1 /**
2 * compress.c - NTFS kernel compressed attributes handling.
3 * Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2004 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #include <linux/fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/blkdev.h>
27 #include <linux/vmalloc.h>
28 #include <linux/slab.h>
29
30 #include "attrib.h"
31 #include "inode.h"
32 #include "debug.h"
33 #include "ntfs.h"
34
35 /**
36 * ntfs_compression_constants - enum of constants used in the compression code
37 */
38 typedef enum {
39 /* Token types and access mask. */
40 NTFS_SYMBOL_TOKEN = 0,
41 NTFS_PHRASE_TOKEN = 1,
42 NTFS_TOKEN_MASK = 1,
43
44 /* Compression sub-block constants. */
45 NTFS_SB_SIZE_MASK = 0x0fff,
46 NTFS_SB_SIZE = 0x1000,
47 NTFS_SB_IS_COMPRESSED = 0x8000,
48
49 /*
50 * The maximum compression block size is by definition 16 * the cluster
51 * size, with the maximum supported cluster size being 4kiB. Thus the
52 * maximum compression buffer size is 64kiB, so we use this when
53 * initializing the compression buffer.
54 */
55 NTFS_MAX_CB_SIZE = 64 * 1024,
56 } ntfs_compression_constants;
57
58 /**
59 * ntfs_compression_buffer - one buffer for the decompression engine
60 */
61 static u8 *ntfs_compression_buffer;
62
63 /**
64 * ntfs_cb_lock - spinlock which protects ntfs_compression_buffer
65 */
66 static DEFINE_SPINLOCK(ntfs_cb_lock);
67
68 /**
69 * allocate_compression_buffers - allocate the decompression buffers
70 *
71 * Caller has to hold the ntfs_lock mutex.
72 *
73 * Return 0 on success or -ENOMEM if the allocations failed.
74 */
allocate_compression_buffers(void)75 int allocate_compression_buffers(void)
76 {
77 BUG_ON(ntfs_compression_buffer);
78
79 ntfs_compression_buffer = vmalloc(NTFS_MAX_CB_SIZE);
80 if (!ntfs_compression_buffer)
81 return -ENOMEM;
82 return 0;
83 }
84
85 /**
86 * free_compression_buffers - free the decompression buffers
87 *
88 * Caller has to hold the ntfs_lock mutex.
89 */
free_compression_buffers(void)90 void free_compression_buffers(void)
91 {
92 BUG_ON(!ntfs_compression_buffer);
93 vfree(ntfs_compression_buffer);
94 ntfs_compression_buffer = NULL;
95 }
96
97 /**
98 * zero_partial_compressed_page - zero out of bounds compressed page region
99 */
zero_partial_compressed_page(struct page * page,const s64 initialized_size)100 static void zero_partial_compressed_page(struct page *page,
101 const s64 initialized_size)
102 {
103 u8 *kp = page_address(page);
104 unsigned int kp_ofs;
105
106 ntfs_debug("Zeroing page region outside initialized size.");
107 if (((s64)page->index << PAGE_SHIFT) >= initialized_size) {
108 clear_page(kp);
109 return;
110 }
111 kp_ofs = initialized_size & ~PAGE_MASK;
112 memset(kp + kp_ofs, 0, PAGE_SIZE - kp_ofs);
113 return;
114 }
115
116 /**
117 * handle_bounds_compressed_page - test for&handle out of bounds compressed page
118 */
handle_bounds_compressed_page(struct page * page,const loff_t i_size,const s64 initialized_size)119 static inline void handle_bounds_compressed_page(struct page *page,
120 const loff_t i_size, const s64 initialized_size)
121 {
122 if ((page->index >= (initialized_size >> PAGE_SHIFT)) &&
123 (initialized_size < i_size))
124 zero_partial_compressed_page(page, initialized_size);
125 return;
126 }
127
128 /**
129 * ntfs_decompress - decompress a compression block into an array of pages
130 * @dest_pages: destination array of pages
131 * @completed_pages: scratch space to track completed pages
132 * @dest_index: current index into @dest_pages (IN/OUT)
133 * @dest_ofs: current offset within @dest_pages[@dest_index] (IN/OUT)
134 * @dest_max_index: maximum index into @dest_pages (IN)
135 * @dest_max_ofs: maximum offset within @dest_pages[@dest_max_index] (IN)
136 * @xpage: the target page (-1 if none) (IN)
137 * @xpage_done: set to 1 if xpage was completed successfully (IN/OUT)
138 * @cb_start: compression block to decompress (IN)
139 * @cb_size: size of compression block @cb_start in bytes (IN)
140 * @i_size: file size when we started the read (IN)
141 * @initialized_size: initialized file size when we started the read (IN)
142 *
143 * The caller must have disabled preemption. ntfs_decompress() reenables it when
144 * the critical section is finished.
145 *
146 * This decompresses the compression block @cb_start into the array of
147 * destination pages @dest_pages starting at index @dest_index into @dest_pages
148 * and at offset @dest_pos into the page @dest_pages[@dest_index].
149 *
150 * When the page @dest_pages[@xpage] is completed, @xpage_done is set to 1.
151 * If xpage is -1 or @xpage has not been completed, @xpage_done is not modified.
152 *
153 * @cb_start is a pointer to the compression block which needs decompressing
154 * and @cb_size is the size of @cb_start in bytes (8-64kiB).
155 *
156 * Return 0 if success or -EOVERFLOW on error in the compressed stream.
157 * @xpage_done indicates whether the target page (@dest_pages[@xpage]) was
158 * completed during the decompression of the compression block (@cb_start).
159 *
160 * Warning: This function *REQUIRES* PAGE_SIZE >= 4096 or it will blow up
161 * unpredicatbly! You have been warned!
162 *
163 * Note to hackers: This function may not sleep until it has finished accessing
164 * the compression block @cb_start as it is a per-CPU buffer.
165 */
ntfs_decompress(struct page * dest_pages[],int completed_pages[],int * dest_index,int * dest_ofs,const int dest_max_index,const int dest_max_ofs,const int xpage,char * xpage_done,u8 * const cb_start,const u32 cb_size,const loff_t i_size,const s64 initialized_size)166 static int ntfs_decompress(struct page *dest_pages[], int completed_pages[],
167 int *dest_index, int *dest_ofs, const int dest_max_index,
168 const int dest_max_ofs, const int xpage, char *xpage_done,
169 u8 *const cb_start, const u32 cb_size, const loff_t i_size,
170 const s64 initialized_size)
171 {
172 /*
173 * Pointers into the compressed data, i.e. the compression block (cb),
174 * and the therein contained sub-blocks (sb).
175 */
176 u8 *cb_end = cb_start + cb_size; /* End of cb. */
177 u8 *cb = cb_start; /* Current position in cb. */
178 u8 *cb_sb_start = cb; /* Beginning of the current sb in the cb. */
179 u8 *cb_sb_end; /* End of current sb / beginning of next sb. */
180
181 /* Variables for uncompressed data / destination. */
182 struct page *dp; /* Current destination page being worked on. */
183 u8 *dp_addr; /* Current pointer into dp. */
184 u8 *dp_sb_start; /* Start of current sub-block in dp. */
185 u8 *dp_sb_end; /* End of current sb in dp (dp_sb_start +
186 NTFS_SB_SIZE). */
187 u16 do_sb_start; /* @dest_ofs when starting this sub-block. */
188 u16 do_sb_end; /* @dest_ofs of end of this sb (do_sb_start +
189 NTFS_SB_SIZE). */
190
191 /* Variables for tag and token parsing. */
192 u8 tag; /* Current tag. */
193 int token; /* Loop counter for the eight tokens in tag. */
194 int nr_completed_pages = 0;
195
196 /* Default error code. */
197 int err = -EOVERFLOW;
198
199 ntfs_debug("Entering, cb_size = 0x%x.", cb_size);
200 do_next_sb:
201 ntfs_debug("Beginning sub-block at offset = 0x%zx in the cb.",
202 cb - cb_start);
203 /*
204 * Have we reached the end of the compression block or the end of the
205 * decompressed data? The latter can happen for example if the current
206 * position in the compression block is one byte before its end so the
207 * first two checks do not detect it.
208 */
209 if (cb == cb_end || !le16_to_cpup((le16*)cb) ||
210 (*dest_index == dest_max_index &&
211 *dest_ofs == dest_max_ofs)) {
212 int i;
213
214 ntfs_debug("Completed. Returning success (0).");
215 err = 0;
216 return_error:
217 /* We can sleep from now on, so we drop lock. */
218 spin_unlock(&ntfs_cb_lock);
219 /* Second stage: finalize completed pages. */
220 if (nr_completed_pages > 0) {
221 for (i = 0; i < nr_completed_pages; i++) {
222 int di = completed_pages[i];
223
224 dp = dest_pages[di];
225 /*
226 * If we are outside the initialized size, zero
227 * the out of bounds page range.
228 */
229 handle_bounds_compressed_page(dp, i_size,
230 initialized_size);
231 flush_dcache_page(dp);
232 kunmap(dp);
233 SetPageUptodate(dp);
234 unlock_page(dp);
235 if (di == xpage)
236 *xpage_done = 1;
237 else
238 put_page(dp);
239 dest_pages[di] = NULL;
240 }
241 }
242 return err;
243 }
244
245 /* Setup offsets for the current sub-block destination. */
246 do_sb_start = *dest_ofs;
247 do_sb_end = do_sb_start + NTFS_SB_SIZE;
248
249 /* Check that we are still within allowed boundaries. */
250 if (*dest_index == dest_max_index && do_sb_end > dest_max_ofs)
251 goto return_overflow;
252
253 /* Does the minimum size of a compressed sb overflow valid range? */
254 if (cb + 6 > cb_end)
255 goto return_overflow;
256
257 /* Setup the current sub-block source pointers and validate range. */
258 cb_sb_start = cb;
259 cb_sb_end = cb_sb_start + (le16_to_cpup((le16*)cb) & NTFS_SB_SIZE_MASK)
260 + 3;
261 if (cb_sb_end > cb_end)
262 goto return_overflow;
263
264 /* Get the current destination page. */
265 dp = dest_pages[*dest_index];
266 if (!dp) {
267 /* No page present. Skip decompression of this sub-block. */
268 cb = cb_sb_end;
269
270 /* Advance destination position to next sub-block. */
271 *dest_ofs = (*dest_ofs + NTFS_SB_SIZE) & ~PAGE_MASK;
272 if (!*dest_ofs && (++*dest_index > dest_max_index))
273 goto return_overflow;
274 goto do_next_sb;
275 }
276
277 /* We have a valid destination page. Setup the destination pointers. */
278 dp_addr = (u8*)page_address(dp) + do_sb_start;
279
280 /* Now, we are ready to process the current sub-block (sb). */
281 if (!(le16_to_cpup((le16*)cb) & NTFS_SB_IS_COMPRESSED)) {
282 ntfs_debug("Found uncompressed sub-block.");
283 /* This sb is not compressed, just copy it into destination. */
284
285 /* Advance source position to first data byte. */
286 cb += 2;
287
288 /* An uncompressed sb must be full size. */
289 if (cb_sb_end - cb != NTFS_SB_SIZE)
290 goto return_overflow;
291
292 /* Copy the block and advance the source position. */
293 memcpy(dp_addr, cb, NTFS_SB_SIZE);
294 cb += NTFS_SB_SIZE;
295
296 /* Advance destination position to next sub-block. */
297 *dest_ofs += NTFS_SB_SIZE;
298 if (!(*dest_ofs &= ~PAGE_MASK)) {
299 finalize_page:
300 /*
301 * First stage: add current page index to array of
302 * completed pages.
303 */
304 completed_pages[nr_completed_pages++] = *dest_index;
305 if (++*dest_index > dest_max_index)
306 goto return_overflow;
307 }
308 goto do_next_sb;
309 }
310 ntfs_debug("Found compressed sub-block.");
311 /* This sb is compressed, decompress it into destination. */
312
313 /* Setup destination pointers. */
314 dp_sb_start = dp_addr;
315 dp_sb_end = dp_sb_start + NTFS_SB_SIZE;
316
317 /* Forward to the first tag in the sub-block. */
318 cb += 2;
319 do_next_tag:
320 if (cb == cb_sb_end) {
321 /* Check if the decompressed sub-block was not full-length. */
322 if (dp_addr < dp_sb_end) {
323 int nr_bytes = do_sb_end - *dest_ofs;
324
325 ntfs_debug("Filling incomplete sub-block with "
326 "zeroes.");
327 /* Zero remainder and update destination position. */
328 memset(dp_addr, 0, nr_bytes);
329 *dest_ofs += nr_bytes;
330 }
331 /* We have finished the current sub-block. */
332 if (!(*dest_ofs &= ~PAGE_MASK))
333 goto finalize_page;
334 goto do_next_sb;
335 }
336
337 /* Check we are still in range. */
338 if (cb > cb_sb_end || dp_addr > dp_sb_end)
339 goto return_overflow;
340
341 /* Get the next tag and advance to first token. */
342 tag = *cb++;
343
344 /* Parse the eight tokens described by the tag. */
345 for (token = 0; token < 8; token++, tag >>= 1) {
346 u16 lg, pt, length, max_non_overlap;
347 register u16 i;
348 u8 *dp_back_addr;
349
350 /* Check if we are done / still in range. */
351 if (cb >= cb_sb_end || dp_addr > dp_sb_end)
352 break;
353
354 /* Determine token type and parse appropriately.*/
355 if ((tag & NTFS_TOKEN_MASK) == NTFS_SYMBOL_TOKEN) {
356 /*
357 * We have a symbol token, copy the symbol across, and
358 * advance the source and destination positions.
359 */
360 *dp_addr++ = *cb++;
361 ++*dest_ofs;
362
363 /* Continue with the next token. */
364 continue;
365 }
366
367 /*
368 * We have a phrase token. Make sure it is not the first tag in
369 * the sb as this is illegal and would confuse the code below.
370 */
371 if (dp_addr == dp_sb_start)
372 goto return_overflow;
373
374 /*
375 * Determine the number of bytes to go back (p) and the number
376 * of bytes to copy (l). We use an optimized algorithm in which
377 * we first calculate log2(current destination position in sb),
378 * which allows determination of l and p in O(1) rather than
379 * O(n). We just need an arch-optimized log2() function now.
380 */
381 lg = 0;
382 for (i = *dest_ofs - do_sb_start - 1; i >= 0x10; i >>= 1)
383 lg++;
384
385 /* Get the phrase token into i. */
386 pt = le16_to_cpup((le16*)cb);
387
388 /*
389 * Calculate starting position of the byte sequence in
390 * the destination using the fact that p = (pt >> (12 - lg)) + 1
391 * and make sure we don't go too far back.
392 */
393 dp_back_addr = dp_addr - (pt >> (12 - lg)) - 1;
394 if (dp_back_addr < dp_sb_start)
395 goto return_overflow;
396
397 /* Now calculate the length of the byte sequence. */
398 length = (pt & (0xfff >> lg)) + 3;
399
400 /* Advance destination position and verify it is in range. */
401 *dest_ofs += length;
402 if (*dest_ofs > do_sb_end)
403 goto return_overflow;
404
405 /* The number of non-overlapping bytes. */
406 max_non_overlap = dp_addr - dp_back_addr;
407
408 if (length <= max_non_overlap) {
409 /* The byte sequence doesn't overlap, just copy it. */
410 memcpy(dp_addr, dp_back_addr, length);
411
412 /* Advance destination pointer. */
413 dp_addr += length;
414 } else {
415 /*
416 * The byte sequence does overlap, copy non-overlapping
417 * part and then do a slow byte by byte copy for the
418 * overlapping part. Also, advance the destination
419 * pointer.
420 */
421 memcpy(dp_addr, dp_back_addr, max_non_overlap);
422 dp_addr += max_non_overlap;
423 dp_back_addr += max_non_overlap;
424 length -= max_non_overlap;
425 while (length--)
426 *dp_addr++ = *dp_back_addr++;
427 }
428
429 /* Advance source position and continue with the next token. */
430 cb += 2;
431 }
432
433 /* No tokens left in the current tag. Continue with the next tag. */
434 goto do_next_tag;
435
436 return_overflow:
437 ntfs_error(NULL, "Failed. Returning -EOVERFLOW.");
438 goto return_error;
439 }
440
441 /**
442 * ntfs_read_compressed_block - read a compressed block into the page cache
443 * @page: locked page in the compression block(s) we need to read
444 *
445 * When we are called the page has already been verified to be locked and the
446 * attribute is known to be non-resident, not encrypted, but compressed.
447 *
448 * 1. Determine which compression block(s) @page is in.
449 * 2. Get hold of all pages corresponding to this/these compression block(s).
450 * 3. Read the (first) compression block.
451 * 4. Decompress it into the corresponding pages.
452 * 5. Throw the compressed data away and proceed to 3. for the next compression
453 * block or return success if no more compression blocks left.
454 *
455 * Warning: We have to be careful what we do about existing pages. They might
456 * have been written to so that we would lose data if we were to just overwrite
457 * them with the out-of-date uncompressed data.
458 *
459 * FIXME: For PAGE_SIZE > cb_size we are not doing the Right Thing(TM) at
460 * the end of the file I think. We need to detect this case and zero the out
461 * of bounds remainder of the page in question and mark it as handled. At the
462 * moment we would just return -EIO on such a page. This bug will only become
463 * apparent if pages are above 8kiB and the NTFS volume only uses 512 byte
464 * clusters so is probably not going to be seen by anyone. Still this should
465 * be fixed. (AIA)
466 *
467 * FIXME: Again for PAGE_SIZE > cb_size we are screwing up both in
468 * handling sparse and compressed cbs. (AIA)
469 *
470 * FIXME: At the moment we don't do any zeroing out in the case that
471 * initialized_size is less than data_size. This should be safe because of the
472 * nature of the compression algorithm used. Just in case we check and output
473 * an error message in read inode if the two sizes are not equal for a
474 * compressed file. (AIA)
475 */
ntfs_read_compressed_block(struct page * page)476 int ntfs_read_compressed_block(struct page *page)
477 {
478 loff_t i_size;
479 s64 initialized_size;
480 struct address_space *mapping = page->mapping;
481 ntfs_inode *ni = NTFS_I(mapping->host);
482 ntfs_volume *vol = ni->vol;
483 struct super_block *sb = vol->sb;
484 runlist_element *rl;
485 unsigned long flags, block_size = sb->s_blocksize;
486 unsigned char block_size_bits = sb->s_blocksize_bits;
487 u8 *cb, *cb_pos, *cb_end;
488 struct buffer_head **bhs;
489 unsigned long offset, index = page->index;
490 u32 cb_size = ni->itype.compressed.block_size;
491 u64 cb_size_mask = cb_size - 1UL;
492 VCN vcn;
493 LCN lcn;
494 /* The first wanted vcn (minimum alignment is PAGE_SIZE). */
495 VCN start_vcn = (((s64)index << PAGE_SHIFT) & ~cb_size_mask) >>
496 vol->cluster_size_bits;
497 /*
498 * The first vcn after the last wanted vcn (minimum alignment is again
499 * PAGE_SIZE.
500 */
501 VCN end_vcn = ((((s64)(index + 1UL) << PAGE_SHIFT) + cb_size - 1)
502 & ~cb_size_mask) >> vol->cluster_size_bits;
503 /* Number of compression blocks (cbs) in the wanted vcn range. */
504 unsigned int nr_cbs = (end_vcn - start_vcn) << vol->cluster_size_bits
505 >> ni->itype.compressed.block_size_bits;
506 /*
507 * Number of pages required to store the uncompressed data from all
508 * compression blocks (cbs) overlapping @page. Due to alignment
509 * guarantees of start_vcn and end_vcn, no need to round up here.
510 */
511 unsigned int nr_pages = (end_vcn - start_vcn) <<
512 vol->cluster_size_bits >> PAGE_SHIFT;
513 unsigned int xpage, max_page, cur_page, cur_ofs, i;
514 unsigned int cb_clusters, cb_max_ofs;
515 int block, max_block, cb_max_page, bhs_size, nr_bhs, err = 0;
516 struct page **pages;
517 int *completed_pages;
518 unsigned char xpage_done = 0;
519
520 ntfs_debug("Entering, page->index = 0x%lx, cb_size = 0x%x, nr_pages = "
521 "%i.", index, cb_size, nr_pages);
522 /*
523 * Bad things happen if we get here for anything that is not an
524 * unnamed $DATA attribute.
525 */
526 BUG_ON(ni->type != AT_DATA);
527 BUG_ON(ni->name_len);
528
529 pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS);
530 completed_pages = kmalloc_array(nr_pages + 1, sizeof(int), GFP_NOFS);
531
532 /* Allocate memory to store the buffer heads we need. */
533 bhs_size = cb_size / block_size * sizeof(struct buffer_head *);
534 bhs = kmalloc(bhs_size, GFP_NOFS);
535
536 if (unlikely(!pages || !bhs || !completed_pages)) {
537 kfree(bhs);
538 kfree(pages);
539 kfree(completed_pages);
540 unlock_page(page);
541 ntfs_error(vol->sb, "Failed to allocate internal buffers.");
542 return -ENOMEM;
543 }
544
545 /*
546 * We have already been given one page, this is the one we must do.
547 * Once again, the alignment guarantees keep it simple.
548 */
549 offset = start_vcn << vol->cluster_size_bits >> PAGE_SHIFT;
550 xpage = index - offset;
551 pages[xpage] = page;
552 /*
553 * The remaining pages need to be allocated and inserted into the page
554 * cache, alignment guarantees keep all the below much simpler. (-8
555 */
556 read_lock_irqsave(&ni->size_lock, flags);
557 i_size = i_size_read(VFS_I(ni));
558 initialized_size = ni->initialized_size;
559 read_unlock_irqrestore(&ni->size_lock, flags);
560 max_page = ((i_size + PAGE_SIZE - 1) >> PAGE_SHIFT) -
561 offset;
562 /* Is the page fully outside i_size? (truncate in progress) */
563 if (xpage >= max_page) {
564 kfree(bhs);
565 kfree(pages);
566 kfree(completed_pages);
567 zero_user(page, 0, PAGE_SIZE);
568 ntfs_debug("Compressed read outside i_size - truncated?");
569 SetPageUptodate(page);
570 unlock_page(page);
571 return 0;
572 }
573 if (nr_pages < max_page)
574 max_page = nr_pages;
575 for (i = 0; i < max_page; i++, offset++) {
576 if (i != xpage)
577 pages[i] = grab_cache_page_nowait(mapping, offset);
578 page = pages[i];
579 if (page) {
580 /*
581 * We only (re)read the page if it isn't already read
582 * in and/or dirty or we would be losing data or at
583 * least wasting our time.
584 */
585 if (!PageDirty(page) && (!PageUptodate(page) ||
586 PageError(page))) {
587 ClearPageError(page);
588 kmap(page);
589 continue;
590 }
591 unlock_page(page);
592 put_page(page);
593 pages[i] = NULL;
594 }
595 }
596
597 /*
598 * We have the runlist, and all the destination pages we need to fill.
599 * Now read the first compression block.
600 */
601 cur_page = 0;
602 cur_ofs = 0;
603 cb_clusters = ni->itype.compressed.block_clusters;
604 do_next_cb:
605 nr_cbs--;
606 nr_bhs = 0;
607
608 /* Read all cb buffer heads one cluster at a time. */
609 rl = NULL;
610 for (vcn = start_vcn, start_vcn += cb_clusters; vcn < start_vcn;
611 vcn++) {
612 bool is_retry = false;
613
614 if (!rl) {
615 lock_retry_remap:
616 down_read(&ni->runlist.lock);
617 rl = ni->runlist.rl;
618 }
619 if (likely(rl != NULL)) {
620 /* Seek to element containing target vcn. */
621 while (rl->length && rl[1].vcn <= vcn)
622 rl++;
623 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
624 } else
625 lcn = LCN_RL_NOT_MAPPED;
626 ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
627 (unsigned long long)vcn,
628 (unsigned long long)lcn);
629 if (lcn < 0) {
630 /*
631 * When we reach the first sparse cluster we have
632 * finished with the cb.
633 */
634 if (lcn == LCN_HOLE)
635 break;
636 if (is_retry || lcn != LCN_RL_NOT_MAPPED)
637 goto rl_err;
638 is_retry = true;
639 /*
640 * Attempt to map runlist, dropping lock for the
641 * duration.
642 */
643 up_read(&ni->runlist.lock);
644 if (!ntfs_map_runlist(ni, vcn))
645 goto lock_retry_remap;
646 goto map_rl_err;
647 }
648 block = lcn << vol->cluster_size_bits >> block_size_bits;
649 /* Read the lcn from device in chunks of block_size bytes. */
650 max_block = block + (vol->cluster_size >> block_size_bits);
651 do {
652 ntfs_debug("block = 0x%x.", block);
653 if (unlikely(!(bhs[nr_bhs] = sb_getblk(sb, block))))
654 goto getblk_err;
655 nr_bhs++;
656 } while (++block < max_block);
657 }
658
659 /* Release the lock if we took it. */
660 if (rl)
661 up_read(&ni->runlist.lock);
662
663 /* Setup and initiate io on all buffer heads. */
664 for (i = 0; i < nr_bhs; i++) {
665 struct buffer_head *tbh = bhs[i];
666
667 if (!trylock_buffer(tbh))
668 continue;
669 if (unlikely(buffer_uptodate(tbh))) {
670 unlock_buffer(tbh);
671 continue;
672 }
673 get_bh(tbh);
674 tbh->b_end_io = end_buffer_read_sync;
675 submit_bh(REQ_OP_READ, 0, tbh);
676 }
677
678 /* Wait for io completion on all buffer heads. */
679 for (i = 0; i < nr_bhs; i++) {
680 struct buffer_head *tbh = bhs[i];
681
682 if (buffer_uptodate(tbh))
683 continue;
684 wait_on_buffer(tbh);
685 /*
686 * We need an optimization barrier here, otherwise we start
687 * hitting the below fixup code when accessing a loopback
688 * mounted ntfs partition. This indicates either there is a
689 * race condition in the loop driver or, more likely, gcc
690 * overoptimises the code without the barrier and it doesn't
691 * do the Right Thing(TM).
692 */
693 barrier();
694 if (unlikely(!buffer_uptodate(tbh))) {
695 ntfs_warning(vol->sb, "Buffer is unlocked but not "
696 "uptodate! Unplugging the disk queue "
697 "and rescheduling.");
698 get_bh(tbh);
699 io_schedule();
700 put_bh(tbh);
701 if (unlikely(!buffer_uptodate(tbh)))
702 goto read_err;
703 ntfs_warning(vol->sb, "Buffer is now uptodate. Good.");
704 }
705 }
706
707 /*
708 * Get the compression buffer. We must not sleep any more
709 * until we are finished with it.
710 */
711 spin_lock(&ntfs_cb_lock);
712 cb = ntfs_compression_buffer;
713
714 BUG_ON(!cb);
715
716 cb_pos = cb;
717 cb_end = cb + cb_size;
718
719 /* Copy the buffer heads into the contiguous buffer. */
720 for (i = 0; i < nr_bhs; i++) {
721 memcpy(cb_pos, bhs[i]->b_data, block_size);
722 cb_pos += block_size;
723 }
724
725 /* Just a precaution. */
726 if (cb_pos + 2 <= cb + cb_size)
727 *(u16*)cb_pos = 0;
728
729 /* Reset cb_pos back to the beginning. */
730 cb_pos = cb;
731
732 /* We now have both source (if present) and destination. */
733 ntfs_debug("Successfully read the compression block.");
734
735 /* The last page and maximum offset within it for the current cb. */
736 cb_max_page = (cur_page << PAGE_SHIFT) + cur_ofs + cb_size;
737 cb_max_ofs = cb_max_page & ~PAGE_MASK;
738 cb_max_page >>= PAGE_SHIFT;
739
740 /* Catch end of file inside a compression block. */
741 if (cb_max_page > max_page)
742 cb_max_page = max_page;
743
744 if (vcn == start_vcn - cb_clusters) {
745 /* Sparse cb, zero out page range overlapping the cb. */
746 ntfs_debug("Found sparse compression block.");
747 /* We can sleep from now on, so we drop lock. */
748 spin_unlock(&ntfs_cb_lock);
749 if (cb_max_ofs)
750 cb_max_page--;
751 for (; cur_page < cb_max_page; cur_page++) {
752 page = pages[cur_page];
753 if (page) {
754 if (likely(!cur_ofs))
755 clear_page(page_address(page));
756 else
757 memset(page_address(page) + cur_ofs, 0,
758 PAGE_SIZE -
759 cur_ofs);
760 flush_dcache_page(page);
761 kunmap(page);
762 SetPageUptodate(page);
763 unlock_page(page);
764 if (cur_page == xpage)
765 xpage_done = 1;
766 else
767 put_page(page);
768 pages[cur_page] = NULL;
769 }
770 cb_pos += PAGE_SIZE - cur_ofs;
771 cur_ofs = 0;
772 if (cb_pos >= cb_end)
773 break;
774 }
775 /* If we have a partial final page, deal with it now. */
776 if (cb_max_ofs && cb_pos < cb_end) {
777 page = pages[cur_page];
778 if (page)
779 memset(page_address(page) + cur_ofs, 0,
780 cb_max_ofs - cur_ofs);
781 /*
782 * No need to update cb_pos at this stage:
783 * cb_pos += cb_max_ofs - cur_ofs;
784 */
785 cur_ofs = cb_max_ofs;
786 }
787 } else if (vcn == start_vcn) {
788 /* We can't sleep so we need two stages. */
789 unsigned int cur2_page = cur_page;
790 unsigned int cur_ofs2 = cur_ofs;
791 u8 *cb_pos2 = cb_pos;
792
793 ntfs_debug("Found uncompressed compression block.");
794 /* Uncompressed cb, copy it to the destination pages. */
795 /*
796 * TODO: As a big optimization, we could detect this case
797 * before we read all the pages and use block_read_full_page()
798 * on all full pages instead (we still have to treat partial
799 * pages especially but at least we are getting rid of the
800 * synchronous io for the majority of pages.
801 * Or if we choose not to do the read-ahead/-behind stuff, we
802 * could just return block_read_full_page(pages[xpage]) as long
803 * as PAGE_SIZE <= cb_size.
804 */
805 if (cb_max_ofs)
806 cb_max_page--;
807 /* First stage: copy data into destination pages. */
808 for (; cur_page < cb_max_page; cur_page++) {
809 page = pages[cur_page];
810 if (page)
811 memcpy(page_address(page) + cur_ofs, cb_pos,
812 PAGE_SIZE - cur_ofs);
813 cb_pos += PAGE_SIZE - cur_ofs;
814 cur_ofs = 0;
815 if (cb_pos >= cb_end)
816 break;
817 }
818 /* If we have a partial final page, deal with it now. */
819 if (cb_max_ofs && cb_pos < cb_end) {
820 page = pages[cur_page];
821 if (page)
822 memcpy(page_address(page) + cur_ofs, cb_pos,
823 cb_max_ofs - cur_ofs);
824 cb_pos += cb_max_ofs - cur_ofs;
825 cur_ofs = cb_max_ofs;
826 }
827 /* We can sleep from now on, so drop lock. */
828 spin_unlock(&ntfs_cb_lock);
829 /* Second stage: finalize pages. */
830 for (; cur2_page < cb_max_page; cur2_page++) {
831 page = pages[cur2_page];
832 if (page) {
833 /*
834 * If we are outside the initialized size, zero
835 * the out of bounds page range.
836 */
837 handle_bounds_compressed_page(page, i_size,
838 initialized_size);
839 flush_dcache_page(page);
840 kunmap(page);
841 SetPageUptodate(page);
842 unlock_page(page);
843 if (cur2_page == xpage)
844 xpage_done = 1;
845 else
846 put_page(page);
847 pages[cur2_page] = NULL;
848 }
849 cb_pos2 += PAGE_SIZE - cur_ofs2;
850 cur_ofs2 = 0;
851 if (cb_pos2 >= cb_end)
852 break;
853 }
854 } else {
855 /* Compressed cb, decompress it into the destination page(s). */
856 unsigned int prev_cur_page = cur_page;
857
858 ntfs_debug("Found compressed compression block.");
859 err = ntfs_decompress(pages, completed_pages, &cur_page,
860 &cur_ofs, cb_max_page, cb_max_ofs, xpage,
861 &xpage_done, cb_pos, cb_size - (cb_pos - cb),
862 i_size, initialized_size);
863 /*
864 * We can sleep from now on, lock already dropped by
865 * ntfs_decompress().
866 */
867 if (err) {
868 ntfs_error(vol->sb, "ntfs_decompress() failed in inode "
869 "0x%lx with error code %i. Skipping "
870 "this compression block.",
871 ni->mft_no, -err);
872 /* Release the unfinished pages. */
873 for (; prev_cur_page < cur_page; prev_cur_page++) {
874 page = pages[prev_cur_page];
875 if (page) {
876 flush_dcache_page(page);
877 kunmap(page);
878 unlock_page(page);
879 if (prev_cur_page != xpage)
880 put_page(page);
881 pages[prev_cur_page] = NULL;
882 }
883 }
884 }
885 }
886
887 /* Release the buffer heads. */
888 for (i = 0; i < nr_bhs; i++)
889 brelse(bhs[i]);
890
891 /* Do we have more work to do? */
892 if (nr_cbs)
893 goto do_next_cb;
894
895 /* We no longer need the list of buffer heads. */
896 kfree(bhs);
897
898 /* Clean up if we have any pages left. Should never happen. */
899 for (cur_page = 0; cur_page < max_page; cur_page++) {
900 page = pages[cur_page];
901 if (page) {
902 ntfs_error(vol->sb, "Still have pages left! "
903 "Terminating them with extreme "
904 "prejudice. Inode 0x%lx, page index "
905 "0x%lx.", ni->mft_no, page->index);
906 flush_dcache_page(page);
907 kunmap(page);
908 unlock_page(page);
909 if (cur_page != xpage)
910 put_page(page);
911 pages[cur_page] = NULL;
912 }
913 }
914
915 /* We no longer need the list of pages. */
916 kfree(pages);
917 kfree(completed_pages);
918
919 /* If we have completed the requested page, we return success. */
920 if (likely(xpage_done))
921 return 0;
922
923 ntfs_debug("Failed. Returning error code %s.", err == -EOVERFLOW ?
924 "EOVERFLOW" : (!err ? "EIO" : "unknown error"));
925 return err < 0 ? err : -EIO;
926
927 read_err:
928 ntfs_error(vol->sb, "IO error while reading compressed data.");
929 /* Release the buffer heads. */
930 for (i = 0; i < nr_bhs; i++)
931 brelse(bhs[i]);
932 goto err_out;
933
934 map_rl_err:
935 ntfs_error(vol->sb, "ntfs_map_runlist() failed. Cannot read "
936 "compression block.");
937 goto err_out;
938
939 rl_err:
940 up_read(&ni->runlist.lock);
941 ntfs_error(vol->sb, "ntfs_rl_vcn_to_lcn() failed. Cannot read "
942 "compression block.");
943 goto err_out;
944
945 getblk_err:
946 up_read(&ni->runlist.lock);
947 ntfs_error(vol->sb, "getblk() failed. Cannot read compression block.");
948
949 err_out:
950 kfree(bhs);
951 for (i = cur_page; i < max_page; i++) {
952 page = pages[i];
953 if (page) {
954 flush_dcache_page(page);
955 kunmap(page);
956 unlock_page(page);
957 if (i != xpage)
958 put_page(page);
959 }
960 }
961 kfree(pages);
962 kfree(completed_pages);
963 return -EIO;
964 }
965