1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/highmem.h>
16 #include <linux/log2.h>
17 #include <linux/hash.h>
18 #include <net/checksum.h>
19
20 #include "nfsd.h"
21 #include "cache.h"
22
23 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24
25 /*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30 #define TARGET_BUCKET_SIZE 64
31
32 struct nfsd_drc_bucket {
33 struct list_head lru_head;
34 spinlock_t cache_lock;
35 };
36
37 static struct nfsd_drc_bucket *drc_hashtbl;
38 static struct kmem_cache *drc_slab;
39
40 /* max number of entries allowed in the cache */
41 static unsigned int max_drc_entries;
42
43 /* number of significant bits in the hash value */
44 static unsigned int maskbits;
45 static unsigned int drc_hashsize;
46
47 /*
48 * Stats and other tracking of on the duplicate reply cache. All of these and
49 * the "rc" fields in nfsdstats are protected by the cache_lock
50 */
51
52 /* total number of entries */
53 static atomic_t num_drc_entries;
54
55 /* cache misses due only to checksum comparison failures */
56 static unsigned int payload_misses;
57
58 /* amount of memory (in bytes) currently consumed by the DRC */
59 static unsigned int drc_mem_usage;
60
61 /* longest hash chain seen */
62 static unsigned int longest_chain;
63
64 /* size of cache when we saw the longest hash chain */
65 static unsigned int longest_chain_cachesize;
66
67 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
68 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
69 struct shrink_control *sc);
70 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
71 struct shrink_control *sc);
72
73 static struct shrinker nfsd_reply_cache_shrinker = {
74 .scan_objects = nfsd_reply_cache_scan,
75 .count_objects = nfsd_reply_cache_count,
76 .seeks = 1,
77 };
78
79 /*
80 * Put a cap on the size of the DRC based on the amount of available
81 * low memory in the machine.
82 *
83 * 64MB: 8192
84 * 128MB: 11585
85 * 256MB: 16384
86 * 512MB: 23170
87 * 1GB: 32768
88 * 2GB: 46340
89 * 4GB: 65536
90 * 8GB: 92681
91 * 16GB: 131072
92 *
93 * ...with a hard cap of 256k entries. In the worst case, each entry will be
94 * ~1k, so the above numbers should give a rough max of the amount of memory
95 * used in k.
96 */
97 static unsigned int
nfsd_cache_size_limit(void)98 nfsd_cache_size_limit(void)
99 {
100 unsigned int limit;
101 unsigned long low_pages = totalram_pages - totalhigh_pages;
102
103 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
104 return min_t(unsigned int, limit, 256*1024);
105 }
106
107 /*
108 * Compute the number of hash buckets we need. Divide the max cachesize by
109 * the "target" max bucket size, and round up to next power of two.
110 */
111 static unsigned int
nfsd_hashsize(unsigned int limit)112 nfsd_hashsize(unsigned int limit)
113 {
114 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
115 }
116
117 static u32
nfsd_cache_hash(__be32 xid)118 nfsd_cache_hash(__be32 xid)
119 {
120 return hash_32(be32_to_cpu(xid), maskbits);
121 }
122
123 static struct svc_cacherep *
nfsd_reply_cache_alloc(void)124 nfsd_reply_cache_alloc(void)
125 {
126 struct svc_cacherep *rp;
127
128 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
129 if (rp) {
130 rp->c_state = RC_UNUSED;
131 rp->c_type = RC_NOCACHE;
132 INIT_LIST_HEAD(&rp->c_lru);
133 }
134 return rp;
135 }
136
137 static void
nfsd_reply_cache_free_locked(struct svc_cacherep * rp)138 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
139 {
140 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
141 drc_mem_usage -= rp->c_replvec.iov_len;
142 kfree(rp->c_replvec.iov_base);
143 }
144 list_del(&rp->c_lru);
145 atomic_dec(&num_drc_entries);
146 drc_mem_usage -= sizeof(*rp);
147 kmem_cache_free(drc_slab, rp);
148 }
149
150 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct svc_cacherep * rp)151 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
152 {
153 spin_lock(&b->cache_lock);
154 nfsd_reply_cache_free_locked(rp);
155 spin_unlock(&b->cache_lock);
156 }
157
nfsd_reply_cache_init(void)158 int nfsd_reply_cache_init(void)
159 {
160 unsigned int hashsize;
161 unsigned int i;
162 int status = 0;
163
164 max_drc_entries = nfsd_cache_size_limit();
165 atomic_set(&num_drc_entries, 0);
166 hashsize = nfsd_hashsize(max_drc_entries);
167 maskbits = ilog2(hashsize);
168
169 status = register_shrinker(&nfsd_reply_cache_shrinker);
170 if (status)
171 return status;
172
173 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
174 0, 0, NULL);
175 if (!drc_slab)
176 goto out_nomem;
177
178 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
179 if (!drc_hashtbl) {
180 drc_hashtbl = vzalloc(array_size(hashsize,
181 sizeof(*drc_hashtbl)));
182 if (!drc_hashtbl)
183 goto out_nomem;
184 }
185
186 for (i = 0; i < hashsize; i++) {
187 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
188 spin_lock_init(&drc_hashtbl[i].cache_lock);
189 }
190 drc_hashsize = hashsize;
191
192 return 0;
193 out_nomem:
194 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
195 nfsd_reply_cache_shutdown();
196 return -ENOMEM;
197 }
198
nfsd_reply_cache_shutdown(void)199 void nfsd_reply_cache_shutdown(void)
200 {
201 struct svc_cacherep *rp;
202 unsigned int i;
203
204 unregister_shrinker(&nfsd_reply_cache_shrinker);
205
206 for (i = 0; i < drc_hashsize; i++) {
207 struct list_head *head = &drc_hashtbl[i].lru_head;
208 while (!list_empty(head)) {
209 rp = list_first_entry(head, struct svc_cacherep, c_lru);
210 nfsd_reply_cache_free_locked(rp);
211 }
212 }
213
214 kvfree(drc_hashtbl);
215 drc_hashtbl = NULL;
216 drc_hashsize = 0;
217
218 kmem_cache_destroy(drc_slab);
219 drc_slab = NULL;
220 }
221
222 /*
223 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
224 * not already scheduled.
225 */
226 static void
lru_put_end(struct nfsd_drc_bucket * b,struct svc_cacherep * rp)227 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
228 {
229 rp->c_timestamp = jiffies;
230 list_move_tail(&rp->c_lru, &b->lru_head);
231 }
232
233 static long
prune_bucket(struct nfsd_drc_bucket * b)234 prune_bucket(struct nfsd_drc_bucket *b)
235 {
236 struct svc_cacherep *rp, *tmp;
237 long freed = 0;
238
239 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
240 /*
241 * Don't free entries attached to calls that are still
242 * in-progress, but do keep scanning the list.
243 */
244 if (rp->c_state == RC_INPROG)
245 continue;
246 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
247 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
248 break;
249 nfsd_reply_cache_free_locked(rp);
250 freed++;
251 }
252 return freed;
253 }
254
255 /*
256 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
257 * Also prune the oldest ones when the total exceeds the max number of entries.
258 */
259 static long
prune_cache_entries(void)260 prune_cache_entries(void)
261 {
262 unsigned int i;
263 long freed = 0;
264
265 for (i = 0; i < drc_hashsize; i++) {
266 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
267
268 if (list_empty(&b->lru_head))
269 continue;
270 spin_lock(&b->cache_lock);
271 freed += prune_bucket(b);
272 spin_unlock(&b->cache_lock);
273 }
274 return freed;
275 }
276
277 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)278 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
279 {
280 return atomic_read(&num_drc_entries);
281 }
282
283 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)284 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
285 {
286 return prune_cache_entries();
287 }
288 /*
289 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
290 */
291 static __wsum
nfsd_cache_csum(struct svc_rqst * rqstp)292 nfsd_cache_csum(struct svc_rqst *rqstp)
293 {
294 int idx;
295 unsigned int base;
296 __wsum csum;
297 struct xdr_buf *buf = &rqstp->rq_arg;
298 const unsigned char *p = buf->head[0].iov_base;
299 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
300 RC_CSUMLEN);
301 size_t len = min(buf->head[0].iov_len, csum_len);
302
303 /* rq_arg.head first */
304 csum = csum_partial(p, len, 0);
305 csum_len -= len;
306
307 /* Continue into page array */
308 idx = buf->page_base / PAGE_SIZE;
309 base = buf->page_base & ~PAGE_MASK;
310 while (csum_len) {
311 p = page_address(buf->pages[idx]) + base;
312 len = min_t(size_t, PAGE_SIZE - base, csum_len);
313 csum = csum_partial(p, len, csum);
314 csum_len -= len;
315 base = 0;
316 ++idx;
317 }
318 return csum;
319 }
320
321 static bool
nfsd_cache_match(struct svc_rqst * rqstp,__wsum csum,struct svc_cacherep * rp)322 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
323 {
324 /* Check RPC XID first */
325 if (rqstp->rq_xid != rp->c_xid)
326 return false;
327 /* compare checksum of NFS data */
328 if (csum != rp->c_csum) {
329 ++payload_misses;
330 return false;
331 }
332
333 /* Other discriminators */
334 if (rqstp->rq_proc != rp->c_proc ||
335 rqstp->rq_prot != rp->c_prot ||
336 rqstp->rq_vers != rp->c_vers ||
337 rqstp->rq_arg.len != rp->c_len ||
338 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
339 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
340 return false;
341
342 return true;
343 }
344
345 /*
346 * Search the request hash for an entry that matches the given rqstp.
347 * Must be called with cache_lock held. Returns the found entry or
348 * NULL on failure.
349 */
350 static struct svc_cacherep *
nfsd_cache_search(struct nfsd_drc_bucket * b,struct svc_rqst * rqstp,__wsum csum)351 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
352 __wsum csum)
353 {
354 struct svc_cacherep *rp, *ret = NULL;
355 struct list_head *rh = &b->lru_head;
356 unsigned int entries = 0;
357
358 list_for_each_entry(rp, rh, c_lru) {
359 ++entries;
360 if (nfsd_cache_match(rqstp, csum, rp)) {
361 ret = rp;
362 break;
363 }
364 }
365
366 /* tally hash chain length stats */
367 if (entries > longest_chain) {
368 longest_chain = entries;
369 longest_chain_cachesize = atomic_read(&num_drc_entries);
370 } else if (entries == longest_chain) {
371 /* prefer to keep the smallest cachesize possible here */
372 longest_chain_cachesize = min_t(unsigned int,
373 longest_chain_cachesize,
374 atomic_read(&num_drc_entries));
375 }
376
377 return ret;
378 }
379
380 /*
381 * Try to find an entry matching the current call in the cache. When none
382 * is found, we try to grab the oldest expired entry off the LRU list. If
383 * a suitable one isn't there, then drop the cache_lock and allocate a
384 * new one, then search again in case one got inserted while this thread
385 * didn't hold the lock.
386 */
387 int
nfsd_cache_lookup(struct svc_rqst * rqstp)388 nfsd_cache_lookup(struct svc_rqst *rqstp)
389 {
390 struct svc_cacherep *rp, *found;
391 __be32 xid = rqstp->rq_xid;
392 u32 proto = rqstp->rq_prot,
393 vers = rqstp->rq_vers,
394 proc = rqstp->rq_proc;
395 __wsum csum;
396 u32 hash = nfsd_cache_hash(xid);
397 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
398 int type = rqstp->rq_cachetype;
399 int rtn = RC_DOIT;
400
401 rqstp->rq_cacherep = NULL;
402 if (type == RC_NOCACHE) {
403 nfsdstats.rcnocache++;
404 return rtn;
405 }
406
407 csum = nfsd_cache_csum(rqstp);
408
409 /*
410 * Since the common case is a cache miss followed by an insert,
411 * preallocate an entry.
412 */
413 rp = nfsd_reply_cache_alloc();
414 spin_lock(&b->cache_lock);
415 if (likely(rp)) {
416 atomic_inc(&num_drc_entries);
417 drc_mem_usage += sizeof(*rp);
418 }
419
420 /* go ahead and prune the cache */
421 prune_bucket(b);
422
423 found = nfsd_cache_search(b, rqstp, csum);
424 if (found) {
425 if (likely(rp))
426 nfsd_reply_cache_free_locked(rp);
427 rp = found;
428 goto found_entry;
429 }
430
431 if (!rp) {
432 dprintk("nfsd: unable to allocate DRC entry!\n");
433 goto out;
434 }
435
436 nfsdstats.rcmisses++;
437 rqstp->rq_cacherep = rp;
438 rp->c_state = RC_INPROG;
439 rp->c_xid = xid;
440 rp->c_proc = proc;
441 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
442 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
443 rp->c_prot = proto;
444 rp->c_vers = vers;
445 rp->c_len = rqstp->rq_arg.len;
446 rp->c_csum = csum;
447
448 lru_put_end(b, rp);
449
450 /* release any buffer */
451 if (rp->c_type == RC_REPLBUFF) {
452 drc_mem_usage -= rp->c_replvec.iov_len;
453 kfree(rp->c_replvec.iov_base);
454 rp->c_replvec.iov_base = NULL;
455 }
456 rp->c_type = RC_NOCACHE;
457 out:
458 spin_unlock(&b->cache_lock);
459 return rtn;
460
461 found_entry:
462 nfsdstats.rchits++;
463 /* We found a matching entry which is either in progress or done. */
464 lru_put_end(b, rp);
465
466 rtn = RC_DROPIT;
467 /* Request being processed */
468 if (rp->c_state == RC_INPROG)
469 goto out;
470
471 /* From the hall of fame of impractical attacks:
472 * Is this a user who tries to snoop on the cache? */
473 rtn = RC_DOIT;
474 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
475 goto out;
476
477 /* Compose RPC reply header */
478 switch (rp->c_type) {
479 case RC_NOCACHE:
480 break;
481 case RC_REPLSTAT:
482 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
483 rtn = RC_REPLY;
484 break;
485 case RC_REPLBUFF:
486 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
487 goto out; /* should not happen */
488 rtn = RC_REPLY;
489 break;
490 default:
491 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
492 nfsd_reply_cache_free_locked(rp);
493 }
494
495 goto out;
496 }
497
498 /*
499 * Update a cache entry. This is called from nfsd_dispatch when
500 * the procedure has been executed and the complete reply is in
501 * rqstp->rq_res.
502 *
503 * We're copying around data here rather than swapping buffers because
504 * the toplevel loop requires max-sized buffers, which would be a waste
505 * of memory for a cache with a max reply size of 100 bytes (diropokres).
506 *
507 * If we should start to use different types of cache entries tailored
508 * specifically for attrstat and fh's, we may save even more space.
509 *
510 * Also note that a cachetype of RC_NOCACHE can legally be passed when
511 * nfsd failed to encode a reply that otherwise would have been cached.
512 * In this case, nfsd_cache_update is called with statp == NULL.
513 */
514 void
nfsd_cache_update(struct svc_rqst * rqstp,int cachetype,__be32 * statp)515 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
516 {
517 struct svc_cacherep *rp = rqstp->rq_cacherep;
518 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
519 u32 hash;
520 struct nfsd_drc_bucket *b;
521 int len;
522 size_t bufsize = 0;
523
524 if (!rp)
525 return;
526
527 hash = nfsd_cache_hash(rp->c_xid);
528 b = &drc_hashtbl[hash];
529
530 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
531 len >>= 2;
532
533 /* Don't cache excessive amounts of data and XDR failures */
534 if (!statp || len > (256 >> 2)) {
535 nfsd_reply_cache_free(b, rp);
536 return;
537 }
538
539 switch (cachetype) {
540 case RC_REPLSTAT:
541 if (len != 1)
542 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
543 rp->c_replstat = *statp;
544 break;
545 case RC_REPLBUFF:
546 cachv = &rp->c_replvec;
547 bufsize = len << 2;
548 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
549 if (!cachv->iov_base) {
550 nfsd_reply_cache_free(b, rp);
551 return;
552 }
553 cachv->iov_len = bufsize;
554 memcpy(cachv->iov_base, statp, bufsize);
555 break;
556 case RC_NOCACHE:
557 nfsd_reply_cache_free(b, rp);
558 return;
559 }
560 spin_lock(&b->cache_lock);
561 drc_mem_usage += bufsize;
562 lru_put_end(b, rp);
563 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
564 rp->c_type = cachetype;
565 rp->c_state = RC_DONE;
566 spin_unlock(&b->cache_lock);
567 return;
568 }
569
570 /*
571 * Copy cached reply to current reply buffer. Should always fit.
572 * FIXME as reply is in a page, we should just attach the page, and
573 * keep a refcount....
574 */
575 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)576 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
577 {
578 struct kvec *vec = &rqstp->rq_res.head[0];
579
580 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
581 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
582 data->iov_len);
583 return 0;
584 }
585 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
586 vec->iov_len += data->iov_len;
587 return 1;
588 }
589
590 /*
591 * Note that fields may be added, removed or reordered in the future. Programs
592 * scraping this file for info should test the labels to ensure they're
593 * getting the correct field.
594 */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)595 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
596 {
597 seq_printf(m, "max entries: %u\n", max_drc_entries);
598 seq_printf(m, "num entries: %u\n",
599 atomic_read(&num_drc_entries));
600 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
601 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
602 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
603 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
604 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
605 seq_printf(m, "payload misses: %u\n", payload_misses);
606 seq_printf(m, "longest chain len: %u\n", longest_chain);
607 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
608 return 0;
609 }
610
nfsd_reply_cache_stats_open(struct inode * inode,struct file * file)611 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
612 {
613 return single_open(file, nfsd_reply_cache_stats_show, NULL);
614 }
615