1 /**
2 * inode.c - NTFS kernel inode handling.
3 *
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58 * allowed to sleep.
59 */
ntfs_test_inode(struct inode * vi,ntfs_attr * na)60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 ntfs_inode *ni;
63
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
81 }
82 /* Match! */
83 return 1;
84 }
85
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
ntfs_init_locked_inode(struct inode * vi,ntfs_attr * na)104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 ntfs_inode *ni = NTFS_I(vi);
107
108 vi->i_ino = na->mft_no;
109
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
113
114 ni->name = na->name;
115 ni->name_len = na->name_len;
116
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
122 }
123
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
126
127 /*
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
133 */
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
136
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
144 }
145 return 0;
146 }
147
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
153
154 /**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
ntfs_iget(struct super_block * sb,unsigned long mft_no)170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
175
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
180
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
185
186 err = 0;
187
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
192 }
193 /*
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
196 */
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
200 }
201 return vi;
202 }
203
204 /**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
229 {
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
233
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
236
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
241
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
246
247 err = 0;
248
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
253 }
254 /*
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
258 */
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
262 }
263 return vi;
264 }
265
266 /**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
287 {
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
291
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
296
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
301
302 err = 0;
303
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
308 }
309 /*
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
313 */
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
317 }
318 return vi;
319 }
320
ntfs_alloc_big_inode(struct super_block * sb)321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 ntfs_inode *ni;
324
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
330 }
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
333 }
334
ntfs_i_callback(struct rcu_head * head)335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340
ntfs_destroy_big_inode(struct inode * inode)341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 ntfs_inode *ni = NTFS_I(inode);
344
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351
ntfs_alloc_extent_inode(void)352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 ntfs_inode *ni;
355
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
361 }
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
364 }
365
ntfs_destroy_extent_inode(ntfs_inode * ni)366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
373 }
374
375 /*
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
378 */
379 static struct lock_class_key attr_list_rl_lock_class;
380
381 /**
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
385 *
386 * Initialize an ntfs inode to defaults.
387 *
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
390 *
391 * Return zero on success and -ENOMEM on error.
392 */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
418 }
419
420 /*
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
424 */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
429 {
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
431
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
440 }
441 return ni;
442 }
443
444 /**
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
447 *
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
451 *
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
456 */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 int nr_links, err;
460
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
463
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
466
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
473
474 nr_links--;
475 /*
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
478 */
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
486 }
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
491 }
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
497 }
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
502 }
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
511 }
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
519 }
520 return 0; /* NO, it is not an extended system file. */
521 }
522
523 /**
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
526 *
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
529 *
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
533 *
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
537 *
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545 *
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
548 */
ntfs_read_locked_inode(struct inode * vi)549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
559
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561
562 /* Setup the generic vfs inode parts now. */
563 vi->i_uid = vol->uid;
564 vi->i_gid = vol->gid;
565 vi->i_mode = 0;
566
567 /*
568 * Initialize the ntfs specific part of @vi special casing
569 * FILE_MFT which we need to do at mount time.
570 */
571 if (vi->i_ino != FILE_MFT)
572 ntfs_init_big_inode(vi);
573 ni = NTFS_I(vi);
574
575 m = map_mft_record(ni);
576 if (IS_ERR(m)) {
577 err = PTR_ERR(m);
578 goto err_out;
579 }
580 ctx = ntfs_attr_get_search_ctx(ni, m);
581 if (!ctx) {
582 err = -ENOMEM;
583 goto unm_err_out;
584 }
585
586 if (!(m->flags & MFT_RECORD_IN_USE)) {
587 ntfs_error(vi->i_sb, "Inode is not in use!");
588 goto unm_err_out;
589 }
590 if (m->base_mft_record) {
591 ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 goto unm_err_out;
593 }
594
595 /* Transfer information from mft record into vfs and ntfs inodes. */
596 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
597
598 /*
599 * FIXME: Keep in mind that link_count is two for files which have both
600 * a long file name and a short file name as separate entries, so if
601 * we are hiding short file names this will be too high. Either we need
602 * to account for the short file names by subtracting them or we need
603 * to make sure we delete files even though i_nlink is not zero which
604 * might be tricky due to vfs interactions. Need to think about this
605 * some more when implementing the unlink command.
606 */
607 set_nlink(vi, le16_to_cpu(m->link_count));
608 /*
609 * FIXME: Reparse points can have the directory bit set even though
610 * they would be S_IFLNK. Need to deal with this further below when we
611 * implement reparse points / symbolic links but it will do for now.
612 * Also if not a directory, it could be something else, rather than
613 * a regular file. But again, will do for now.
614 */
615 /* Everyone gets all permissions. */
616 vi->i_mode |= S_IRWXUGO;
617 /* If read-only, no one gets write permissions. */
618 if (IS_RDONLY(vi))
619 vi->i_mode &= ~S_IWUGO;
620 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 vi->i_mode |= S_IFDIR;
622 /*
623 * Apply the directory permissions mask set in the mount
624 * options.
625 */
626 vi->i_mode &= ~vol->dmask;
627 /* Things break without this kludge! */
628 if (vi->i_nlink > 1)
629 set_nlink(vi, 1);
630 } else {
631 vi->i_mode |= S_IFREG;
632 /* Apply the file permissions mask set in the mount options. */
633 vi->i_mode &= ~vol->fmask;
634 }
635 /*
636 * Find the standard information attribute in the mft record. At this
637 * stage we haven't setup the attribute list stuff yet, so this could
638 * in fact fail if the standard information is in an extent record, but
639 * I don't think this actually ever happens.
640 */
641 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 ctx);
643 if (unlikely(err)) {
644 if (err == -ENOENT) {
645 /*
646 * TODO: We should be performing a hot fix here (if the
647 * recover mount option is set) by creating a new
648 * attribute.
649 */
650 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 "is missing.");
652 }
653 goto unm_err_out;
654 }
655 a = ctx->attr;
656 /* Get the standard information attribute value. */
657 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
658 + le32_to_cpu(a->data.resident.value_length) >
659 (u8 *)ctx->mrec + vol->mft_record_size) {
660 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
661 goto unm_err_out;
662 }
663 si = (STANDARD_INFORMATION*)((u8*)a +
664 le16_to_cpu(a->data.resident.value_offset));
665
666 /* Transfer information from the standard information into vi. */
667 /*
668 * Note: The i_?times do not quite map perfectly onto the NTFS times,
669 * but they are close enough, and in the end it doesn't really matter
670 * that much...
671 */
672 /*
673 * mtime is the last change of the data within the file. Not changed
674 * when only metadata is changed, e.g. a rename doesn't affect mtime.
675 */
676 vi->i_mtime = ntfs2utc(si->last_data_change_time);
677 /*
678 * ctime is the last change of the metadata of the file. This obviously
679 * always changes, when mtime is changed. ctime can be changed on its
680 * own, mtime is then not changed, e.g. when a file is renamed.
681 */
682 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
683 /*
684 * Last access to the data within the file. Not changed during a rename
685 * for example but changed whenever the file is written to.
686 */
687 vi->i_atime = ntfs2utc(si->last_access_time);
688
689 /* Find the attribute list attribute if present. */
690 ntfs_attr_reinit_search_ctx(ctx);
691 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
692 if (err) {
693 if (unlikely(err != -ENOENT)) {
694 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
695 "attribute.");
696 goto unm_err_out;
697 }
698 } else /* if (!err) */ {
699 if (vi->i_ino == FILE_MFT)
700 goto skip_attr_list_load;
701 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
702 NInoSetAttrList(ni);
703 a = ctx->attr;
704 if (a->flags & ATTR_COMPRESSION_MASK) {
705 ntfs_error(vi->i_sb, "Attribute list attribute is "
706 "compressed.");
707 goto unm_err_out;
708 }
709 if (a->flags & ATTR_IS_ENCRYPTED ||
710 a->flags & ATTR_IS_SPARSE) {
711 if (a->non_resident) {
712 ntfs_error(vi->i_sb, "Non-resident attribute "
713 "list attribute is encrypted/"
714 "sparse.");
715 goto unm_err_out;
716 }
717 ntfs_warning(vi->i_sb, "Resident attribute list "
718 "attribute in inode 0x%lx is marked "
719 "encrypted/sparse which is not true. "
720 "However, Windows allows this and "
721 "chkdsk does not detect or correct it "
722 "so we will just ignore the invalid "
723 "flags and pretend they are not set.",
724 vi->i_ino);
725 }
726 /* Now allocate memory for the attribute list. */
727 ni->attr_list_size = (u32)ntfs_attr_size(a);
728 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
729 if (!ni->attr_list) {
730 ntfs_error(vi->i_sb, "Not enough memory to allocate "
731 "buffer for attribute list.");
732 err = -ENOMEM;
733 goto unm_err_out;
734 }
735 if (a->non_resident) {
736 NInoSetAttrListNonResident(ni);
737 if (a->data.non_resident.lowest_vcn) {
738 ntfs_error(vi->i_sb, "Attribute list has non "
739 "zero lowest_vcn.");
740 goto unm_err_out;
741 }
742 /*
743 * Setup the runlist. No need for locking as we have
744 * exclusive access to the inode at this time.
745 */
746 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
747 a, NULL);
748 if (IS_ERR(ni->attr_list_rl.rl)) {
749 err = PTR_ERR(ni->attr_list_rl.rl);
750 ni->attr_list_rl.rl = NULL;
751 ntfs_error(vi->i_sb, "Mapping pairs "
752 "decompression failed.");
753 goto unm_err_out;
754 }
755 /* Now load the attribute list. */
756 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
757 ni->attr_list, ni->attr_list_size,
758 sle64_to_cpu(a->data.non_resident.
759 initialized_size)))) {
760 ntfs_error(vi->i_sb, "Failed to load "
761 "attribute list attribute.");
762 goto unm_err_out;
763 }
764 } else /* if (!a->non_resident) */ {
765 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
766 + le32_to_cpu(
767 a->data.resident.value_length) >
768 (u8*)ctx->mrec + vol->mft_record_size) {
769 ntfs_error(vi->i_sb, "Corrupt attribute list "
770 "in inode.");
771 goto unm_err_out;
772 }
773 /* Now copy the attribute list. */
774 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
775 a->data.resident.value_offset),
776 le32_to_cpu(
777 a->data.resident.value_length));
778 }
779 }
780 skip_attr_list_load:
781 /*
782 * If an attribute list is present we now have the attribute list value
783 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
784 */
785 if (S_ISDIR(vi->i_mode)) {
786 loff_t bvi_size;
787 ntfs_inode *bni;
788 INDEX_ROOT *ir;
789 u8 *ir_end, *index_end;
790
791 /* It is a directory, find index root attribute. */
792 ntfs_attr_reinit_search_ctx(ctx);
793 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
794 0, NULL, 0, ctx);
795 if (unlikely(err)) {
796 if (err == -ENOENT) {
797 // FIXME: File is corrupt! Hot-fix with empty
798 // index root attribute if recovery option is
799 // set.
800 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
801 "is missing.");
802 }
803 goto unm_err_out;
804 }
805 a = ctx->attr;
806 /* Set up the state. */
807 if (unlikely(a->non_resident)) {
808 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
809 "resident.");
810 goto unm_err_out;
811 }
812 /* Ensure the attribute name is placed before the value. */
813 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
814 le16_to_cpu(a->data.resident.value_offset)))) {
815 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
816 "placed after the attribute value.");
817 goto unm_err_out;
818 }
819 /*
820 * Compressed/encrypted index root just means that the newly
821 * created files in that directory should be created compressed/
822 * encrypted. However index root cannot be both compressed and
823 * encrypted.
824 */
825 if (a->flags & ATTR_COMPRESSION_MASK)
826 NInoSetCompressed(ni);
827 if (a->flags & ATTR_IS_ENCRYPTED) {
828 if (a->flags & ATTR_COMPRESSION_MASK) {
829 ntfs_error(vi->i_sb, "Found encrypted and "
830 "compressed attribute.");
831 goto unm_err_out;
832 }
833 NInoSetEncrypted(ni);
834 }
835 if (a->flags & ATTR_IS_SPARSE)
836 NInoSetSparse(ni);
837 ir = (INDEX_ROOT*)((u8*)a +
838 le16_to_cpu(a->data.resident.value_offset));
839 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
840 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
841 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
842 "corrupt.");
843 goto unm_err_out;
844 }
845 index_end = (u8*)&ir->index +
846 le32_to_cpu(ir->index.index_length);
847 if (index_end > ir_end) {
848 ntfs_error(vi->i_sb, "Directory index is corrupt.");
849 goto unm_err_out;
850 }
851 if (ir->type != AT_FILE_NAME) {
852 ntfs_error(vi->i_sb, "Indexed attribute is not "
853 "$FILE_NAME.");
854 goto unm_err_out;
855 }
856 if (ir->collation_rule != COLLATION_FILE_NAME) {
857 ntfs_error(vi->i_sb, "Index collation rule is not "
858 "COLLATION_FILE_NAME.");
859 goto unm_err_out;
860 }
861 ni->itype.index.collation_rule = ir->collation_rule;
862 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
863 if (ni->itype.index.block_size &
864 (ni->itype.index.block_size - 1)) {
865 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
866 "power of two.",
867 ni->itype.index.block_size);
868 goto unm_err_out;
869 }
870 if (ni->itype.index.block_size > PAGE_SIZE) {
871 ntfs_error(vi->i_sb, "Index block size (%u) > "
872 "PAGE_SIZE (%ld) is not "
873 "supported. Sorry.",
874 ni->itype.index.block_size,
875 PAGE_SIZE);
876 err = -EOPNOTSUPP;
877 goto unm_err_out;
878 }
879 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
880 ntfs_error(vi->i_sb, "Index block size (%u) < "
881 "NTFS_BLOCK_SIZE (%i) is not "
882 "supported. Sorry.",
883 ni->itype.index.block_size,
884 NTFS_BLOCK_SIZE);
885 err = -EOPNOTSUPP;
886 goto unm_err_out;
887 }
888 ni->itype.index.block_size_bits =
889 ffs(ni->itype.index.block_size) - 1;
890 /* Determine the size of a vcn in the directory index. */
891 if (vol->cluster_size <= ni->itype.index.block_size) {
892 ni->itype.index.vcn_size = vol->cluster_size;
893 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
894 } else {
895 ni->itype.index.vcn_size = vol->sector_size;
896 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
897 }
898
899 /* Setup the index allocation attribute, even if not present. */
900 NInoSetMstProtected(ni);
901 ni->type = AT_INDEX_ALLOCATION;
902 ni->name = I30;
903 ni->name_len = 4;
904
905 if (!(ir->index.flags & LARGE_INDEX)) {
906 /* No index allocation. */
907 vi->i_size = ni->initialized_size =
908 ni->allocated_size = 0;
909 /* We are done with the mft record, so we release it. */
910 ntfs_attr_put_search_ctx(ctx);
911 unmap_mft_record(ni);
912 m = NULL;
913 ctx = NULL;
914 goto skip_large_dir_stuff;
915 } /* LARGE_INDEX: Index allocation present. Setup state. */
916 NInoSetIndexAllocPresent(ni);
917 /* Find index allocation attribute. */
918 ntfs_attr_reinit_search_ctx(ctx);
919 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
920 CASE_SENSITIVE, 0, NULL, 0, ctx);
921 if (unlikely(err)) {
922 if (err == -ENOENT)
923 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
924 "attribute is not present but "
925 "$INDEX_ROOT indicated it is.");
926 else
927 ntfs_error(vi->i_sb, "Failed to lookup "
928 "$INDEX_ALLOCATION "
929 "attribute.");
930 goto unm_err_out;
931 }
932 a = ctx->attr;
933 if (!a->non_resident) {
934 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
935 "is resident.");
936 goto unm_err_out;
937 }
938 /*
939 * Ensure the attribute name is placed before the mapping pairs
940 * array.
941 */
942 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
943 le16_to_cpu(
944 a->data.non_resident.mapping_pairs_offset)))) {
945 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
946 "is placed after the mapping pairs "
947 "array.");
948 goto unm_err_out;
949 }
950 if (a->flags & ATTR_IS_ENCRYPTED) {
951 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
952 "is encrypted.");
953 goto unm_err_out;
954 }
955 if (a->flags & ATTR_IS_SPARSE) {
956 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
957 "is sparse.");
958 goto unm_err_out;
959 }
960 if (a->flags & ATTR_COMPRESSION_MASK) {
961 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
962 "is compressed.");
963 goto unm_err_out;
964 }
965 if (a->data.non_resident.lowest_vcn) {
966 ntfs_error(vi->i_sb, "First extent of "
967 "$INDEX_ALLOCATION attribute has non "
968 "zero lowest_vcn.");
969 goto unm_err_out;
970 }
971 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
972 ni->initialized_size = sle64_to_cpu(
973 a->data.non_resident.initialized_size);
974 ni->allocated_size = sle64_to_cpu(
975 a->data.non_resident.allocated_size);
976 /*
977 * We are done with the mft record, so we release it. Otherwise
978 * we would deadlock in ntfs_attr_iget().
979 */
980 ntfs_attr_put_search_ctx(ctx);
981 unmap_mft_record(ni);
982 m = NULL;
983 ctx = NULL;
984 /* Get the index bitmap attribute inode. */
985 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
986 if (IS_ERR(bvi)) {
987 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
988 err = PTR_ERR(bvi);
989 goto unm_err_out;
990 }
991 bni = NTFS_I(bvi);
992 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
993 NInoSparse(bni)) {
994 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
995 "and/or encrypted and/or sparse.");
996 goto iput_unm_err_out;
997 }
998 /* Consistency check bitmap size vs. index allocation size. */
999 bvi_size = i_size_read(bvi);
1000 if ((bvi_size << 3) < (vi->i_size >>
1001 ni->itype.index.block_size_bits)) {
1002 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1003 "for index allocation (0x%llx).",
1004 bvi_size << 3, vi->i_size);
1005 goto iput_unm_err_out;
1006 }
1007 /* No longer need the bitmap attribute inode. */
1008 iput(bvi);
1009 skip_large_dir_stuff:
1010 /* Setup the operations for this inode. */
1011 vi->i_op = &ntfs_dir_inode_ops;
1012 vi->i_fop = &ntfs_dir_ops;
1013 vi->i_mapping->a_ops = &ntfs_mst_aops;
1014 } else {
1015 /* It is a file. */
1016 ntfs_attr_reinit_search_ctx(ctx);
1017
1018 /* Setup the data attribute, even if not present. */
1019 ni->type = AT_DATA;
1020 ni->name = NULL;
1021 ni->name_len = 0;
1022
1023 /* Find first extent of the unnamed data attribute. */
1024 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1025 if (unlikely(err)) {
1026 vi->i_size = ni->initialized_size =
1027 ni->allocated_size = 0;
1028 if (err != -ENOENT) {
1029 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1030 "attribute.");
1031 goto unm_err_out;
1032 }
1033 /*
1034 * FILE_Secure does not have an unnamed $DATA
1035 * attribute, so we special case it here.
1036 */
1037 if (vi->i_ino == FILE_Secure)
1038 goto no_data_attr_special_case;
1039 /*
1040 * Most if not all the system files in the $Extend
1041 * system directory do not have unnamed data
1042 * attributes so we need to check if the parent
1043 * directory of the file is FILE_Extend and if it is
1044 * ignore this error. To do this we need to get the
1045 * name of this inode from the mft record as the name
1046 * contains the back reference to the parent directory.
1047 */
1048 if (ntfs_is_extended_system_file(ctx) > 0)
1049 goto no_data_attr_special_case;
1050 // FIXME: File is corrupt! Hot-fix with empty data
1051 // attribute if recovery option is set.
1052 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1053 goto unm_err_out;
1054 }
1055 a = ctx->attr;
1056 /* Setup the state. */
1057 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1058 if (a->flags & ATTR_COMPRESSION_MASK) {
1059 NInoSetCompressed(ni);
1060 if (vol->cluster_size > 4096) {
1061 ntfs_error(vi->i_sb, "Found "
1062 "compressed data but "
1063 "compression is "
1064 "disabled due to "
1065 "cluster size (%i) > "
1066 "4kiB.",
1067 vol->cluster_size);
1068 goto unm_err_out;
1069 }
1070 if ((a->flags & ATTR_COMPRESSION_MASK)
1071 != ATTR_IS_COMPRESSED) {
1072 ntfs_error(vi->i_sb, "Found unknown "
1073 "compression method "
1074 "or corrupt file.");
1075 goto unm_err_out;
1076 }
1077 }
1078 if (a->flags & ATTR_IS_SPARSE)
1079 NInoSetSparse(ni);
1080 }
1081 if (a->flags & ATTR_IS_ENCRYPTED) {
1082 if (NInoCompressed(ni)) {
1083 ntfs_error(vi->i_sb, "Found encrypted and "
1084 "compressed data.");
1085 goto unm_err_out;
1086 }
1087 NInoSetEncrypted(ni);
1088 }
1089 if (a->non_resident) {
1090 NInoSetNonResident(ni);
1091 if (NInoCompressed(ni) || NInoSparse(ni)) {
1092 if (NInoCompressed(ni) && a->data.non_resident.
1093 compression_unit != 4) {
1094 ntfs_error(vi->i_sb, "Found "
1095 "non-standard "
1096 "compression unit (%u "
1097 "instead of 4). "
1098 "Cannot handle this.",
1099 a->data.non_resident.
1100 compression_unit);
1101 err = -EOPNOTSUPP;
1102 goto unm_err_out;
1103 }
1104 if (a->data.non_resident.compression_unit) {
1105 ni->itype.compressed.block_size = 1U <<
1106 (a->data.non_resident.
1107 compression_unit +
1108 vol->cluster_size_bits);
1109 ni->itype.compressed.block_size_bits =
1110 ffs(ni->itype.
1111 compressed.
1112 block_size) - 1;
1113 ni->itype.compressed.block_clusters =
1114 1U << a->data.
1115 non_resident.
1116 compression_unit;
1117 } else {
1118 ni->itype.compressed.block_size = 0;
1119 ni->itype.compressed.block_size_bits =
1120 0;
1121 ni->itype.compressed.block_clusters =
1122 0;
1123 }
1124 ni->itype.compressed.size = sle64_to_cpu(
1125 a->data.non_resident.
1126 compressed_size);
1127 }
1128 if (a->data.non_resident.lowest_vcn) {
1129 ntfs_error(vi->i_sb, "First extent of $DATA "
1130 "attribute has non zero "
1131 "lowest_vcn.");
1132 goto unm_err_out;
1133 }
1134 vi->i_size = sle64_to_cpu(
1135 a->data.non_resident.data_size);
1136 ni->initialized_size = sle64_to_cpu(
1137 a->data.non_resident.initialized_size);
1138 ni->allocated_size = sle64_to_cpu(
1139 a->data.non_resident.allocated_size);
1140 } else { /* Resident attribute. */
1141 vi->i_size = ni->initialized_size = le32_to_cpu(
1142 a->data.resident.value_length);
1143 ni->allocated_size = le32_to_cpu(a->length) -
1144 le16_to_cpu(
1145 a->data.resident.value_offset);
1146 if (vi->i_size > ni->allocated_size) {
1147 ntfs_error(vi->i_sb, "Resident data attribute "
1148 "is corrupt (size exceeds "
1149 "allocation).");
1150 goto unm_err_out;
1151 }
1152 }
1153 no_data_attr_special_case:
1154 /* We are done with the mft record, so we release it. */
1155 ntfs_attr_put_search_ctx(ctx);
1156 unmap_mft_record(ni);
1157 m = NULL;
1158 ctx = NULL;
1159 /* Setup the operations for this inode. */
1160 vi->i_op = &ntfs_file_inode_ops;
1161 vi->i_fop = &ntfs_file_ops;
1162 vi->i_mapping->a_ops = &ntfs_normal_aops;
1163 if (NInoMstProtected(ni))
1164 vi->i_mapping->a_ops = &ntfs_mst_aops;
1165 else if (NInoCompressed(ni))
1166 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1167 }
1168 /*
1169 * The number of 512-byte blocks used on disk (for stat). This is in so
1170 * far inaccurate as it doesn't account for any named streams or other
1171 * special non-resident attributes, but that is how Windows works, too,
1172 * so we are at least consistent with Windows, if not entirely
1173 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174 * significant slowdown as it would involve iterating over all
1175 * attributes in the mft record and adding the allocated/compressed
1176 * sizes of all non-resident attributes present to give us the Linux
1177 * correct size that should go into i_blocks (after division by 512).
1178 */
1179 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1180 vi->i_blocks = ni->itype.compressed.size >> 9;
1181 else
1182 vi->i_blocks = ni->allocated_size >> 9;
1183 ntfs_debug("Done.");
1184 return 0;
1185 iput_unm_err_out:
1186 iput(bvi);
1187 unm_err_out:
1188 if (!err)
1189 err = -EIO;
1190 if (ctx)
1191 ntfs_attr_put_search_ctx(ctx);
1192 if (m)
1193 unmap_mft_record(ni);
1194 err_out:
1195 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1196 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1197 make_bad_inode(vi);
1198 if (err != -EOPNOTSUPP && err != -ENOMEM)
1199 NVolSetErrors(vol);
1200 return err;
1201 }
1202
1203 /**
1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205 * @base_vi: base inode
1206 * @vi: attribute inode to read
1207 *
1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209 * attribute inode described by @vi into memory from the base mft record
1210 * described by @base_ni.
1211 *
1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213 * reading and looks up the attribute described by @vi before setting up the
1214 * necessary fields in @vi as well as initializing the ntfs inode.
1215 *
1216 * Q: What locks are held when the function is called?
1217 * A: i_state has I_NEW set, hence the inode is locked, also
1218 * i_count is set to 1, so it is not going to go away
1219 *
1220 * Return 0 on success and -errno on error. In the error case, the inode will
1221 * have had make_bad_inode() executed on it.
1222 *
1223 * Note this cannot be called for AT_INDEX_ALLOCATION.
1224 */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1225 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1226 {
1227 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1228 ntfs_inode *ni, *base_ni;
1229 MFT_RECORD *m;
1230 ATTR_RECORD *a;
1231 ntfs_attr_search_ctx *ctx;
1232 int err = 0;
1233
1234 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1235
1236 ntfs_init_big_inode(vi);
1237
1238 ni = NTFS_I(vi);
1239 base_ni = NTFS_I(base_vi);
1240
1241 /* Just mirror the values from the base inode. */
1242 vi->i_uid = base_vi->i_uid;
1243 vi->i_gid = base_vi->i_gid;
1244 set_nlink(vi, base_vi->i_nlink);
1245 vi->i_mtime = base_vi->i_mtime;
1246 vi->i_ctime = base_vi->i_ctime;
1247 vi->i_atime = base_vi->i_atime;
1248 vi->i_generation = ni->seq_no = base_ni->seq_no;
1249
1250 /* Set inode type to zero but preserve permissions. */
1251 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1252
1253 m = map_mft_record(base_ni);
1254 if (IS_ERR(m)) {
1255 err = PTR_ERR(m);
1256 goto err_out;
1257 }
1258 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1259 if (!ctx) {
1260 err = -ENOMEM;
1261 goto unm_err_out;
1262 }
1263 /* Find the attribute. */
1264 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1265 CASE_SENSITIVE, 0, NULL, 0, ctx);
1266 if (unlikely(err))
1267 goto unm_err_out;
1268 a = ctx->attr;
1269 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1270 if (a->flags & ATTR_COMPRESSION_MASK) {
1271 NInoSetCompressed(ni);
1272 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1273 ni->name_len)) {
1274 ntfs_error(vi->i_sb, "Found compressed "
1275 "non-data or named data "
1276 "attribute. Please report "
1277 "you saw this message to "
1278 "linux-ntfs-dev@lists."
1279 "sourceforge.net");
1280 goto unm_err_out;
1281 }
1282 if (vol->cluster_size > 4096) {
1283 ntfs_error(vi->i_sb, "Found compressed "
1284 "attribute but compression is "
1285 "disabled due to cluster size "
1286 "(%i) > 4kiB.",
1287 vol->cluster_size);
1288 goto unm_err_out;
1289 }
1290 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1291 ATTR_IS_COMPRESSED) {
1292 ntfs_error(vi->i_sb, "Found unknown "
1293 "compression method.");
1294 goto unm_err_out;
1295 }
1296 }
1297 /*
1298 * The compressed/sparse flag set in an index root just means
1299 * to compress all files.
1300 */
1301 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1302 ntfs_error(vi->i_sb, "Found mst protected attribute "
1303 "but the attribute is %s. Please "
1304 "report you saw this message to "
1305 "linux-ntfs-dev@lists.sourceforge.net",
1306 NInoCompressed(ni) ? "compressed" :
1307 "sparse");
1308 goto unm_err_out;
1309 }
1310 if (a->flags & ATTR_IS_SPARSE)
1311 NInoSetSparse(ni);
1312 }
1313 if (a->flags & ATTR_IS_ENCRYPTED) {
1314 if (NInoCompressed(ni)) {
1315 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1316 "data.");
1317 goto unm_err_out;
1318 }
1319 /*
1320 * The encryption flag set in an index root just means to
1321 * encrypt all files.
1322 */
1323 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1324 ntfs_error(vi->i_sb, "Found mst protected attribute "
1325 "but the attribute is encrypted. "
1326 "Please report you saw this message "
1327 "to linux-ntfs-dev@lists.sourceforge."
1328 "net");
1329 goto unm_err_out;
1330 }
1331 if (ni->type != AT_DATA) {
1332 ntfs_error(vi->i_sb, "Found encrypted non-data "
1333 "attribute.");
1334 goto unm_err_out;
1335 }
1336 NInoSetEncrypted(ni);
1337 }
1338 if (!a->non_resident) {
1339 /* Ensure the attribute name is placed before the value. */
1340 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1341 le16_to_cpu(a->data.resident.value_offset)))) {
1342 ntfs_error(vol->sb, "Attribute name is placed after "
1343 "the attribute value.");
1344 goto unm_err_out;
1345 }
1346 if (NInoMstProtected(ni)) {
1347 ntfs_error(vi->i_sb, "Found mst protected attribute "
1348 "but the attribute is resident. "
1349 "Please report you saw this message to "
1350 "linux-ntfs-dev@lists.sourceforge.net");
1351 goto unm_err_out;
1352 }
1353 vi->i_size = ni->initialized_size = le32_to_cpu(
1354 a->data.resident.value_length);
1355 ni->allocated_size = le32_to_cpu(a->length) -
1356 le16_to_cpu(a->data.resident.value_offset);
1357 if (vi->i_size > ni->allocated_size) {
1358 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1359 "(size exceeds allocation).");
1360 goto unm_err_out;
1361 }
1362 } else {
1363 NInoSetNonResident(ni);
1364 /*
1365 * Ensure the attribute name is placed before the mapping pairs
1366 * array.
1367 */
1368 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1369 le16_to_cpu(
1370 a->data.non_resident.mapping_pairs_offset)))) {
1371 ntfs_error(vol->sb, "Attribute name is placed after "
1372 "the mapping pairs array.");
1373 goto unm_err_out;
1374 }
1375 if (NInoCompressed(ni) || NInoSparse(ni)) {
1376 if (NInoCompressed(ni) && a->data.non_resident.
1377 compression_unit != 4) {
1378 ntfs_error(vi->i_sb, "Found non-standard "
1379 "compression unit (%u instead "
1380 "of 4). Cannot handle this.",
1381 a->data.non_resident.
1382 compression_unit);
1383 err = -EOPNOTSUPP;
1384 goto unm_err_out;
1385 }
1386 if (a->data.non_resident.compression_unit) {
1387 ni->itype.compressed.block_size = 1U <<
1388 (a->data.non_resident.
1389 compression_unit +
1390 vol->cluster_size_bits);
1391 ni->itype.compressed.block_size_bits =
1392 ffs(ni->itype.compressed.
1393 block_size) - 1;
1394 ni->itype.compressed.block_clusters = 1U <<
1395 a->data.non_resident.
1396 compression_unit;
1397 } else {
1398 ni->itype.compressed.block_size = 0;
1399 ni->itype.compressed.block_size_bits = 0;
1400 ni->itype.compressed.block_clusters = 0;
1401 }
1402 ni->itype.compressed.size = sle64_to_cpu(
1403 a->data.non_resident.compressed_size);
1404 }
1405 if (a->data.non_resident.lowest_vcn) {
1406 ntfs_error(vi->i_sb, "First extent of attribute has "
1407 "non-zero lowest_vcn.");
1408 goto unm_err_out;
1409 }
1410 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1411 ni->initialized_size = sle64_to_cpu(
1412 a->data.non_resident.initialized_size);
1413 ni->allocated_size = sle64_to_cpu(
1414 a->data.non_resident.allocated_size);
1415 }
1416 vi->i_mapping->a_ops = &ntfs_normal_aops;
1417 if (NInoMstProtected(ni))
1418 vi->i_mapping->a_ops = &ntfs_mst_aops;
1419 else if (NInoCompressed(ni))
1420 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1421 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1422 vi->i_blocks = ni->itype.compressed.size >> 9;
1423 else
1424 vi->i_blocks = ni->allocated_size >> 9;
1425 /*
1426 * Make sure the base inode does not go away and attach it to the
1427 * attribute inode.
1428 */
1429 igrab(base_vi);
1430 ni->ext.base_ntfs_ino = base_ni;
1431 ni->nr_extents = -1;
1432
1433 ntfs_attr_put_search_ctx(ctx);
1434 unmap_mft_record(base_ni);
1435
1436 ntfs_debug("Done.");
1437 return 0;
1438
1439 unm_err_out:
1440 if (!err)
1441 err = -EIO;
1442 if (ctx)
1443 ntfs_attr_put_search_ctx(ctx);
1444 unmap_mft_record(base_ni);
1445 err_out:
1446 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1447 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1448 "Marking corrupt inode and base inode 0x%lx as bad. "
1449 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1450 base_vi->i_ino);
1451 make_bad_inode(vi);
1452 if (err != -ENOMEM)
1453 NVolSetErrors(vol);
1454 return err;
1455 }
1456
1457 /**
1458 * ntfs_read_locked_index_inode - read an index inode from its base inode
1459 * @base_vi: base inode
1460 * @vi: index inode to read
1461 *
1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463 * index inode described by @vi into memory from the base mft record described
1464 * by @base_ni.
1465 *
1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467 * reading and looks up the attributes relating to the index described by @vi
1468 * before setting up the necessary fields in @vi as well as initializing the
1469 * ntfs inode.
1470 *
1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1473 * are setup like directory inodes since directories are a special case of
1474 * indices ao they need to be treated in much the same way. Most importantly,
1475 * for small indices the index allocation attribute might not actually exist.
1476 * However, the index root attribute always exists but this does not need to
1477 * have an inode associated with it and this is why we define a new inode type
1478 * index. Also, like for directories, we need to have an attribute inode for
1479 * the bitmap attribute corresponding to the index allocation attribute and we
1480 * can store this in the appropriate field of the inode, just like we do for
1481 * normal directory inodes.
1482 *
1483 * Q: What locks are held when the function is called?
1484 * A: i_state has I_NEW set, hence the inode is locked, also
1485 * i_count is set to 1, so it is not going to go away
1486 *
1487 * Return 0 on success and -errno on error. In the error case, the inode will
1488 * have had make_bad_inode() executed on it.
1489 */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1490 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1491 {
1492 loff_t bvi_size;
1493 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1494 ntfs_inode *ni, *base_ni, *bni;
1495 struct inode *bvi;
1496 MFT_RECORD *m;
1497 ATTR_RECORD *a;
1498 ntfs_attr_search_ctx *ctx;
1499 INDEX_ROOT *ir;
1500 u8 *ir_end, *index_end;
1501 int err = 0;
1502
1503 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1504 ntfs_init_big_inode(vi);
1505 ni = NTFS_I(vi);
1506 base_ni = NTFS_I(base_vi);
1507 /* Just mirror the values from the base inode. */
1508 vi->i_uid = base_vi->i_uid;
1509 vi->i_gid = base_vi->i_gid;
1510 set_nlink(vi, base_vi->i_nlink);
1511 vi->i_mtime = base_vi->i_mtime;
1512 vi->i_ctime = base_vi->i_ctime;
1513 vi->i_atime = base_vi->i_atime;
1514 vi->i_generation = ni->seq_no = base_ni->seq_no;
1515 /* Set inode type to zero but preserve permissions. */
1516 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1517 /* Map the mft record for the base inode. */
1518 m = map_mft_record(base_ni);
1519 if (IS_ERR(m)) {
1520 err = PTR_ERR(m);
1521 goto err_out;
1522 }
1523 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1524 if (!ctx) {
1525 err = -ENOMEM;
1526 goto unm_err_out;
1527 }
1528 /* Find the index root attribute. */
1529 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1530 CASE_SENSITIVE, 0, NULL, 0, ctx);
1531 if (unlikely(err)) {
1532 if (err == -ENOENT)
1533 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1534 "missing.");
1535 goto unm_err_out;
1536 }
1537 a = ctx->attr;
1538 /* Set up the state. */
1539 if (unlikely(a->non_resident)) {
1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1541 goto unm_err_out;
1542 }
1543 /* Ensure the attribute name is placed before the value. */
1544 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1545 le16_to_cpu(a->data.resident.value_offset)))) {
1546 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1547 "after the attribute value.");
1548 goto unm_err_out;
1549 }
1550 /*
1551 * Compressed/encrypted/sparse index root is not allowed, except for
1552 * directories of course but those are not dealt with here.
1553 */
1554 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1555 ATTR_IS_SPARSE)) {
1556 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1557 "root attribute.");
1558 goto unm_err_out;
1559 }
1560 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1561 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1562 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1563 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1564 goto unm_err_out;
1565 }
1566 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1567 if (index_end > ir_end) {
1568 ntfs_error(vi->i_sb, "Index is corrupt.");
1569 goto unm_err_out;
1570 }
1571 if (ir->type) {
1572 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1573 le32_to_cpu(ir->type));
1574 goto unm_err_out;
1575 }
1576 ni->itype.index.collation_rule = ir->collation_rule;
1577 ntfs_debug("Index collation rule is 0x%x.",
1578 le32_to_cpu(ir->collation_rule));
1579 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1580 if (!is_power_of_2(ni->itype.index.block_size)) {
1581 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1582 "two.", ni->itype.index.block_size);
1583 goto unm_err_out;
1584 }
1585 if (ni->itype.index.block_size > PAGE_SIZE) {
1586 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1587 "(%ld) is not supported. Sorry.",
1588 ni->itype.index.block_size, PAGE_SIZE);
1589 err = -EOPNOTSUPP;
1590 goto unm_err_out;
1591 }
1592 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1593 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1594 "(%i) is not supported. Sorry.",
1595 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1596 err = -EOPNOTSUPP;
1597 goto unm_err_out;
1598 }
1599 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1600 /* Determine the size of a vcn in the index. */
1601 if (vol->cluster_size <= ni->itype.index.block_size) {
1602 ni->itype.index.vcn_size = vol->cluster_size;
1603 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1604 } else {
1605 ni->itype.index.vcn_size = vol->sector_size;
1606 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1607 }
1608 /* Check for presence of index allocation attribute. */
1609 if (!(ir->index.flags & LARGE_INDEX)) {
1610 /* No index allocation. */
1611 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1612 /* We are done with the mft record, so we release it. */
1613 ntfs_attr_put_search_ctx(ctx);
1614 unmap_mft_record(base_ni);
1615 m = NULL;
1616 ctx = NULL;
1617 goto skip_large_index_stuff;
1618 } /* LARGE_INDEX: Index allocation present. Setup state. */
1619 NInoSetIndexAllocPresent(ni);
1620 /* Find index allocation attribute. */
1621 ntfs_attr_reinit_search_ctx(ctx);
1622 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1623 CASE_SENSITIVE, 0, NULL, 0, ctx);
1624 if (unlikely(err)) {
1625 if (err == -ENOENT)
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 "not present but $INDEX_ROOT "
1628 "indicated it is.");
1629 else
1630 ntfs_error(vi->i_sb, "Failed to lookup "
1631 "$INDEX_ALLOCATION attribute.");
1632 goto unm_err_out;
1633 }
1634 a = ctx->attr;
1635 if (!a->non_resident) {
1636 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637 "resident.");
1638 goto unm_err_out;
1639 }
1640 /*
1641 * Ensure the attribute name is placed before the mapping pairs array.
1642 */
1643 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1644 le16_to_cpu(
1645 a->data.non_resident.mapping_pairs_offset)))) {
1646 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1647 "placed after the mapping pairs array.");
1648 goto unm_err_out;
1649 }
1650 if (a->flags & ATTR_IS_ENCRYPTED) {
1651 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1652 "encrypted.");
1653 goto unm_err_out;
1654 }
1655 if (a->flags & ATTR_IS_SPARSE) {
1656 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1657 goto unm_err_out;
1658 }
1659 if (a->flags & ATTR_COMPRESSION_MASK) {
1660 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1661 "compressed.");
1662 goto unm_err_out;
1663 }
1664 if (a->data.non_resident.lowest_vcn) {
1665 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1666 "attribute has non zero lowest_vcn.");
1667 goto unm_err_out;
1668 }
1669 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1670 ni->initialized_size = sle64_to_cpu(
1671 a->data.non_resident.initialized_size);
1672 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1673 /*
1674 * We are done with the mft record, so we release it. Otherwise
1675 * we would deadlock in ntfs_attr_iget().
1676 */
1677 ntfs_attr_put_search_ctx(ctx);
1678 unmap_mft_record(base_ni);
1679 m = NULL;
1680 ctx = NULL;
1681 /* Get the index bitmap attribute inode. */
1682 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1683 if (IS_ERR(bvi)) {
1684 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1685 err = PTR_ERR(bvi);
1686 goto unm_err_out;
1687 }
1688 bni = NTFS_I(bvi);
1689 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1690 NInoSparse(bni)) {
1691 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1692 "encrypted and/or sparse.");
1693 goto iput_unm_err_out;
1694 }
1695 /* Consistency check bitmap size vs. index allocation size. */
1696 bvi_size = i_size_read(bvi);
1697 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1698 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1699 "index allocation (0x%llx).", bvi_size << 3,
1700 vi->i_size);
1701 goto iput_unm_err_out;
1702 }
1703 iput(bvi);
1704 skip_large_index_stuff:
1705 /* Setup the operations for this index inode. */
1706 vi->i_mapping->a_ops = &ntfs_mst_aops;
1707 vi->i_blocks = ni->allocated_size >> 9;
1708 /*
1709 * Make sure the base inode doesn't go away and attach it to the
1710 * index inode.
1711 */
1712 igrab(base_vi);
1713 ni->ext.base_ntfs_ino = base_ni;
1714 ni->nr_extents = -1;
1715
1716 ntfs_debug("Done.");
1717 return 0;
1718 iput_unm_err_out:
1719 iput(bvi);
1720 unm_err_out:
1721 if (!err)
1722 err = -EIO;
1723 if (ctx)
1724 ntfs_attr_put_search_ctx(ctx);
1725 if (m)
1726 unmap_mft_record(base_ni);
1727 err_out:
1728 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1729 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1730 ni->name_len);
1731 make_bad_inode(vi);
1732 if (err != -EOPNOTSUPP && err != -ENOMEM)
1733 NVolSetErrors(vol);
1734 return err;
1735 }
1736
1737 /*
1738 * The MFT inode has special locking, so teach the lock validator
1739 * about this by splitting off the locking rules of the MFT from
1740 * the locking rules of other inodes. The MFT inode can never be
1741 * accessed from the VFS side (or even internally), only by the
1742 * map_mft functions.
1743 */
1744 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1745
1746 /**
1747 * ntfs_read_inode_mount - special read_inode for mount time use only
1748 * @vi: inode to read
1749 *
1750 * Read inode FILE_MFT at mount time, only called with super_block lock
1751 * held from within the read_super() code path.
1752 *
1753 * This function exists because when it is called the page cache for $MFT/$DATA
1754 * is not initialized and hence we cannot get at the contents of mft records
1755 * by calling map_mft_record*().
1756 *
1757 * Further it needs to cope with the circular references problem, i.e. cannot
1758 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1759 * we do not know where the other extent mft records are yet and again, because
1760 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1761 * attribute list is actually present in $MFT inode.
1762 *
1763 * We solve these problems by starting with the $DATA attribute before anything
1764 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1765 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1766 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1767 * sufficient information for the next step to complete.
1768 *
1769 * This should work but there are two possible pit falls (see inline comments
1770 * below), but only time will tell if they are real pits or just smoke...
1771 */
ntfs_read_inode_mount(struct inode * vi)1772 int ntfs_read_inode_mount(struct inode *vi)
1773 {
1774 VCN next_vcn, last_vcn, highest_vcn;
1775 s64 block;
1776 struct super_block *sb = vi->i_sb;
1777 ntfs_volume *vol = NTFS_SB(sb);
1778 struct buffer_head *bh;
1779 ntfs_inode *ni;
1780 MFT_RECORD *m = NULL;
1781 ATTR_RECORD *a;
1782 ntfs_attr_search_ctx *ctx;
1783 unsigned int i, nr_blocks;
1784 int err;
1785
1786 ntfs_debug("Entering.");
1787
1788 /* Initialize the ntfs specific part of @vi. */
1789 ntfs_init_big_inode(vi);
1790
1791 ni = NTFS_I(vi);
1792
1793 /* Setup the data attribute. It is special as it is mst protected. */
1794 NInoSetNonResident(ni);
1795 NInoSetMstProtected(ni);
1796 NInoSetSparseDisabled(ni);
1797 ni->type = AT_DATA;
1798 ni->name = NULL;
1799 ni->name_len = 0;
1800 /*
1801 * This sets up our little cheat allowing us to reuse the async read io
1802 * completion handler for directories.
1803 */
1804 ni->itype.index.block_size = vol->mft_record_size;
1805 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1806
1807 /* Very important! Needed to be able to call map_mft_record*(). */
1808 vol->mft_ino = vi;
1809
1810 /* Allocate enough memory to read the first mft record. */
1811 if (vol->mft_record_size > 64 * 1024) {
1812 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1813 vol->mft_record_size);
1814 goto err_out;
1815 }
1816 i = vol->mft_record_size;
1817 if (i < sb->s_blocksize)
1818 i = sb->s_blocksize;
1819 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1820 if (!m) {
1821 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1822 goto err_out;
1823 }
1824
1825 /* Determine the first block of the $MFT/$DATA attribute. */
1826 block = vol->mft_lcn << vol->cluster_size_bits >>
1827 sb->s_blocksize_bits;
1828 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1829 if (!nr_blocks)
1830 nr_blocks = 1;
1831
1832 /* Load $MFT/$DATA's first mft record. */
1833 for (i = 0; i < nr_blocks; i++) {
1834 bh = sb_bread(sb, block++);
1835 if (!bh) {
1836 ntfs_error(sb, "Device read failed.");
1837 goto err_out;
1838 }
1839 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1840 sb->s_blocksize);
1841 brelse(bh);
1842 }
1843
1844 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1845 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1846 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1847 goto err_out;
1848 }
1849
1850 /* Apply the mst fixups. */
1851 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1852 /* FIXME: Try to use the $MFTMirr now. */
1853 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1854 goto err_out;
1855 }
1856
1857 /* Sanity check offset to the first attribute */
1858 if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) {
1859 ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.",
1860 le16_to_cpu(m->attrs_offset));
1861 goto err_out;
1862 }
1863
1864 /* Need this to sanity check attribute list references to $MFT. */
1865 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1866
1867 /* Provides readpage() for map_mft_record(). */
1868 vi->i_mapping->a_ops = &ntfs_mst_aops;
1869
1870 ctx = ntfs_attr_get_search_ctx(ni, m);
1871 if (!ctx) {
1872 err = -ENOMEM;
1873 goto err_out;
1874 }
1875
1876 /* Find the attribute list attribute if present. */
1877 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1878 if (err) {
1879 if (unlikely(err != -ENOENT)) {
1880 ntfs_error(sb, "Failed to lookup attribute list "
1881 "attribute. You should run chkdsk.");
1882 goto put_err_out;
1883 }
1884 } else /* if (!err) */ {
1885 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1886 u8 *al_end;
1887 static const char *es = " Not allowed. $MFT is corrupt. "
1888 "You should run chkdsk.";
1889
1890 ntfs_debug("Attribute list attribute found in $MFT.");
1891 NInoSetAttrList(ni);
1892 a = ctx->attr;
1893 if (a->flags & ATTR_COMPRESSION_MASK) {
1894 ntfs_error(sb, "Attribute list attribute is "
1895 "compressed.%s", es);
1896 goto put_err_out;
1897 }
1898 if (a->flags & ATTR_IS_ENCRYPTED ||
1899 a->flags & ATTR_IS_SPARSE) {
1900 if (a->non_resident) {
1901 ntfs_error(sb, "Non-resident attribute list "
1902 "attribute is encrypted/"
1903 "sparse.%s", es);
1904 goto put_err_out;
1905 }
1906 ntfs_warning(sb, "Resident attribute list attribute "
1907 "in $MFT system file is marked "
1908 "encrypted/sparse which is not true. "
1909 "However, Windows allows this and "
1910 "chkdsk does not detect or correct it "
1911 "so we will just ignore the invalid "
1912 "flags and pretend they are not set.");
1913 }
1914 /* Now allocate memory for the attribute list. */
1915 ni->attr_list_size = (u32)ntfs_attr_size(a);
1916 if (!ni->attr_list_size) {
1917 ntfs_error(sb, "Attr_list_size is zero");
1918 goto put_err_out;
1919 }
1920 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1921 if (!ni->attr_list) {
1922 ntfs_error(sb, "Not enough memory to allocate buffer "
1923 "for attribute list.");
1924 goto put_err_out;
1925 }
1926 if (a->non_resident) {
1927 NInoSetAttrListNonResident(ni);
1928 if (a->data.non_resident.lowest_vcn) {
1929 ntfs_error(sb, "Attribute list has non zero "
1930 "lowest_vcn. $MFT is corrupt. "
1931 "You should run chkdsk.");
1932 goto put_err_out;
1933 }
1934 /* Setup the runlist. */
1935 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1936 a, NULL);
1937 if (IS_ERR(ni->attr_list_rl.rl)) {
1938 err = PTR_ERR(ni->attr_list_rl.rl);
1939 ni->attr_list_rl.rl = NULL;
1940 ntfs_error(sb, "Mapping pairs decompression "
1941 "failed with error code %i.",
1942 -err);
1943 goto put_err_out;
1944 }
1945 /* Now load the attribute list. */
1946 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1947 ni->attr_list, ni->attr_list_size,
1948 sle64_to_cpu(a->data.
1949 non_resident.initialized_size)))) {
1950 ntfs_error(sb, "Failed to load attribute list "
1951 "attribute with error code %i.",
1952 -err);
1953 goto put_err_out;
1954 }
1955 } else /* if (!ctx.attr->non_resident) */ {
1956 if ((u8*)a + le16_to_cpu(
1957 a->data.resident.value_offset) +
1958 le32_to_cpu(
1959 a->data.resident.value_length) >
1960 (u8*)ctx->mrec + vol->mft_record_size) {
1961 ntfs_error(sb, "Corrupt attribute list "
1962 "attribute.");
1963 goto put_err_out;
1964 }
1965 /* Now copy the attribute list. */
1966 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1967 a->data.resident.value_offset),
1968 le32_to_cpu(
1969 a->data.resident.value_length));
1970 }
1971 /* The attribute list is now setup in memory. */
1972 /*
1973 * FIXME: I don't know if this case is actually possible.
1974 * According to logic it is not possible but I have seen too
1975 * many weird things in MS software to rely on logic... Thus we
1976 * perform a manual search and make sure the first $MFT/$DATA
1977 * extent is in the base inode. If it is not we abort with an
1978 * error and if we ever see a report of this error we will need
1979 * to do some magic in order to have the necessary mft record
1980 * loaded and in the right place in the page cache. But
1981 * hopefully logic will prevail and this never happens...
1982 */
1983 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1984 al_end = (u8*)al_entry + ni->attr_list_size;
1985 for (;; al_entry = next_al_entry) {
1986 /* Out of bounds check. */
1987 if ((u8*)al_entry < ni->attr_list ||
1988 (u8*)al_entry > al_end)
1989 goto em_put_err_out;
1990 /* Catch the end of the attribute list. */
1991 if ((u8*)al_entry == al_end)
1992 goto em_put_err_out;
1993 if (!al_entry->length)
1994 goto em_put_err_out;
1995 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1996 le16_to_cpu(al_entry->length) > al_end)
1997 goto em_put_err_out;
1998 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1999 le16_to_cpu(al_entry->length));
2000 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
2001 goto em_put_err_out;
2002 if (AT_DATA != al_entry->type)
2003 continue;
2004 /* We want an unnamed attribute. */
2005 if (al_entry->name_length)
2006 goto em_put_err_out;
2007 /* Want the first entry, i.e. lowest_vcn == 0. */
2008 if (al_entry->lowest_vcn)
2009 goto em_put_err_out;
2010 /* First entry has to be in the base mft record. */
2011 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
2012 /* MFT references do not match, logic fails. */
2013 ntfs_error(sb, "BUG: The first $DATA extent "
2014 "of $MFT is not in the base "
2015 "mft record. Please report "
2016 "you saw this message to "
2017 "linux-ntfs-dev@lists."
2018 "sourceforge.net");
2019 goto put_err_out;
2020 } else {
2021 /* Sequence numbers must match. */
2022 if (MSEQNO_LE(al_entry->mft_reference) !=
2023 ni->seq_no)
2024 goto em_put_err_out;
2025 /* Got it. All is ok. We can stop now. */
2026 break;
2027 }
2028 }
2029 }
2030
2031 ntfs_attr_reinit_search_ctx(ctx);
2032
2033 /* Now load all attribute extents. */
2034 a = NULL;
2035 next_vcn = last_vcn = highest_vcn = 0;
2036 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2037 ctx))) {
2038 runlist_element *nrl;
2039
2040 /* Cache the current attribute. */
2041 a = ctx->attr;
2042 /* $MFT must be non-resident. */
2043 if (!a->non_resident) {
2044 ntfs_error(sb, "$MFT must be non-resident but a "
2045 "resident extent was found. $MFT is "
2046 "corrupt. Run chkdsk.");
2047 goto put_err_out;
2048 }
2049 /* $MFT must be uncompressed and unencrypted. */
2050 if (a->flags & ATTR_COMPRESSION_MASK ||
2051 a->flags & ATTR_IS_ENCRYPTED ||
2052 a->flags & ATTR_IS_SPARSE) {
2053 ntfs_error(sb, "$MFT must be uncompressed, "
2054 "non-sparse, and unencrypted but a "
2055 "compressed/sparse/encrypted extent "
2056 "was found. $MFT is corrupt. Run "
2057 "chkdsk.");
2058 goto put_err_out;
2059 }
2060 /*
2061 * Decompress the mapping pairs array of this extent and merge
2062 * the result into the existing runlist. No need for locking
2063 * as we have exclusive access to the inode at this time and we
2064 * are a mount in progress task, too.
2065 */
2066 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2067 if (IS_ERR(nrl)) {
2068 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2069 "failed with error code %ld. $MFT is "
2070 "corrupt.", PTR_ERR(nrl));
2071 goto put_err_out;
2072 }
2073 ni->runlist.rl = nrl;
2074
2075 /* Are we in the first extent? */
2076 if (!next_vcn) {
2077 if (a->data.non_resident.lowest_vcn) {
2078 ntfs_error(sb, "First extent of $DATA "
2079 "attribute has non zero "
2080 "lowest_vcn. $MFT is corrupt. "
2081 "You should run chkdsk.");
2082 goto put_err_out;
2083 }
2084 /* Get the last vcn in the $DATA attribute. */
2085 last_vcn = sle64_to_cpu(
2086 a->data.non_resident.allocated_size)
2087 >> vol->cluster_size_bits;
2088 /* Fill in the inode size. */
2089 vi->i_size = sle64_to_cpu(
2090 a->data.non_resident.data_size);
2091 ni->initialized_size = sle64_to_cpu(
2092 a->data.non_resident.initialized_size);
2093 ni->allocated_size = sle64_to_cpu(
2094 a->data.non_resident.allocated_size);
2095 /*
2096 * Verify the number of mft records does not exceed
2097 * 2^32 - 1.
2098 */
2099 if ((vi->i_size >> vol->mft_record_size_bits) >=
2100 (1ULL << 32)) {
2101 ntfs_error(sb, "$MFT is too big! Aborting.");
2102 goto put_err_out;
2103 }
2104 /*
2105 * We have got the first extent of the runlist for
2106 * $MFT which means it is now relatively safe to call
2107 * the normal ntfs_read_inode() function.
2108 * Complete reading the inode, this will actually
2109 * re-read the mft record for $MFT, this time entering
2110 * it into the page cache with which we complete the
2111 * kick start of the volume. It should be safe to do
2112 * this now as the first extent of $MFT/$DATA is
2113 * already known and we would hope that we don't need
2114 * further extents in order to find the other
2115 * attributes belonging to $MFT. Only time will tell if
2116 * this is really the case. If not we will have to play
2117 * magic at this point, possibly duplicating a lot of
2118 * ntfs_read_inode() at this point. We will need to
2119 * ensure we do enough of its work to be able to call
2120 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2121 * hope this never happens...
2122 */
2123 ntfs_read_locked_inode(vi);
2124 if (is_bad_inode(vi)) {
2125 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2126 "failed. BUG or corrupt $MFT. "
2127 "Run chkdsk and if no errors "
2128 "are found, please report you "
2129 "saw this message to "
2130 "linux-ntfs-dev@lists."
2131 "sourceforge.net");
2132 ntfs_attr_put_search_ctx(ctx);
2133 /* Revert to the safe super operations. */
2134 ntfs_free(m);
2135 return -1;
2136 }
2137 /*
2138 * Re-initialize some specifics about $MFT's inode as
2139 * ntfs_read_inode() will have set up the default ones.
2140 */
2141 /* Set uid and gid to root. */
2142 vi->i_uid = GLOBAL_ROOT_UID;
2143 vi->i_gid = GLOBAL_ROOT_GID;
2144 /* Regular file. No access for anyone. */
2145 vi->i_mode = S_IFREG;
2146 /* No VFS initiated operations allowed for $MFT. */
2147 vi->i_op = &ntfs_empty_inode_ops;
2148 vi->i_fop = &ntfs_empty_file_ops;
2149 }
2150
2151 /* Get the lowest vcn for the next extent. */
2152 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2153 next_vcn = highest_vcn + 1;
2154
2155 /* Only one extent or error, which we catch below. */
2156 if (next_vcn <= 0)
2157 break;
2158
2159 /* Avoid endless loops due to corruption. */
2160 if (next_vcn < sle64_to_cpu(
2161 a->data.non_resident.lowest_vcn)) {
2162 ntfs_error(sb, "$MFT has corrupt attribute list "
2163 "attribute. Run chkdsk.");
2164 goto put_err_out;
2165 }
2166 }
2167 if (err != -ENOENT) {
2168 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2169 "$MFT is corrupt. Run chkdsk.");
2170 goto put_err_out;
2171 }
2172 if (!a) {
2173 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2174 "corrupt. Run chkdsk.");
2175 goto put_err_out;
2176 }
2177 if (highest_vcn && highest_vcn != last_vcn - 1) {
2178 ntfs_error(sb, "Failed to load the complete runlist for "
2179 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2180 "Run chkdsk.");
2181 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2182 (unsigned long long)highest_vcn,
2183 (unsigned long long)last_vcn - 1);
2184 goto put_err_out;
2185 }
2186 ntfs_attr_put_search_ctx(ctx);
2187 ntfs_debug("Done.");
2188 ntfs_free(m);
2189
2190 /*
2191 * Split the locking rules of the MFT inode from the
2192 * locking rules of other inodes:
2193 */
2194 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2195 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2196
2197 return 0;
2198
2199 em_put_err_out:
2200 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2201 "attribute list. $MFT is corrupt. Run chkdsk.");
2202 put_err_out:
2203 ntfs_attr_put_search_ctx(ctx);
2204 err_out:
2205 ntfs_error(sb, "Failed. Marking inode as bad.");
2206 make_bad_inode(vi);
2207 ntfs_free(m);
2208 return -1;
2209 }
2210
__ntfs_clear_inode(ntfs_inode * ni)2211 static void __ntfs_clear_inode(ntfs_inode *ni)
2212 {
2213 /* Free all alocated memory. */
2214 down_write(&ni->runlist.lock);
2215 if (ni->runlist.rl) {
2216 ntfs_free(ni->runlist.rl);
2217 ni->runlist.rl = NULL;
2218 }
2219 up_write(&ni->runlist.lock);
2220
2221 if (ni->attr_list) {
2222 ntfs_free(ni->attr_list);
2223 ni->attr_list = NULL;
2224 }
2225
2226 down_write(&ni->attr_list_rl.lock);
2227 if (ni->attr_list_rl.rl) {
2228 ntfs_free(ni->attr_list_rl.rl);
2229 ni->attr_list_rl.rl = NULL;
2230 }
2231 up_write(&ni->attr_list_rl.lock);
2232
2233 if (ni->name_len && ni->name != I30) {
2234 /* Catch bugs... */
2235 BUG_ON(!ni->name);
2236 kfree(ni->name);
2237 }
2238 }
2239
ntfs_clear_extent_inode(ntfs_inode * ni)2240 void ntfs_clear_extent_inode(ntfs_inode *ni)
2241 {
2242 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2243
2244 BUG_ON(NInoAttr(ni));
2245 BUG_ON(ni->nr_extents != -1);
2246
2247 #ifdef NTFS_RW
2248 if (NInoDirty(ni)) {
2249 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2250 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2251 "Losing data! This is a BUG!!!");
2252 // FIXME: Do something!!!
2253 }
2254 #endif /* NTFS_RW */
2255
2256 __ntfs_clear_inode(ni);
2257
2258 /* Bye, bye... */
2259 ntfs_destroy_extent_inode(ni);
2260 }
2261
2262 /**
2263 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2264 * @vi: vfs inode pending annihilation
2265 *
2266 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2267 * is called, which deallocates all memory belonging to the NTFS specific part
2268 * of the inode and returns.
2269 *
2270 * If the MFT record is dirty, we commit it before doing anything else.
2271 */
ntfs_evict_big_inode(struct inode * vi)2272 void ntfs_evict_big_inode(struct inode *vi)
2273 {
2274 ntfs_inode *ni = NTFS_I(vi);
2275
2276 truncate_inode_pages_final(&vi->i_data);
2277 clear_inode(vi);
2278
2279 #ifdef NTFS_RW
2280 if (NInoDirty(ni)) {
2281 bool was_bad = (is_bad_inode(vi));
2282
2283 /* Committing the inode also commits all extent inodes. */
2284 ntfs_commit_inode(vi);
2285
2286 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2287 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2288 "0x%lx. Losing data!", vi->i_ino);
2289 // FIXME: Do something!!!
2290 }
2291 }
2292 #endif /* NTFS_RW */
2293
2294 /* No need to lock at this stage as no one else has a reference. */
2295 if (ni->nr_extents > 0) {
2296 int i;
2297
2298 for (i = 0; i < ni->nr_extents; i++)
2299 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2300 kfree(ni->ext.extent_ntfs_inos);
2301 }
2302
2303 __ntfs_clear_inode(ni);
2304
2305 if (NInoAttr(ni)) {
2306 /* Release the base inode if we are holding it. */
2307 if (ni->nr_extents == -1) {
2308 iput(VFS_I(ni->ext.base_ntfs_ino));
2309 ni->nr_extents = 0;
2310 ni->ext.base_ntfs_ino = NULL;
2311 }
2312 }
2313 return;
2314 }
2315
2316 /**
2317 * ntfs_show_options - show mount options in /proc/mounts
2318 * @sf: seq_file in which to write our mount options
2319 * @root: root of the mounted tree whose mount options to display
2320 *
2321 * Called by the VFS once for each mounted ntfs volume when someone reads
2322 * /proc/mounts in order to display the NTFS specific mount options of each
2323 * mount. The mount options of fs specified by @root are written to the seq file
2324 * @sf and success is returned.
2325 */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2326 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2327 {
2328 ntfs_volume *vol = NTFS_SB(root->d_sb);
2329 int i;
2330
2331 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2332 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2333 if (vol->fmask == vol->dmask)
2334 seq_printf(sf, ",umask=0%o", vol->fmask);
2335 else {
2336 seq_printf(sf, ",fmask=0%o", vol->fmask);
2337 seq_printf(sf, ",dmask=0%o", vol->dmask);
2338 }
2339 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2340 if (NVolCaseSensitive(vol))
2341 seq_printf(sf, ",case_sensitive");
2342 if (NVolShowSystemFiles(vol))
2343 seq_printf(sf, ",show_sys_files");
2344 if (!NVolSparseEnabled(vol))
2345 seq_printf(sf, ",disable_sparse");
2346 for (i = 0; on_errors_arr[i].val; i++) {
2347 if (on_errors_arr[i].val & vol->on_errors)
2348 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2349 }
2350 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2351 return 0;
2352 }
2353
2354 #ifdef NTFS_RW
2355
2356 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2357 "chkdsk.";
2358
2359 /**
2360 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2361 * @vi: inode for which the i_size was changed
2362 *
2363 * We only support i_size changes for normal files at present, i.e. not
2364 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2365 * below.
2366 *
2367 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2368 * that the change is allowed.
2369 *
2370 * This implies for us that @vi is a file inode rather than a directory, index,
2371 * or attribute inode as well as that @vi is a base inode.
2372 *
2373 * Returns 0 on success or -errno on error.
2374 *
2375 * Called with ->i_mutex held.
2376 */
ntfs_truncate(struct inode * vi)2377 int ntfs_truncate(struct inode *vi)
2378 {
2379 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2380 VCN highest_vcn;
2381 unsigned long flags;
2382 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2383 ntfs_volume *vol = ni->vol;
2384 ntfs_attr_search_ctx *ctx;
2385 MFT_RECORD *m;
2386 ATTR_RECORD *a;
2387 const char *te = " Leaving file length out of sync with i_size.";
2388 int err, mp_size, size_change, alloc_change;
2389 u32 attr_len;
2390
2391 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2392 BUG_ON(NInoAttr(ni));
2393 BUG_ON(S_ISDIR(vi->i_mode));
2394 BUG_ON(NInoMstProtected(ni));
2395 BUG_ON(ni->nr_extents < 0);
2396 retry_truncate:
2397 /*
2398 * Lock the runlist for writing and map the mft record to ensure it is
2399 * safe to mess with the attribute runlist and sizes.
2400 */
2401 down_write(&ni->runlist.lock);
2402 if (!NInoAttr(ni))
2403 base_ni = ni;
2404 else
2405 base_ni = ni->ext.base_ntfs_ino;
2406 m = map_mft_record(base_ni);
2407 if (IS_ERR(m)) {
2408 err = PTR_ERR(m);
2409 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2410 "(error code %d).%s", vi->i_ino, err, te);
2411 ctx = NULL;
2412 m = NULL;
2413 goto old_bad_out;
2414 }
2415 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2416 if (unlikely(!ctx)) {
2417 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2418 "inode 0x%lx (not enough memory).%s",
2419 vi->i_ino, te);
2420 err = -ENOMEM;
2421 goto old_bad_out;
2422 }
2423 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2424 CASE_SENSITIVE, 0, NULL, 0, ctx);
2425 if (unlikely(err)) {
2426 if (err == -ENOENT) {
2427 ntfs_error(vi->i_sb, "Open attribute is missing from "
2428 "mft record. Inode 0x%lx is corrupt. "
2429 "Run chkdsk.%s", vi->i_ino, te);
2430 err = -EIO;
2431 } else
2432 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2433 "inode 0x%lx (error code %d).%s",
2434 vi->i_ino, err, te);
2435 goto old_bad_out;
2436 }
2437 m = ctx->mrec;
2438 a = ctx->attr;
2439 /*
2440 * The i_size of the vfs inode is the new size for the attribute value.
2441 */
2442 new_size = i_size_read(vi);
2443 /* The current size of the attribute value is the old size. */
2444 old_size = ntfs_attr_size(a);
2445 /* Calculate the new allocated size. */
2446 if (NInoNonResident(ni))
2447 new_alloc_size = (new_size + vol->cluster_size - 1) &
2448 ~(s64)vol->cluster_size_mask;
2449 else
2450 new_alloc_size = (new_size + 7) & ~7;
2451 /* The current allocated size is the old allocated size. */
2452 read_lock_irqsave(&ni->size_lock, flags);
2453 old_alloc_size = ni->allocated_size;
2454 read_unlock_irqrestore(&ni->size_lock, flags);
2455 /*
2456 * The change in the file size. This will be 0 if no change, >0 if the
2457 * size is growing, and <0 if the size is shrinking.
2458 */
2459 size_change = -1;
2460 if (new_size - old_size >= 0) {
2461 size_change = 1;
2462 if (new_size == old_size)
2463 size_change = 0;
2464 }
2465 /* As above for the allocated size. */
2466 alloc_change = -1;
2467 if (new_alloc_size - old_alloc_size >= 0) {
2468 alloc_change = 1;
2469 if (new_alloc_size == old_alloc_size)
2470 alloc_change = 0;
2471 }
2472 /*
2473 * If neither the size nor the allocation are being changed there is
2474 * nothing to do.
2475 */
2476 if (!size_change && !alloc_change)
2477 goto unm_done;
2478 /* If the size is changing, check if new size is allowed in $AttrDef. */
2479 if (size_change) {
2480 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2481 if (unlikely(err)) {
2482 if (err == -ERANGE) {
2483 ntfs_error(vol->sb, "Truncate would cause the "
2484 "inode 0x%lx to %simum size "
2485 "for its attribute type "
2486 "(0x%x). Aborting truncate.",
2487 vi->i_ino,
2488 new_size > old_size ? "exceed "
2489 "the max" : "go under the min",
2490 le32_to_cpu(ni->type));
2491 err = -EFBIG;
2492 } else {
2493 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2494 "attribute type 0x%x. "
2495 "Aborting truncate.",
2496 vi->i_ino,
2497 le32_to_cpu(ni->type));
2498 err = -EIO;
2499 }
2500 /* Reset the vfs inode size to the old size. */
2501 i_size_write(vi, old_size);
2502 goto err_out;
2503 }
2504 }
2505 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2506 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2507 "supported yet for %s files, ignoring.",
2508 NInoCompressed(ni) ? "compressed" :
2509 "encrypted");
2510 err = -EOPNOTSUPP;
2511 goto bad_out;
2512 }
2513 if (a->non_resident)
2514 goto do_non_resident_truncate;
2515 BUG_ON(NInoNonResident(ni));
2516 /* Resize the attribute record to best fit the new attribute size. */
2517 if (new_size < vol->mft_record_size &&
2518 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2519 /* The resize succeeded! */
2520 flush_dcache_mft_record_page(ctx->ntfs_ino);
2521 mark_mft_record_dirty(ctx->ntfs_ino);
2522 write_lock_irqsave(&ni->size_lock, flags);
2523 /* Update the sizes in the ntfs inode and all is done. */
2524 ni->allocated_size = le32_to_cpu(a->length) -
2525 le16_to_cpu(a->data.resident.value_offset);
2526 /*
2527 * Note ntfs_resident_attr_value_resize() has already done any
2528 * necessary data clearing in the attribute record. When the
2529 * file is being shrunk vmtruncate() will already have cleared
2530 * the top part of the last partial page, i.e. since this is
2531 * the resident case this is the page with index 0. However,
2532 * when the file is being expanded, the page cache page data
2533 * between the old data_size, i.e. old_size, and the new_size
2534 * has not been zeroed. Fortunately, we do not need to zero it
2535 * either since on one hand it will either already be zero due
2536 * to both readpage and writepage clearing partial page data
2537 * beyond i_size in which case there is nothing to do or in the
2538 * case of the file being mmap()ped at the same time, POSIX
2539 * specifies that the behaviour is unspecified thus we do not
2540 * have to do anything. This means that in our implementation
2541 * in the rare case that the file is mmap()ped and a write
2542 * occurred into the mmap()ped region just beyond the file size
2543 * and writepage has not yet been called to write out the page
2544 * (which would clear the area beyond the file size) and we now
2545 * extend the file size to incorporate this dirty region
2546 * outside the file size, a write of the page would result in
2547 * this data being written to disk instead of being cleared.
2548 * Given both POSIX and the Linux mmap(2) man page specify that
2549 * this corner case is undefined, we choose to leave it like
2550 * that as this is much simpler for us as we cannot lock the
2551 * relevant page now since we are holding too many ntfs locks
2552 * which would result in a lock reversal deadlock.
2553 */
2554 ni->initialized_size = new_size;
2555 write_unlock_irqrestore(&ni->size_lock, flags);
2556 goto unm_done;
2557 }
2558 /* If the above resize failed, this must be an attribute extension. */
2559 BUG_ON(size_change < 0);
2560 /*
2561 * We have to drop all the locks so we can call
2562 * ntfs_attr_make_non_resident(). This could be optimised by try-
2563 * locking the first page cache page and only if that fails dropping
2564 * the locks, locking the page, and redoing all the locking and
2565 * lookups. While this would be a huge optimisation, it is not worth
2566 * it as this is definitely a slow code path as it only ever can happen
2567 * once for any given file.
2568 */
2569 ntfs_attr_put_search_ctx(ctx);
2570 unmap_mft_record(base_ni);
2571 up_write(&ni->runlist.lock);
2572 /*
2573 * Not enough space in the mft record, try to make the attribute
2574 * non-resident and if successful restart the truncation process.
2575 */
2576 err = ntfs_attr_make_non_resident(ni, old_size);
2577 if (likely(!err))
2578 goto retry_truncate;
2579 /*
2580 * Could not make non-resident. If this is due to this not being
2581 * permitted for this attribute type or there not being enough space,
2582 * try to make other attributes non-resident. Otherwise fail.
2583 */
2584 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2585 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2586 "type 0x%x, because the conversion from "
2587 "resident to non-resident attribute failed "
2588 "with error code %i.", vi->i_ino,
2589 (unsigned)le32_to_cpu(ni->type), err);
2590 if (err != -ENOMEM)
2591 err = -EIO;
2592 goto conv_err_out;
2593 }
2594 /* TODO: Not implemented from here, abort. */
2595 if (err == -ENOSPC)
2596 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2597 "disk for the non-resident attribute value. "
2598 "This case is not implemented yet.");
2599 else /* if (err == -EPERM) */
2600 ntfs_error(vol->sb, "This attribute type may not be "
2601 "non-resident. This case is not implemented "
2602 "yet.");
2603 err = -EOPNOTSUPP;
2604 goto conv_err_out;
2605 #if 0
2606 // TODO: Attempt to make other attributes non-resident.
2607 if (!err)
2608 goto do_resident_extend;
2609 /*
2610 * Both the attribute list attribute and the standard information
2611 * attribute must remain in the base inode. Thus, if this is one of
2612 * these attributes, we have to try to move other attributes out into
2613 * extent mft records instead.
2614 */
2615 if (ni->type == AT_ATTRIBUTE_LIST ||
2616 ni->type == AT_STANDARD_INFORMATION) {
2617 // TODO: Attempt to move other attributes into extent mft
2618 // records.
2619 err = -EOPNOTSUPP;
2620 if (!err)
2621 goto do_resident_extend;
2622 goto err_out;
2623 }
2624 // TODO: Attempt to move this attribute to an extent mft record, but
2625 // only if it is not already the only attribute in an mft record in
2626 // which case there would be nothing to gain.
2627 err = -EOPNOTSUPP;
2628 if (!err)
2629 goto do_resident_extend;
2630 /* There is nothing we can do to make enough space. )-: */
2631 goto err_out;
2632 #endif
2633 do_non_resident_truncate:
2634 BUG_ON(!NInoNonResident(ni));
2635 if (alloc_change < 0) {
2636 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2637 if (highest_vcn > 0 &&
2638 old_alloc_size >> vol->cluster_size_bits >
2639 highest_vcn + 1) {
2640 /*
2641 * This attribute has multiple extents. Not yet
2642 * supported.
2643 */
2644 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2645 "attribute type 0x%x, because the "
2646 "attribute is highly fragmented (it "
2647 "consists of multiple extents) and "
2648 "this case is not implemented yet.",
2649 vi->i_ino,
2650 (unsigned)le32_to_cpu(ni->type));
2651 err = -EOPNOTSUPP;
2652 goto bad_out;
2653 }
2654 }
2655 /*
2656 * If the size is shrinking, need to reduce the initialized_size and
2657 * the data_size before reducing the allocation.
2658 */
2659 if (size_change < 0) {
2660 /*
2661 * Make the valid size smaller (i_size is already up-to-date).
2662 */
2663 write_lock_irqsave(&ni->size_lock, flags);
2664 if (new_size < ni->initialized_size) {
2665 ni->initialized_size = new_size;
2666 a->data.non_resident.initialized_size =
2667 cpu_to_sle64(new_size);
2668 }
2669 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2670 write_unlock_irqrestore(&ni->size_lock, flags);
2671 flush_dcache_mft_record_page(ctx->ntfs_ino);
2672 mark_mft_record_dirty(ctx->ntfs_ino);
2673 /* If the allocated size is not changing, we are done. */
2674 if (!alloc_change)
2675 goto unm_done;
2676 /*
2677 * If the size is shrinking it makes no sense for the
2678 * allocation to be growing.
2679 */
2680 BUG_ON(alloc_change > 0);
2681 } else /* if (size_change >= 0) */ {
2682 /*
2683 * The file size is growing or staying the same but the
2684 * allocation can be shrinking, growing or staying the same.
2685 */
2686 if (alloc_change > 0) {
2687 /*
2688 * We need to extend the allocation and possibly update
2689 * the data size. If we are updating the data size,
2690 * since we are not touching the initialized_size we do
2691 * not need to worry about the actual data on disk.
2692 * And as far as the page cache is concerned, there
2693 * will be no pages beyond the old data size and any
2694 * partial region in the last page between the old and
2695 * new data size (or the end of the page if the new
2696 * data size is outside the page) does not need to be
2697 * modified as explained above for the resident
2698 * attribute truncate case. To do this, we simply drop
2699 * the locks we hold and leave all the work to our
2700 * friendly helper ntfs_attr_extend_allocation().
2701 */
2702 ntfs_attr_put_search_ctx(ctx);
2703 unmap_mft_record(base_ni);
2704 up_write(&ni->runlist.lock);
2705 err = ntfs_attr_extend_allocation(ni, new_size,
2706 size_change > 0 ? new_size : -1, -1);
2707 /*
2708 * ntfs_attr_extend_allocation() will have done error
2709 * output already.
2710 */
2711 goto done;
2712 }
2713 if (!alloc_change)
2714 goto alloc_done;
2715 }
2716 /* alloc_change < 0 */
2717 /* Free the clusters. */
2718 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2719 vol->cluster_size_bits, -1, ctx);
2720 m = ctx->mrec;
2721 a = ctx->attr;
2722 if (unlikely(nr_freed < 0)) {
2723 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2724 "%lli). Unmount and run chkdsk to recover "
2725 "the lost cluster(s).", (long long)nr_freed);
2726 NVolSetErrors(vol);
2727 nr_freed = 0;
2728 }
2729 /* Truncate the runlist. */
2730 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2731 new_alloc_size >> vol->cluster_size_bits);
2732 /*
2733 * If the runlist truncation failed and/or the search context is no
2734 * longer valid, we cannot resize the attribute record or build the
2735 * mapping pairs array thus we mark the inode bad so that no access to
2736 * the freed clusters can happen.
2737 */
2738 if (unlikely(err || IS_ERR(m))) {
2739 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2740 IS_ERR(m) ?
2741 "restore attribute search context" :
2742 "truncate attribute runlist",
2743 IS_ERR(m) ? PTR_ERR(m) : err, es);
2744 err = -EIO;
2745 goto bad_out;
2746 }
2747 /* Get the size for the shrunk mapping pairs array for the runlist. */
2748 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2749 if (unlikely(mp_size <= 0)) {
2750 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2751 "attribute type 0x%x, because determining the "
2752 "size for the mapping pairs failed with error "
2753 "code %i.%s", vi->i_ino,
2754 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2755 err = -EIO;
2756 goto bad_out;
2757 }
2758 /*
2759 * Shrink the attribute record for the new mapping pairs array. Note,
2760 * this cannot fail since we are making the attribute smaller thus by
2761 * definition there is enough space to do so.
2762 */
2763 attr_len = le32_to_cpu(a->length);
2764 err = ntfs_attr_record_resize(m, a, mp_size +
2765 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2766 BUG_ON(err);
2767 /*
2768 * Generate the mapping pairs array directly into the attribute record.
2769 */
2770 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2771 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2772 mp_size, ni->runlist.rl, 0, -1, NULL);
2773 if (unlikely(err)) {
2774 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2775 "attribute type 0x%x, because building the "
2776 "mapping pairs failed with error code %i.%s",
2777 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2778 err, es);
2779 err = -EIO;
2780 goto bad_out;
2781 }
2782 /* Update the allocated/compressed size as well as the highest vcn. */
2783 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2784 vol->cluster_size_bits) - 1);
2785 write_lock_irqsave(&ni->size_lock, flags);
2786 ni->allocated_size = new_alloc_size;
2787 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2788 if (NInoSparse(ni) || NInoCompressed(ni)) {
2789 if (nr_freed) {
2790 ni->itype.compressed.size -= nr_freed <<
2791 vol->cluster_size_bits;
2792 BUG_ON(ni->itype.compressed.size < 0);
2793 a->data.non_resident.compressed_size = cpu_to_sle64(
2794 ni->itype.compressed.size);
2795 vi->i_blocks = ni->itype.compressed.size >> 9;
2796 }
2797 } else
2798 vi->i_blocks = new_alloc_size >> 9;
2799 write_unlock_irqrestore(&ni->size_lock, flags);
2800 /*
2801 * We have shrunk the allocation. If this is a shrinking truncate we
2802 * have already dealt with the initialized_size and the data_size above
2803 * and we are done. If the truncate is only changing the allocation
2804 * and not the data_size, we are also done. If this is an extending
2805 * truncate, need to extend the data_size now which is ensured by the
2806 * fact that @size_change is positive.
2807 */
2808 alloc_done:
2809 /*
2810 * If the size is growing, need to update it now. If it is shrinking,
2811 * we have already updated it above (before the allocation change).
2812 */
2813 if (size_change > 0)
2814 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2815 /* Ensure the modified mft record is written out. */
2816 flush_dcache_mft_record_page(ctx->ntfs_ino);
2817 mark_mft_record_dirty(ctx->ntfs_ino);
2818 unm_done:
2819 ntfs_attr_put_search_ctx(ctx);
2820 unmap_mft_record(base_ni);
2821 up_write(&ni->runlist.lock);
2822 done:
2823 /* Update the mtime and ctime on the base inode. */
2824 /* normally ->truncate shouldn't update ctime or mtime,
2825 * but ntfs did before so it got a copy & paste version
2826 * of file_update_time. one day someone should fix this
2827 * for real.
2828 */
2829 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2830 struct timespec64 now = current_time(VFS_I(base_ni));
2831 int sync_it = 0;
2832
2833 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2834 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2835 sync_it = 1;
2836 VFS_I(base_ni)->i_mtime = now;
2837 VFS_I(base_ni)->i_ctime = now;
2838
2839 if (sync_it)
2840 mark_inode_dirty_sync(VFS_I(base_ni));
2841 }
2842
2843 if (likely(!err)) {
2844 NInoClearTruncateFailed(ni);
2845 ntfs_debug("Done.");
2846 }
2847 return err;
2848 old_bad_out:
2849 old_size = -1;
2850 bad_out:
2851 if (err != -ENOMEM && err != -EOPNOTSUPP)
2852 NVolSetErrors(vol);
2853 if (err != -EOPNOTSUPP)
2854 NInoSetTruncateFailed(ni);
2855 else if (old_size >= 0)
2856 i_size_write(vi, old_size);
2857 err_out:
2858 if (ctx)
2859 ntfs_attr_put_search_ctx(ctx);
2860 if (m)
2861 unmap_mft_record(base_ni);
2862 up_write(&ni->runlist.lock);
2863 out:
2864 ntfs_debug("Failed. Returning error code %i.", err);
2865 return err;
2866 conv_err_out:
2867 if (err != -ENOMEM && err != -EOPNOTSUPP)
2868 NVolSetErrors(vol);
2869 if (err != -EOPNOTSUPP)
2870 NInoSetTruncateFailed(ni);
2871 else
2872 i_size_write(vi, old_size);
2873 goto out;
2874 }
2875
2876 /**
2877 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2878 * @vi: inode for which the i_size was changed
2879 *
2880 * Wrapper for ntfs_truncate() that has no return value.
2881 *
2882 * See ntfs_truncate() description above for details.
2883 */
2884 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2885 void ntfs_truncate_vfs(struct inode *vi) {
2886 ntfs_truncate(vi);
2887 }
2888 #endif
2889
2890 /**
2891 * ntfs_setattr - called from notify_change() when an attribute is being changed
2892 * @dentry: dentry whose attributes to change
2893 * @attr: structure describing the attributes and the changes
2894 *
2895 * We have to trap VFS attempts to truncate the file described by @dentry as
2896 * soon as possible, because we do not implement changes in i_size yet. So we
2897 * abort all i_size changes here.
2898 *
2899 * We also abort all changes of user, group, and mode as we do not implement
2900 * the NTFS ACLs yet.
2901 *
2902 * Called with ->i_mutex held.
2903 */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2904 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2905 {
2906 struct inode *vi = d_inode(dentry);
2907 int err;
2908 unsigned int ia_valid = attr->ia_valid;
2909
2910 err = setattr_prepare(dentry, attr);
2911 if (err)
2912 goto out;
2913 /* We do not support NTFS ACLs yet. */
2914 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2915 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2916 "supported yet, ignoring.");
2917 err = -EOPNOTSUPP;
2918 goto out;
2919 }
2920 if (ia_valid & ATTR_SIZE) {
2921 if (attr->ia_size != i_size_read(vi)) {
2922 ntfs_inode *ni = NTFS_I(vi);
2923 /*
2924 * FIXME: For now we do not support resizing of
2925 * compressed or encrypted files yet.
2926 */
2927 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2928 ntfs_warning(vi->i_sb, "Changes in inode size "
2929 "are not supported yet for "
2930 "%s files, ignoring.",
2931 NInoCompressed(ni) ?
2932 "compressed" : "encrypted");
2933 err = -EOPNOTSUPP;
2934 } else {
2935 truncate_setsize(vi, attr->ia_size);
2936 ntfs_truncate_vfs(vi);
2937 }
2938 if (err || ia_valid == ATTR_SIZE)
2939 goto out;
2940 } else {
2941 /*
2942 * We skipped the truncate but must still update
2943 * timestamps.
2944 */
2945 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2946 }
2947 }
2948 if (ia_valid & ATTR_ATIME)
2949 vi->i_atime = timespec64_trunc(attr->ia_atime,
2950 vi->i_sb->s_time_gran);
2951 if (ia_valid & ATTR_MTIME)
2952 vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2953 vi->i_sb->s_time_gran);
2954 if (ia_valid & ATTR_CTIME)
2955 vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2956 vi->i_sb->s_time_gran);
2957 mark_inode_dirty(vi);
2958 out:
2959 return err;
2960 }
2961
2962 /**
2963 * ntfs_write_inode - write out a dirty inode
2964 * @vi: inode to write out
2965 * @sync: if true, write out synchronously
2966 *
2967 * Write out a dirty inode to disk including any extent inodes if present.
2968 *
2969 * If @sync is true, commit the inode to disk and wait for io completion. This
2970 * is done using write_mft_record().
2971 *
2972 * If @sync is false, just schedule the write to happen but do not wait for i/o
2973 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2974 * marking the page (and in this case mft record) dirty but we do not implement
2975 * this yet as write_mft_record() largely ignores the @sync parameter and
2976 * always performs synchronous writes.
2977 *
2978 * Return 0 on success and -errno on error.
2979 */
__ntfs_write_inode(struct inode * vi,int sync)2980 int __ntfs_write_inode(struct inode *vi, int sync)
2981 {
2982 sle64 nt;
2983 ntfs_inode *ni = NTFS_I(vi);
2984 ntfs_attr_search_ctx *ctx;
2985 MFT_RECORD *m;
2986 STANDARD_INFORMATION *si;
2987 int err = 0;
2988 bool modified = false;
2989
2990 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2991 vi->i_ino);
2992 /*
2993 * Dirty attribute inodes are written via their real inodes so just
2994 * clean them here. Access time updates are taken care off when the
2995 * real inode is written.
2996 */
2997 if (NInoAttr(ni)) {
2998 NInoClearDirty(ni);
2999 ntfs_debug("Done.");
3000 return 0;
3001 }
3002 /* Map, pin, and lock the mft record belonging to the inode. */
3003 m = map_mft_record(ni);
3004 if (IS_ERR(m)) {
3005 err = PTR_ERR(m);
3006 goto err_out;
3007 }
3008 /* Update the access times in the standard information attribute. */
3009 ctx = ntfs_attr_get_search_ctx(ni, m);
3010 if (unlikely(!ctx)) {
3011 err = -ENOMEM;
3012 goto unm_err_out;
3013 }
3014 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3015 CASE_SENSITIVE, 0, NULL, 0, ctx);
3016 if (unlikely(err)) {
3017 ntfs_attr_put_search_ctx(ctx);
3018 goto unm_err_out;
3019 }
3020 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3021 le16_to_cpu(ctx->attr->data.resident.value_offset));
3022 /* Update the access times if they have changed. */
3023 nt = utc2ntfs(vi->i_mtime);
3024 if (si->last_data_change_time != nt) {
3025 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3026 "new = 0x%llx", vi->i_ino, (long long)
3027 sle64_to_cpu(si->last_data_change_time),
3028 (long long)sle64_to_cpu(nt));
3029 si->last_data_change_time = nt;
3030 modified = true;
3031 }
3032 nt = utc2ntfs(vi->i_ctime);
3033 if (si->last_mft_change_time != nt) {
3034 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3035 "new = 0x%llx", vi->i_ino, (long long)
3036 sle64_to_cpu(si->last_mft_change_time),
3037 (long long)sle64_to_cpu(nt));
3038 si->last_mft_change_time = nt;
3039 modified = true;
3040 }
3041 nt = utc2ntfs(vi->i_atime);
3042 if (si->last_access_time != nt) {
3043 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3044 "new = 0x%llx", vi->i_ino,
3045 (long long)sle64_to_cpu(si->last_access_time),
3046 (long long)sle64_to_cpu(nt));
3047 si->last_access_time = nt;
3048 modified = true;
3049 }
3050 /*
3051 * If we just modified the standard information attribute we need to
3052 * mark the mft record it is in dirty. We do this manually so that
3053 * mark_inode_dirty() is not called which would redirty the inode and
3054 * hence result in an infinite loop of trying to write the inode.
3055 * There is no need to mark the base inode nor the base mft record
3056 * dirty, since we are going to write this mft record below in any case
3057 * and the base mft record may actually not have been modified so it
3058 * might not need to be written out.
3059 * NOTE: It is not a problem when the inode for $MFT itself is being
3060 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3061 * on the $MFT inode and hence ntfs_write_inode() will not be
3062 * re-invoked because of it which in turn is ok since the dirtied mft
3063 * record will be cleaned and written out to disk below, i.e. before
3064 * this function returns.
3065 */
3066 if (modified) {
3067 flush_dcache_mft_record_page(ctx->ntfs_ino);
3068 if (!NInoTestSetDirty(ctx->ntfs_ino))
3069 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3070 ctx->ntfs_ino->page_ofs);
3071 }
3072 ntfs_attr_put_search_ctx(ctx);
3073 /* Now the access times are updated, write the base mft record. */
3074 if (NInoDirty(ni))
3075 err = write_mft_record(ni, m, sync);
3076 /* Write all attached extent mft records. */
3077 mutex_lock(&ni->extent_lock);
3078 if (ni->nr_extents > 0) {
3079 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3080 int i;
3081
3082 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3083 for (i = 0; i < ni->nr_extents; i++) {
3084 ntfs_inode *tni = extent_nis[i];
3085
3086 if (NInoDirty(tni)) {
3087 MFT_RECORD *tm = map_mft_record(tni);
3088 int ret;
3089
3090 if (IS_ERR(tm)) {
3091 if (!err || err == -ENOMEM)
3092 err = PTR_ERR(tm);
3093 continue;
3094 }
3095 ret = write_mft_record(tni, tm, sync);
3096 unmap_mft_record(tni);
3097 if (unlikely(ret)) {
3098 if (!err || err == -ENOMEM)
3099 err = ret;
3100 }
3101 }
3102 }
3103 }
3104 mutex_unlock(&ni->extent_lock);
3105 unmap_mft_record(ni);
3106 if (unlikely(err))
3107 goto err_out;
3108 ntfs_debug("Done.");
3109 return 0;
3110 unm_err_out:
3111 unmap_mft_record(ni);
3112 err_out:
3113 if (err == -ENOMEM) {
3114 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3115 "Marking the inode dirty again, so the VFS "
3116 "retries later.");
3117 mark_inode_dirty(vi);
3118 } else {
3119 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3120 NVolSetErrors(ni->vol);
3121 }
3122 return err;
3123 }
3124
3125 #endif /* NTFS_RW */
3126