1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <linux/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_mirror {
70 	ssize_t count;
71 };
72 
73 struct nfs_direct_req {
74 	struct kref		kref;		/* release manager */
75 
76 	/* I/O parameters */
77 	struct nfs_open_context	*ctx;		/* file open context info */
78 	struct nfs_lock_context *l_ctx;		/* Lock context info */
79 	struct kiocb *		iocb;		/* controlling i/o request */
80 	struct inode *		inode;		/* target file of i/o */
81 
82 	/* completion state */
83 	atomic_t		io_count;	/* i/os we're waiting for */
84 	spinlock_t		lock;		/* protect completion state */
85 
86 	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 	int			mirror_count;
88 
89 	loff_t			io_start;	/* Start offset for I/O */
90 	ssize_t			count,		/* bytes actually processed */
91 				max_count,	/* max expected count */
92 				bytes_left,	/* bytes left to be sent */
93 				error;		/* any reported error */
94 	struct completion	completion;	/* wait for i/o completion */
95 
96 	/* commit state */
97 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
98 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
99 	struct work_struct	work;
100 	int			flags;
101 	/* for write */
102 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
103 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
104 	/* for read */
105 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
106 	struct nfs_writeverf	verf;		/* unstable write verifier */
107 };
108 
109 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
110 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
111 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
112 static void nfs_direct_write_schedule_work(struct work_struct *work);
113 
get_dreq(struct nfs_direct_req * dreq)114 static inline void get_dreq(struct nfs_direct_req *dreq)
115 {
116 	atomic_inc(&dreq->io_count);
117 }
118 
put_dreq(struct nfs_direct_req * dreq)119 static inline int put_dreq(struct nfs_direct_req *dreq)
120 {
121 	return atomic_dec_and_test(&dreq->io_count);
122 }
123 
124 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)125 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
126 			    const struct nfs_pgio_header *hdr,
127 			    ssize_t dreq_len)
128 {
129 	struct nfs_direct_mirror *mirror = &dreq->mirrors[hdr->pgio_mirror_idx];
130 
131 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
132 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
133 		return;
134 	if (dreq->max_count >= dreq_len) {
135 		dreq->max_count = dreq_len;
136 		if (dreq->count > dreq_len)
137 			dreq->count = dreq_len;
138 
139 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
140 			dreq->error = hdr->error;
141 		else /* Clear outstanding error if this is EOF */
142 			dreq->error = 0;
143 	}
144 	if (mirror->count > dreq_len)
145 		mirror->count = dreq_len;
146 }
147 
148 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)149 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
150 		       const struct nfs_pgio_header *hdr)
151 {
152 	struct nfs_direct_mirror *mirror = &dreq->mirrors[hdr->pgio_mirror_idx];
153 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
154 	ssize_t dreq_len = 0;
155 
156 	if (hdr_end > dreq->io_start)
157 		dreq_len = hdr_end - dreq->io_start;
158 
159 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
160 
161 	if (dreq_len > dreq->max_count)
162 		dreq_len = dreq->max_count;
163 
164 	if (mirror->count < dreq_len)
165 		mirror->count = dreq_len;
166 	if (dreq->count < dreq_len)
167 		dreq->count = dreq_len;
168 }
169 
170 /*
171  * nfs_direct_select_verf - select the right verifier
172  * @dreq - direct request possibly spanning multiple servers
173  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
174  * @commit_idx - commit bucket index for the DS
175  *
176  * returns the correct verifier to use given the role of the server
177  */
178 static struct nfs_writeverf *
nfs_direct_select_verf(struct nfs_direct_req * dreq,struct nfs_client * ds_clp,int commit_idx)179 nfs_direct_select_verf(struct nfs_direct_req *dreq,
180 		       struct nfs_client *ds_clp,
181 		       int commit_idx)
182 {
183 	struct nfs_writeverf *verfp = &dreq->verf;
184 
185 #ifdef CONFIG_NFS_V4_1
186 	/*
187 	 * pNFS is in use, use the DS verf except commit_through_mds is set
188 	 * for layout segment where nbuckets is zero.
189 	 */
190 	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
191 		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
192 			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
193 		else
194 			WARN_ON_ONCE(1);
195 	}
196 #endif
197 	return verfp;
198 }
199 
200 
201 /*
202  * nfs_direct_set_hdr_verf - set the write/commit verifier
203  * @dreq - direct request possibly spanning multiple servers
204  * @hdr - pageio header to validate against previously seen verfs
205  *
206  * Set the server's (MDS or DS) "seen" verifier
207  */
nfs_direct_set_hdr_verf(struct nfs_direct_req * dreq,struct nfs_pgio_header * hdr)208 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
209 				    struct nfs_pgio_header *hdr)
210 {
211 	struct nfs_writeverf *verfp;
212 
213 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 	WARN_ON_ONCE(verfp->committed >= 0);
215 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
216 	WARN_ON_ONCE(verfp->committed < 0);
217 }
218 
nfs_direct_cmp_verf(const struct nfs_writeverf * v1,const struct nfs_writeverf * v2)219 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
220 		const struct nfs_writeverf *v2)
221 {
222 	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
223 }
224 
225 /*
226  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
227  * @dreq - direct request possibly spanning multiple servers
228  * @hdr - pageio header to validate against previously seen verf
229  *
230  * set the server's "seen" verf if not initialized.
231  * returns result of comparison between @hdr->verf and the "seen"
232  * verf of the server used by @hdr (DS or MDS)
233  */
nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req * dreq,struct nfs_pgio_header * hdr)234 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
235 					  struct nfs_pgio_header *hdr)
236 {
237 	struct nfs_writeverf *verfp;
238 
239 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
240 	if (verfp->committed < 0) {
241 		nfs_direct_set_hdr_verf(dreq, hdr);
242 		return 0;
243 	}
244 	return nfs_direct_cmp_verf(verfp, &hdr->verf);
245 }
246 
247 /*
248  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
249  * @dreq - direct request possibly spanning multiple servers
250  * @data - commit data to validate against previously seen verf
251  *
252  * returns result of comparison between @data->verf and the verf of
253  * the server used by @data (DS or MDS)
254  */
nfs_direct_cmp_commit_data_verf(struct nfs_direct_req * dreq,struct nfs_commit_data * data)255 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
256 					   struct nfs_commit_data *data)
257 {
258 	struct nfs_writeverf *verfp;
259 
260 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
261 					 data->ds_commit_index);
262 
263 	/* verifier not set so always fail */
264 	if (verfp->committed < 0 || data->res.verf->committed <= NFS_UNSTABLE)
265 		return 1;
266 
267 	return nfs_direct_cmp_verf(verfp, data->res.verf);
268 }
269 
270 /**
271  * nfs_direct_IO - NFS address space operation for direct I/O
272  * @iocb: target I/O control block
273  * @iter: I/O buffer
274  *
275  * The presence of this routine in the address space ops vector means
276  * the NFS client supports direct I/O. However, for most direct IO, we
277  * shunt off direct read and write requests before the VFS gets them,
278  * so this method is only ever called for swap.
279  */
nfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)280 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
281 {
282 	struct inode *inode = iocb->ki_filp->f_mapping->host;
283 
284 	/* we only support swap file calling nfs_direct_IO */
285 	if (!IS_SWAPFILE(inode))
286 		return 0;
287 
288 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
289 
290 	if (iov_iter_rw(iter) == READ)
291 		return nfs_file_direct_read(iocb, iter, true);
292 	return nfs_file_direct_write(iocb, iter, true);
293 }
294 
nfs_direct_release_pages(struct page ** pages,unsigned int npages)295 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
296 {
297 	unsigned int i;
298 	for (i = 0; i < npages; i++)
299 		put_page(pages[i]);
300 }
301 
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)302 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
303 			      struct nfs_direct_req *dreq)
304 {
305 	cinfo->inode = dreq->inode;
306 	cinfo->mds = &dreq->mds_cinfo;
307 	cinfo->ds = &dreq->ds_cinfo;
308 	cinfo->dreq = dreq;
309 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
310 }
311 
nfs_direct_setup_mirroring(struct nfs_direct_req * dreq,struct nfs_pageio_descriptor * pgio,struct nfs_page * req)312 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
313 					     struct nfs_pageio_descriptor *pgio,
314 					     struct nfs_page *req)
315 {
316 	int mirror_count = 1;
317 
318 	if (pgio->pg_ops->pg_get_mirror_count)
319 		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
320 
321 	dreq->mirror_count = mirror_count;
322 }
323 
nfs_direct_req_alloc(void)324 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
325 {
326 	struct nfs_direct_req *dreq;
327 
328 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
329 	if (!dreq)
330 		return NULL;
331 
332 	kref_init(&dreq->kref);
333 	kref_get(&dreq->kref);
334 	init_completion(&dreq->completion);
335 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
336 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
337 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
338 	dreq->mirror_count = 1;
339 	spin_lock_init(&dreq->lock);
340 
341 	return dreq;
342 }
343 
nfs_direct_req_free(struct kref * kref)344 static void nfs_direct_req_free(struct kref *kref)
345 {
346 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
347 
348 	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
349 	if (dreq->l_ctx != NULL)
350 		nfs_put_lock_context(dreq->l_ctx);
351 	if (dreq->ctx != NULL)
352 		put_nfs_open_context(dreq->ctx);
353 	kmem_cache_free(nfs_direct_cachep, dreq);
354 }
355 
nfs_direct_req_release(struct nfs_direct_req * dreq)356 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
357 {
358 	kref_put(&dreq->kref, nfs_direct_req_free);
359 }
360 
nfs_dreq_bytes_left(struct nfs_direct_req * dreq)361 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
362 {
363 	return dreq->bytes_left;
364 }
365 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
366 
367 /*
368  * Collects and returns the final error value/byte-count.
369  */
nfs_direct_wait(struct nfs_direct_req * dreq)370 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
371 {
372 	ssize_t result = -EIOCBQUEUED;
373 
374 	/* Async requests don't wait here */
375 	if (dreq->iocb)
376 		goto out;
377 
378 	result = wait_for_completion_killable(&dreq->completion);
379 
380 	if (!result) {
381 		result = dreq->count;
382 		WARN_ON_ONCE(dreq->count < 0);
383 	}
384 	if (!result)
385 		result = dreq->error;
386 
387 out:
388 	return (ssize_t) result;
389 }
390 
391 /*
392  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
393  * the iocb is still valid here if this is a synchronous request.
394  */
nfs_direct_complete(struct nfs_direct_req * dreq)395 static void nfs_direct_complete(struct nfs_direct_req *dreq)
396 {
397 	struct inode *inode = dreq->inode;
398 
399 	inode_dio_end(inode);
400 
401 	if (dreq->iocb) {
402 		long res = (long) dreq->error;
403 		if (dreq->count != 0) {
404 			res = (long) dreq->count;
405 			WARN_ON_ONCE(dreq->count < 0);
406 		}
407 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
408 	}
409 
410 	complete(&dreq->completion);
411 
412 	nfs_direct_req_release(dreq);
413 }
414 
nfs_direct_read_completion(struct nfs_pgio_header * hdr)415 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
416 {
417 	unsigned long bytes = 0;
418 	struct nfs_direct_req *dreq = hdr->dreq;
419 
420 	spin_lock(&dreq->lock);
421 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
422 		spin_unlock(&dreq->lock);
423 		goto out_put;
424 	}
425 
426 	nfs_direct_count_bytes(dreq, hdr);
427 	spin_unlock(&dreq->lock);
428 
429 	while (!list_empty(&hdr->pages)) {
430 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
431 		struct page *page = req->wb_page;
432 
433 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
434 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
435 			set_page_dirty(page);
436 		bytes += req->wb_bytes;
437 		nfs_list_remove_request(req);
438 		nfs_release_request(req);
439 	}
440 out_put:
441 	if (put_dreq(dreq))
442 		nfs_direct_complete(dreq);
443 	hdr->release(hdr);
444 }
445 
nfs_read_sync_pgio_error(struct list_head * head,int error)446 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
447 {
448 	struct nfs_page *req;
449 
450 	while (!list_empty(head)) {
451 		req = nfs_list_entry(head->next);
452 		nfs_list_remove_request(req);
453 		nfs_release_request(req);
454 	}
455 }
456 
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)457 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
458 {
459 	get_dreq(hdr->dreq);
460 }
461 
462 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
463 	.error_cleanup = nfs_read_sync_pgio_error,
464 	.init_hdr = nfs_direct_pgio_init,
465 	.completion = nfs_direct_read_completion,
466 };
467 
468 /*
469  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
470  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
471  * bail and stop sending more reads.  Read length accounting is
472  * handled automatically by nfs_direct_read_result().  Otherwise, if
473  * no requests have been sent, just return an error.
474  */
475 
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)476 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
477 					      struct iov_iter *iter,
478 					      loff_t pos)
479 {
480 	struct nfs_pageio_descriptor desc;
481 	struct inode *inode = dreq->inode;
482 	ssize_t result = -EINVAL;
483 	size_t requested_bytes = 0;
484 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
485 
486 	nfs_pageio_init_read(&desc, dreq->inode, false,
487 			     &nfs_direct_read_completion_ops);
488 	get_dreq(dreq);
489 	desc.pg_dreq = dreq;
490 	inode_dio_begin(inode);
491 
492 	while (iov_iter_count(iter)) {
493 		struct page **pagevec;
494 		size_t bytes;
495 		size_t pgbase;
496 		unsigned npages, i;
497 
498 		result = iov_iter_get_pages_alloc(iter, &pagevec,
499 						  rsize, &pgbase);
500 		if (result < 0)
501 			break;
502 
503 		bytes = result;
504 		iov_iter_advance(iter, bytes);
505 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
506 		for (i = 0; i < npages; i++) {
507 			struct nfs_page *req;
508 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
509 			/* XXX do we need to do the eof zeroing found in async_filler? */
510 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
511 						 pgbase, req_len);
512 			if (IS_ERR(req)) {
513 				result = PTR_ERR(req);
514 				break;
515 			}
516 			req->wb_index = pos >> PAGE_SHIFT;
517 			req->wb_offset = pos & ~PAGE_MASK;
518 			if (!nfs_pageio_add_request(&desc, req)) {
519 				result = desc.pg_error;
520 				nfs_release_request(req);
521 				break;
522 			}
523 			pgbase = 0;
524 			bytes -= req_len;
525 			requested_bytes += req_len;
526 			pos += req_len;
527 			dreq->bytes_left -= req_len;
528 		}
529 		nfs_direct_release_pages(pagevec, npages);
530 		kvfree(pagevec);
531 		if (result < 0)
532 			break;
533 	}
534 
535 	nfs_pageio_complete(&desc);
536 
537 	/*
538 	 * If no bytes were started, return the error, and let the
539 	 * generic layer handle the completion.
540 	 */
541 	if (requested_bytes == 0) {
542 		inode_dio_end(inode);
543 		nfs_direct_req_release(dreq);
544 		return result < 0 ? result : -EIO;
545 	}
546 
547 	if (put_dreq(dreq))
548 		nfs_direct_complete(dreq);
549 	return requested_bytes;
550 }
551 
552 /**
553  * nfs_file_direct_read - file direct read operation for NFS files
554  * @iocb: target I/O control block
555  * @iter: vector of user buffers into which to read data
556  * @swap: flag indicating this is swap IO, not O_DIRECT IO
557  *
558  * We use this function for direct reads instead of calling
559  * generic_file_aio_read() in order to avoid gfar's check to see if
560  * the request starts before the end of the file.  For that check
561  * to work, we must generate a GETATTR before each direct read, and
562  * even then there is a window between the GETATTR and the subsequent
563  * READ where the file size could change.  Our preference is simply
564  * to do all reads the application wants, and the server will take
565  * care of managing the end of file boundary.
566  *
567  * This function also eliminates unnecessarily updating the file's
568  * atime locally, as the NFS server sets the file's atime, and this
569  * client must read the updated atime from the server back into its
570  * cache.
571  */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)572 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
573 			     bool swap)
574 {
575 	struct file *file = iocb->ki_filp;
576 	struct address_space *mapping = file->f_mapping;
577 	struct inode *inode = mapping->host;
578 	struct nfs_direct_req *dreq;
579 	struct nfs_lock_context *l_ctx;
580 	ssize_t result = -EINVAL, requested;
581 	size_t count = iov_iter_count(iter);
582 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
583 
584 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
585 		file, count, (long long) iocb->ki_pos);
586 
587 	result = 0;
588 	if (!count)
589 		goto out;
590 
591 	task_io_account_read(count);
592 
593 	result = -ENOMEM;
594 	dreq = nfs_direct_req_alloc();
595 	if (dreq == NULL)
596 		goto out;
597 
598 	dreq->inode = inode;
599 	dreq->bytes_left = dreq->max_count = count;
600 	dreq->io_start = iocb->ki_pos;
601 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
602 	l_ctx = nfs_get_lock_context(dreq->ctx);
603 	if (IS_ERR(l_ctx)) {
604 		result = PTR_ERR(l_ctx);
605 		nfs_direct_req_release(dreq);
606 		goto out_release;
607 	}
608 	dreq->l_ctx = l_ctx;
609 	if (!is_sync_kiocb(iocb))
610 		dreq->iocb = iocb;
611 
612 	if (iter_is_iovec(iter))
613 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
614 
615 	if (!swap)
616 		nfs_start_io_direct(inode);
617 
618 	NFS_I(inode)->read_io += count;
619 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
620 
621 	if (!swap)
622 		nfs_end_io_direct(inode);
623 
624 	if (requested > 0) {
625 		result = nfs_direct_wait(dreq);
626 		if (result > 0) {
627 			requested -= result;
628 			iocb->ki_pos += result;
629 		}
630 		iov_iter_revert(iter, requested);
631 	} else {
632 		result = requested;
633 	}
634 
635 out_release:
636 	nfs_direct_req_release(dreq);
637 out:
638 	return result;
639 }
640 
641 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)642 nfs_direct_write_scan_commit_list(struct inode *inode,
643 				  struct list_head *list,
644 				  struct nfs_commit_info *cinfo)
645 {
646 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
647 #ifdef CONFIG_NFS_V4_1
648 	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
649 		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
650 #endif
651 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
652 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
653 }
654 
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)655 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
656 {
657 	struct nfs_pageio_descriptor desc;
658 	struct nfs_page *req, *tmp;
659 	LIST_HEAD(reqs);
660 	struct nfs_commit_info cinfo;
661 	LIST_HEAD(failed);
662 	int i;
663 
664 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
665 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
666 
667 	dreq->count = 0;
668 	dreq->max_count = 0;
669 	list_for_each_entry(req, &reqs, wb_list)
670 		dreq->max_count += req->wb_bytes;
671 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
672 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
673 	for (i = 0; i < dreq->mirror_count; i++)
674 		dreq->mirrors[i].count = 0;
675 	get_dreq(dreq);
676 
677 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
678 			      &nfs_direct_write_completion_ops);
679 	desc.pg_dreq = dreq;
680 
681 	req = nfs_list_entry(reqs.next);
682 	nfs_direct_setup_mirroring(dreq, &desc, req);
683 	if (desc.pg_error < 0) {
684 		list_splice_init(&reqs, &failed);
685 		goto out_failed;
686 	}
687 
688 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
689 		if (!nfs_pageio_add_request(&desc, req)) {
690 			nfs_list_move_request(req, &failed);
691 			spin_lock(&cinfo.inode->i_lock);
692 			dreq->flags = 0;
693 			if (desc.pg_error < 0)
694 				dreq->error = desc.pg_error;
695 			else
696 				dreq->error = -EIO;
697 			spin_unlock(&cinfo.inode->i_lock);
698 		}
699 		nfs_release_request(req);
700 	}
701 	nfs_pageio_complete(&desc);
702 
703 out_failed:
704 	while (!list_empty(&failed)) {
705 		req = nfs_list_entry(failed.next);
706 		nfs_list_remove_request(req);
707 		nfs_unlock_and_release_request(req);
708 	}
709 
710 	if (put_dreq(dreq))
711 		nfs_direct_write_complete(dreq);
712 }
713 
nfs_direct_commit_complete(struct nfs_commit_data * data)714 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
715 {
716 	struct nfs_direct_req *dreq = data->dreq;
717 	struct nfs_commit_info cinfo;
718 	struct nfs_page *req;
719 	int status = data->task.tk_status;
720 
721 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
722 	if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
723 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
724 
725 	while (!list_empty(&data->pages)) {
726 		req = nfs_list_entry(data->pages.next);
727 		nfs_list_remove_request(req);
728 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
729 			/* Note the rewrite will go through mds */
730 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
731 		} else
732 			nfs_release_request(req);
733 		nfs_unlock_and_release_request(req);
734 	}
735 
736 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
737 		nfs_direct_write_complete(dreq);
738 }
739 
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)740 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
741 		struct nfs_page *req)
742 {
743 	struct nfs_direct_req *dreq = cinfo->dreq;
744 
745 	spin_lock(&dreq->lock);
746 	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
747 	spin_unlock(&dreq->lock);
748 	nfs_mark_request_commit(req, NULL, cinfo, 0);
749 }
750 
751 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
752 	.completion = nfs_direct_commit_complete,
753 	.resched_write = nfs_direct_resched_write,
754 };
755 
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)756 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
757 {
758 	int res;
759 	struct nfs_commit_info cinfo;
760 	LIST_HEAD(mds_list);
761 
762 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
763 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
764 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
765 	if (res < 0) /* res == -ENOMEM */
766 		nfs_direct_write_reschedule(dreq);
767 }
768 
nfs_direct_write_schedule_work(struct work_struct * work)769 static void nfs_direct_write_schedule_work(struct work_struct *work)
770 {
771 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
772 	int flags = dreq->flags;
773 
774 	dreq->flags = 0;
775 	switch (flags) {
776 		case NFS_ODIRECT_DO_COMMIT:
777 			nfs_direct_commit_schedule(dreq);
778 			break;
779 		case NFS_ODIRECT_RESCHED_WRITES:
780 			nfs_direct_write_reschedule(dreq);
781 			break;
782 		default:
783 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
784 			nfs_direct_complete(dreq);
785 	}
786 }
787 
nfs_direct_write_complete(struct nfs_direct_req * dreq)788 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
789 {
790 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
791 }
792 
nfs_direct_write_completion(struct nfs_pgio_header * hdr)793 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
794 {
795 	struct nfs_direct_req *dreq = hdr->dreq;
796 	struct nfs_commit_info cinfo;
797 	bool request_commit = false;
798 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
799 
800 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
801 
802 	spin_lock(&dreq->lock);
803 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
804 		spin_unlock(&dreq->lock);
805 		goto out_put;
806 	}
807 
808 	nfs_direct_count_bytes(dreq, hdr);
809 	if (hdr->good_bytes != 0) {
810 		if (nfs_write_need_commit(hdr)) {
811 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
812 				request_commit = true;
813 			else if (dreq->flags == 0) {
814 				nfs_direct_set_hdr_verf(dreq, hdr);
815 				request_commit = true;
816 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
817 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
818 				request_commit = true;
819 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
820 					dreq->flags =
821 						NFS_ODIRECT_RESCHED_WRITES;
822 			}
823 		}
824 	}
825 	spin_unlock(&dreq->lock);
826 
827 	while (!list_empty(&hdr->pages)) {
828 
829 		req = nfs_list_entry(hdr->pages.next);
830 		nfs_list_remove_request(req);
831 		if (request_commit) {
832 			kref_get(&req->wb_kref);
833 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
834 				hdr->ds_commit_idx);
835 		}
836 		nfs_unlock_and_release_request(req);
837 	}
838 
839 out_put:
840 	if (put_dreq(dreq))
841 		nfs_direct_write_complete(dreq);
842 	hdr->release(hdr);
843 }
844 
nfs_write_sync_pgio_error(struct list_head * head,int error)845 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
846 {
847 	struct nfs_page *req;
848 
849 	while (!list_empty(head)) {
850 		req = nfs_list_entry(head->next);
851 		nfs_list_remove_request(req);
852 		nfs_unlock_and_release_request(req);
853 	}
854 }
855 
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)856 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
857 {
858 	struct nfs_direct_req *dreq = hdr->dreq;
859 
860 	spin_lock(&dreq->lock);
861 	if (dreq->error == 0) {
862 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
863 		/* fake unstable write to let common nfs resend pages */
864 		hdr->verf.committed = NFS_UNSTABLE;
865 		hdr->good_bytes = hdr->args.count;
866 	}
867 	spin_unlock(&dreq->lock);
868 }
869 
870 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
871 	.error_cleanup = nfs_write_sync_pgio_error,
872 	.init_hdr = nfs_direct_pgio_init,
873 	.completion = nfs_direct_write_completion,
874 	.reschedule_io = nfs_direct_write_reschedule_io,
875 };
876 
877 
878 /*
879  * NB: Return the value of the first error return code.  Subsequent
880  *     errors after the first one are ignored.
881  */
882 /*
883  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
884  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
885  * bail and stop sending more writes.  Write length accounting is
886  * handled automatically by nfs_direct_write_result().  Otherwise, if
887  * no requests have been sent, just return an error.
888  */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)889 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
890 					       struct iov_iter *iter,
891 					       loff_t pos, int ioflags)
892 {
893 	struct nfs_pageio_descriptor desc;
894 	struct inode *inode = dreq->inode;
895 	ssize_t result = 0;
896 	size_t requested_bytes = 0;
897 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
898 
899 	nfs_pageio_init_write(&desc, inode, ioflags, false,
900 			      &nfs_direct_write_completion_ops);
901 	desc.pg_dreq = dreq;
902 	get_dreq(dreq);
903 	inode_dio_begin(inode);
904 
905 	NFS_I(inode)->write_io += iov_iter_count(iter);
906 	while (iov_iter_count(iter)) {
907 		struct page **pagevec;
908 		size_t bytes;
909 		size_t pgbase;
910 		unsigned npages, i;
911 
912 		result = iov_iter_get_pages_alloc(iter, &pagevec,
913 						  wsize, &pgbase);
914 		if (result < 0)
915 			break;
916 
917 		bytes = result;
918 		iov_iter_advance(iter, bytes);
919 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
920 		for (i = 0; i < npages; i++) {
921 			struct nfs_page *req;
922 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
923 
924 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
925 						 pgbase, req_len);
926 			if (IS_ERR(req)) {
927 				result = PTR_ERR(req);
928 				break;
929 			}
930 
931 			nfs_direct_setup_mirroring(dreq, &desc, req);
932 			if (desc.pg_error < 0) {
933 				nfs_free_request(req);
934 				result = desc.pg_error;
935 				break;
936 			}
937 
938 			nfs_lock_request(req);
939 			req->wb_index = pos >> PAGE_SHIFT;
940 			req->wb_offset = pos & ~PAGE_MASK;
941 			if (!nfs_pageio_add_request(&desc, req)) {
942 				result = desc.pg_error;
943 				nfs_unlock_and_release_request(req);
944 				break;
945 			}
946 			pgbase = 0;
947 			bytes -= req_len;
948 			requested_bytes += req_len;
949 			pos += req_len;
950 			dreq->bytes_left -= req_len;
951 		}
952 		nfs_direct_release_pages(pagevec, npages);
953 		kvfree(pagevec);
954 		if (result < 0)
955 			break;
956 	}
957 	nfs_pageio_complete(&desc);
958 
959 	/*
960 	 * If no bytes were started, return the error, and let the
961 	 * generic layer handle the completion.
962 	 */
963 	if (requested_bytes == 0) {
964 		inode_dio_end(inode);
965 		nfs_direct_req_release(dreq);
966 		return result < 0 ? result : -EIO;
967 	}
968 
969 	if (put_dreq(dreq))
970 		nfs_direct_write_complete(dreq);
971 	return requested_bytes;
972 }
973 
974 /**
975  * nfs_file_direct_write - file direct write operation for NFS files
976  * @iocb: target I/O control block
977  * @iter: vector of user buffers from which to write data
978  * @swap: flag indicating this is swap IO, not O_DIRECT IO
979  *
980  * We use this function for direct writes instead of calling
981  * generic_file_aio_write() in order to avoid taking the inode
982  * semaphore and updating the i_size.  The NFS server will set
983  * the new i_size and this client must read the updated size
984  * back into its cache.  We let the server do generic write
985  * parameter checking and report problems.
986  *
987  * We eliminate local atime updates, see direct read above.
988  *
989  * We avoid unnecessary page cache invalidations for normal cached
990  * readers of this file.
991  *
992  * Note that O_APPEND is not supported for NFS direct writes, as there
993  * is no atomic O_APPEND write facility in the NFS protocol.
994  */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)995 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
996 			      bool swap)
997 {
998 	ssize_t result = -EINVAL, requested;
999 	size_t count;
1000 	struct file *file = iocb->ki_filp;
1001 	struct address_space *mapping = file->f_mapping;
1002 	struct inode *inode = mapping->host;
1003 	struct nfs_direct_req *dreq;
1004 	struct nfs_lock_context *l_ctx;
1005 	loff_t pos, end;
1006 
1007 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1008 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
1009 
1010 	if (swap)
1011 		/* bypass generic checks */
1012 		result =  iov_iter_count(iter);
1013 	else
1014 		result = generic_write_checks(iocb, iter);
1015 	if (result <= 0)
1016 		return result;
1017 	count = result;
1018 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
1019 
1020 	pos = iocb->ki_pos;
1021 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1022 
1023 	task_io_account_write(count);
1024 
1025 	result = -ENOMEM;
1026 	dreq = nfs_direct_req_alloc();
1027 	if (!dreq)
1028 		goto out;
1029 
1030 	dreq->inode = inode;
1031 	dreq->bytes_left = dreq->max_count = count;
1032 	dreq->io_start = pos;
1033 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1034 	l_ctx = nfs_get_lock_context(dreq->ctx);
1035 	if (IS_ERR(l_ctx)) {
1036 		result = PTR_ERR(l_ctx);
1037 		nfs_direct_req_release(dreq);
1038 		goto out_release;
1039 	}
1040 	dreq->l_ctx = l_ctx;
1041 	if (!is_sync_kiocb(iocb))
1042 		dreq->iocb = iocb;
1043 
1044 	if (swap) {
1045 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1046 							    FLUSH_STABLE);
1047 	} else {
1048 		nfs_start_io_direct(inode);
1049 
1050 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1051 							    FLUSH_COND_STABLE);
1052 
1053 		if (mapping->nrpages) {
1054 			invalidate_inode_pages2_range(mapping,
1055 						      pos >> PAGE_SHIFT, end);
1056 		}
1057 
1058 		nfs_end_io_direct(inode);
1059 	}
1060 
1061 	if (requested > 0) {
1062 		result = nfs_direct_wait(dreq);
1063 		if (result > 0) {
1064 			requested -= result;
1065 			iocb->ki_pos = pos + result;
1066 			/* XXX: should check the generic_write_sync retval */
1067 			generic_write_sync(iocb, result);
1068 		}
1069 		iov_iter_revert(iter, requested);
1070 	} else {
1071 		result = requested;
1072 	}
1073 out_release:
1074 	nfs_direct_req_release(dreq);
1075 out:
1076 	return result;
1077 }
1078 
1079 /**
1080  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1081  *
1082  */
nfs_init_directcache(void)1083 int __init nfs_init_directcache(void)
1084 {
1085 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1086 						sizeof(struct nfs_direct_req),
1087 						0, (SLAB_RECLAIM_ACCOUNT|
1088 							SLAB_MEM_SPREAD),
1089 						NULL);
1090 	if (nfs_direct_cachep == NULL)
1091 		return -ENOMEM;
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098  *
1099  */
nfs_destroy_directcache(void)1100 void nfs_destroy_directcache(void)
1101 {
1102 	kmem_cache_destroy(nfs_direct_cachep);
1103 }
1104