
251  *
252  * This function can be called from any context.
253  */
pr_cont_kernfs_path(struct kernfs_node * kn)254 void pr_cont_kernfs_path(struct kernfs_node *kn)
255 {
256 	unsigned long flags;
257 	int sz;
258 
259 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
260 
261 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
262 				   sizeof(kernfs_pr_cont_buf));
263 	if (sz < 0) {
264 		pr_cont("(error)");
265 		goto out;
266 	}
267 
268 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
269 		pr_cont("(name too long)");
270 		goto out;
271 	}
272 
273 	pr_cont("%s", kernfs_pr_cont_buf);
274 
275 out:
276 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
277 }
278 
279 /**
280  * kernfs_get_parent - determine the parent node and pin it
281  * @kn: kernfs_node of interest
282  *
283  * Determines @kn's parent, pins and returns it.  This function can be
284  * called from any context.
285  */
kernfs_get_parent(struct kernfs_node * kn)286 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
287 {
288 	struct kernfs_node *parent;
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&kernfs_rename_lock, flags);
292 	parent = kn->parent;
293 	kernfs_get(parent);
294 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
295 
296 	return parent;
297 }
298 
299 /**
300  *	kernfs_name_hash
301  *	@name: Null terminated string to hash
302  *	@ns:   Namespace tag to hash
303  *
304  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
305  */
kernfs_name_hash(const char * name,const void * ns)306 static unsigned int kernfs_name_hash(const char *name, const void *ns)
307 {
308 	unsigned long hash = init_name_hash(ns);
309 	unsigned int len = strlen(name);
310 	while (len--)
311 		hash = partial_name_hash(*name++, hash);
312 	hash = end_name_hash(hash);
313 	hash &= 0x7fffffffU;
314 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 	if (hash < 2)
316 		hash += 2;
317 	if (hash >= INT_MAX)
318 		hash = INT_MAX - 1;
319 	return hash;
320 }
321 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)322 static int kernfs_name_compare(unsigned int hash, const char *name,
323 			       const void *ns, const struct kernfs_node *kn)
324 {
325 	if (hash < kn->hash)
326 		return -1;
327 	if (hash > kn->hash)
328 		return 1;
329 	if (ns < kn->ns)
330 		return -1;
331 	if (ns > kn->ns)
332 		return 1;
333 	return strcmp(name, kn->name);
334 }
335 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)336 static int kernfs_sd_compare(const struct kernfs_node *left,
337 			     const struct kernfs_node *right)
338 {
339 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
340 }
341 
342 /**
343  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
344  *	@kn: kernfs_node of interest
345  *
346  *	Link @kn into its sibling rbtree which starts from
347  *	@kn->parent->dir.children.
348  *
349  *	Locking:
350  *	mutex_lock(kernfs_mutex)
351  *
352  *	RETURNS:
353  *	0 on susccess -EEXIST on failure.
354  */
kernfs_link_sibling(struct kernfs_node * kn)355 static int kernfs_link_sibling(struct kernfs_node *kn)
356 {
357 	struct rb_node **node = &kn->parent->dir.children.rb_node;
358 	struct rb_node *parent = NULL;
359 
360 	while (*node) {
361 		struct kernfs_node *pos;
362 		int result;
363 
364 		pos = rb_to_kn(*node);
365 		parent = *node;
366 		result = kernfs_sd_compare(kn, pos);
367 		if (result < 0)
368 			node = &pos->rb.rb_left;
369 		else if (result > 0)
370 			node = &pos->rb.rb_right;
371 		else
372 			return -EEXIST;
373 	}
374 
375 	/* add new node and rebalance the tree */
376 	rb_link_node(&kn->rb, parent, node);
377 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
378 
379 	/* successfully added, account subdir number */
380 	if (kernfs_type(kn) == KERNFS_DIR)
381 		kn->parent->dir.subdirs++;
382 
383 	return 0;
384 }
385 
386 /**
387  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
388  *	@kn: kernfs_node of interest
389  *
390  *	Try to unlink @kn from its sibling rbtree which starts from
391  *	kn->parent->dir.children.  Returns %true if @kn was actually
392  *	removed, %false if @kn wasn't on the rbtree.
393  *
394  *	Locking:
395  *	mutex_lock(kernfs_mutex)
396  */
kernfs_unlink_sibling(struct kernfs_node * kn)397 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
398 {
399 	if (RB_EMPTY_NODE(&kn->rb))
400 		return false;
401 
402 	if (kernfs_type(kn) == KERNFS_DIR)
403 		kn->parent->dir.subdirs--;
404 
405 	rb_erase(&kn->rb, &kn->parent->dir.children);
406 	RB_CLEAR_NODE(&kn->rb);
407 	return true;
408 }
409 
410 /**
411  *	kernfs_get_active - get an active reference to kernfs_node
412  *	@kn: kernfs_node to get an active reference to
413  *
414  *	Get an active reference of @kn.  This function is noop if @kn
415  *	is NULL.
416  *
417  *	RETURNS:
418  *	Pointer to @kn on success, NULL on failure.
419  */
kernfs_get_active(struct kernfs_node * kn)420 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
421 {
422 	if (unlikely(!kn))
423 		return NULL;
424 
425 	if (!atomic_inc_unless_negative(&kn->active))
426 		return NULL;
427 
428 	if (kernfs_lockdep(kn))
429 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
430 	return kn;
431 }
432 
433 /**
434  *	kernfs_put_active - put an active reference to kernfs_node
435  *	@kn: kernfs_node to put an active reference to
436  *
437  *	Put an active reference to @kn.  This function is noop if @kn
438  *	is NULL.
439  */
kernfs_put_active(struct kernfs_node * kn)440 void kernfs_put_active(struct kernfs_node *kn)
441 {
442 	struct kernfs_root *root = kernfs_root(kn);
443 	int v;
444 
445 	if (unlikely(!kn))
446 		return;
447 
448 	if (kernfs_lockdep(kn))
449 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
450 	v = atomic_dec_return(&kn->active);
451 	if (likely(v != KN_DEACTIVATED_BIAS))
452 		return;
453 
454 	wake_up_all(&root->deactivate_waitq);
455 }
456 
457 /**
458  * kernfs_drain - drain kernfs_node
459  * @kn: kernfs_node to drain
460  *
461  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
462  * removers may invoke this function concurrently on @kn and all will
463  * return after draining is complete.
464  */
kernfs_drain(struct kernfs_node * kn)465 static void kernfs_drain(struct kernfs_node *kn)
466 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467 {
468 	struct kernfs_root *root = kernfs_root(kn);
469 
470 	lockdep_assert_held(&kernfs_mutex);
471 	WARN_ON_ONCE(kernfs_active(kn));
472 
473 	mutex_unlock(&kernfs_mutex);
474 
475 	if (kernfs_lockdep(kn)) {
476 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 			lock_contended(&kn->dep_map, _RET_IP_);
479 	}
480 
481 	/* but everyone should wait for draining */
482 	wait_event(root->deactivate_waitq,
483 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484 
485 	if (kernfs_lockdep(kn)) {
486 		lock_acquired(&kn->dep_map, _RET_IP_);
487 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
488 	}
489 
490 	kernfs_drain_open_files(kn);
491 
492 	mutex_lock(&kernfs_mutex);
493 }
494 
495 /**
496  * kernfs_get - get a reference count on a kernfs_node
497  * @kn: the target kernfs_node
498  */
kernfs_get(struct kernfs_node * kn)499 void kernfs_get(struct kernfs_node *kn)
500 {
501 	if (kn) {
502 		WARN_ON(!atomic_read(&kn->count));
503 		atomic_inc(&kn->count);
504 	}
505 }
506 EXPORT_SYMBOL_GPL(kernfs_get);
507 
508 /**
509  * kernfs_put - put a reference count on a kernfs_node
510  * @kn: the target kernfs_node
511  *
512  * Put a reference count of @kn and destroy it if it reached zero.
513  */
kernfs_put(struct kernfs_node * kn)514 void kernfs_put(struct kernfs_node *kn)
515 {
516 	struct kernfs_node *parent;
517 	struct kernfs_root *root;
518 
519 	/*
520 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
521 	 * depends on this to filter reused stale node
522 	 */
523 	if (!kn || !atomic_dec_and_test(&kn->count))
524 		return;
525 	root = kernfs_root(kn);
526  repeat:
527 	/*
528 	 * Moving/renaming is always done while holding reference.
529 	 * kn->parent won't change beneath us.
530 	 */
531 	parent = kn->parent;
532 
533 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
534 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
535 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
536 
537 	if (kernfs_type(kn) == KERNFS_LINK)
538 		kernfs_put(kn->symlink.target_kn);
539 
540 	kfree_const(kn->name);
541 
542 	if (kn->iattr) {
543 		if (kn->iattr->ia_secdata)
544 			security_release_secctx(kn->iattr->ia_secdata,
545 						kn->iattr->ia_secdata_len);
546 		simple_xattrs_free(&kn->iattr->xattrs);
547 	}
548 	kfree(kn->iattr);
549 	spin_lock(&kernfs_idr_lock);
550 	idr_remove(&root->ino_idr, kn->id.ino);
551 	spin_unlock(&kernfs_idr_lock);
552 	kmem_cache_free(kernfs_node_cache, kn);
553 
554 	kn = parent;
555 	if (kn) {
556 		if (atomic_dec_and_test(&kn->count))
557 			goto repeat;
558 	} else {
559 		/* just released the root kn, free @root too */
560 		idr_destroy(&root->ino_idr);
561 		kfree(root);
562 	}
563 }
564 EXPORT_SYMBOL_GPL(kernfs_put);
565 
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)566 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
567 {
568 	struct kernfs_node *kn;
569 
570 	if (flags & LOOKUP_RCU)
571 		return -ECHILD;
572 
573 	/* Always perform fresh lookup for negatives */
574 	if (d_really_is_negative(dentry))
575 		goto out_bad_unlocked;
576 
577 	kn = kernfs_dentry_node(dentry);
578 	mutex_lock(&kernfs_mutex);
579 
580 	/* The kernfs node has been deactivated */
581 	if (!kernfs_active(kn))
582 		goto out_bad;
583 
584 	/* The kernfs node has been moved? */
585 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
586 		goto out_bad;
587 
588 	/* The kernfs node has been renamed */
589 	if (strcmp(dentry->d_name.name, kn->name) != 0)
590 		goto out_bad;
591 
592 	/* The kernfs node has been moved to a different namespace */
593 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
594 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
595 		goto out_bad;
596 
597 	mutex_unlock(&kernfs_mutex);
598 	return 1;
599 out_bad:
600 	mutex_unlock(&kernfs_mutex);
601 out_bad_unlocked:
602 	return 0;
603 }
604 
605 const struct dentry_operations kernfs_dops = {
606 	.d_revalidate	= kernfs_dop_revalidate,
607 };
608 
609 /**
610  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
611  * @dentry: the dentry in question
612  *
613  * Return the kernfs_node associated with @dentry.  If @dentry is not a
614  * kernfs one, %NULL is returned.
615  *
616  * While the returned kernfs_node will stay accessible as long as @dentry
617  * is accessible, the returned node can be in any state and the caller is
618  * fully responsible for determining what's accessible.
619  */
kernfs_node_from_dentry(struct dentry * dentry)620 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
621 {
622 	if (dentry->d_sb->s_op == &kernfs_sops &&
623 	    !d_really_is_negative(dentry))
624 		return kernfs_dentry_node(dentry);
625 	return NULL;
626 }
627 
__kernfs_new_node(struct kernfs_root * root,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)628 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
629 					     const char *name, umode_t mode,
630 					     kuid_t uid, kgid_t gid,
631 					     unsigned flags)
632 {
633 	struct kernfs_node *kn;
634 	u32 gen;
635 	int ret;
636 
637 	name = kstrdup_const(name, GFP_KERNEL);
638 	if (!name)
639 		return NULL;
640 
641 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
642 	if (!kn)
643 		goto err_out1;
644 
645 	idr_preload(GFP_KERNEL);
646 	spin_lock(&kernfs_idr_lock);
647 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
648 	if (ret >= 0 && ret < root->last_ino)
649 		root->next_generation++;
650 	gen = root->next_generation;
651 	root->last_ino = ret;
652 	spin_unlock(&kernfs_idr_lock);
653 	idr_preload_end();
654 	if (ret < 0)
655 		goto err_out2;
656 	kn->id.ino = ret;
657 	kn->id.generation = gen;
658 
659 	/*
660 	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
661 	 * kernfs_find_and_get_node_by_ino
662 	 */
663 	atomic_set_release(&kn->count, 1);
664 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
665 	RB_CLEAR_NODE(&kn->rb);
666 
667 	kn->name = name;
668 	kn->mode = mode;
669 	kn->flags = flags;
670 
671 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
672 		struct iattr iattr = {
673 			.ia_valid = ATTR_UID | ATTR_GID,
674 			.ia_uid = uid,
675 			.ia_gid = gid,
676 		};
677 
678 		ret = __kernfs_setattr(kn, &iattr);
679 		if (ret < 0)
680 			goto err_out3;
681 	}
682 
683 	return kn;
684 
685  err_out3:
686 	idr_remove(&root->ino_idr, kn->id.ino);
687  err_out2:
688 	kmem_cache_free(kernfs_node_cache, kn);
689  err_out1:
690 	kfree_const(name);
691 	return NULL;
692 }
693 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)694 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
695 				    const char *name, umode_t mode,
696 				    kuid_t uid, kgid_t gid,
697 				    unsigned flags)
698 {
699 	struct kernfs_node *kn;
700 
701 	kn = __kernfs_new_node(kernfs_root(parent),
702 			       name, mode, uid, gid, flags);
703 	if (kn) {
704 		kernfs_get(parent);
705 		kn->parent = parent;
706 	}
707 	return kn;
708 }
709 
710 /*
711  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
712  * @root: the kernfs root
713  * @ino: inode number
714  *
715  * RETURNS:
716  * NULL on failure. Return a kernfs node with reference counter incremented
717  */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)718 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
719 						    unsigned int ino)
720 {
721 	struct kernfs_node *kn;
722 
723 	rcu_read_lock();
724 	kn = idr_find(&root->ino_idr, ino);
725 	if (!kn)
726 		goto out;
727 
728 	/*
729 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
730 	 * is freed, but reused before RCU grace period. But a freed node (see
731 	 * kernfs_put) or an incompletedly initialized node (see
732 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
733 	 * filter out such node.
734 	 */
735 	if (!atomic_inc_not_zero(&kn->count)) {
736 		kn = NULL;
737 		goto out;
738 	}
739 
740 	/*
741 	 * The node could be a new node or a reused node. If it's a new node,
742 	 * we are ok. If it's reused because of RCU (because of
743 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
744 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
745 	 * hence we can use 'ino' to filter stale node.
746 	 */
747 	if (kn->id.ino != ino)
748 		goto out;
749 	rcu_read_unlock();
750 
751 	return kn;
752 out:
753 	rcu_read_unlock();
754 	kernfs_put(kn);
755 	return NULL;
756 }
757 
758 /**
759  *	kernfs_add_one - add kernfs_node to parent without warning
760  *	@kn: kernfs_node to be added
761  *
762  *	The caller must already have initialized @kn->parent.  This
763  *	function increments nlink of the parent's inode if @kn is a
764  *	directory and link into the children list of the parent.
765  *
766  *	RETURNS:
767  *	0 on success, -EEXIST if entry with the given name already
768  *	exists.
769  */
kernfs_add_one(struct kernfs_node * kn)770 int kernfs_add_one(struct kernfs_node *kn)
771 {
772 	struct kernfs_node *parent = kn->parent;
773 	struct kernfs_iattrs *ps_iattr;
774 	bool has_ns;
775 	int ret;
776 
777 	mutex_lock(&kernfs_mutex);
778 
779 	ret = -EINVAL;
780 	has_ns = kernfs_ns_enabled(parent);
781 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
782 		 has_ns ? "required" : "invalid", parent->name, kn->name))
783 		goto out_unlock;
784 
785 	if (kernfs_type(parent) != KERNFS_DIR)
786 		goto out_unlock;
787 
788 	ret = -ENOENT;
789 	if (parent->flags & KERNFS_EMPTY_DIR)
790 		goto out_unlock;
791 
792 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
793 		goto out_unlock;
794 
795 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
796 
797 	ret = kernfs_link_sibling(kn);
798 	if (ret)
799 		goto out_unlock;
800 
801 	/* Update timestamps on the parent */
802 	ps_iattr = parent->iattr;
803 	if (ps_iattr) {
804 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
805 		ktime_get_real_ts64(&ps_iattrs->ia_ctime);
806 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
807 	}
808 
809 	mutex_unlock(&kernfs_mutex);
810 
811 	/*
812 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
813 	 * If not activated here, the kernfs user is responsible for
814 	 * activating the node with kernfs_activate().  A node which hasn't
815 	 * been activated is not visible to userland and its removal won't
816 	 * trigger deactivation.
817 	 */
818 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
819 		kernfs_activate(kn);
820 	return 0;
821 
822 out_unlock:
823 	mutex_unlock(&kernfs_mutex);
824 	return ret;
825 }
826 
827 /**
828  * kernfs_find_ns - find kernfs_node with the given name
829  * @parent: kernfs_node to search under
830  * @name: name to look for
831  * @ns: the namespace tag to use
832  *
833  * Look for kernfs_node with name @name under @parent.  Returns pointer to
834  * the found kernfs_node on success, %NULL on failure.
835  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)836 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
837 					  const unsigned char *name,
838 					  const void *ns)
839 {
840 	struct rb_node *node = parent->dir.children.rb_node;
841 	bool has_ns = kernfs_ns_enabled(parent);
842 	unsigned int hash;
843 
844 	lockdep_assert_held(&kernfs_mutex);
845 
846 	if (has_ns != (bool)ns) {
847 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
848 		     has_ns ? "required" : "invalid", parent->name, name);
849 		return NULL;
850 	}
851 
852 	hash = kernfs_name_hash(name, ns);
853 	while (node) {
854 		struct kernfs_node *kn;
855 		int result;
856 
857 		kn = rb_to_kn(node);
858 		result = kernfs_name_compare(hash, name, ns, kn);
859 		if (result < 0)
860 			node = node->rb_left;
861 		else if (result > 0)
862 			node = node->rb_right;
863 		else
864 			return kn;
865 	}
866 	return NULL;
867 }
868 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)869 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
870 					  const unsigned char *path,
871 					  const void *ns)
872 {
873 	size_t len;
874 	char *p, *name;
875 
876 	lockdep_assert_held(&kernfs_mutex);
877 
878 	spin_lock_irq(&kernfs_pr_cont_lock);
879 
880 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
881 
882 	if (len >= sizeof(kernfs_pr_cont_buf)) {
883 		spin_unlock_irq(&kernfs_pr_cont_lock);
884 		return NULL;
885 	}
886 
887 	p = kernfs_pr_cont_buf;
888 
889 	while ((name = strsep(&p, "/")) && parent) {
890 		if (*name == '\0')
891 			continue;
892 		parent = kernfs_find_ns(parent, name, ns);
893 	}
894 
895 	spin_unlock_irq(&kernfs_pr_cont_lock);
896 
897 	return parent;
898 }
899 
900 /**
901  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
902  * @parent: kernfs_node to search under
903  * @name: name to look for
904  * @ns: the namespace tag to use
905  *
906  * Look for kernfs_node with name @name under @parent and get a reference
907  * if found.  This function may sleep and returns pointer to the found
908  * kernfs_node on success, %NULL on failure.
909  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)910 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
911 					   const char *name, const void *ns)
912 {
913 	struct kernfs_node *kn;
914 
915 	mutex_lock(&kernfs_mutex);
916 	kn = kernfs_find_ns(parent, name, ns);
917 	kernfs_get(kn);
918 	mutex_unlock(&kernfs_mutex);
919 
920 	return kn;
921 }
922 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
923 
924 /**
925  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
926  * @parent: kernfs_node to search under
927  * @path: path to look for
928  * @ns: the namespace tag to use
929  *
930  * Look for kernfs_node with path @path under @parent and get a reference
931  * if found.  This function may sleep and returns pointer to the found
932  * kernfs_node on success, %NULL on failure.
933  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)934 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
935 					   const char *path, const void *ns)
936 {
937 	struct kernfs_node *kn;
938 
939 	mutex_lock(&kernfs_mutex);
940 	kn = kernfs_walk_ns(parent, path, ns);
941 	kernfs_get(kn);
942 	mutex_unlock(&kernfs_mutex);
943 
944 	return kn;
945 }
946 
947 /**
948  * kernfs_create_root - create a new kernfs hierarchy
949  * @scops: optional syscall operations for the hierarchy
950  * @flags: KERNFS_ROOT_* flags
951  * @priv: opaque data associated with the new directory
952  *
953  * Returns the root of the new hierarchy on success, ERR_PTR() value on
954  * failure.
955  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)956 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
957 				       unsigned int flags, void *priv)
958 {
959 	struct kernfs_root *root;
960 	struct kernfs_node *kn;
961 
962 	root = kzalloc(sizeof(*root), GFP_KERNEL);
963 	if (!root)
964 		return ERR_PTR(-ENOMEM);
965 
966 	idr_init(&root->ino_idr);
967 	INIT_LIST_HEAD(&root->supers);
968 	root->next_generation = 1;
969 
970 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
971 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
972 			       KERNFS_DIR);
973 	if (!kn) {
974 		idr_destroy(&root->ino_idr);
975 		kfree(root);
976 		return ERR_PTR(-ENOMEM);
977 	}
978 
979 	kn->priv = priv;
980 	kn->dir.root = root;
981 
982 	root->syscall_ops = scops;
983 	root->flags = flags;
984 	root->kn = kn;
985 	init_waitqueue_head(&root->deactivate_waitq);
986 
987 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
988 		kernfs_activate(kn);
989 
990 	return root;
991 }
992 
993 /**
994  * kernfs_destroy_root - destroy a kernfs hierarchy
995  * @root: root of the hierarchy to destroy
996  *
997  * Destroy the hierarchy anchored at @root by removing all existing
998  * directories and destroying @root.
999  */
kernfs_destroy_root(struct kernfs_root * root)1000 void kernfs_destroy_root(struct kernfs_root *root)
1001 {
1002 	kernfs_remove(root->kn);	/* will also free @root */
1003 }
1004 
1005 /**
1006  * kernfs_create_dir_ns - create a directory
1007  * @parent: parent in which to create a new directory
1008  * @name: name of the new directory
1009  * @mode: mode of the new directory
1010  * @uid: uid of the new directory
1011  * @gid: gid of the new directory
1012  * @priv: opaque data associated with the new directory
1013  * @ns: optional namespace tag of the directory
1014  *
1015  * Returns the created node on success, ERR_PTR() value on failure.
1016  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1017 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1018 					 const char *name, umode_t mode,
1019 					 kuid_t uid, kgid_t gid,
1020 					 void *priv, const void *ns)
1021 {
1022 	struct kernfs_node *kn;
1023 	int rc;
1024 
1025 	/* allocate */
1026 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1027 			     uid, gid, KERNFS_DIR);
1028 	if (!kn)
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	kn->dir.root = parent->dir.root;
1032 	kn->ns = ns;
1033 	kn->priv = priv;
1034 
1035 	/* link in */
1036 	rc = kernfs_add_one(kn);
1037 	if (!rc)
1038 		return kn;
1039 
1040 	kernfs_put(kn);
1041 	return ERR_PTR(rc);
1042 }
1043 
1044 /**
1045  * kernfs_create_empty_dir - create an always empty directory
1046  * @parent: parent in which to create a new directory
1047  * @name: name of the new directory
1048  *
1049  * Returns the created node on success, ERR_PTR() value on failure.
1050  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1051 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1052 					    const char *name)
1053 {
1054 	struct kernfs_node *kn;
1055 	int rc;
1056 
1057 	/* allocate */
1058 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1059 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1060 	if (!kn)
1061 		return ERR_PTR(-ENOMEM);
1062 
1063 	kn->flags |= KERNFS_EMPTY_DIR;
1064 	kn->dir.root = parent->dir.root;
1065 	kn->ns = NULL;
1066 	kn->priv = NULL;
1067 
1068 	/* link in */
1069 	rc = kernfs_add_one(kn);
1070 	if (!rc)
1071 		return kn;
1072 
1073 	kernfs_put(kn);
1074 	return ERR_PTR(rc);
1075 }
1076 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1077 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1078 					struct dentry *dentry,
1079 					unsigned int flags)
1080 {
1081 	struct dentry *ret;
1082 	struct kernfs_node *parent = dir->i_private;
1083 	struct kernfs_node *kn;
1084 	struct inode *inode;
1085 	const void *ns = NULL;
1086 
1087 	mutex_lock(&kernfs_mutex);
1088 
1089 	if (kernfs_ns_enabled(parent))
1090 		ns = kernfs_info(dir->i_sb)->ns;
1091 
1092 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1093 
1094 	/* no such entry */
1095 	if (!kn || !kernfs_active(kn)) {
1096 		ret = NULL;
1097 		goto out_unlock;
1098 	}
1099 
1100 	/* attach dentry and inode */
1101 	inode = kernfs_get_inode(dir->i_sb, kn);
1102 	if (!inode) {
1103 		ret = ERR_PTR(-ENOMEM);
1104 		goto out_unlock;
1105 	}
1106 
1107 	/* instantiate and hash dentry */
1108 	ret = d_splice_alias(inode, dentry);
1109  out_unlock:
1110 	mutex_unlock(&kernfs_mutex);
1111 	return ret;
1112 }
1113 
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1114 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1115 			    umode_t mode)
1116 {
1117 	struct kernfs_node *parent = dir->i_private;
1118 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1119 	int ret;
1120 
1121 	if (!scops || !scops->mkdir)
1122 		return -EPERM;
1123 
1124 	if (!kernfs_get_active(parent))
1125 		return -ENODEV;
1126 
1127 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1128 
1129 	kernfs_put_active(parent);
1130 	return ret;
1131 }
1132 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1133 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1134 {
1135 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1136 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1137 	int ret;
1138 
1139 	if (!scops || !scops->rmdir)
1140 		return -EPERM;
1141 
1142 	if (!kernfs_get_active(kn))
1143 		return -ENODEV;
1144 
1145 	ret = scops->rmdir(kn);
1146 
1147 	kernfs_put_active(kn);
1148 	return ret;
1149 }
1150 
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1151 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1152 			     struct inode *new_dir, struct dentry *new_dentry,
1153 			     unsigned int flags)
1154 {
1155 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1156 	struct kernfs_node *new_parent = new_dir->i_private;
1157 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1158 	int ret;
1159 
1160 	if (flags)
1161 		return -EINVAL;
1162 
1163 	if (!scops || !scops->rename)
1164 		return -EPERM;
1165 
1166 	if (!kernfs_get_active(kn))
1167 		return -ENODEV;
1168 
1169 	if (!kernfs_get_active(new_parent)) {
1170 		kernfs_put_active(kn);
1171 		return -ENODEV;
1172 	}
1173 
1174 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1175 
1176 	kernfs_put_active(new_parent);
1177 	kernfs_put_active(kn);
1178 	return ret;
1179 }
1180 
1181 const struct inode_operations kernfs_dir_iops = {
1182 	.lookup		= kernfs_iop_lookup,
1183 	.permission	= kernfs_iop_permission,
1184 	.setattr	= kernfs_iop_setattr,
1185 	.getattr	= kernfs_iop_getattr,
1186 	.listxattr	= kernfs_iop_listxattr,
1187 
1188 	.mkdir		= kernfs_iop_mkdir,
1189 	.rmdir		= kernfs_iop_rmdir,
1190 	.rename		= kernfs_iop_rename,
1191 };
1192 
kernfs_leftmost_descendant(struct kernfs_node * pos)1193 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1194 {
1195 	struct kernfs_node *last;
1196 
1197 	while (true) {
1198 		struct rb_node *rbn;
1199 
1200 		last = pos;
1201 
1202 		if (kernfs_type(pos) != KERNFS_DIR)
1203 			break;
1204 
1205 		rbn = rb_first(&pos->dir.children);
1206 		if (!rbn)
1207 			break;
1208 
1209 		pos = rb_to_kn(rbn);
1210 	}
1211 
1212 	return last;
1213 }
1214 
1215 /**
1216  * kernfs_next_descendant_post - find the next descendant for post-order walk
1217  * @pos: the current position (%NULL to initiate traversal)
1218  * @root: kernfs_node whose descendants to walk
1219  *
1220  * Find the next descendant to visit for post-order traversal of @root's
1221  * descendants.  @root is included in the iteration and the last node to be
1222  * visited.
1223  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1224 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1225 						       struct kernfs_node *root)
1226 {
1227 	struct rb_node *rbn;
1228 
1229 	lockdep_assert_held(&kernfs_mutex);
1230 
1231 	/* if first iteration, visit leftmost descendant which may be root */
1232 	if (!pos)
1233 		return kernfs_leftmost_descendant(root);
1234 
1235 	/* if we visited @root, we're done */
1236 	if (pos == root)
1237 		return NULL;
1238 
1239 	/* if there's an unvisited sibling, visit its leftmost descendant */
1240 	rbn = rb_next(&pos->rb);
1241 	if (rbn)
1242 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1243 
1244 	/* no sibling left, visit parent */
1245 	return pos->parent;
1246 }
1247 
1248 /**
1249  * kernfs_activate - activate a node which started deactivated
1250  * @kn: kernfs_node whose subtree is to be activated
1251  *
1252  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1253  * needs to be explicitly activated.  A node which hasn't been activated
1254  * isn't visible to userland and deactivation is skipped during its
1255  * removal.  This is useful to construct atomic init sequences where
1256  * creation of multiple nodes should either succeed or fail atomically.
1257  *
1258  * The caller is responsible for ensuring that this function is not called
1259  * after kernfs_remove*() is invoked on @kn.
1260  */
kernfs_activate(struct kernfs_node * kn)1261 void kernfs_activate(struct kernfs_node *kn)
1262 {
1263 	struct kernfs_node *pos;
1264 
1265 	mutex_lock(&kernfs_mutex);
1266 
1267 	pos = NULL;
1268 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1269 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1270 			continue;
1271 
1272 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1273 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1274 
1275 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1276 		pos->flags |= KERNFS_ACTIVATED;
1277 	}
1278 
1279 	mutex_unlock(&kernfs_mutex);
1280 }
1281 
__kernfs_remove(struct kernfs_node * kn)1282 static void __kernfs_remove(struct kernfs_node *kn)
1283 {
1284 	struct kernfs_node *pos;
1285 
1286 	lockdep_assert_held(&kernfs_mutex);
1287 
1288 	/*
1289 	 * Short-circuit if non-root @kn has already finished removal.
1290 	 * This is for kernfs_remove_self() which plays with active ref
1291 	 * after removal.
1292 	 */
1293 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1294 		return;
1295 
1296 	pr_debug("kernfs %s: removing\n", kn->name);
1297 
1298 	/* prevent any new usage under @kn by deactivating all nodes */
1299 	pos = NULL;
1300 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1301 		if (kernfs_active(pos))
1302 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1303 
1304 	/* deactivate and unlink the subtree node-by-node */
1305 	do {
1306 		pos = kernfs_leftmost_descendant(kn);
1307 
1308 		/*
1309 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1310 		 * base ref could have been put by someone else by the time
1311 		 * the function returns.  Make sure it doesn't go away
1312 		 * underneath us.
1313 		 */
1314 		kernfs_get(pos);
1315 
1316 		/*
1317 		 * Drain iff @kn was activated.  This avoids draining and
1318 		 * its lockdep annotations for nodes which have never been
1319 		 * activated and allows embedding kernfs_remove() in create
1320 		 * error paths without worrying about draining.
1321 		 */
1322 		if (kn->flags & KERNFS_ACTIVATED)
1323 			kernfs_drain(pos);
1324 		else
1325 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1326 
1327 		/*
1328 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1329 		 * to decide who's responsible for cleanups.
1330 		 */
1331 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1332 			struct kernfs_iattrs *ps_iattr =
1333 				pos->parent ? pos->parent->iattr : NULL;
1334 
1335 			/* update timestamps on the parent */
1336 			if (ps_iattr) {
1337 				ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
1338 				ps_iattr->ia_iattr.ia_mtime =
1339 					ps_iattr->ia_iattr.ia_ctime;
1340 			}
1341 
1342 			kernfs_put(pos);
1343 		}
1344 
1345 		kernfs_put(pos);
1346 	} while (pos != kn);
1347 }
1348 
1349 /**
1350  * kernfs_remove - remove a kernfs_node recursively
1351  * @kn: the kernfs_node to remove
1352  *
1353  * Remove @kn along with all its subdirectories and files.
1354  */
kernfs_remove(struct kernfs_node * kn)1355 void kernfs_remove(struct kernfs_node *kn)
1356 {
1357 	mutex_lock(&kernfs_mutex);
1358 	__kernfs_remove(kn);
1359 	mutex_unlock(&kernfs_mutex);
1360 }
1361 
1362 /**
1363  * kernfs_break_active_protection - break out of active protection
1364  * @kn: the self kernfs_node
1365  *
1366  * The caller must be running off of a kernfs operation which is invoked
1367  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1368  * this function must also be matched with an invocation of
1369  * kernfs_unbreak_active_protection().
1370  *
1371  * This function releases the active reference of @kn the caller is
1372  * holding.  Once this function is called, @kn may be removed at any point
1373  * and the caller is solely responsible for ensuring that the objects it
1374  * dereferences are accessible.
1375  */
kernfs_break_active_protection(struct kernfs_node * kn)1376 void kernfs_break_active_protection(struct kernfs_node *kn)
1377 {
1378 	/*
1379 	 * Take out ourself out of the active ref dependency chain.  If
1380 	 * we're called without an active ref, lockdep will complain.
1381 	 */
1382 	kernfs_put_active(kn);
1383 }
1384 
1385 /**
1386  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1387  * @kn: the self kernfs_node
1388  *
1389  * If kernfs_break_active_protection() was called, this function must be
1390  * invoked before finishing the kernfs operation.  Note that while this
1391  * function restores the active reference, it doesn't and can't actually
1392  * restore the active protection - @kn may already or be in the process of
1393  * being removed.  Once kernfs_break_active_protection() is invoked, that
1394  * protection is irreversibly gone for the kernfs operation instance.
1395  *
1396  * While this function may be called at any point after
1397  * kernfs_break_active_protection() is invoked, its most useful location
1398  * would be right before the enclosing kernfs operation returns.
1399  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1400 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1401 {
1402 	/*
1403 	 * @kn->active could be in any state; however, the increment we do
1404 	 * here will be undone as soon as the enclosing kernfs operation
1405 	 * finishes and this temporary bump can't break anything.  If @kn
1406 	 * is alive, nothing changes.  If @kn is being deactivated, the
1407 	 * soon-to-follow put will either finish deactivation or restore
1408 	 * deactivated state.  If @kn is already removed, the temporary
1409 	 * bump is guaranteed to be gone before @kn is released.
1410 	 */
1411 	atomic_inc(&kn->active);
1412 	if (kernfs_lockdep(kn))
1413 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1414 }
1415 
1416 /**
1417  * kernfs_remove_self - remove a kernfs_node from its own method
1418  * @kn: the self kernfs_node to remove
1419  *
1420  * The caller must be running off of a kernfs operation which is invoked
1421  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1422  * implement a file operation which deletes itself.
1423  *
1424  * For example, the "delete" file for a sysfs device directory can be
1425  * implemented by invoking kernfs_remove_self() on the "delete" file
1426  * itself.  This function breaks the circular dependency of trying to
1427  * deactivate self while holding an active ref itself.  It isn't necessary
1428  * to modify the usual removal path to use kernfs_remove_self().  The
1429  * "delete" implementation can simply invoke kernfs_remove_self() on self
1430  * before proceeding with the usual removal path.  kernfs will ignore later
1431  * kernfs_remove() on self.
1432  *
1433  * kernfs_remove_self() can be called multiple times concurrently on the
1434  * same kernfs_node.  Only the first one actually performs removal and
1435  * returns %true.  All others will wait until the kernfs operation which
1436  * won self-removal finishes and return %false.  Note that the losers wait
1437  * for the completion of not only the winning kernfs_remove_self() but also
1438  * the whole kernfs_ops which won the arbitration.  This can be used to
1439  * guarantee, for example, all concurrent writes to a "delete" file to
1440  * finish only after the whole operation is complete.
1441  */
kernfs_remove_self(struct kernfs_node * kn)1442 bool kernfs_remove_self(struct kernfs_node *kn)
1443 {
1444 	bool ret;
1445 
1446 	mutex_lock(&kernfs_mutex);
1447 	kernfs_break_active_protection(kn);
1448 
1449 	/*
1450 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1451 	 * the first one will actually perform removal.  When the removal
1452 	 * is complete, SUICIDED is set and the active ref is restored
1453 	 * while holding kernfs_mutex.  The ones which lost arbitration
1454 	 * waits for SUICDED && drained which can happen only after the
1455 	 * enclosing kernfs operation which executed the winning instance
1456 	 * of kernfs_remove_self() finished.
1457 	 */
1458 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1459 		kn->flags |= KERNFS_SUICIDAL;
1460 		__kernfs_remove(kn);
1461 		kn->flags |= KERNFS_SUICIDED;
1462 		ret = true;
1463 	} else {
1464 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1465 		DEFINE_WAIT(wait);
1466 
1467 		while (true) {
1468 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1469 
1470 			if ((kn->flags & KERNFS_SUICIDED) &&
1471 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1472 				break;
1473 
1474 			mutex_unlock(&kernfs_mutex);
1475 			schedule();
1476 			mutex_lock(&kernfs_mutex);
1477 		}
1478 		finish_wait(waitq, &wait);
1479 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1480 		ret = false;
1481 	}
1482 
1483 	/*
1484 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1485 	 * for SUICIDED && deactivated could finish prematurely.
1486 	 */
1487 	kernfs_unbreak_active_protection(kn);
1488 
1489 	mutex_unlock(&kernfs_mutex);
1490 	return ret;
1491 }
1492 
1493 /**
1494  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1495  * @parent: parent of the target
1496  * @name: name of the kernfs_node to remove
1497  * @ns: namespace tag of the kernfs_node to remove
1498  *
1499  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1500  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1501  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1502 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1503 			     const void *ns)
1504 {
1505 	struct kernfs_node *kn;
1506 
1507 	if (!parent) {
1508 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1509 			name);
1510 		return -ENOENT;
1511 	}
1512 
1513 	mutex_lock(&kernfs_mutex);
1514 
1515 	kn = kernfs_find_ns(parent, name, ns);
1516 	if (kn) {
1517 		kernfs_get(kn);
1518 		__kernfs_remove(kn);
1519 		kernfs_put(kn);
1520 	}
1521 
1522 	mutex_unlock(&kernfs_mutex);
1523 
1524 	if (kn)
1525 		return 0;
1526 	else
1527 		return -ENOENT;
1528 }
1529 
1530 /**
1531  * kernfs_rename_ns - move and rename a kernfs_node
1532  * @kn: target node
1533  * @new_parent: new parent to put @sd under
1534  * @new_name: new name
1535  * @new_ns: new namespace tag
1536  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1537 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1538 		     const char *new_name, const void *new_ns)
1539 {
1540 	struct kernfs_node *old_parent;
1541 	const char *old_name = NULL;
1542 	int error;
1543 
1544 	/* can't move or rename root */
1545 	if (!kn->parent)
1546 		return -EINVAL;
1547 
1548 	mutex_lock(&kernfs_mutex);
1549 
1550 	error = -ENOENT;
1551 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1552 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1553 		goto out;
1554 
1555 	error = 0;
1556 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1557 	    (strcmp(kn->name, new_name) == 0))
1558 		goto out;	/* nothing to rename */
1559 
1560 	error = -EEXIST;
1561 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1562 		goto out;
1563 
1564 	/* rename kernfs_node */
1565 	if (strcmp(kn->name, new_name) != 0) {
1566 		error = -ENOMEM;
1567 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1568 		if (!new_name)
1569 			goto out;
1570 	} else {
1571 		new_name = NULL;
1572 	}
1573 
1574 	/*
1575 	 * Move to the appropriate place in the appropriate directories rbtree.
1576 	 */
1577 	kernfs_unlink_sibling(kn);
1578 	kernfs_get(new_parent);
1579 
1580 	/* rename_lock protects ->parent and ->name accessors */
1581 	spin_lock_irq(&kernfs_rename_lock);
1582 
1583 	old_parent = kn->parent;
1584 	kn->parent = new_parent;
1585 
1586 	kn->ns = new_ns;
1587 	if (new_name) {
1588 		old_name = kn->name;
1589 		kn->name = new_name;
1590 	}
1591 
1592 	spin_unlock_irq(&kernfs_rename_lock);
1593 
1594 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1595 	kernfs_link_sibling(kn);
1596 
1597 	kernfs_put(old_parent);
1598 	kfree_const(old_name);
1599 
1600 	error = 0;
1601  out:
1602 	mutex_unlock(&kernfs_mutex);
1603 	return error;
1604 }
1605 
1606 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1607 static inline unsigned char dt_type(struct kernfs_node *kn)
1608 {
1609 	return (kn->mode >> 12) & 15;
1610 }
1611 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1612 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1613 {
1614 	kernfs_put(filp->private_data);
1615 	return 0;
1616 }
1617 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1618 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1619 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1620 {
1621 	if (pos) {
1622 		int valid = kernfs_active(pos) &&
1623 			pos->parent == parent && hash == pos->hash;
1624 		kernfs_put(pos);
1625 		if (!valid)
1626 			pos = NULL;
1627 	}
1628 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1629 		struct rb_node *node = parent->dir.children.rb_node;
1630 		while (node) {
1631 			pos = rb_to_kn(node);
1632 
1633 			if (hash < pos->hash)
1634 				node = node->rb_left;
1635 			else if (hash > pos->hash)
1636 				node = node->rb_right;
1637 			else
1638 				break;
1639 		}
1640 	}
1641 	/* Skip over entries which are dying/dead or in the wrong namespace */
1642 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1643 		struct rb_node *node = rb_next(&pos->rb);
1644 		if (!node)
1645 			pos = NULL;
1646 		else
1647 			pos = rb_to_kn(node);
1648 	}
1649 	return pos;
1650 }
1651 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1652 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1653 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1654 {
1655 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1656 	if (pos) {
1657 		do {
1658 			struct rb_node *node = rb_next(&pos->rb);
1659 			if (!node)
1660 				pos = NULL;
1661 			else
1662 				pos = rb_to_kn(node);
1663 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1664 	}
1665 	return pos;
1666 }
1667 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1668 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1669 {
1670 	struct dentry *dentry = file->f_path.dentry;
1671 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1672 	struct kernfs_node *pos = file->private_data;
1673 	const void *ns = NULL;
1674 
1675 	if (!dir_emit_dots(file, ctx))
1676 		return 0;
1677 	mutex_lock(&kernfs_mutex);
1678 
1679 	if (kernfs_ns_enabled(parent))
1680 		ns = kernfs_info(dentry->d_sb)->ns;
1681 
1682 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1683 	     pos;
1684 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1685 		const char *name = pos->name;
1686 		unsigned int type = dt_type(pos);
1687 		int len = strlen(name);
1688 		ino_t ino = pos->id.ino;
1689 
1690 		ctx->pos = pos->hash;
1691 		file->private_data = pos;
1692 		kernfs_get(pos);
1693 
1694 		mutex_unlock(&kernfs_mutex);
1695 		if (!dir_emit(ctx, name, len, ino, type))
1696 			return 0;
1697 		mutex_lock(&kernfs_mutex);
1698 	}
1699 	mutex_unlock(&kernfs_mutex);
1700 	file->private_data = NULL;
1701 	ctx->pos = INT_MAX;
1702 	return 0;
1703 }
1704 
1705 const struct file_operations kernfs_dir_fops = {
1706 	.read		= generic_read_dir,
1707 	.iterate_shared	= kernfs_fop_readdir,
1708 	.release	= kernfs_dir_fop_release,
1709 	.llseek		= generic_file_llseek,
1710 };
1711