1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
ocfs2_wait_on_mount(struct ocfs2_super * osb)84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
ocfs2_free_replay_slots(struct ocfs2_super * osb)176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
ocfs2_recovery_init(struct ocfs2_super * osb)187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
ocfs2_recovery_exit(struct ocfs2_super * osb)220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	if (osb->ocfs2_wq)
235 		flush_workqueue(osb->ocfs2_wq);
236 
237 	/*
238 	 * Now that recovery is shut down, and the osb is about to be
239 	 * freed,  the osb_lock is not taken here.
240 	 */
241 	rm = osb->recovery_map;
242 	/* XXX: Should we bug if there are dirty entries? */
243 
244 	kfree(rm);
245 }
246 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)247 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
248 				     unsigned int node_num)
249 {
250 	int i;
251 	struct ocfs2_recovery_map *rm = osb->recovery_map;
252 
253 	assert_spin_locked(&osb->osb_lock);
254 
255 	for (i = 0; i < rm->rm_used; i++) {
256 		if (rm->rm_entries[i] == node_num)
257 			return 1;
258 	}
259 
260 	return 0;
261 }
262 
263 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)264 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
265 				  unsigned int node_num)
266 {
267 	struct ocfs2_recovery_map *rm = osb->recovery_map;
268 
269 	spin_lock(&osb->osb_lock);
270 	if (__ocfs2_recovery_map_test(osb, node_num)) {
271 		spin_unlock(&osb->osb_lock);
272 		return 1;
273 	}
274 
275 	/* XXX: Can this be exploited? Not from o2dlm... */
276 	BUG_ON(rm->rm_used >= osb->max_slots);
277 
278 	rm->rm_entries[rm->rm_used] = node_num;
279 	rm->rm_used++;
280 	spin_unlock(&osb->osb_lock);
281 
282 	return 0;
283 }
284 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)285 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
286 				     unsigned int node_num)
287 {
288 	int i;
289 	struct ocfs2_recovery_map *rm = osb->recovery_map;
290 
291 	spin_lock(&osb->osb_lock);
292 
293 	for (i = 0; i < rm->rm_used; i++) {
294 		if (rm->rm_entries[i] == node_num)
295 			break;
296 	}
297 
298 	if (i < rm->rm_used) {
299 		/* XXX: be careful with the pointer math */
300 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
301 			(rm->rm_used - i - 1) * sizeof(unsigned int));
302 		rm->rm_used--;
303 	}
304 
305 	spin_unlock(&osb->osb_lock);
306 }
307 
ocfs2_commit_cache(struct ocfs2_super * osb)308 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 {
310 	int status = 0;
311 	unsigned int flushed;
312 	struct ocfs2_journal *journal = NULL;
313 
314 	journal = osb->journal;
315 
316 	/* Flush all pending commits and checkpoint the journal. */
317 	down_write(&journal->j_trans_barrier);
318 
319 	flushed = atomic_read(&journal->j_num_trans);
320 	trace_ocfs2_commit_cache_begin(flushed);
321 	if (flushed == 0) {
322 		up_write(&journal->j_trans_barrier);
323 		goto finally;
324 	}
325 
326 	jbd2_journal_lock_updates(journal->j_journal);
327 	status = jbd2_journal_flush(journal->j_journal);
328 	jbd2_journal_unlock_updates(journal->j_journal);
329 	if (status < 0) {
330 		up_write(&journal->j_trans_barrier);
331 		mlog_errno(status);
332 		goto finally;
333 	}
334 
335 	ocfs2_inc_trans_id(journal);
336 
337 	flushed = atomic_read(&journal->j_num_trans);
338 	atomic_set(&journal->j_num_trans, 0);
339 	up_write(&journal->j_trans_barrier);
340 
341 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342 
343 	ocfs2_wake_downconvert_thread(osb);
344 	wake_up(&journal->j_checkpointed);
345 finally:
346 	return status;
347 }
348 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)349 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 {
351 	journal_t *journal = osb->journal->j_journal;
352 	handle_t *handle;
353 
354 	BUG_ON(!osb || !osb->journal->j_journal);
355 
356 	if (ocfs2_is_hard_readonly(osb))
357 		return ERR_PTR(-EROFS);
358 
359 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
360 	BUG_ON(max_buffs <= 0);
361 
362 	/* Nested transaction? Just return the handle... */
363 	if (journal_current_handle())
364 		return jbd2_journal_start(journal, max_buffs);
365 
366 	sb_start_intwrite(osb->sb);
367 
368 	down_read(&osb->journal->j_trans_barrier);
369 
370 	handle = jbd2_journal_start(journal, max_buffs);
371 	if (IS_ERR(handle)) {
372 		up_read(&osb->journal->j_trans_barrier);
373 		sb_end_intwrite(osb->sb);
374 
375 		mlog_errno(PTR_ERR(handle));
376 
377 		if (is_journal_aborted(journal)) {
378 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
379 			handle = ERR_PTR(-EROFS);
380 		}
381 	} else {
382 		if (!ocfs2_mount_local(osb))
383 			atomic_inc(&(osb->journal->j_num_trans));
384 	}
385 
386 	return handle;
387 }
388 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)389 int ocfs2_commit_trans(struct ocfs2_super *osb,
390 		       handle_t *handle)
391 {
392 	int ret, nested;
393 	struct ocfs2_journal *journal = osb->journal;
394 
395 	BUG_ON(!handle);
396 
397 	nested = handle->h_ref > 1;
398 	ret = jbd2_journal_stop(handle);
399 	if (ret < 0)
400 		mlog_errno(ret);
401 
402 	if (!nested) {
403 		up_read(&journal->j_trans_barrier);
404 		sb_end_intwrite(osb->sb);
405 	}
406 
407 	return ret;
408 }
409 
410 /*
411  * 'nblocks' is what you want to add to the current transaction.
412  *
413  * This might call jbd2_journal_restart() which will commit dirty buffers
414  * and then restart the transaction. Before calling
415  * ocfs2_extend_trans(), any changed blocks should have been
416  * dirtied. After calling it, all blocks which need to be changed must
417  * go through another set of journal_access/journal_dirty calls.
418  *
419  * WARNING: This will not release any semaphores or disk locks taken
420  * during the transaction, so make sure they were taken *before*
421  * start_trans or we'll have ordering deadlocks.
422  *
423  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
424  * good because transaction ids haven't yet been recorded on the
425  * cluster locks associated with this handle.
426  */
ocfs2_extend_trans(handle_t * handle,int nblocks)427 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 {
429 	int status, old_nblocks;
430 
431 	BUG_ON(!handle);
432 	BUG_ON(nblocks < 0);
433 
434 	if (!nblocks)
435 		return 0;
436 
437 	old_nblocks = handle->h_buffer_credits;
438 
439 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
440 
441 #ifdef CONFIG_OCFS2_DEBUG_FS
442 	status = 1;
443 #else
444 	status = jbd2_journal_extend(handle, nblocks);
445 	if (status < 0) {
446 		mlog_errno(status);
447 		goto bail;
448 	}
449 #endif
450 
451 	if (status > 0) {
452 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
453 		status = jbd2_journal_restart(handle,
454 					      old_nblocks + nblocks);
455 		if (status < 0) {
456 			mlog_errno(status);
457 			goto bail;
458 		}
459 	}
460 
461 	status = 0;
462 bail:
463 	return status;
464 }
465 
466 /*
467  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
468  * If that fails, restart the transaction & regain write access for the
469  * buffer head which is used for metadata modifications.
470  * Taken from Ext4: extend_or_restart_transaction()
471  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)472 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 {
474 	int status, old_nblks;
475 
476 	BUG_ON(!handle);
477 
478 	old_nblks = handle->h_buffer_credits;
479 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480 
481 	if (old_nblks < thresh)
482 		return 0;
483 
484 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
485 	if (status < 0) {
486 		mlog_errno(status);
487 		goto bail;
488 	}
489 
490 	if (status > 0) {
491 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
492 		if (status < 0)
493 			mlog_errno(status);
494 	}
495 
496 bail:
497 	return status;
498 }
499 
500 
501 struct ocfs2_triggers {
502 	struct jbd2_buffer_trigger_type	ot_triggers;
503 	int				ot_offset;
504 };
505 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)506 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 {
508 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
509 }
510 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)511 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512 				 struct buffer_head *bh,
513 				 void *data, size_t size)
514 {
515 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
516 
517 	/*
518 	 * We aren't guaranteed to have the superblock here, so we
519 	 * must unconditionally compute the ecc data.
520 	 * __ocfs2_journal_access() will only set the triggers if
521 	 * metaecc is enabled.
522 	 */
523 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
524 }
525 
526 /*
527  * Quota blocks have their own trigger because the struct ocfs2_block_check
528  * offset depends on the blocksize.
529  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)530 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
531 				 struct buffer_head *bh,
532 				 void *data, size_t size)
533 {
534 	struct ocfs2_disk_dqtrailer *dqt =
535 		ocfs2_block_dqtrailer(size, data);
536 
537 	/*
538 	 * We aren't guaranteed to have the superblock here, so we
539 	 * must unconditionally compute the ecc data.
540 	 * __ocfs2_journal_access() will only set the triggers if
541 	 * metaecc is enabled.
542 	 */
543 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
544 }
545 
546 /*
547  * Directory blocks also have their own trigger because the
548  * struct ocfs2_block_check offset depends on the blocksize.
549  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)550 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
551 				 struct buffer_head *bh,
552 				 void *data, size_t size)
553 {
554 	struct ocfs2_dir_block_trailer *trailer =
555 		ocfs2_dir_trailer_from_size(size, data);
556 
557 	/*
558 	 * We aren't guaranteed to have the superblock here, so we
559 	 * must unconditionally compute the ecc data.
560 	 * __ocfs2_journal_access() will only set the triggers if
561 	 * metaecc is enabled.
562 	 */
563 	ocfs2_block_check_compute(data, size, &trailer->db_check);
564 }
565 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)566 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
567 				struct buffer_head *bh)
568 {
569 	mlog(ML_ERROR,
570 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
571 	     "bh->b_blocknr = %llu\n",
572 	     (unsigned long)bh,
573 	     (unsigned long long)bh->b_blocknr);
574 
575 	ocfs2_error(bh->b_bdev->bd_super,
576 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
577 }
578 
579 static struct ocfs2_triggers di_triggers = {
580 	.ot_triggers = {
581 		.t_frozen = ocfs2_frozen_trigger,
582 		.t_abort = ocfs2_abort_trigger,
583 	},
584 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
585 };
586 
587 static struct ocfs2_triggers eb_triggers = {
588 	.ot_triggers = {
589 		.t_frozen = ocfs2_frozen_trigger,
590 		.t_abort = ocfs2_abort_trigger,
591 	},
592 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
593 };
594 
595 static struct ocfs2_triggers rb_triggers = {
596 	.ot_triggers = {
597 		.t_frozen = ocfs2_frozen_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
601 };
602 
603 static struct ocfs2_triggers gd_triggers = {
604 	.ot_triggers = {
605 		.t_frozen = ocfs2_frozen_trigger,
606 		.t_abort = ocfs2_abort_trigger,
607 	},
608 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
609 };
610 
611 static struct ocfs2_triggers db_triggers = {
612 	.ot_triggers = {
613 		.t_frozen = ocfs2_db_frozen_trigger,
614 		.t_abort = ocfs2_abort_trigger,
615 	},
616 };
617 
618 static struct ocfs2_triggers xb_triggers = {
619 	.ot_triggers = {
620 		.t_frozen = ocfs2_frozen_trigger,
621 		.t_abort = ocfs2_abort_trigger,
622 	},
623 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
624 };
625 
626 static struct ocfs2_triggers dq_triggers = {
627 	.ot_triggers = {
628 		.t_frozen = ocfs2_dq_frozen_trigger,
629 		.t_abort = ocfs2_abort_trigger,
630 	},
631 };
632 
633 static struct ocfs2_triggers dr_triggers = {
634 	.ot_triggers = {
635 		.t_frozen = ocfs2_frozen_trigger,
636 		.t_abort = ocfs2_abort_trigger,
637 	},
638 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
639 };
640 
641 static struct ocfs2_triggers dl_triggers = {
642 	.ot_triggers = {
643 		.t_frozen = ocfs2_frozen_trigger,
644 		.t_abort = ocfs2_abort_trigger,
645 	},
646 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
647 };
648 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)649 static int __ocfs2_journal_access(handle_t *handle,
650 				  struct ocfs2_caching_info *ci,
651 				  struct buffer_head *bh,
652 				  struct ocfs2_triggers *triggers,
653 				  int type)
654 {
655 	int status;
656 	struct ocfs2_super *osb =
657 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658 
659 	BUG_ON(!ci || !ci->ci_ops);
660 	BUG_ON(!handle);
661 	BUG_ON(!bh);
662 
663 	trace_ocfs2_journal_access(
664 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
665 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
666 
667 	/* we can safely remove this assertion after testing. */
668 	if (!buffer_uptodate(bh)) {
669 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
670 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
671 		     (unsigned long long)bh->b_blocknr, bh->b_state);
672 
673 		lock_buffer(bh);
674 		/*
675 		 * A previous transaction with a couple of buffer heads fail
676 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
677 		 * For current transaction, the bh is just among those error
678 		 * bhs which previous transaction handle. We can't just clear
679 		 * its BH_Write_EIO and reuse directly, since other bhs are
680 		 * not written to disk yet and that will cause metadata
681 		 * inconsistency. So we should set fs read-only to avoid
682 		 * further damage.
683 		 */
684 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
685 			unlock_buffer(bh);
686 			return ocfs2_error(osb->sb, "A previous attempt to "
687 					"write this buffer head failed\n");
688 		}
689 		unlock_buffer(bh);
690 	}
691 
692 	/* Set the current transaction information on the ci so
693 	 * that the locking code knows whether it can drop it's locks
694 	 * on this ci or not. We're protected from the commit
695 	 * thread updating the current transaction id until
696 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
697 	 * j_trans_barrier for us. */
698 	ocfs2_set_ci_lock_trans(osb->journal, ci);
699 
700 	ocfs2_metadata_cache_io_lock(ci);
701 	switch (type) {
702 	case OCFS2_JOURNAL_ACCESS_CREATE:
703 	case OCFS2_JOURNAL_ACCESS_WRITE:
704 		status = jbd2_journal_get_write_access(handle, bh);
705 		break;
706 
707 	case OCFS2_JOURNAL_ACCESS_UNDO:
708 		status = jbd2_journal_get_undo_access(handle, bh);
709 		break;
710 
711 	default:
712 		status = -EINVAL;
713 		mlog(ML_ERROR, "Unknown access type!\n");
714 	}
715 	if (!status && ocfs2_meta_ecc(osb) && triggers)
716 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
717 	ocfs2_metadata_cache_io_unlock(ci);
718 
719 	if (status < 0)
720 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
721 		     status, type);
722 
723 	return status;
724 }
725 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)726 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
727 			    struct buffer_head *bh, int type)
728 {
729 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
730 }
731 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)732 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
733 			    struct buffer_head *bh, int type)
734 {
735 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
736 }
737 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)738 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
739 			    struct buffer_head *bh, int type)
740 {
741 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
742 				      type);
743 }
744 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)745 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
746 			    struct buffer_head *bh, int type)
747 {
748 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
749 }
750 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)751 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
752 			    struct buffer_head *bh, int type)
753 {
754 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
755 }
756 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)757 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
758 			    struct buffer_head *bh, int type)
759 {
760 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
761 }
762 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)763 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
764 			    struct buffer_head *bh, int type)
765 {
766 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
767 }
768 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)769 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
770 			    struct buffer_head *bh, int type)
771 {
772 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
773 }
774 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)775 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
776 			    struct buffer_head *bh, int type)
777 {
778 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
779 }
780 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)781 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
782 			 struct buffer_head *bh, int type)
783 {
784 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
785 }
786 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)787 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
788 {
789 	int status;
790 
791 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
792 
793 	status = jbd2_journal_dirty_metadata(handle, bh);
794 	if (status) {
795 		mlog_errno(status);
796 		if (!is_handle_aborted(handle)) {
797 			journal_t *journal = handle->h_transaction->t_journal;
798 			struct super_block *sb = bh->b_bdev->bd_super;
799 
800 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
801 					"Aborting transaction and journal.\n");
802 			handle->h_err = status;
803 			jbd2_journal_abort_handle(handle);
804 			jbd2_journal_abort(journal, status);
805 			ocfs2_abort(sb, "Journal already aborted.\n");
806 		}
807 	}
808 }
809 
810 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
811 
ocfs2_set_journal_params(struct ocfs2_super * osb)812 void ocfs2_set_journal_params(struct ocfs2_super *osb)
813 {
814 	journal_t *journal = osb->journal->j_journal;
815 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
816 
817 	if (osb->osb_commit_interval)
818 		commit_interval = osb->osb_commit_interval;
819 
820 	write_lock(&journal->j_state_lock);
821 	journal->j_commit_interval = commit_interval;
822 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
823 		journal->j_flags |= JBD2_BARRIER;
824 	else
825 		journal->j_flags &= ~JBD2_BARRIER;
826 	write_unlock(&journal->j_state_lock);
827 }
828 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)829 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
830 {
831 	int status = -1;
832 	struct inode *inode = NULL; /* the journal inode */
833 	journal_t *j_journal = NULL;
834 	struct ocfs2_dinode *di = NULL;
835 	struct buffer_head *bh = NULL;
836 	struct ocfs2_super *osb;
837 	int inode_lock = 0;
838 
839 	BUG_ON(!journal);
840 
841 	osb = journal->j_osb;
842 
843 	/* already have the inode for our journal */
844 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
845 					    osb->slot_num);
846 	if (inode == NULL) {
847 		status = -EACCES;
848 		mlog_errno(status);
849 		goto done;
850 	}
851 	if (is_bad_inode(inode)) {
852 		mlog(ML_ERROR, "access error (bad inode)\n");
853 		iput(inode);
854 		inode = NULL;
855 		status = -EACCES;
856 		goto done;
857 	}
858 
859 	SET_INODE_JOURNAL(inode);
860 	OCFS2_I(inode)->ip_open_count++;
861 
862 	/* Skip recovery waits here - journal inode metadata never
863 	 * changes in a live cluster so it can be considered an
864 	 * exception to the rule. */
865 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
866 	if (status < 0) {
867 		if (status != -ERESTARTSYS)
868 			mlog(ML_ERROR, "Could not get lock on journal!\n");
869 		goto done;
870 	}
871 
872 	inode_lock = 1;
873 	di = (struct ocfs2_dinode *)bh->b_data;
874 
875 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
876 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
877 		     i_size_read(inode));
878 		status = -EINVAL;
879 		goto done;
880 	}
881 
882 	trace_ocfs2_journal_init(i_size_read(inode),
883 				 (unsigned long long)inode->i_blocks,
884 				 OCFS2_I(inode)->ip_clusters);
885 
886 	/* call the kernels journal init function now */
887 	j_journal = jbd2_journal_init_inode(inode);
888 	if (j_journal == NULL) {
889 		mlog(ML_ERROR, "Linux journal layer error\n");
890 		status = -EINVAL;
891 		goto done;
892 	}
893 
894 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
895 
896 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
897 		  OCFS2_JOURNAL_DIRTY_FL);
898 
899 	journal->j_journal = j_journal;
900 	journal->j_inode = inode;
901 	journal->j_bh = bh;
902 
903 	ocfs2_set_journal_params(osb);
904 
905 	journal->j_state = OCFS2_JOURNAL_LOADED;
906 
907 	status = 0;
908 done:
909 	if (status < 0) {
910 		if (inode_lock)
911 			ocfs2_inode_unlock(inode, 1);
912 		brelse(bh);
913 		if (inode) {
914 			OCFS2_I(inode)->ip_open_count--;
915 			iput(inode);
916 		}
917 	}
918 
919 	return status;
920 }
921 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)922 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
923 {
924 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
925 }
926 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)927 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
928 {
929 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
930 }
931 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)932 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
933 				      int dirty, int replayed)
934 {
935 	int status;
936 	unsigned int flags;
937 	struct ocfs2_journal *journal = osb->journal;
938 	struct buffer_head *bh = journal->j_bh;
939 	struct ocfs2_dinode *fe;
940 
941 	fe = (struct ocfs2_dinode *)bh->b_data;
942 
943 	/* The journal bh on the osb always comes from ocfs2_journal_init()
944 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
945 	 * code bug if we mess it up. */
946 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
947 
948 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
949 	if (dirty)
950 		flags |= OCFS2_JOURNAL_DIRTY_FL;
951 	else
952 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
953 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
954 
955 	if (replayed)
956 		ocfs2_bump_recovery_generation(fe);
957 
958 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
959 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
960 	if (status < 0)
961 		mlog_errno(status);
962 
963 	return status;
964 }
965 
966 /*
967  * If the journal has been kmalloc'd it needs to be freed after this
968  * call.
969  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)970 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
971 {
972 	struct ocfs2_journal *journal = NULL;
973 	int status = 0;
974 	struct inode *inode = NULL;
975 	int num_running_trans = 0;
976 
977 	BUG_ON(!osb);
978 
979 	journal = osb->journal;
980 	if (!journal)
981 		goto done;
982 
983 	inode = journal->j_inode;
984 
985 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
986 		goto done;
987 
988 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
989 	if (!igrab(inode))
990 		BUG();
991 
992 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
993 	trace_ocfs2_journal_shutdown(num_running_trans);
994 
995 	/* Do a commit_cache here. It will flush our journal, *and*
996 	 * release any locks that are still held.
997 	 * set the SHUTDOWN flag and release the trans lock.
998 	 * the commit thread will take the trans lock for us below. */
999 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1000 
1001 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1002 	 * drop the trans_lock (which we want to hold until we
1003 	 * completely destroy the journal. */
1004 	if (osb->commit_task) {
1005 		/* Wait for the commit thread */
1006 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1007 		kthread_stop(osb->commit_task);
1008 		osb->commit_task = NULL;
1009 	}
1010 
1011 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1012 
1013 	if (ocfs2_mount_local(osb)) {
1014 		jbd2_journal_lock_updates(journal->j_journal);
1015 		status = jbd2_journal_flush(journal->j_journal);
1016 		jbd2_journal_unlock_updates(journal->j_journal);
1017 		if (status < 0)
1018 			mlog_errno(status);
1019 	}
1020 
1021 	/* Shutdown the kernel journal system */
1022 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1023 		/*
1024 		 * Do not toggle if flush was unsuccessful otherwise
1025 		 * will leave dirty metadata in a "clean" journal
1026 		 */
1027 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1028 		if (status < 0)
1029 			mlog_errno(status);
1030 	}
1031 	journal->j_journal = NULL;
1032 
1033 	OCFS2_I(inode)->ip_open_count--;
1034 
1035 	/* unlock our journal */
1036 	ocfs2_inode_unlock(inode, 1);
1037 
1038 	brelse(journal->j_bh);
1039 	journal->j_bh = NULL;
1040 
1041 	journal->j_state = OCFS2_JOURNAL_FREE;
1042 
1043 //	up_write(&journal->j_trans_barrier);
1044 done:
1045 	iput(inode);
1046 }
1047 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 				      journal_t *journal,
1050 				      int slot)
1051 {
1052 	int olderr;
1053 
1054 	olderr = jbd2_journal_errno(journal);
1055 	if (olderr) {
1056 		mlog(ML_ERROR, "File system error %d recorded in "
1057 		     "journal %u.\n", olderr, slot);
1058 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 		     sb->s_id);
1060 
1061 		jbd2_journal_ack_err(journal);
1062 		jbd2_journal_clear_err(journal);
1063 	}
1064 }
1065 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 	int status = 0;
1069 	struct ocfs2_super *osb;
1070 
1071 	BUG_ON(!journal);
1072 
1073 	osb = journal->j_osb;
1074 
1075 	status = jbd2_journal_load(journal->j_journal);
1076 	if (status < 0) {
1077 		mlog(ML_ERROR, "Failed to load journal!\n");
1078 		goto done;
1079 	}
1080 
1081 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082 
1083 	if (replayed) {
1084 		jbd2_journal_lock_updates(journal->j_journal);
1085 		status = jbd2_journal_flush(journal->j_journal);
1086 		jbd2_journal_unlock_updates(journal->j_journal);
1087 		if (status < 0)
1088 			mlog_errno(status);
1089 	}
1090 
1091 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1092 	if (status < 0) {
1093 		mlog_errno(status);
1094 		goto done;
1095 	}
1096 
1097 	/* Launch the commit thread */
1098 	if (!local) {
1099 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1100 				"ocfs2cmt-%s", osb->uuid_str);
1101 		if (IS_ERR(osb->commit_task)) {
1102 			status = PTR_ERR(osb->commit_task);
1103 			osb->commit_task = NULL;
1104 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1105 			     "error=%d", status);
1106 			goto done;
1107 		}
1108 	} else
1109 		osb->commit_task = NULL;
1110 
1111 done:
1112 	return status;
1113 }
1114 
1115 
1116 /* 'full' flag tells us whether we clear out all blocks or if we just
1117  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1118 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1119 {
1120 	int status;
1121 
1122 	BUG_ON(!journal);
1123 
1124 	status = jbd2_journal_wipe(journal->j_journal, full);
1125 	if (status < 0) {
1126 		mlog_errno(status);
1127 		goto bail;
1128 	}
1129 
1130 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1131 	if (status < 0)
1132 		mlog_errno(status);
1133 
1134 bail:
1135 	return status;
1136 }
1137 
ocfs2_recovery_completed(struct ocfs2_super * osb)1138 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1139 {
1140 	int empty;
1141 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1142 
1143 	spin_lock(&osb->osb_lock);
1144 	empty = (rm->rm_used == 0);
1145 	spin_unlock(&osb->osb_lock);
1146 
1147 	return empty;
1148 }
1149 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1150 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1151 {
1152 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1153 }
1154 
1155 /*
1156  * JBD Might read a cached version of another nodes journal file. We
1157  * don't want this as this file changes often and we get no
1158  * notification on those changes. The only way to be sure that we've
1159  * got the most up to date version of those blocks then is to force
1160  * read them off disk. Just searching through the buffer cache won't
1161  * work as there may be pages backing this file which are still marked
1162  * up to date. We know things can't change on this file underneath us
1163  * as we have the lock by now :)
1164  */
ocfs2_force_read_journal(struct inode * inode)1165 static int ocfs2_force_read_journal(struct inode *inode)
1166 {
1167 	int status = 0;
1168 	int i;
1169 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1170 	struct buffer_head *bh = NULL;
1171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1172 
1173 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1174 	v_blkno = 0;
1175 	while (v_blkno < num_blocks) {
1176 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1177 						     &p_blkno, &p_blocks, NULL);
1178 		if (status < 0) {
1179 			mlog_errno(status);
1180 			goto bail;
1181 		}
1182 
1183 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1184 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1185 					osb->sb->s_blocksize);
1186 			/* block not cached. */
1187 			if (!bh)
1188 				continue;
1189 
1190 			brelse(bh);
1191 			bh = NULL;
1192 			/* We are reading journal data which should not
1193 			 * be put in the uptodate cache.
1194 			 */
1195 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1196 			if (status < 0) {
1197 				mlog_errno(status);
1198 				goto bail;
1199 			}
1200 
1201 			brelse(bh);
1202 			bh = NULL;
1203 		}
1204 
1205 		v_blkno += p_blocks;
1206 	}
1207 
1208 bail:
1209 	return status;
1210 }
1211 
1212 struct ocfs2_la_recovery_item {
1213 	struct list_head	lri_list;
1214 	int			lri_slot;
1215 	struct ocfs2_dinode	*lri_la_dinode;
1216 	struct ocfs2_dinode	*lri_tl_dinode;
1217 	struct ocfs2_quota_recovery *lri_qrec;
1218 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1219 };
1220 
1221 /* Does the second half of the recovery process. By this point, the
1222  * node is marked clean and can actually be considered recovered,
1223  * hence it's no longer in the recovery map, but there's still some
1224  * cleanup we can do which shouldn't happen within the recovery thread
1225  * as locking in that context becomes very difficult if we are to take
1226  * recovering nodes into account.
1227  *
1228  * NOTE: This function can and will sleep on recovery of other nodes
1229  * during cluster locking, just like any other ocfs2 process.
1230  */
ocfs2_complete_recovery(struct work_struct * work)1231 void ocfs2_complete_recovery(struct work_struct *work)
1232 {
1233 	int ret = 0;
1234 	struct ocfs2_journal *journal =
1235 		container_of(work, struct ocfs2_journal, j_recovery_work);
1236 	struct ocfs2_super *osb = journal->j_osb;
1237 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1238 	struct ocfs2_la_recovery_item *item, *n;
1239 	struct ocfs2_quota_recovery *qrec;
1240 	enum ocfs2_orphan_reco_type orphan_reco_type;
1241 	LIST_HEAD(tmp_la_list);
1242 
1243 	trace_ocfs2_complete_recovery(
1244 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1245 
1246 	spin_lock(&journal->j_lock);
1247 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1248 	spin_unlock(&journal->j_lock);
1249 
1250 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1251 		list_del_init(&item->lri_list);
1252 
1253 		ocfs2_wait_on_quotas(osb);
1254 
1255 		la_dinode = item->lri_la_dinode;
1256 		tl_dinode = item->lri_tl_dinode;
1257 		qrec = item->lri_qrec;
1258 		orphan_reco_type = item->lri_orphan_reco_type;
1259 
1260 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1261 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1262 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1263 			qrec);
1264 
1265 		if (la_dinode) {
1266 			ret = ocfs2_complete_local_alloc_recovery(osb,
1267 								  la_dinode);
1268 			if (ret < 0)
1269 				mlog_errno(ret);
1270 
1271 			kfree(la_dinode);
1272 		}
1273 
1274 		if (tl_dinode) {
1275 			ret = ocfs2_complete_truncate_log_recovery(osb,
1276 								   tl_dinode);
1277 			if (ret < 0)
1278 				mlog_errno(ret);
1279 
1280 			kfree(tl_dinode);
1281 		}
1282 
1283 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1284 				orphan_reco_type);
1285 		if (ret < 0)
1286 			mlog_errno(ret);
1287 
1288 		if (qrec) {
1289 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1290 							  item->lri_slot);
1291 			if (ret < 0)
1292 				mlog_errno(ret);
1293 			/* Recovery info is already freed now */
1294 		}
1295 
1296 		kfree(item);
1297 	}
1298 
1299 	trace_ocfs2_complete_recovery_end(ret);
1300 }
1301 
1302 /* NOTE: This function always eats your references to la_dinode and
1303  * tl_dinode, either manually on error, or by passing them to
1304  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1305 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1306 					    int slot_num,
1307 					    struct ocfs2_dinode *la_dinode,
1308 					    struct ocfs2_dinode *tl_dinode,
1309 					    struct ocfs2_quota_recovery *qrec,
1310 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1311 {
1312 	struct ocfs2_la_recovery_item *item;
1313 
1314 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1315 	if (!item) {
1316 		/* Though we wish to avoid it, we are in fact safe in
1317 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1318 		 * than capable of reclaiming unused space. */
1319 		kfree(la_dinode);
1320 		kfree(tl_dinode);
1321 
1322 		if (qrec)
1323 			ocfs2_free_quota_recovery(qrec);
1324 
1325 		mlog_errno(-ENOMEM);
1326 		return;
1327 	}
1328 
1329 	INIT_LIST_HEAD(&item->lri_list);
1330 	item->lri_la_dinode = la_dinode;
1331 	item->lri_slot = slot_num;
1332 	item->lri_tl_dinode = tl_dinode;
1333 	item->lri_qrec = qrec;
1334 	item->lri_orphan_reco_type = orphan_reco_type;
1335 
1336 	spin_lock(&journal->j_lock);
1337 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1338 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1339 	spin_unlock(&journal->j_lock);
1340 }
1341 
1342 /* Called by the mount code to queue recovery the last part of
1343  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1344 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1345 {
1346 	struct ocfs2_journal *journal = osb->journal;
1347 
1348 	if (ocfs2_is_hard_readonly(osb))
1349 		return;
1350 
1351 	/* No need to queue up our truncate_log as regular cleanup will catch
1352 	 * that */
1353 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1354 					osb->local_alloc_copy, NULL, NULL,
1355 					ORPHAN_NEED_TRUNCATE);
1356 	ocfs2_schedule_truncate_log_flush(osb, 0);
1357 
1358 	osb->local_alloc_copy = NULL;
1359 
1360 	/* queue to recover orphan slots for all offline slots */
1361 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1362 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1363 	ocfs2_free_replay_slots(osb);
1364 }
1365 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1366 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1367 {
1368 	if (osb->quota_rec) {
1369 		ocfs2_queue_recovery_completion(osb->journal,
1370 						osb->slot_num,
1371 						NULL,
1372 						NULL,
1373 						osb->quota_rec,
1374 						ORPHAN_NEED_TRUNCATE);
1375 		osb->quota_rec = NULL;
1376 	}
1377 }
1378 
__ocfs2_recovery_thread(void * arg)1379 static int __ocfs2_recovery_thread(void *arg)
1380 {
1381 	int status, node_num, slot_num;
1382 	struct ocfs2_super *osb = arg;
1383 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1384 	int *rm_quota = NULL;
1385 	int rm_quota_used = 0, i;
1386 	struct ocfs2_quota_recovery *qrec;
1387 
1388 	/* Whether the quota supported. */
1389 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1390 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1391 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1392 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1393 
1394 	status = ocfs2_wait_on_mount(osb);
1395 	if (status < 0) {
1396 		goto bail;
1397 	}
1398 
1399 	if (quota_enabled) {
1400 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1401 		if (!rm_quota) {
1402 			status = -ENOMEM;
1403 			goto bail;
1404 		}
1405 	}
1406 restart:
1407 	status = ocfs2_super_lock(osb, 1);
1408 	if (status < 0) {
1409 		mlog_errno(status);
1410 		goto bail;
1411 	}
1412 
1413 	status = ocfs2_compute_replay_slots(osb);
1414 	if (status < 0)
1415 		mlog_errno(status);
1416 
1417 	/* queue recovery for our own slot */
1418 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1419 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1420 
1421 	spin_lock(&osb->osb_lock);
1422 	while (rm->rm_used) {
1423 		/* It's always safe to remove entry zero, as we won't
1424 		 * clear it until ocfs2_recover_node() has succeeded. */
1425 		node_num = rm->rm_entries[0];
1426 		spin_unlock(&osb->osb_lock);
1427 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1428 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1429 		if (slot_num == -ENOENT) {
1430 			status = 0;
1431 			goto skip_recovery;
1432 		}
1433 
1434 		/* It is a bit subtle with quota recovery. We cannot do it
1435 		 * immediately because we have to obtain cluster locks from
1436 		 * quota files and we also don't want to just skip it because
1437 		 * then quota usage would be out of sync until some node takes
1438 		 * the slot. So we remember which nodes need quota recovery
1439 		 * and when everything else is done, we recover quotas. */
1440 		if (quota_enabled) {
1441 			for (i = 0; i < rm_quota_used
1442 					&& rm_quota[i] != slot_num; i++)
1443 				;
1444 
1445 			if (i == rm_quota_used)
1446 				rm_quota[rm_quota_used++] = slot_num;
1447 		}
1448 
1449 		status = ocfs2_recover_node(osb, node_num, slot_num);
1450 skip_recovery:
1451 		if (!status) {
1452 			ocfs2_recovery_map_clear(osb, node_num);
1453 		} else {
1454 			mlog(ML_ERROR,
1455 			     "Error %d recovering node %d on device (%u,%u)!\n",
1456 			     status, node_num,
1457 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1458 			mlog(ML_ERROR, "Volume requires unmount.\n");
1459 		}
1460 
1461 		spin_lock(&osb->osb_lock);
1462 	}
1463 	spin_unlock(&osb->osb_lock);
1464 	trace_ocfs2_recovery_thread_end(status);
1465 
1466 	/* Refresh all journal recovery generations from disk */
1467 	status = ocfs2_check_journals_nolocks(osb);
1468 	status = (status == -EROFS) ? 0 : status;
1469 	if (status < 0)
1470 		mlog_errno(status);
1471 
1472 	/* Now it is right time to recover quotas... We have to do this under
1473 	 * superblock lock so that no one can start using the slot (and crash)
1474 	 * before we recover it */
1475 	if (quota_enabled) {
1476 		for (i = 0; i < rm_quota_used; i++) {
1477 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1478 			if (IS_ERR(qrec)) {
1479 				status = PTR_ERR(qrec);
1480 				mlog_errno(status);
1481 				continue;
1482 			}
1483 			ocfs2_queue_recovery_completion(osb->journal,
1484 					rm_quota[i],
1485 					NULL, NULL, qrec,
1486 					ORPHAN_NEED_TRUNCATE);
1487 		}
1488 	}
1489 
1490 	ocfs2_super_unlock(osb, 1);
1491 
1492 	/* queue recovery for offline slots */
1493 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1494 
1495 bail:
1496 	mutex_lock(&osb->recovery_lock);
1497 	if (!status && !ocfs2_recovery_completed(osb)) {
1498 		mutex_unlock(&osb->recovery_lock);
1499 		goto restart;
1500 	}
1501 
1502 	ocfs2_free_replay_slots(osb);
1503 	osb->recovery_thread_task = NULL;
1504 	mb(); /* sync with ocfs2_recovery_thread_running */
1505 	wake_up(&osb->recovery_event);
1506 
1507 	mutex_unlock(&osb->recovery_lock);
1508 
1509 	if (quota_enabled)
1510 		kfree(rm_quota);
1511 
1512 	/* no one is callint kthread_stop() for us so the kthread() api
1513 	 * requires that we call do_exit().  And it isn't exported, but
1514 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1515 	complete_and_exit(NULL, status);
1516 }
1517 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1518 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1519 {
1520 	mutex_lock(&osb->recovery_lock);
1521 
1522 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1523 		osb->disable_recovery, osb->recovery_thread_task,
1524 		osb->disable_recovery ?
1525 		-1 : ocfs2_recovery_map_set(osb, node_num));
1526 
1527 	if (osb->disable_recovery)
1528 		goto out;
1529 
1530 	if (osb->recovery_thread_task)
1531 		goto out;
1532 
1533 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1534 			"ocfs2rec-%s", osb->uuid_str);
1535 	if (IS_ERR(osb->recovery_thread_task)) {
1536 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1537 		osb->recovery_thread_task = NULL;
1538 	}
1539 
1540 out:
1541 	mutex_unlock(&osb->recovery_lock);
1542 	wake_up(&osb->recovery_event);
1543 }
1544 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1545 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1546 				    int slot_num,
1547 				    struct buffer_head **bh,
1548 				    struct inode **ret_inode)
1549 {
1550 	int status = -EACCES;
1551 	struct inode *inode = NULL;
1552 
1553 	BUG_ON(slot_num >= osb->max_slots);
1554 
1555 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1556 					    slot_num);
1557 	if (!inode || is_bad_inode(inode)) {
1558 		mlog_errno(status);
1559 		goto bail;
1560 	}
1561 	SET_INODE_JOURNAL(inode);
1562 
1563 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1564 	if (status < 0) {
1565 		mlog_errno(status);
1566 		goto bail;
1567 	}
1568 
1569 	status = 0;
1570 
1571 bail:
1572 	if (inode) {
1573 		if (status || !ret_inode)
1574 			iput(inode);
1575 		else
1576 			*ret_inode = inode;
1577 	}
1578 	return status;
1579 }
1580 
1581 /* Does the actual journal replay and marks the journal inode as
1582  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1583 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1584 				int node_num,
1585 				int slot_num)
1586 {
1587 	int status;
1588 	int got_lock = 0;
1589 	unsigned int flags;
1590 	struct inode *inode = NULL;
1591 	struct ocfs2_dinode *fe;
1592 	journal_t *journal = NULL;
1593 	struct buffer_head *bh = NULL;
1594 	u32 slot_reco_gen;
1595 
1596 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1597 	if (status) {
1598 		mlog_errno(status);
1599 		goto done;
1600 	}
1601 
1602 	fe = (struct ocfs2_dinode *)bh->b_data;
1603 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1604 	brelse(bh);
1605 	bh = NULL;
1606 
1607 	/*
1608 	 * As the fs recovery is asynchronous, there is a small chance that
1609 	 * another node mounted (and recovered) the slot before the recovery
1610 	 * thread could get the lock. To handle that, we dirty read the journal
1611 	 * inode for that slot to get the recovery generation. If it is
1612 	 * different than what we expected, the slot has been recovered.
1613 	 * If not, it needs recovery.
1614 	 */
1615 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1616 		trace_ocfs2_replay_journal_recovered(slot_num,
1617 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1618 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619 		status = -EBUSY;
1620 		goto done;
1621 	}
1622 
1623 	/* Continue with recovery as the journal has not yet been recovered */
1624 
1625 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1626 	if (status < 0) {
1627 		trace_ocfs2_replay_journal_lock_err(status);
1628 		if (status != -ERESTARTSYS)
1629 			mlog(ML_ERROR, "Could not lock journal!\n");
1630 		goto done;
1631 	}
1632 	got_lock = 1;
1633 
1634 	fe = (struct ocfs2_dinode *) bh->b_data;
1635 
1636 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1637 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1638 
1639 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1640 		trace_ocfs2_replay_journal_skip(node_num);
1641 		/* Refresh recovery generation for the slot */
1642 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1643 		goto done;
1644 	}
1645 
1646 	/* we need to run complete recovery for offline orphan slots */
1647 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1648 
1649 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1650 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1651 	       MINOR(osb->sb->s_dev));
1652 
1653 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1654 
1655 	status = ocfs2_force_read_journal(inode);
1656 	if (status < 0) {
1657 		mlog_errno(status);
1658 		goto done;
1659 	}
1660 
1661 	journal = jbd2_journal_init_inode(inode);
1662 	if (journal == NULL) {
1663 		mlog(ML_ERROR, "Linux journal layer error\n");
1664 		status = -EIO;
1665 		goto done;
1666 	}
1667 
1668 	status = jbd2_journal_load(journal);
1669 	if (status < 0) {
1670 		mlog_errno(status);
1671 		if (!igrab(inode))
1672 			BUG();
1673 		jbd2_journal_destroy(journal);
1674 		goto done;
1675 	}
1676 
1677 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1678 
1679 	/* wipe the journal */
1680 	jbd2_journal_lock_updates(journal);
1681 	status = jbd2_journal_flush(journal);
1682 	jbd2_journal_unlock_updates(journal);
1683 	if (status < 0)
1684 		mlog_errno(status);
1685 
1686 	/* This will mark the node clean */
1687 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1688 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1689 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1690 
1691 	/* Increment recovery generation to indicate successful recovery */
1692 	ocfs2_bump_recovery_generation(fe);
1693 	osb->slot_recovery_generations[slot_num] =
1694 					ocfs2_get_recovery_generation(fe);
1695 
1696 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1697 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1698 	if (status < 0)
1699 		mlog_errno(status);
1700 
1701 	if (!igrab(inode))
1702 		BUG();
1703 
1704 	jbd2_journal_destroy(journal);
1705 
1706 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1707 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1708 	       MINOR(osb->sb->s_dev));
1709 done:
1710 	/* drop the lock on this nodes journal */
1711 	if (got_lock)
1712 		ocfs2_inode_unlock(inode, 1);
1713 
1714 	iput(inode);
1715 	brelse(bh);
1716 
1717 	return status;
1718 }
1719 
1720 /*
1721  * Do the most important parts of node recovery:
1722  *  - Replay it's journal
1723  *  - Stamp a clean local allocator file
1724  *  - Stamp a clean truncate log
1725  *  - Mark the node clean
1726  *
1727  * If this function completes without error, a node in OCFS2 can be
1728  * said to have been safely recovered. As a result, failure during the
1729  * second part of a nodes recovery process (local alloc recovery) is
1730  * far less concerning.
1731  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1732 static int ocfs2_recover_node(struct ocfs2_super *osb,
1733 			      int node_num, int slot_num)
1734 {
1735 	int status = 0;
1736 	struct ocfs2_dinode *la_copy = NULL;
1737 	struct ocfs2_dinode *tl_copy = NULL;
1738 
1739 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1740 
1741 	/* Should not ever be called to recover ourselves -- in that
1742 	 * case we should've called ocfs2_journal_load instead. */
1743 	BUG_ON(osb->node_num == node_num);
1744 
1745 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1746 	if (status < 0) {
1747 		if (status == -EBUSY) {
1748 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1749 			status = 0;
1750 			goto done;
1751 		}
1752 		mlog_errno(status);
1753 		goto done;
1754 	}
1755 
1756 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1757 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1758 	if (status < 0) {
1759 		mlog_errno(status);
1760 		goto done;
1761 	}
1762 
1763 	/* An error from begin_truncate_log_recovery is not
1764 	 * serious enough to warrant halting the rest of
1765 	 * recovery. */
1766 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1767 	if (status < 0)
1768 		mlog_errno(status);
1769 
1770 	/* Likewise, this would be a strange but ultimately not so
1771 	 * harmful place to get an error... */
1772 	status = ocfs2_clear_slot(osb, slot_num);
1773 	if (status < 0)
1774 		mlog_errno(status);
1775 
1776 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1777 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1778 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1779 
1780 	status = 0;
1781 done:
1782 
1783 	return status;
1784 }
1785 
1786 /* Test node liveness by trylocking his journal. If we get the lock,
1787  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1788  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1789 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1790 				 int slot_num)
1791 {
1792 	int status, flags;
1793 	struct inode *inode = NULL;
1794 
1795 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1796 					    slot_num);
1797 	if (inode == NULL) {
1798 		mlog(ML_ERROR, "access error\n");
1799 		status = -EACCES;
1800 		goto bail;
1801 	}
1802 	if (is_bad_inode(inode)) {
1803 		mlog(ML_ERROR, "access error (bad inode)\n");
1804 		iput(inode);
1805 		inode = NULL;
1806 		status = -EACCES;
1807 		goto bail;
1808 	}
1809 	SET_INODE_JOURNAL(inode);
1810 
1811 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1812 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1813 	if (status < 0) {
1814 		if (status != -EAGAIN)
1815 			mlog_errno(status);
1816 		goto bail;
1817 	}
1818 
1819 	ocfs2_inode_unlock(inode, 1);
1820 bail:
1821 	iput(inode);
1822 
1823 	return status;
1824 }
1825 
1826 /* Call this underneath ocfs2_super_lock. It also assumes that the
1827  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1828 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1829 {
1830 	unsigned int node_num;
1831 	int status, i;
1832 	u32 gen;
1833 	struct buffer_head *bh = NULL;
1834 	struct ocfs2_dinode *di;
1835 
1836 	/* This is called with the super block cluster lock, so we
1837 	 * know that the slot map can't change underneath us. */
1838 
1839 	for (i = 0; i < osb->max_slots; i++) {
1840 		/* Read journal inode to get the recovery generation */
1841 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1842 		if (status) {
1843 			mlog_errno(status);
1844 			goto bail;
1845 		}
1846 		di = (struct ocfs2_dinode *)bh->b_data;
1847 		gen = ocfs2_get_recovery_generation(di);
1848 		brelse(bh);
1849 		bh = NULL;
1850 
1851 		spin_lock(&osb->osb_lock);
1852 		osb->slot_recovery_generations[i] = gen;
1853 
1854 		trace_ocfs2_mark_dead_nodes(i,
1855 					    osb->slot_recovery_generations[i]);
1856 
1857 		if (i == osb->slot_num) {
1858 			spin_unlock(&osb->osb_lock);
1859 			continue;
1860 		}
1861 
1862 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1863 		if (status == -ENOENT) {
1864 			spin_unlock(&osb->osb_lock);
1865 			continue;
1866 		}
1867 
1868 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1869 			spin_unlock(&osb->osb_lock);
1870 			continue;
1871 		}
1872 		spin_unlock(&osb->osb_lock);
1873 
1874 		/* Ok, we have a slot occupied by another node which
1875 		 * is not in the recovery map. We trylock his journal
1876 		 * file here to test if he's alive. */
1877 		status = ocfs2_trylock_journal(osb, i);
1878 		if (!status) {
1879 			/* Since we're called from mount, we know that
1880 			 * the recovery thread can't race us on
1881 			 * setting / checking the recovery bits. */
1882 			ocfs2_recovery_thread(osb, node_num);
1883 		} else if ((status < 0) && (status != -EAGAIN)) {
1884 			mlog_errno(status);
1885 			goto bail;
1886 		}
1887 	}
1888 
1889 	status = 0;
1890 bail:
1891 	return status;
1892 }
1893 
1894 /*
1895  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1896  * randomness to the timeout to minimize multple nodes firing the timer at the
1897  * same time.
1898  */
ocfs2_orphan_scan_timeout(void)1899 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1900 {
1901 	unsigned long time;
1902 
1903 	get_random_bytes(&time, sizeof(time));
1904 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1905 	return msecs_to_jiffies(time);
1906 }
1907 
1908 /*
1909  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1910  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1911  * is done to catch any orphans that are left over in orphan directories.
1912  *
1913  * It scans all slots, even ones that are in use. It does so to handle the
1914  * case described below:
1915  *
1916  *   Node 1 has an inode it was using. The dentry went away due to memory
1917  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1918  *   has the open lock.
1919  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1920  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1921  *   open lock, sees that another node has a PR, and does nothing.
1922  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1923  *   open lock, sees the PR still, and does nothing.
1924  *   Basically, we have to trigger an orphan iput on node 1. The only way
1925  *   for this to happen is if node 1 runs node 2's orphan dir.
1926  *
1927  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1928  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1929  * stored in LVB. If the sequence number has changed, it means some other
1930  * node has done the scan.  This node skips the scan and tracks the
1931  * sequence number.  If the sequence number didn't change, it means a scan
1932  * hasn't happened.  The node queues a scan and increments the
1933  * sequence number in the LVB.
1934  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1935 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1936 {
1937 	struct ocfs2_orphan_scan *os;
1938 	int status, i;
1939 	u32 seqno = 0;
1940 
1941 	os = &osb->osb_orphan_scan;
1942 
1943 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1944 		goto out;
1945 
1946 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1947 					    atomic_read(&os->os_state));
1948 
1949 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1950 	if (status < 0) {
1951 		if (status != -EAGAIN)
1952 			mlog_errno(status);
1953 		goto out;
1954 	}
1955 
1956 	/* Do no queue the tasks if the volume is being umounted */
1957 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1958 		goto unlock;
1959 
1960 	if (os->os_seqno != seqno) {
1961 		os->os_seqno = seqno;
1962 		goto unlock;
1963 	}
1964 
1965 	for (i = 0; i < osb->max_slots; i++)
1966 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1967 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1968 	/*
1969 	 * We queued a recovery on orphan slots, increment the sequence
1970 	 * number and update LVB so other node will skip the scan for a while
1971 	 */
1972 	seqno++;
1973 	os->os_count++;
1974 	os->os_scantime = ktime_get_seconds();
1975 unlock:
1976 	ocfs2_orphan_scan_unlock(osb, seqno);
1977 out:
1978 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1979 					  atomic_read(&os->os_state));
1980 	return;
1981 }
1982 
1983 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1984 static void ocfs2_orphan_scan_work(struct work_struct *work)
1985 {
1986 	struct ocfs2_orphan_scan *os;
1987 	struct ocfs2_super *osb;
1988 
1989 	os = container_of(work, struct ocfs2_orphan_scan,
1990 			  os_orphan_scan_work.work);
1991 	osb = os->os_osb;
1992 
1993 	mutex_lock(&os->os_lock);
1994 	ocfs2_queue_orphan_scan(osb);
1995 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1996 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1997 				      ocfs2_orphan_scan_timeout());
1998 	mutex_unlock(&os->os_lock);
1999 }
2000 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2001 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2002 {
2003 	struct ocfs2_orphan_scan *os;
2004 
2005 	os = &osb->osb_orphan_scan;
2006 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2007 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2008 		mutex_lock(&os->os_lock);
2009 		cancel_delayed_work(&os->os_orphan_scan_work);
2010 		mutex_unlock(&os->os_lock);
2011 	}
2012 }
2013 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2014 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2015 {
2016 	struct ocfs2_orphan_scan *os;
2017 
2018 	os = &osb->osb_orphan_scan;
2019 	os->os_osb = osb;
2020 	os->os_count = 0;
2021 	os->os_seqno = 0;
2022 	mutex_init(&os->os_lock);
2023 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2024 }
2025 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2026 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2027 {
2028 	struct ocfs2_orphan_scan *os;
2029 
2030 	os = &osb->osb_orphan_scan;
2031 	os->os_scantime = ktime_get_seconds();
2032 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2033 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2034 	else {
2035 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2036 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2037 				   ocfs2_orphan_scan_timeout());
2038 	}
2039 }
2040 
2041 struct ocfs2_orphan_filldir_priv {
2042 	struct dir_context	ctx;
2043 	struct inode		*head;
2044 	struct ocfs2_super	*osb;
2045 	enum ocfs2_orphan_reco_type orphan_reco_type;
2046 };
2047 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2048 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2049 				int name_len, loff_t pos, u64 ino,
2050 				unsigned type)
2051 {
2052 	struct ocfs2_orphan_filldir_priv *p =
2053 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2054 	struct inode *iter;
2055 
2056 	if (name_len == 1 && !strncmp(".", name, 1))
2057 		return 0;
2058 	if (name_len == 2 && !strncmp("..", name, 2))
2059 		return 0;
2060 
2061 	/* do not include dio entry in case of orphan scan */
2062 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2063 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2065 		return 0;
2066 
2067 	/* Skip bad inodes so that recovery can continue */
2068 	iter = ocfs2_iget(p->osb, ino,
2069 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2070 	if (IS_ERR(iter))
2071 		return 0;
2072 
2073 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2074 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2075 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2076 
2077 	/* Skip inodes which are already added to recover list, since dio may
2078 	 * happen concurrently with unlink/rename */
2079 	if (OCFS2_I(iter)->ip_next_orphan) {
2080 		iput(iter);
2081 		return 0;
2082 	}
2083 
2084 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2085 	/* No locking is required for the next_orphan queue as there
2086 	 * is only ever a single process doing orphan recovery. */
2087 	OCFS2_I(iter)->ip_next_orphan = p->head;
2088 	p->head = iter;
2089 
2090 	return 0;
2091 }
2092 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2093 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2094 			       int slot,
2095 			       struct inode **head,
2096 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2097 {
2098 	int status;
2099 	struct inode *orphan_dir_inode = NULL;
2100 	struct ocfs2_orphan_filldir_priv priv = {
2101 		.ctx.actor = ocfs2_orphan_filldir,
2102 		.osb = osb,
2103 		.head = *head,
2104 		.orphan_reco_type = orphan_reco_type
2105 	};
2106 
2107 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2108 						       ORPHAN_DIR_SYSTEM_INODE,
2109 						       slot);
2110 	if  (!orphan_dir_inode) {
2111 		status = -ENOENT;
2112 		mlog_errno(status);
2113 		return status;
2114 	}
2115 
2116 	inode_lock(orphan_dir_inode);
2117 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2118 	if (status < 0) {
2119 		mlog_errno(status);
2120 		goto out;
2121 	}
2122 
2123 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2124 	if (status) {
2125 		mlog_errno(status);
2126 		goto out_cluster;
2127 	}
2128 
2129 	*head = priv.head;
2130 
2131 out_cluster:
2132 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2133 out:
2134 	inode_unlock(orphan_dir_inode);
2135 	iput(orphan_dir_inode);
2136 	return status;
2137 }
2138 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2139 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2140 					      int slot)
2141 {
2142 	int ret;
2143 
2144 	spin_lock(&osb->osb_lock);
2145 	ret = !osb->osb_orphan_wipes[slot];
2146 	spin_unlock(&osb->osb_lock);
2147 	return ret;
2148 }
2149 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2150 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2151 					     int slot)
2152 {
2153 	spin_lock(&osb->osb_lock);
2154 	/* Mark ourselves such that new processes in delete_inode()
2155 	 * know to quit early. */
2156 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2157 	while (osb->osb_orphan_wipes[slot]) {
2158 		/* If any processes are already in the middle of an
2159 		 * orphan wipe on this dir, then we need to wait for
2160 		 * them. */
2161 		spin_unlock(&osb->osb_lock);
2162 		wait_event_interruptible(osb->osb_wipe_event,
2163 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2164 		spin_lock(&osb->osb_lock);
2165 	}
2166 	spin_unlock(&osb->osb_lock);
2167 }
2168 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2169 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2170 					      int slot)
2171 {
2172 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2173 }
2174 
2175 /*
2176  * Orphan recovery. Each mounted node has it's own orphan dir which we
2177  * must run during recovery. Our strategy here is to build a list of
2178  * the inodes in the orphan dir and iget/iput them. The VFS does
2179  * (most) of the rest of the work.
2180  *
2181  * Orphan recovery can happen at any time, not just mount so we have a
2182  * couple of extra considerations.
2183  *
2184  * - We grab as many inodes as we can under the orphan dir lock -
2185  *   doing iget() outside the orphan dir risks getting a reference on
2186  *   an invalid inode.
2187  * - We must be sure not to deadlock with other processes on the
2188  *   system wanting to run delete_inode(). This can happen when they go
2189  *   to lock the orphan dir and the orphan recovery process attempts to
2190  *   iget() inside the orphan dir lock. This can be avoided by
2191  *   advertising our state to ocfs2_delete_inode().
2192  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2193 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2194 				 int slot,
2195 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2196 {
2197 	int ret = 0;
2198 	struct inode *inode = NULL;
2199 	struct inode *iter;
2200 	struct ocfs2_inode_info *oi;
2201 	struct buffer_head *di_bh = NULL;
2202 	struct ocfs2_dinode *di = NULL;
2203 
2204 	trace_ocfs2_recover_orphans(slot);
2205 
2206 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2207 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2208 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2209 
2210 	/* Error here should be noted, but we want to continue with as
2211 	 * many queued inodes as we've got. */
2212 	if (ret)
2213 		mlog_errno(ret);
2214 
2215 	while (inode) {
2216 		oi = OCFS2_I(inode);
2217 		trace_ocfs2_recover_orphans_iput(
2218 					(unsigned long long)oi->ip_blkno);
2219 
2220 		iter = oi->ip_next_orphan;
2221 		oi->ip_next_orphan = NULL;
2222 
2223 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2224 			inode_lock(inode);
2225 			ret = ocfs2_rw_lock(inode, 1);
2226 			if (ret < 0) {
2227 				mlog_errno(ret);
2228 				goto unlock_mutex;
2229 			}
2230 			/*
2231 			 * We need to take and drop the inode lock to
2232 			 * force read inode from disk.
2233 			 */
2234 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2235 			if (ret) {
2236 				mlog_errno(ret);
2237 				goto unlock_rw;
2238 			}
2239 
2240 			di = (struct ocfs2_dinode *)di_bh->b_data;
2241 
2242 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2243 				ret = ocfs2_truncate_file(inode, di_bh,
2244 						i_size_read(inode));
2245 				if (ret < 0) {
2246 					if (ret != -ENOSPC)
2247 						mlog_errno(ret);
2248 					goto unlock_inode;
2249 				}
2250 
2251 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2252 						di_bh, 0, 0);
2253 				if (ret)
2254 					mlog_errno(ret);
2255 			}
2256 unlock_inode:
2257 			ocfs2_inode_unlock(inode, 1);
2258 			brelse(di_bh);
2259 			di_bh = NULL;
2260 unlock_rw:
2261 			ocfs2_rw_unlock(inode, 1);
2262 unlock_mutex:
2263 			inode_unlock(inode);
2264 
2265 			/* clear dio flag in ocfs2_inode_info */
2266 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2267 		} else {
2268 			spin_lock(&oi->ip_lock);
2269 			/* Set the proper information to get us going into
2270 			 * ocfs2_delete_inode. */
2271 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2272 			spin_unlock(&oi->ip_lock);
2273 		}
2274 
2275 		iput(inode);
2276 		inode = iter;
2277 	}
2278 
2279 	return ret;
2280 }
2281 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2282 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2283 {
2284 	/* This check is good because ocfs2 will wait on our recovery
2285 	 * thread before changing it to something other than MOUNTED
2286 	 * or DISABLED. */
2287 	wait_event(osb->osb_mount_event,
2288 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2289 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2290 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2291 
2292 	/* If there's an error on mount, then we may never get to the
2293 	 * MOUNTED flag, but this is set right before
2294 	 * dismount_volume() so we can trust it. */
2295 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2296 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2297 		mlog(0, "mount error, exiting!\n");
2298 		return -EBUSY;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
ocfs2_commit_thread(void * arg)2304 static int ocfs2_commit_thread(void *arg)
2305 {
2306 	int status;
2307 	struct ocfs2_super *osb = arg;
2308 	struct ocfs2_journal *journal = osb->journal;
2309 
2310 	/* we can trust j_num_trans here because _should_stop() is only set in
2311 	 * shutdown and nobody other than ourselves should be able to start
2312 	 * transactions.  committing on shutdown might take a few iterations
2313 	 * as final transactions put deleted inodes on the list */
2314 	while (!(kthread_should_stop() &&
2315 		 atomic_read(&journal->j_num_trans) == 0)) {
2316 
2317 		wait_event_interruptible(osb->checkpoint_event,
2318 					 atomic_read(&journal->j_num_trans)
2319 					 || kthread_should_stop());
2320 
2321 		status = ocfs2_commit_cache(osb);
2322 		if (status < 0) {
2323 			static unsigned long abort_warn_time;
2324 
2325 			/* Warn about this once per minute */
2326 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2327 				mlog(ML_ERROR, "status = %d, journal is "
2328 						"already aborted.\n", status);
2329 			/*
2330 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2331 			 * non-zero value.  Sleep here to avoid a busy-wait
2332 			 * loop.
2333 			 */
2334 			msleep_interruptible(1000);
2335 		}
2336 
2337 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2338 			mlog(ML_KTHREAD,
2339 			     "commit_thread: %u transactions pending on "
2340 			     "shutdown\n",
2341 			     atomic_read(&journal->j_num_trans));
2342 		}
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 /* Reads all the journal inodes without taking any cluster locks. Used
2349  * for hard readonly access to determine whether any journal requires
2350  * recovery. Also used to refresh the recovery generation numbers after
2351  * a journal has been recovered by another node.
2352  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2353 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2354 {
2355 	int ret = 0;
2356 	unsigned int slot;
2357 	struct buffer_head *di_bh = NULL;
2358 	struct ocfs2_dinode *di;
2359 	int journal_dirty = 0;
2360 
2361 	for(slot = 0; slot < osb->max_slots; slot++) {
2362 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2363 		if (ret) {
2364 			mlog_errno(ret);
2365 			goto out;
2366 		}
2367 
2368 		di = (struct ocfs2_dinode *) di_bh->b_data;
2369 
2370 		osb->slot_recovery_generations[slot] =
2371 					ocfs2_get_recovery_generation(di);
2372 
2373 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2374 		    OCFS2_JOURNAL_DIRTY_FL)
2375 			journal_dirty = 1;
2376 
2377 		brelse(di_bh);
2378 		di_bh = NULL;
2379 	}
2380 
2381 out:
2382 	if (journal_dirty)
2383 		ret = -EROFS;
2384 	return ret;
2385 }
2386