1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * super.c - NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61 
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64 
__nilfs_msg(struct super_block * sb,const char * level,const char * fmt,...)65 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
66 		 ...)
67 {
68 	struct va_format vaf;
69 	va_list args;
70 
71 	va_start(args, fmt);
72 	vaf.fmt = fmt;
73 	vaf.va = &args;
74 	if (sb)
75 		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
76 	else
77 		printk("%sNILFS: %pV\n", level, &vaf);
78 	va_end(args);
79 }
80 
nilfs_set_error(struct super_block * sb)81 static void nilfs_set_error(struct super_block *sb)
82 {
83 	struct the_nilfs *nilfs = sb->s_fs_info;
84 	struct nilfs_super_block **sbp;
85 
86 	down_write(&nilfs->ns_sem);
87 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
88 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
89 		sbp = nilfs_prepare_super(sb, 0);
90 		if (likely(sbp)) {
91 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 			if (sbp[1])
93 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
94 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
95 		}
96 	}
97 	up_write(&nilfs->ns_sem);
98 }
99 
100 /**
101  * __nilfs_error() - report failure condition on a filesystem
102  *
103  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104  * reporting an error message.  This function should be called when
105  * NILFS detects incoherences or defects of meta data on disk.
106  *
107  * This implements the body of nilfs_error() macro.  Normally,
108  * nilfs_error() should be used.  As for sustainable errors such as a
109  * single-shot I/O error, nilfs_msg() should be used instead.
110  *
111  * Callers should not add a trailing newline since this will do it.
112  */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)113 void __nilfs_error(struct super_block *sb, const char *function,
114 		   const char *fmt, ...)
115 {
116 	struct the_nilfs *nilfs = sb->s_fs_info;
117 	struct va_format vaf;
118 	va_list args;
119 
120 	va_start(args, fmt);
121 
122 	vaf.fmt = fmt;
123 	vaf.va = &args;
124 
125 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
126 	       sb->s_id, function, &vaf);
127 
128 	va_end(args);
129 
130 	if (!sb_rdonly(sb)) {
131 		nilfs_set_error(sb);
132 
133 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
134 			printk(KERN_CRIT "Remounting filesystem read-only\n");
135 			sb->s_flags |= SB_RDONLY;
136 		}
137 	}
138 
139 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
140 		panic("NILFS (device %s): panic forced after error\n",
141 		      sb->s_id);
142 }
143 
nilfs_alloc_inode(struct super_block * sb)144 struct inode *nilfs_alloc_inode(struct super_block *sb)
145 {
146 	struct nilfs_inode_info *ii;
147 
148 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
149 	if (!ii)
150 		return NULL;
151 	ii->i_bh = NULL;
152 	ii->i_state = 0;
153 	ii->i_cno = 0;
154 	ii->i_assoc_inode = NULL;
155 	ii->i_bmap = &ii->i_bmap_data;
156 	return &ii->vfs_inode;
157 }
158 
nilfs_i_callback(struct rcu_head * head)159 static void nilfs_i_callback(struct rcu_head *head)
160 {
161 	struct inode *inode = container_of(head, struct inode, i_rcu);
162 
163 	if (nilfs_is_metadata_file_inode(inode))
164 		nilfs_mdt_destroy(inode);
165 
166 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
167 }
168 
nilfs_destroy_inode(struct inode * inode)169 void nilfs_destroy_inode(struct inode *inode)
170 {
171 	call_rcu(&inode->i_rcu, nilfs_i_callback);
172 }
173 
nilfs_sync_super(struct super_block * sb,int flag)174 static int nilfs_sync_super(struct super_block *sb, int flag)
175 {
176 	struct the_nilfs *nilfs = sb->s_fs_info;
177 	int err;
178 
179  retry:
180 	set_buffer_dirty(nilfs->ns_sbh[0]);
181 	if (nilfs_test_opt(nilfs, BARRIER)) {
182 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184 	} else {
185 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186 	}
187 
188 	if (unlikely(err)) {
189 		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
190 			  err);
191 		if (err == -EIO && nilfs->ns_sbh[1]) {
192 			/*
193 			 * sbp[0] points to newer log than sbp[1],
194 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
195 			 */
196 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
197 			       nilfs->ns_sbsize);
198 			nilfs_fall_back_super_block(nilfs);
199 			goto retry;
200 		}
201 	} else {
202 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
203 
204 		nilfs->ns_sbwcount++;
205 
206 		/*
207 		 * The latest segment becomes trailable from the position
208 		 * written in superblock.
209 		 */
210 		clear_nilfs_discontinued(nilfs);
211 
212 		/* update GC protection for recent segments */
213 		if (nilfs->ns_sbh[1]) {
214 			if (flag == NILFS_SB_COMMIT_ALL) {
215 				set_buffer_dirty(nilfs->ns_sbh[1]);
216 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
217 					goto out;
218 			}
219 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
220 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
221 				sbp = nilfs->ns_sbp[1];
222 		}
223 
224 		spin_lock(&nilfs->ns_last_segment_lock);
225 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
226 		spin_unlock(&nilfs->ns_last_segment_lock);
227 	}
228  out:
229 	return err;
230 }
231 
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)232 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
233 			  struct the_nilfs *nilfs)
234 {
235 	sector_t nfreeblocks;
236 
237 	/* nilfs->ns_sem must be locked by the caller. */
238 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
239 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
240 
241 	spin_lock(&nilfs->ns_last_segment_lock);
242 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
243 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
244 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
245 	spin_unlock(&nilfs->ns_last_segment_lock);
246 }
247 
nilfs_prepare_super(struct super_block * sb,int flip)248 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
249 					       int flip)
250 {
251 	struct the_nilfs *nilfs = sb->s_fs_info;
252 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
253 
254 	/* nilfs->ns_sem must be locked by the caller. */
255 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
256 		if (sbp[1] &&
257 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
258 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
259 		} else {
260 			nilfs_msg(sb, KERN_CRIT, "superblock broke");
261 			return NULL;
262 		}
263 	} else if (sbp[1] &&
264 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
265 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
266 	}
267 
268 	if (flip && sbp[1])
269 		nilfs_swap_super_block(nilfs);
270 
271 	return sbp;
272 }
273 
nilfs_commit_super(struct super_block * sb,int flag)274 int nilfs_commit_super(struct super_block *sb, int flag)
275 {
276 	struct the_nilfs *nilfs = sb->s_fs_info;
277 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
278 	time64_t t;
279 
280 	/* nilfs->ns_sem must be locked by the caller. */
281 	t = ktime_get_real_seconds();
282 	nilfs->ns_sbwtime = t;
283 	sbp[0]->s_wtime = cpu_to_le64(t);
284 	sbp[0]->s_sum = 0;
285 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
286 					     (unsigned char *)sbp[0],
287 					     nilfs->ns_sbsize));
288 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
289 		sbp[1]->s_wtime = sbp[0]->s_wtime;
290 		sbp[1]->s_sum = 0;
291 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
292 					    (unsigned char *)sbp[1],
293 					    nilfs->ns_sbsize));
294 	}
295 	clear_nilfs_sb_dirty(nilfs);
296 	nilfs->ns_flushed_device = 1;
297 	/* make sure store to ns_flushed_device cannot be reordered */
298 	smp_wmb();
299 	return nilfs_sync_super(sb, flag);
300 }
301 
302 /**
303  * nilfs_cleanup_super() - write filesystem state for cleanup
304  * @sb: super block instance to be unmounted or degraded to read-only
305  *
306  * This function restores state flags in the on-disk super block.
307  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
308  * filesystem was not clean previously.
309  */
nilfs_cleanup_super(struct super_block * sb)310 int nilfs_cleanup_super(struct super_block *sb)
311 {
312 	struct the_nilfs *nilfs = sb->s_fs_info;
313 	struct nilfs_super_block **sbp;
314 	int flag = NILFS_SB_COMMIT;
315 	int ret = -EIO;
316 
317 	sbp = nilfs_prepare_super(sb, 0);
318 	if (sbp) {
319 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
320 		nilfs_set_log_cursor(sbp[0], nilfs);
321 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
322 			/*
323 			 * make the "clean" flag also to the opposite
324 			 * super block if both super blocks point to
325 			 * the same checkpoint.
326 			 */
327 			sbp[1]->s_state = sbp[0]->s_state;
328 			flag = NILFS_SB_COMMIT_ALL;
329 		}
330 		ret = nilfs_commit_super(sb, flag);
331 	}
332 	return ret;
333 }
334 
335 /**
336  * nilfs_move_2nd_super - relocate secondary super block
337  * @sb: super block instance
338  * @sb2off: new offset of the secondary super block (in bytes)
339  */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)340 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
341 {
342 	struct the_nilfs *nilfs = sb->s_fs_info;
343 	struct buffer_head *nsbh;
344 	struct nilfs_super_block *nsbp;
345 	sector_t blocknr, newblocknr;
346 	unsigned long offset;
347 	int sb2i;  /* array index of the secondary superblock */
348 	int ret = 0;
349 
350 	/* nilfs->ns_sem must be locked by the caller. */
351 	if (nilfs->ns_sbh[1] &&
352 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
353 		sb2i = 1;
354 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
355 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
356 		sb2i = 0;
357 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
358 	} else {
359 		sb2i = -1;
360 		blocknr = 0;
361 	}
362 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
363 		goto out;  /* super block location is unchanged */
364 
365 	/* Get new super block buffer */
366 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
367 	offset = sb2off & (nilfs->ns_blocksize - 1);
368 	nsbh = sb_getblk(sb, newblocknr);
369 	if (!nsbh) {
370 		nilfs_msg(sb, KERN_WARNING,
371 			  "unable to move secondary superblock to block %llu",
372 			  (unsigned long long)newblocknr);
373 		ret = -EIO;
374 		goto out;
375 	}
376 	nsbp = (void *)nsbh->b_data + offset;
377 
378 	lock_buffer(nsbh);
379 	if (sb2i >= 0) {
380 		/*
381 		 * The position of the second superblock only changes by 4KiB,
382 		 * which is larger than the maximum superblock data size
383 		 * (= 1KiB), so there is no need to use memmove() to allow
384 		 * overlap between source and destination.
385 		 */
386 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
387 
388 		/*
389 		 * Zero fill after copy to avoid overwriting in case of move
390 		 * within the same block.
391 		 */
392 		memset(nsbh->b_data, 0, offset);
393 		memset((void *)nsbp + nilfs->ns_sbsize, 0,
394 		       nsbh->b_size - offset - nilfs->ns_sbsize);
395 	} else {
396 		memset(nsbh->b_data, 0, nsbh->b_size);
397 	}
398 	set_buffer_uptodate(nsbh);
399 	unlock_buffer(nsbh);
400 
401 	if (sb2i >= 0) {
402 		brelse(nilfs->ns_sbh[sb2i]);
403 		nilfs->ns_sbh[sb2i] = nsbh;
404 		nilfs->ns_sbp[sb2i] = nsbp;
405 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
406 		/* secondary super block will be restored to index 1 */
407 		nilfs->ns_sbh[1] = nsbh;
408 		nilfs->ns_sbp[1] = nsbp;
409 	} else {
410 		brelse(nsbh);
411 	}
412 out:
413 	return ret;
414 }
415 
416 /**
417  * nilfs_resize_fs - resize the filesystem
418  * @sb: super block instance
419  * @newsize: new size of the filesystem (in bytes)
420  */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)421 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
422 {
423 	struct the_nilfs *nilfs = sb->s_fs_info;
424 	struct nilfs_super_block **sbp;
425 	__u64 devsize, newnsegs;
426 	loff_t sb2off;
427 	int ret;
428 
429 	ret = -ERANGE;
430 	devsize = i_size_read(sb->s_bdev->bd_inode);
431 	if (newsize > devsize)
432 		goto out;
433 
434 	/*
435 	 * Prevent underflow in second superblock position calculation.
436 	 * The exact minimum size check is done in nilfs_sufile_resize().
437 	 */
438 	if (newsize < 4096) {
439 		ret = -ENOSPC;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Write lock is required to protect some functions depending
445 	 * on the number of segments, the number of reserved segments,
446 	 * and so forth.
447 	 */
448 	down_write(&nilfs->ns_segctor_sem);
449 
450 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
451 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
452 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
453 
454 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
455 	up_write(&nilfs->ns_segctor_sem);
456 	if (ret < 0)
457 		goto out;
458 
459 	ret = nilfs_construct_segment(sb);
460 	if (ret < 0)
461 		goto out;
462 
463 	down_write(&nilfs->ns_sem);
464 	nilfs_move_2nd_super(sb, sb2off);
465 	ret = -EIO;
466 	sbp = nilfs_prepare_super(sb, 0);
467 	if (likely(sbp)) {
468 		nilfs_set_log_cursor(sbp[0], nilfs);
469 		/*
470 		 * Drop NILFS_RESIZE_FS flag for compatibility with
471 		 * mount-time resize which may be implemented in a
472 		 * future release.
473 		 */
474 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
475 					      ~NILFS_RESIZE_FS);
476 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
477 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
478 		if (sbp[1])
479 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
480 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
481 	}
482 	up_write(&nilfs->ns_sem);
483 
484 	/*
485 	 * Reset the range of allocatable segments last.  This order
486 	 * is important in the case of expansion because the secondary
487 	 * superblock must be protected from log write until migration
488 	 * completes.
489 	 */
490 	if (!ret)
491 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
492 out:
493 	return ret;
494 }
495 
nilfs_put_super(struct super_block * sb)496 static void nilfs_put_super(struct super_block *sb)
497 {
498 	struct the_nilfs *nilfs = sb->s_fs_info;
499 
500 	nilfs_detach_log_writer(sb);
501 
502 	if (!sb_rdonly(sb)) {
503 		down_write(&nilfs->ns_sem);
504 		nilfs_cleanup_super(sb);
505 		up_write(&nilfs->ns_sem);
506 	}
507 
508 	nilfs_sysfs_delete_device_group(nilfs);
509 	iput(nilfs->ns_sufile);
510 	iput(nilfs->ns_cpfile);
511 	iput(nilfs->ns_dat);
512 
513 	destroy_nilfs(nilfs);
514 	sb->s_fs_info = NULL;
515 }
516 
nilfs_sync_fs(struct super_block * sb,int wait)517 static int nilfs_sync_fs(struct super_block *sb, int wait)
518 {
519 	struct the_nilfs *nilfs = sb->s_fs_info;
520 	struct nilfs_super_block **sbp;
521 	int err = 0;
522 
523 	/* This function is called when super block should be written back */
524 	if (wait)
525 		err = nilfs_construct_segment(sb);
526 
527 	down_write(&nilfs->ns_sem);
528 	if (nilfs_sb_dirty(nilfs)) {
529 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
530 		if (likely(sbp)) {
531 			nilfs_set_log_cursor(sbp[0], nilfs);
532 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
533 		}
534 	}
535 	up_write(&nilfs->ns_sem);
536 
537 	if (!err)
538 		err = nilfs_flush_device(nilfs);
539 
540 	return err;
541 }
542 
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)543 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
544 			    struct nilfs_root **rootp)
545 {
546 	struct the_nilfs *nilfs = sb->s_fs_info;
547 	struct nilfs_root *root;
548 	struct nilfs_checkpoint *raw_cp;
549 	struct buffer_head *bh_cp;
550 	int err = -ENOMEM;
551 
552 	root = nilfs_find_or_create_root(
553 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
554 	if (!root)
555 		return err;
556 
557 	if (root->ifile)
558 		goto reuse; /* already attached checkpoint */
559 
560 	down_read(&nilfs->ns_segctor_sem);
561 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
562 					  &bh_cp);
563 	up_read(&nilfs->ns_segctor_sem);
564 	if (unlikely(err)) {
565 		if (err == -ENOENT || err == -EINVAL) {
566 			nilfs_msg(sb, KERN_ERR,
567 				  "Invalid checkpoint (checkpoint number=%llu)",
568 				  (unsigned long long)cno);
569 			err = -EINVAL;
570 		}
571 		goto failed;
572 	}
573 
574 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
575 			       &raw_cp->cp_ifile_inode, &root->ifile);
576 	if (err)
577 		goto failed_bh;
578 
579 	atomic64_set(&root->inodes_count,
580 			le64_to_cpu(raw_cp->cp_inodes_count));
581 	atomic64_set(&root->blocks_count,
582 			le64_to_cpu(raw_cp->cp_blocks_count));
583 
584 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
585 
586  reuse:
587 	*rootp = root;
588 	return 0;
589 
590  failed_bh:
591 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
592  failed:
593 	nilfs_put_root(root);
594 
595 	return err;
596 }
597 
nilfs_freeze(struct super_block * sb)598 static int nilfs_freeze(struct super_block *sb)
599 {
600 	struct the_nilfs *nilfs = sb->s_fs_info;
601 	int err;
602 
603 	if (sb_rdonly(sb))
604 		return 0;
605 
606 	/* Mark super block clean */
607 	down_write(&nilfs->ns_sem);
608 	err = nilfs_cleanup_super(sb);
609 	up_write(&nilfs->ns_sem);
610 	return err;
611 }
612 
nilfs_unfreeze(struct super_block * sb)613 static int nilfs_unfreeze(struct super_block *sb)
614 {
615 	struct the_nilfs *nilfs = sb->s_fs_info;
616 
617 	if (sb_rdonly(sb))
618 		return 0;
619 
620 	down_write(&nilfs->ns_sem);
621 	nilfs_setup_super(sb, false);
622 	up_write(&nilfs->ns_sem);
623 	return 0;
624 }
625 
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)626 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
627 {
628 	struct super_block *sb = dentry->d_sb;
629 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
630 	struct the_nilfs *nilfs = root->nilfs;
631 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
632 	unsigned long long blocks;
633 	unsigned long overhead;
634 	unsigned long nrsvblocks;
635 	sector_t nfreeblocks;
636 	u64 nmaxinodes, nfreeinodes;
637 	int err;
638 
639 	/*
640 	 * Compute all of the segment blocks
641 	 *
642 	 * The blocks before first segment and after last segment
643 	 * are excluded.
644 	 */
645 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
646 		- nilfs->ns_first_data_block;
647 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
648 
649 	/*
650 	 * Compute the overhead
651 	 *
652 	 * When distributing meta data blocks outside segment structure,
653 	 * We must count them as the overhead.
654 	 */
655 	overhead = 0;
656 
657 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
658 	if (unlikely(err))
659 		return err;
660 
661 	err = nilfs_ifile_count_free_inodes(root->ifile,
662 					    &nmaxinodes, &nfreeinodes);
663 	if (unlikely(err)) {
664 		nilfs_msg(sb, KERN_WARNING,
665 			  "failed to count free inodes: err=%d", err);
666 		if (err == -ERANGE) {
667 			/*
668 			 * If nilfs_palloc_count_max_entries() returns
669 			 * -ERANGE error code then we simply treat
670 			 * curent inodes count as maximum possible and
671 			 * zero as free inodes value.
672 			 */
673 			nmaxinodes = atomic64_read(&root->inodes_count);
674 			nfreeinodes = 0;
675 			err = 0;
676 		} else
677 			return err;
678 	}
679 
680 	buf->f_type = NILFS_SUPER_MAGIC;
681 	buf->f_bsize = sb->s_blocksize;
682 	buf->f_blocks = blocks - overhead;
683 	buf->f_bfree = nfreeblocks;
684 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
685 		(buf->f_bfree - nrsvblocks) : 0;
686 	buf->f_files = nmaxinodes;
687 	buf->f_ffree = nfreeinodes;
688 	buf->f_namelen = NILFS_NAME_LEN;
689 	buf->f_fsid.val[0] = (u32)id;
690 	buf->f_fsid.val[1] = (u32)(id >> 32);
691 
692 	return 0;
693 }
694 
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)695 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
696 {
697 	struct super_block *sb = dentry->d_sb;
698 	struct the_nilfs *nilfs = sb->s_fs_info;
699 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
700 
701 	if (!nilfs_test_opt(nilfs, BARRIER))
702 		seq_puts(seq, ",nobarrier");
703 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
704 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
705 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
706 		seq_puts(seq, ",errors=panic");
707 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
708 		seq_puts(seq, ",errors=continue");
709 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
710 		seq_puts(seq, ",order=strict");
711 	if (nilfs_test_opt(nilfs, NORECOVERY))
712 		seq_puts(seq, ",norecovery");
713 	if (nilfs_test_opt(nilfs, DISCARD))
714 		seq_puts(seq, ",discard");
715 
716 	return 0;
717 }
718 
719 static const struct super_operations nilfs_sops = {
720 	.alloc_inode    = nilfs_alloc_inode,
721 	.destroy_inode  = nilfs_destroy_inode,
722 	.dirty_inode    = nilfs_dirty_inode,
723 	.evict_inode    = nilfs_evict_inode,
724 	.put_super      = nilfs_put_super,
725 	.sync_fs        = nilfs_sync_fs,
726 	.freeze_fs	= nilfs_freeze,
727 	.unfreeze_fs	= nilfs_unfreeze,
728 	.statfs         = nilfs_statfs,
729 	.remount_fs     = nilfs_remount,
730 	.show_options = nilfs_show_options
731 };
732 
733 enum {
734 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
735 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
736 	Opt_discard, Opt_nodiscard, Opt_err,
737 };
738 
739 static match_table_t tokens = {
740 	{Opt_err_cont, "errors=continue"},
741 	{Opt_err_panic, "errors=panic"},
742 	{Opt_err_ro, "errors=remount-ro"},
743 	{Opt_barrier, "barrier"},
744 	{Opt_nobarrier, "nobarrier"},
745 	{Opt_snapshot, "cp=%u"},
746 	{Opt_order, "order=%s"},
747 	{Opt_norecovery, "norecovery"},
748 	{Opt_discard, "discard"},
749 	{Opt_nodiscard, "nodiscard"},
750 	{Opt_err, NULL}
751 };
752 
parse_options(char * options,struct super_block * sb,int is_remount)753 static int parse_options(char *options, struct super_block *sb, int is_remount)
754 {
755 	struct the_nilfs *nilfs = sb->s_fs_info;
756 	char *p;
757 	substring_t args[MAX_OPT_ARGS];
758 
759 	if (!options)
760 		return 1;
761 
762 	while ((p = strsep(&options, ",")) != NULL) {
763 		int token;
764 
765 		if (!*p)
766 			continue;
767 
768 		token = match_token(p, tokens, args);
769 		switch (token) {
770 		case Opt_barrier:
771 			nilfs_set_opt(nilfs, BARRIER);
772 			break;
773 		case Opt_nobarrier:
774 			nilfs_clear_opt(nilfs, BARRIER);
775 			break;
776 		case Opt_order:
777 			if (strcmp(args[0].from, "relaxed") == 0)
778 				/* Ordered data semantics */
779 				nilfs_clear_opt(nilfs, STRICT_ORDER);
780 			else if (strcmp(args[0].from, "strict") == 0)
781 				/* Strict in-order semantics */
782 				nilfs_set_opt(nilfs, STRICT_ORDER);
783 			else
784 				return 0;
785 			break;
786 		case Opt_err_panic:
787 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
788 			break;
789 		case Opt_err_ro:
790 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
791 			break;
792 		case Opt_err_cont:
793 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
794 			break;
795 		case Opt_snapshot:
796 			if (is_remount) {
797 				nilfs_msg(sb, KERN_ERR,
798 					  "\"%s\" option is invalid for remount",
799 					  p);
800 				return 0;
801 			}
802 			break;
803 		case Opt_norecovery:
804 			nilfs_set_opt(nilfs, NORECOVERY);
805 			break;
806 		case Opt_discard:
807 			nilfs_set_opt(nilfs, DISCARD);
808 			break;
809 		case Opt_nodiscard:
810 			nilfs_clear_opt(nilfs, DISCARD);
811 			break;
812 		default:
813 			nilfs_msg(sb, KERN_ERR,
814 				  "unrecognized mount option \"%s\"", p);
815 			return 0;
816 		}
817 	}
818 	return 1;
819 }
820 
821 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)822 nilfs_set_default_options(struct super_block *sb,
823 			  struct nilfs_super_block *sbp)
824 {
825 	struct the_nilfs *nilfs = sb->s_fs_info;
826 
827 	nilfs->ns_mount_opt =
828 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
829 }
830 
nilfs_setup_super(struct super_block * sb,int is_mount)831 static int nilfs_setup_super(struct super_block *sb, int is_mount)
832 {
833 	struct the_nilfs *nilfs = sb->s_fs_info;
834 	struct nilfs_super_block **sbp;
835 	int max_mnt_count;
836 	int mnt_count;
837 
838 	/* nilfs->ns_sem must be locked by the caller. */
839 	sbp = nilfs_prepare_super(sb, 0);
840 	if (!sbp)
841 		return -EIO;
842 
843 	if (!is_mount)
844 		goto skip_mount_setup;
845 
846 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
847 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
848 
849 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
850 		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
851 #if 0
852 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
853 		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
854 #endif
855 	}
856 	if (!max_mnt_count)
857 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
858 
859 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
860 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
861 
862 skip_mount_setup:
863 	sbp[0]->s_state =
864 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
865 	/* synchronize sbp[1] with sbp[0] */
866 	if (sbp[1])
867 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
868 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
869 }
870 
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)871 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
872 						 u64 pos, int blocksize,
873 						 struct buffer_head **pbh)
874 {
875 	unsigned long long sb_index = pos;
876 	unsigned long offset;
877 
878 	offset = do_div(sb_index, blocksize);
879 	*pbh = sb_bread(sb, sb_index);
880 	if (!*pbh)
881 		return NULL;
882 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
883 }
884 
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)885 int nilfs_store_magic_and_option(struct super_block *sb,
886 				 struct nilfs_super_block *sbp,
887 				 char *data)
888 {
889 	struct the_nilfs *nilfs = sb->s_fs_info;
890 
891 	sb->s_magic = le16_to_cpu(sbp->s_magic);
892 
893 	/* FS independent flags */
894 #ifdef NILFS_ATIME_DISABLE
895 	sb->s_flags |= SB_NOATIME;
896 #endif
897 
898 	nilfs_set_default_options(sb, sbp);
899 
900 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
901 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
902 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
903 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
904 
905 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
906 }
907 
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)908 int nilfs_check_feature_compatibility(struct super_block *sb,
909 				      struct nilfs_super_block *sbp)
910 {
911 	__u64 features;
912 
913 	features = le64_to_cpu(sbp->s_feature_incompat) &
914 		~NILFS_FEATURE_INCOMPAT_SUPP;
915 	if (features) {
916 		nilfs_msg(sb, KERN_ERR,
917 			  "couldn't mount because of unsupported optional features (%llx)",
918 			  (unsigned long long)features);
919 		return -EINVAL;
920 	}
921 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
922 		~NILFS_FEATURE_COMPAT_RO_SUPP;
923 	if (!sb_rdonly(sb) && features) {
924 		nilfs_msg(sb, KERN_ERR,
925 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
926 			  (unsigned long long)features);
927 		return -EINVAL;
928 	}
929 	return 0;
930 }
931 
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)932 static int nilfs_get_root_dentry(struct super_block *sb,
933 				 struct nilfs_root *root,
934 				 struct dentry **root_dentry)
935 {
936 	struct inode *inode;
937 	struct dentry *dentry;
938 	int ret = 0;
939 
940 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
941 	if (IS_ERR(inode)) {
942 		ret = PTR_ERR(inode);
943 		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
944 		goto out;
945 	}
946 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
947 		iput(inode);
948 		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
949 		ret = -EINVAL;
950 		goto out;
951 	}
952 
953 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
954 		dentry = d_find_alias(inode);
955 		if (!dentry) {
956 			dentry = d_make_root(inode);
957 			if (!dentry) {
958 				ret = -ENOMEM;
959 				goto failed_dentry;
960 			}
961 		} else {
962 			iput(inode);
963 		}
964 	} else {
965 		dentry = d_obtain_root(inode);
966 		if (IS_ERR(dentry)) {
967 			ret = PTR_ERR(dentry);
968 			goto failed_dentry;
969 		}
970 	}
971 	*root_dentry = dentry;
972  out:
973 	return ret;
974 
975  failed_dentry:
976 	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
977 	goto out;
978 }
979 
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)980 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
981 				 struct dentry **root_dentry)
982 {
983 	struct the_nilfs *nilfs = s->s_fs_info;
984 	struct nilfs_root *root;
985 	int ret;
986 
987 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
988 
989 	down_read(&nilfs->ns_segctor_sem);
990 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
991 	up_read(&nilfs->ns_segctor_sem);
992 	if (ret < 0) {
993 		ret = (ret == -ENOENT) ? -EINVAL : ret;
994 		goto out;
995 	} else if (!ret) {
996 		nilfs_msg(s, KERN_ERR,
997 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
998 			  (unsigned long long)cno);
999 		ret = -EINVAL;
1000 		goto out;
1001 	}
1002 
1003 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
1004 	if (ret) {
1005 		nilfs_msg(s, KERN_ERR,
1006 			  "error %d while loading snapshot (checkpoint number=%llu)",
1007 			  ret, (unsigned long long)cno);
1008 		goto out;
1009 	}
1010 	ret = nilfs_get_root_dentry(s, root, root_dentry);
1011 	nilfs_put_root(root);
1012  out:
1013 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1014 	return ret;
1015 }
1016 
1017 /**
1018  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1019  * @root_dentry: root dentry of the tree to be shrunk
1020  *
1021  * This function returns true if the tree was in-use.
1022  */
nilfs_tree_is_busy(struct dentry * root_dentry)1023 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1024 {
1025 	shrink_dcache_parent(root_dentry);
1026 	return d_count(root_dentry) > 1;
1027 }
1028 
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)1029 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1030 {
1031 	struct the_nilfs *nilfs = sb->s_fs_info;
1032 	struct nilfs_root *root;
1033 	struct inode *inode;
1034 	struct dentry *dentry;
1035 	int ret;
1036 
1037 	if (cno > nilfs->ns_cno)
1038 		return false;
1039 
1040 	if (cno >= nilfs_last_cno(nilfs))
1041 		return true;	/* protect recent checkpoints */
1042 
1043 	ret = false;
1044 	root = nilfs_lookup_root(nilfs, cno);
1045 	if (root) {
1046 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1047 		if (inode) {
1048 			dentry = d_find_alias(inode);
1049 			if (dentry) {
1050 				ret = nilfs_tree_is_busy(dentry);
1051 				dput(dentry);
1052 			}
1053 			iput(inode);
1054 		}
1055 		nilfs_put_root(root);
1056 	}
1057 	return ret;
1058 }
1059 
1060 /**
1061  * nilfs_fill_super() - initialize a super block instance
1062  * @sb: super_block
1063  * @data: mount options
1064  * @silent: silent mode flag
1065  *
1066  * This function is called exclusively by nilfs->ns_mount_mutex.
1067  * So, the recovery process is protected from other simultaneous mounts.
1068  */
1069 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1070 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1071 {
1072 	struct the_nilfs *nilfs;
1073 	struct nilfs_root *fsroot;
1074 	__u64 cno;
1075 	int err;
1076 
1077 	nilfs = alloc_nilfs(sb);
1078 	if (!nilfs)
1079 		return -ENOMEM;
1080 
1081 	sb->s_fs_info = nilfs;
1082 
1083 	err = init_nilfs(nilfs, sb, (char *)data);
1084 	if (err)
1085 		goto failed_nilfs;
1086 
1087 	sb->s_op = &nilfs_sops;
1088 	sb->s_export_op = &nilfs_export_ops;
1089 	sb->s_root = NULL;
1090 	sb->s_time_gran = 1;
1091 	sb->s_max_links = NILFS_LINK_MAX;
1092 
1093 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1094 
1095 	err = load_nilfs(nilfs, sb);
1096 	if (err)
1097 		goto failed_nilfs;
1098 
1099 	cno = nilfs_last_cno(nilfs);
1100 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1101 	if (err) {
1102 		nilfs_msg(sb, KERN_ERR,
1103 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1104 			  err, (unsigned long long)cno);
1105 		goto failed_unload;
1106 	}
1107 
1108 	if (!sb_rdonly(sb)) {
1109 		err = nilfs_attach_log_writer(sb, fsroot);
1110 		if (err)
1111 			goto failed_checkpoint;
1112 	}
1113 
1114 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1115 	if (err)
1116 		goto failed_segctor;
1117 
1118 	nilfs_put_root(fsroot);
1119 
1120 	if (!sb_rdonly(sb)) {
1121 		down_write(&nilfs->ns_sem);
1122 		nilfs_setup_super(sb, true);
1123 		up_write(&nilfs->ns_sem);
1124 	}
1125 
1126 	return 0;
1127 
1128  failed_segctor:
1129 	nilfs_detach_log_writer(sb);
1130 
1131  failed_checkpoint:
1132 	nilfs_put_root(fsroot);
1133 
1134  failed_unload:
1135 	nilfs_sysfs_delete_device_group(nilfs);
1136 	iput(nilfs->ns_sufile);
1137 	iput(nilfs->ns_cpfile);
1138 	iput(nilfs->ns_dat);
1139 
1140  failed_nilfs:
1141 	destroy_nilfs(nilfs);
1142 	return err;
1143 }
1144 
nilfs_remount(struct super_block * sb,int * flags,char * data)1145 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1146 {
1147 	struct the_nilfs *nilfs = sb->s_fs_info;
1148 	unsigned long old_sb_flags;
1149 	unsigned long old_mount_opt;
1150 	int err;
1151 
1152 	sync_filesystem(sb);
1153 	old_sb_flags = sb->s_flags;
1154 	old_mount_opt = nilfs->ns_mount_opt;
1155 
1156 	if (!parse_options(data, sb, 1)) {
1157 		err = -EINVAL;
1158 		goto restore_opts;
1159 	}
1160 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1161 
1162 	err = -EINVAL;
1163 
1164 	if (!nilfs_valid_fs(nilfs)) {
1165 		nilfs_msg(sb, KERN_WARNING,
1166 			  "couldn't remount because the filesystem is in an incomplete recovery state");
1167 		goto restore_opts;
1168 	}
1169 
1170 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1171 		goto out;
1172 	if (*flags & SB_RDONLY) {
1173 		sb->s_flags |= SB_RDONLY;
1174 
1175 		/*
1176 		 * Remounting a valid RW partition RDONLY, so set
1177 		 * the RDONLY flag and then mark the partition as valid again.
1178 		 */
1179 		down_write(&nilfs->ns_sem);
1180 		nilfs_cleanup_super(sb);
1181 		up_write(&nilfs->ns_sem);
1182 	} else {
1183 		__u64 features;
1184 		struct nilfs_root *root;
1185 
1186 		/*
1187 		 * Mounting a RDONLY partition read-write, so reread and
1188 		 * store the current valid flag.  (It may have been changed
1189 		 * by fsck since we originally mounted the partition.)
1190 		 */
1191 		down_read(&nilfs->ns_sem);
1192 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1193 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1194 		up_read(&nilfs->ns_sem);
1195 		if (features) {
1196 			nilfs_msg(sb, KERN_WARNING,
1197 				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1198 				  (unsigned long long)features);
1199 			err = -EROFS;
1200 			goto restore_opts;
1201 		}
1202 
1203 		sb->s_flags &= ~SB_RDONLY;
1204 
1205 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1206 		err = nilfs_attach_log_writer(sb, root);
1207 		if (err)
1208 			goto restore_opts;
1209 
1210 		down_write(&nilfs->ns_sem);
1211 		nilfs_setup_super(sb, true);
1212 		up_write(&nilfs->ns_sem);
1213 	}
1214  out:
1215 	return 0;
1216 
1217  restore_opts:
1218 	sb->s_flags = old_sb_flags;
1219 	nilfs->ns_mount_opt = old_mount_opt;
1220 	return err;
1221 }
1222 
1223 struct nilfs_super_data {
1224 	struct block_device *bdev;
1225 	__u64 cno;
1226 	int flags;
1227 };
1228 
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1229 static int nilfs_parse_snapshot_option(const char *option,
1230 				       const substring_t *arg,
1231 				       struct nilfs_super_data *sd)
1232 {
1233 	unsigned long long val;
1234 	const char *msg = NULL;
1235 	int err;
1236 
1237 	if (!(sd->flags & SB_RDONLY)) {
1238 		msg = "read-only option is not specified";
1239 		goto parse_error;
1240 	}
1241 
1242 	err = kstrtoull(arg->from, 0, &val);
1243 	if (err) {
1244 		if (err == -ERANGE)
1245 			msg = "too large checkpoint number";
1246 		else
1247 			msg = "malformed argument";
1248 		goto parse_error;
1249 	} else if (val == 0) {
1250 		msg = "invalid checkpoint number 0";
1251 		goto parse_error;
1252 	}
1253 	sd->cno = val;
1254 	return 0;
1255 
1256 parse_error:
1257 	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1258 	return 1;
1259 }
1260 
1261 /**
1262  * nilfs_identify - pre-read mount options needed to identify mount instance
1263  * @data: mount options
1264  * @sd: nilfs_super_data
1265  */
nilfs_identify(char * data,struct nilfs_super_data * sd)1266 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1267 {
1268 	char *p, *options = data;
1269 	substring_t args[MAX_OPT_ARGS];
1270 	int token;
1271 	int ret = 0;
1272 
1273 	do {
1274 		p = strsep(&options, ",");
1275 		if (p != NULL && *p) {
1276 			token = match_token(p, tokens, args);
1277 			if (token == Opt_snapshot)
1278 				ret = nilfs_parse_snapshot_option(p, &args[0],
1279 								  sd);
1280 		}
1281 		if (!options)
1282 			break;
1283 		BUG_ON(options == data);
1284 		*(options - 1) = ',';
1285 	} while (!ret);
1286 	return ret;
1287 }
1288 
nilfs_set_bdev_super(struct super_block * s,void * data)1289 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1290 {
1291 	s->s_bdev = data;
1292 	s->s_dev = s->s_bdev->bd_dev;
1293 	return 0;
1294 }
1295 
nilfs_test_bdev_super(struct super_block * s,void * data)1296 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1297 {
1298 	return (void *)s->s_bdev == data;
1299 }
1300 
1301 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1302 nilfs_mount(struct file_system_type *fs_type, int flags,
1303 	     const char *dev_name, void *data)
1304 {
1305 	struct nilfs_super_data sd;
1306 	struct super_block *s;
1307 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1308 	struct dentry *root_dentry;
1309 	int err, s_new = false;
1310 
1311 	if (!(flags & SB_RDONLY))
1312 		mode |= FMODE_WRITE;
1313 
1314 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1315 	if (IS_ERR(sd.bdev))
1316 		return ERR_CAST(sd.bdev);
1317 
1318 	sd.cno = 0;
1319 	sd.flags = flags;
1320 	if (nilfs_identify((char *)data, &sd)) {
1321 		err = -EINVAL;
1322 		goto failed;
1323 	}
1324 
1325 	/*
1326 	 * once the super is inserted into the list by sget, s_umount
1327 	 * will protect the lockfs code from trying to start a snapshot
1328 	 * while we are mounting
1329 	 */
1330 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1331 	if (sd.bdev->bd_fsfreeze_count > 0) {
1332 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1333 		err = -EBUSY;
1334 		goto failed;
1335 	}
1336 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1337 		 sd.bdev);
1338 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1339 	if (IS_ERR(s)) {
1340 		err = PTR_ERR(s);
1341 		goto failed;
1342 	}
1343 
1344 	if (!s->s_root) {
1345 		s_new = true;
1346 
1347 		/* New superblock instance created */
1348 		s->s_mode = mode;
1349 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1350 		sb_set_blocksize(s, block_size(sd.bdev));
1351 
1352 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1353 		if (err)
1354 			goto failed_super;
1355 
1356 		s->s_flags |= SB_ACTIVE;
1357 	} else if (!sd.cno) {
1358 		if (nilfs_tree_is_busy(s->s_root)) {
1359 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1360 				nilfs_msg(s, KERN_ERR,
1361 					  "the device already has a %s mount.",
1362 					  sb_rdonly(s) ? "read-only" : "read/write");
1363 				err = -EBUSY;
1364 				goto failed_super;
1365 			}
1366 		} else {
1367 			/*
1368 			 * Try remount to setup mount states if the current
1369 			 * tree is not mounted and only snapshots use this sb.
1370 			 */
1371 			err = nilfs_remount(s, &flags, data);
1372 			if (err)
1373 				goto failed_super;
1374 		}
1375 	}
1376 
1377 	if (sd.cno) {
1378 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1379 		if (err)
1380 			goto failed_super;
1381 	} else {
1382 		root_dentry = dget(s->s_root);
1383 	}
1384 
1385 	if (!s_new)
1386 		blkdev_put(sd.bdev, mode);
1387 
1388 	return root_dentry;
1389 
1390  failed_super:
1391 	deactivate_locked_super(s);
1392 
1393  failed:
1394 	if (!s_new)
1395 		blkdev_put(sd.bdev, mode);
1396 	return ERR_PTR(err);
1397 }
1398 
1399 struct file_system_type nilfs_fs_type = {
1400 	.owner    = THIS_MODULE,
1401 	.name     = "nilfs2",
1402 	.mount    = nilfs_mount,
1403 	.kill_sb  = kill_block_super,
1404 	.fs_flags = FS_REQUIRES_DEV,
1405 };
1406 MODULE_ALIAS_FS("nilfs2");
1407 
nilfs_inode_init_once(void * obj)1408 static void nilfs_inode_init_once(void *obj)
1409 {
1410 	struct nilfs_inode_info *ii = obj;
1411 
1412 	INIT_LIST_HEAD(&ii->i_dirty);
1413 #ifdef CONFIG_NILFS_XATTR
1414 	init_rwsem(&ii->xattr_sem);
1415 #endif
1416 	inode_init_once(&ii->vfs_inode);
1417 }
1418 
nilfs_segbuf_init_once(void * obj)1419 static void nilfs_segbuf_init_once(void *obj)
1420 {
1421 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1422 }
1423 
nilfs_destroy_cachep(void)1424 static void nilfs_destroy_cachep(void)
1425 {
1426 	/*
1427 	 * Make sure all delayed rcu free inodes are flushed before we
1428 	 * destroy cache.
1429 	 */
1430 	rcu_barrier();
1431 
1432 	kmem_cache_destroy(nilfs_inode_cachep);
1433 	kmem_cache_destroy(nilfs_transaction_cachep);
1434 	kmem_cache_destroy(nilfs_segbuf_cachep);
1435 	kmem_cache_destroy(nilfs_btree_path_cache);
1436 }
1437 
nilfs_init_cachep(void)1438 static int __init nilfs_init_cachep(void)
1439 {
1440 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1441 			sizeof(struct nilfs_inode_info), 0,
1442 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1443 			nilfs_inode_init_once);
1444 	if (!nilfs_inode_cachep)
1445 		goto fail;
1446 
1447 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1448 			sizeof(struct nilfs_transaction_info), 0,
1449 			SLAB_RECLAIM_ACCOUNT, NULL);
1450 	if (!nilfs_transaction_cachep)
1451 		goto fail;
1452 
1453 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1454 			sizeof(struct nilfs_segment_buffer), 0,
1455 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1456 	if (!nilfs_segbuf_cachep)
1457 		goto fail;
1458 
1459 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1460 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1461 			0, 0, NULL);
1462 	if (!nilfs_btree_path_cache)
1463 		goto fail;
1464 
1465 	return 0;
1466 
1467 fail:
1468 	nilfs_destroy_cachep();
1469 	return -ENOMEM;
1470 }
1471 
init_nilfs_fs(void)1472 static int __init init_nilfs_fs(void)
1473 {
1474 	int err;
1475 
1476 	err = nilfs_init_cachep();
1477 	if (err)
1478 		goto fail;
1479 
1480 	err = nilfs_sysfs_init();
1481 	if (err)
1482 		goto free_cachep;
1483 
1484 	err = register_filesystem(&nilfs_fs_type);
1485 	if (err)
1486 		goto deinit_sysfs_entry;
1487 
1488 	printk(KERN_INFO "NILFS version 2 loaded\n");
1489 	return 0;
1490 
1491 deinit_sysfs_entry:
1492 	nilfs_sysfs_exit();
1493 free_cachep:
1494 	nilfs_destroy_cachep();
1495 fail:
1496 	return err;
1497 }
1498 
exit_nilfs_fs(void)1499 static void __exit exit_nilfs_fs(void)
1500 {
1501 	nilfs_destroy_cachep();
1502 	nilfs_sysfs_exit();
1503 	unregister_filesystem(&nilfs_fs_type);
1504 }
1505 
1506 module_init(init_nilfs_fs)
1507 module_exit(exit_nilfs_fs)
1508