1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
vma_stop(struct proc_maps_private * priv)126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
m_start(struct seq_file * m,loff_t * ppos)149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	if (down_read_killable(&mm->mmap_sem)) {
170 		mmput(mm);
171 		return ERR_PTR(-EINTR);
172 	}
173 
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr - 1);
179 		if (vma && vma->vm_start <= last_addr)
180 			vma = m_next_vma(priv, vma);
181 		if (vma)
182 			return vma;
183 	}
184 
185 	m->version = 0;
186 	if (pos < mm->map_count) {
187 		for (vma = mm->mmap; pos; pos--) {
188 			m->version = vma->vm_start;
189 			vma = vma->vm_next;
190 		}
191 		return vma;
192 	}
193 
194 	/* we do not bother to update m->version in this case */
195 	if (pos == mm->map_count && priv->tail_vma)
196 		return priv->tail_vma;
197 
198 	vma_stop(priv);
199 	return NULL;
200 }
201 
m_next(struct seq_file * m,void * v,loff_t * pos)202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 	struct proc_maps_private *priv = m->private;
205 	struct vm_area_struct *next;
206 
207 	(*pos)++;
208 	next = m_next_vma(priv, v);
209 	if (!next)
210 		vma_stop(priv);
211 	return next;
212 }
213 
m_stop(struct seq_file * m,void * v)214 static void m_stop(struct seq_file *m, void *v)
215 {
216 	struct proc_maps_private *priv = m->private;
217 
218 	if (!IS_ERR_OR_NULL(v))
219 		vma_stop(priv);
220 	if (priv->task) {
221 		put_task_struct(priv->task);
222 		priv->task = NULL;
223 	}
224 }
225 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)226 static int proc_maps_open(struct inode *inode, struct file *file,
227 			const struct seq_operations *ops, int psize)
228 {
229 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230 
231 	if (!priv)
232 		return -ENOMEM;
233 
234 	priv->inode = inode;
235 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 	if (IS_ERR(priv->mm)) {
237 		int err = PTR_ERR(priv->mm);
238 
239 		seq_release_private(inode, file);
240 		return err;
241 	}
242 
243 	return 0;
244 }
245 
proc_map_release(struct inode * inode,struct file * file)246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 	struct seq_file *seq = file->private_data;
249 	struct proc_maps_private *priv = seq->private;
250 
251 	if (priv->mm)
252 		mmdrop(priv->mm);
253 
254 	return seq_release_private(inode, file);
255 }
256 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
is_stack(struct vm_area_struct * vma)268 static int is_stack(struct vm_area_struct *vma)
269 {
270 	/*
271 	 * We make no effort to guess what a given thread considers to be
272 	 * its "stack".  It's not even well-defined for programs written
273 	 * languages like Go.
274 	 */
275 	return vma->vm_start <= vma->vm_mm->start_stack &&
276 		vma->vm_end >= vma->vm_mm->start_stack;
277 }
278 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)279 static void show_vma_header_prefix(struct seq_file *m,
280 				   unsigned long start, unsigned long end,
281 				   vm_flags_t flags, unsigned long long pgoff,
282 				   dev_t dev, unsigned long ino)
283 {
284 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 	seq_put_hex_ll(m, NULL, start, 8);
286 	seq_put_hex_ll(m, "-", end, 8);
287 	seq_putc(m, ' ');
288 	seq_putc(m, flags & VM_READ ? 'r' : '-');
289 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 	seq_put_hex_ll(m, " ", pgoff, 8);
293 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 	seq_put_decimal_ull(m, " ", ino);
296 	seq_putc(m, ' ');
297 }
298 
299 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301 {
302 	struct mm_struct *mm = vma->vm_mm;
303 	struct file *file = vma->vm_file;
304 	vm_flags_t flags = vma->vm_flags;
305 	unsigned long ino = 0;
306 	unsigned long long pgoff = 0;
307 	unsigned long start, end;
308 	dev_t dev = 0;
309 	const char *name = NULL;
310 
311 	if (file) {
312 		struct inode *inode = file_inode(vma->vm_file);
313 		dev = inode->i_sb->s_dev;
314 		ino = inode->i_ino;
315 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 	}
317 
318 	start = vma->vm_start;
319 	end = vma->vm_end;
320 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321 
322 	/*
323 	 * Print the dentry name for named mappings, and a
324 	 * special [heap] marker for the heap:
325 	 */
326 	if (file) {
327 		seq_pad(m, ' ');
328 		seq_file_path(m, file, "\n");
329 		goto done;
330 	}
331 
332 	if (vma->vm_ops && vma->vm_ops->name) {
333 		name = vma->vm_ops->name(vma);
334 		if (name)
335 			goto done;
336 	}
337 
338 	name = arch_vma_name(vma);
339 	if (!name) {
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		if (is_stack(vma))
352 			name = "[stack]";
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
show_map(struct seq_file * m,void * v)363 static int show_map(struct seq_file *m, void *v)
364 {
365 	show_map_vma(m, v);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static const struct seq_operations proc_pid_maps_op = {
371 	.start	= m_start,
372 	.next	= m_next,
373 	.stop	= m_stop,
374 	.show	= show_map
375 };
376 
pid_maps_open(struct inode * inode,struct file * file)377 static int pid_maps_open(struct inode *inode, struct file *file)
378 {
379 	return do_maps_open(inode, file, &proc_pid_maps_op);
380 }
381 
382 const struct file_operations proc_pid_maps_operations = {
383 	.open		= pid_maps_open,
384 	.read		= seq_read,
385 	.llseek		= seq_lseek,
386 	.release	= proc_map_release,
387 };
388 
389 /*
390  * Proportional Set Size(PSS): my share of RSS.
391  *
392  * PSS of a process is the count of pages it has in memory, where each
393  * page is divided by the number of processes sharing it.  So if a
394  * process has 1000 pages all to itself, and 1000 shared with one other
395  * process, its PSS will be 1500.
396  *
397  * To keep (accumulated) division errors low, we adopt a 64bit
398  * fixed-point pss counter to minimize division errors. So (pss >>
399  * PSS_SHIFT) would be the real byte count.
400  *
401  * A shift of 12 before division means (assuming 4K page size):
402  * 	- 1M 3-user-pages add up to 8KB errors;
403  * 	- supports mapcount up to 2^24, or 16M;
404  * 	- supports PSS up to 2^52 bytes, or 4PB.
405  */
406 #define PSS_SHIFT 12
407 
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 	unsigned long resident;
411 	unsigned long shared_clean;
412 	unsigned long shared_dirty;
413 	unsigned long private_clean;
414 	unsigned long private_dirty;
415 	unsigned long referenced;
416 	unsigned long anonymous;
417 	unsigned long lazyfree;
418 	unsigned long anonymous_thp;
419 	unsigned long shmem_thp;
420 	unsigned long swap;
421 	unsigned long shared_hugetlb;
422 	unsigned long private_hugetlb;
423 	u64 pss;
424 	u64 pss_locked;
425 	u64 swap_pss;
426 	bool check_shmem_swap;
427 };
428 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked)429 static void smaps_account(struct mem_size_stats *mss, struct page *page,
430 		bool compound, bool young, bool dirty, bool locked)
431 {
432 	int i, nr = compound ? 1 << compound_order(page) : 1;
433 	unsigned long size = nr * PAGE_SIZE;
434 
435 	if (PageAnon(page)) {
436 		mss->anonymous += size;
437 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
438 			mss->lazyfree += size;
439 	}
440 
441 	mss->resident += size;
442 	/* Accumulate the size in pages that have been accessed. */
443 	if (young || page_is_young(page) || PageReferenced(page))
444 		mss->referenced += size;
445 
446 	/*
447 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
448 	 * If any subpage of the compound page mapped with PTE it would elevate
449 	 * page_count().
450 	 */
451 	if (page_count(page) == 1) {
452 		if (dirty || PageDirty(page))
453 			mss->private_dirty += size;
454 		else
455 			mss->private_clean += size;
456 		mss->pss += (u64)size << PSS_SHIFT;
457 		if (locked)
458 			mss->pss_locked += (u64)size << PSS_SHIFT;
459 		return;
460 	}
461 
462 	for (i = 0; i < nr; i++, page++) {
463 		int mapcount = page_mapcount(page);
464 		unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
465 
466 		if (mapcount >= 2) {
467 			if (dirty || PageDirty(page))
468 				mss->shared_dirty += PAGE_SIZE;
469 			else
470 				mss->shared_clean += PAGE_SIZE;
471 			mss->pss += pss / mapcount;
472 			if (locked)
473 				mss->pss_locked += pss / mapcount;
474 		} else {
475 			if (dirty || PageDirty(page))
476 				mss->private_dirty += PAGE_SIZE;
477 			else
478 				mss->private_clean += PAGE_SIZE;
479 			mss->pss += pss;
480 			if (locked)
481 				mss->pss_locked += pss;
482 		}
483 	}
484 }
485 
486 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,struct mm_walk * walk)487 static int smaps_pte_hole(unsigned long addr, unsigned long end,
488 		struct mm_walk *walk)
489 {
490 	struct mem_size_stats *mss = walk->private;
491 
492 	mss->swap += shmem_partial_swap_usage(
493 			walk->vma->vm_file->f_mapping, addr, end);
494 
495 	return 0;
496 }
497 #endif
498 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)499 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
500 		struct mm_walk *walk)
501 {
502 	struct mem_size_stats *mss = walk->private;
503 	struct vm_area_struct *vma = walk->vma;
504 	bool locked = !!(vma->vm_flags & VM_LOCKED);
505 	struct page *page = NULL;
506 
507 	if (pte_present(*pte)) {
508 		page = vm_normal_page(vma, addr, *pte);
509 	} else if (is_swap_pte(*pte)) {
510 		swp_entry_t swpent = pte_to_swp_entry(*pte);
511 
512 		if (!non_swap_entry(swpent)) {
513 			int mapcount;
514 
515 			mss->swap += PAGE_SIZE;
516 			mapcount = swp_swapcount(swpent);
517 			if (mapcount >= 2) {
518 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
519 
520 				do_div(pss_delta, mapcount);
521 				mss->swap_pss += pss_delta;
522 			} else {
523 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
524 			}
525 		} else if (is_migration_entry(swpent))
526 			page = migration_entry_to_page(swpent);
527 		else if (is_device_private_entry(swpent))
528 			page = device_private_entry_to_page(swpent);
529 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
530 							&& pte_none(*pte))) {
531 		page = find_get_entry(vma->vm_file->f_mapping,
532 						linear_page_index(vma, addr));
533 		if (!page)
534 			return;
535 
536 		if (radix_tree_exceptional_entry(page))
537 			mss->swap += PAGE_SIZE;
538 		else
539 			put_page(page);
540 
541 		return;
542 	}
543 
544 	if (!page)
545 		return;
546 
547 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
548 }
549 
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)551 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
552 		struct mm_walk *walk)
553 {
554 	struct mem_size_stats *mss = walk->private;
555 	struct vm_area_struct *vma = walk->vma;
556 	bool locked = !!(vma->vm_flags & VM_LOCKED);
557 	struct page *page;
558 
559 	/* FOLL_DUMP will return -EFAULT on huge zero page */
560 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
561 	if (IS_ERR_OR_NULL(page))
562 		return;
563 	if (PageAnon(page))
564 		mss->anonymous_thp += HPAGE_PMD_SIZE;
565 	else if (PageSwapBacked(page))
566 		mss->shmem_thp += HPAGE_PMD_SIZE;
567 	else if (is_zone_device_page(page))
568 		/* pass */;
569 	else
570 		VM_BUG_ON_PAGE(1, page);
571 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
572 }
573 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 }
578 #endif
579 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)580 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
581 			   struct mm_walk *walk)
582 {
583 	struct vm_area_struct *vma = walk->vma;
584 	pte_t *pte;
585 	spinlock_t *ptl;
586 
587 	ptl = pmd_trans_huge_lock(pmd, vma);
588 	if (ptl) {
589 		if (pmd_present(*pmd))
590 			smaps_pmd_entry(pmd, addr, walk);
591 		spin_unlock(ptl);
592 		goto out;
593 	}
594 
595 	if (pmd_trans_unstable(pmd))
596 		goto out;
597 	/*
598 	 * The mmap_sem held all the way back in m_start() is what
599 	 * keeps khugepaged out of here and from collapsing things
600 	 * in here.
601 	 */
602 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
603 	for (; addr != end; pte++, addr += PAGE_SIZE)
604 		smaps_pte_entry(pte, addr, walk);
605 	pte_unmap_unlock(pte - 1, ptl);
606 out:
607 	cond_resched();
608 	return 0;
609 }
610 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)611 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
612 {
613 	/*
614 	 * Don't forget to update Documentation/ on changes.
615 	 */
616 	static const char mnemonics[BITS_PER_LONG][2] = {
617 		/*
618 		 * In case if we meet a flag we don't know about.
619 		 */
620 		[0 ... (BITS_PER_LONG-1)] = "??",
621 
622 		[ilog2(VM_READ)]	= "rd",
623 		[ilog2(VM_WRITE)]	= "wr",
624 		[ilog2(VM_EXEC)]	= "ex",
625 		[ilog2(VM_SHARED)]	= "sh",
626 		[ilog2(VM_MAYREAD)]	= "mr",
627 		[ilog2(VM_MAYWRITE)]	= "mw",
628 		[ilog2(VM_MAYEXEC)]	= "me",
629 		[ilog2(VM_MAYSHARE)]	= "ms",
630 		[ilog2(VM_GROWSDOWN)]	= "gd",
631 		[ilog2(VM_PFNMAP)]	= "pf",
632 		[ilog2(VM_DENYWRITE)]	= "dw",
633 #ifdef CONFIG_X86_INTEL_MPX
634 		[ilog2(VM_MPX)]		= "mp",
635 #endif
636 		[ilog2(VM_LOCKED)]	= "lo",
637 		[ilog2(VM_IO)]		= "io",
638 		[ilog2(VM_SEQ_READ)]	= "sr",
639 		[ilog2(VM_RAND_READ)]	= "rr",
640 		[ilog2(VM_DONTCOPY)]	= "dc",
641 		[ilog2(VM_DONTEXPAND)]	= "de",
642 		[ilog2(VM_ACCOUNT)]	= "ac",
643 		[ilog2(VM_NORESERVE)]	= "nr",
644 		[ilog2(VM_HUGETLB)]	= "ht",
645 		[ilog2(VM_SYNC)]	= "sf",
646 		[ilog2(VM_ARCH_1)]	= "ar",
647 		[ilog2(VM_WIPEONFORK)]	= "wf",
648 		[ilog2(VM_DONTDUMP)]	= "dd",
649 #ifdef CONFIG_MEM_SOFT_DIRTY
650 		[ilog2(VM_SOFTDIRTY)]	= "sd",
651 #endif
652 		[ilog2(VM_MIXEDMAP)]	= "mm",
653 		[ilog2(VM_HUGEPAGE)]	= "hg",
654 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
655 		[ilog2(VM_MERGEABLE)]	= "mg",
656 		[ilog2(VM_UFFD_MISSING)]= "um",
657 		[ilog2(VM_UFFD_WP)]	= "uw",
658 #ifdef CONFIG_ARCH_HAS_PKEYS
659 		/* These come out via ProtectionKey: */
660 		[ilog2(VM_PKEY_BIT0)]	= "",
661 		[ilog2(VM_PKEY_BIT1)]	= "",
662 		[ilog2(VM_PKEY_BIT2)]	= "",
663 		[ilog2(VM_PKEY_BIT3)]	= "",
664 #if VM_PKEY_BIT4
665 		[ilog2(VM_PKEY_BIT4)]	= "",
666 #endif
667 #endif /* CONFIG_ARCH_HAS_PKEYS */
668 	};
669 	size_t i;
670 
671 	seq_puts(m, "VmFlags: ");
672 	for (i = 0; i < BITS_PER_LONG; i++) {
673 		if (!mnemonics[i][0])
674 			continue;
675 		if (vma->vm_flags & (1UL << i)) {
676 			seq_putc(m, mnemonics[i][0]);
677 			seq_putc(m, mnemonics[i][1]);
678 			seq_putc(m, ' ');
679 		}
680 	}
681 	seq_putc(m, '\n');
682 }
683 
684 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)685 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
686 				 unsigned long addr, unsigned long end,
687 				 struct mm_walk *walk)
688 {
689 	struct mem_size_stats *mss = walk->private;
690 	struct vm_area_struct *vma = walk->vma;
691 	struct page *page = NULL;
692 
693 	if (pte_present(*pte)) {
694 		page = vm_normal_page(vma, addr, *pte);
695 	} else if (is_swap_pte(*pte)) {
696 		swp_entry_t swpent = pte_to_swp_entry(*pte);
697 
698 		if (is_migration_entry(swpent))
699 			page = migration_entry_to_page(swpent);
700 		else if (is_device_private_entry(swpent))
701 			page = device_private_entry_to_page(swpent);
702 	}
703 	if (page) {
704 		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
705 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
706 		else
707 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
708 	}
709 	return 0;
710 }
711 #endif /* HUGETLB_PAGE */
712 
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss)713 static void smap_gather_stats(struct vm_area_struct *vma,
714 			     struct mem_size_stats *mss)
715 {
716 	struct mm_walk smaps_walk = {
717 		.pmd_entry = smaps_pte_range,
718 #ifdef CONFIG_HUGETLB_PAGE
719 		.hugetlb_entry = smaps_hugetlb_range,
720 #endif
721 		.mm = vma->vm_mm,
722 	};
723 
724 	smaps_walk.private = mss;
725 
726 #ifdef CONFIG_SHMEM
727 	/* In case of smaps_rollup, reset the value from previous vma */
728 	mss->check_shmem_swap = false;
729 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
730 		/*
731 		 * For shared or readonly shmem mappings we know that all
732 		 * swapped out pages belong to the shmem object, and we can
733 		 * obtain the swap value much more efficiently. For private
734 		 * writable mappings, we might have COW pages that are
735 		 * not affected by the parent swapped out pages of the shmem
736 		 * object, so we have to distinguish them during the page walk.
737 		 * Unless we know that the shmem object (or the part mapped by
738 		 * our VMA) has no swapped out pages at all.
739 		 */
740 		unsigned long shmem_swapped = shmem_swap_usage(vma);
741 
742 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
743 					!(vma->vm_flags & VM_WRITE)) {
744 			mss->swap += shmem_swapped;
745 		} else {
746 			mss->check_shmem_swap = true;
747 			smaps_walk.pte_hole = smaps_pte_hole;
748 		}
749 	}
750 #endif
751 	/* mmap_sem is held in m_start */
752 	walk_page_vma(vma, &smaps_walk);
753 }
754 
755 #define SEQ_PUT_DEC(str, val) \
756 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
757 
758 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss)759 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
760 {
761 	SEQ_PUT_DEC("Rss:            ", mss->resident);
762 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
763 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
764 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
765 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
766 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
767 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
768 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
769 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
770 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
771 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
772 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
773 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
774 				  mss->private_hugetlb >> 10, 7);
775 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
776 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
777 					mss->swap_pss >> PSS_SHIFT);
778 	SEQ_PUT_DEC(" kB\nLocked:         ",
779 					mss->pss_locked >> PSS_SHIFT);
780 	seq_puts(m, " kB\n");
781 }
782 
show_smap(struct seq_file * m,void * v)783 static int show_smap(struct seq_file *m, void *v)
784 {
785 	struct vm_area_struct *vma = v;
786 	struct mem_size_stats mss;
787 
788 	memset(&mss, 0, sizeof(mss));
789 
790 	smap_gather_stats(vma, &mss);
791 
792 	show_map_vma(m, vma);
793 
794 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
795 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
796 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
797 	seq_puts(m, " kB\n");
798 
799 	__show_smap(m, &mss);
800 
801 	seq_printf(m, "THPeligible:    %d\n", transparent_hugepage_enabled(vma));
802 
803 	if (arch_pkeys_enabled())
804 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
805 	show_smap_vma_flags(m, vma);
806 
807 	m_cache_vma(m, vma);
808 
809 	return 0;
810 }
811 
show_smaps_rollup(struct seq_file * m,void * v)812 static int show_smaps_rollup(struct seq_file *m, void *v)
813 {
814 	struct proc_maps_private *priv = m->private;
815 	struct mem_size_stats mss;
816 	struct mm_struct *mm;
817 	struct vm_area_struct *vma;
818 	unsigned long last_vma_end = 0;
819 	int ret = 0;
820 
821 	priv->task = get_proc_task(priv->inode);
822 	if (!priv->task)
823 		return -ESRCH;
824 
825 	mm = priv->mm;
826 	if (!mm || !mmget_not_zero(mm)) {
827 		ret = -ESRCH;
828 		goto out_put_task;
829 	}
830 
831 	memset(&mss, 0, sizeof(mss));
832 
833 	ret = down_read_killable(&mm->mmap_sem);
834 	if (ret)
835 		goto out_put_mm;
836 
837 	hold_task_mempolicy(priv);
838 
839 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
840 		smap_gather_stats(vma, &mss);
841 		last_vma_end = vma->vm_end;
842 	}
843 
844 	show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
845 			       last_vma_end, 0, 0, 0, 0);
846 	seq_pad(m, ' ');
847 	seq_puts(m, "[rollup]\n");
848 
849 	__show_smap(m, &mss);
850 
851 	release_task_mempolicy(priv);
852 	up_read(&mm->mmap_sem);
853 
854 out_put_mm:
855 	mmput(mm);
856 out_put_task:
857 	put_task_struct(priv->task);
858 	priv->task = NULL;
859 
860 	return ret;
861 }
862 #undef SEQ_PUT_DEC
863 
864 static const struct seq_operations proc_pid_smaps_op = {
865 	.start	= m_start,
866 	.next	= m_next,
867 	.stop	= m_stop,
868 	.show	= show_smap
869 };
870 
pid_smaps_open(struct inode * inode,struct file * file)871 static int pid_smaps_open(struct inode *inode, struct file *file)
872 {
873 	return do_maps_open(inode, file, &proc_pid_smaps_op);
874 }
875 
smaps_rollup_open(struct inode * inode,struct file * file)876 static int smaps_rollup_open(struct inode *inode, struct file *file)
877 {
878 	int ret;
879 	struct proc_maps_private *priv;
880 
881 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
882 	if (!priv)
883 		return -ENOMEM;
884 
885 	ret = single_open(file, show_smaps_rollup, priv);
886 	if (ret)
887 		goto out_free;
888 
889 	priv->inode = inode;
890 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
891 	if (IS_ERR(priv->mm)) {
892 		ret = PTR_ERR(priv->mm);
893 
894 		single_release(inode, file);
895 		goto out_free;
896 	}
897 
898 	return 0;
899 
900 out_free:
901 	kfree(priv);
902 	return ret;
903 }
904 
smaps_rollup_release(struct inode * inode,struct file * file)905 static int smaps_rollup_release(struct inode *inode, struct file *file)
906 {
907 	struct seq_file *seq = file->private_data;
908 	struct proc_maps_private *priv = seq->private;
909 
910 	if (priv->mm)
911 		mmdrop(priv->mm);
912 
913 	kfree(priv);
914 	return single_release(inode, file);
915 }
916 
917 const struct file_operations proc_pid_smaps_operations = {
918 	.open		= pid_smaps_open,
919 	.read		= seq_read,
920 	.llseek		= seq_lseek,
921 	.release	= proc_map_release,
922 };
923 
924 const struct file_operations proc_pid_smaps_rollup_operations = {
925 	.open		= smaps_rollup_open,
926 	.read		= seq_read,
927 	.llseek		= seq_lseek,
928 	.release	= smaps_rollup_release,
929 };
930 
931 enum clear_refs_types {
932 	CLEAR_REFS_ALL = 1,
933 	CLEAR_REFS_ANON,
934 	CLEAR_REFS_MAPPED,
935 	CLEAR_REFS_SOFT_DIRTY,
936 	CLEAR_REFS_MM_HIWATER_RSS,
937 	CLEAR_REFS_LAST,
938 };
939 
940 struct clear_refs_private {
941 	enum clear_refs_types type;
942 };
943 
944 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)945 static inline void clear_soft_dirty(struct vm_area_struct *vma,
946 		unsigned long addr, pte_t *pte)
947 {
948 	/*
949 	 * The soft-dirty tracker uses #PF-s to catch writes
950 	 * to pages, so write-protect the pte as well. See the
951 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
952 	 * of how soft-dirty works.
953 	 */
954 	pte_t ptent = *pte;
955 
956 	if (pte_present(ptent)) {
957 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
958 		ptent = pte_wrprotect(ptent);
959 		ptent = pte_clear_soft_dirty(ptent);
960 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
961 	} else if (is_swap_pte(ptent)) {
962 		ptent = pte_swp_clear_soft_dirty(ptent);
963 		set_pte_at(vma->vm_mm, addr, pte, ptent);
964 	}
965 }
966 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)967 static inline void clear_soft_dirty(struct vm_area_struct *vma,
968 		unsigned long addr, pte_t *pte)
969 {
970 }
971 #endif
972 
973 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)974 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
975 		unsigned long addr, pmd_t *pmdp)
976 {
977 	pmd_t old, pmd = *pmdp;
978 
979 	if (pmd_present(pmd)) {
980 		/* See comment in change_huge_pmd() */
981 		old = pmdp_invalidate(vma, addr, pmdp);
982 		if (pmd_dirty(old))
983 			pmd = pmd_mkdirty(pmd);
984 		if (pmd_young(old))
985 			pmd = pmd_mkyoung(pmd);
986 
987 		pmd = pmd_wrprotect(pmd);
988 		pmd = pmd_clear_soft_dirty(pmd);
989 
990 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
991 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
992 		pmd = pmd_swp_clear_soft_dirty(pmd);
993 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
994 	}
995 }
996 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)997 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
998 		unsigned long addr, pmd_t *pmdp)
999 {
1000 }
1001 #endif
1002 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1003 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1004 				unsigned long end, struct mm_walk *walk)
1005 {
1006 	struct clear_refs_private *cp = walk->private;
1007 	struct vm_area_struct *vma = walk->vma;
1008 	pte_t *pte, ptent;
1009 	spinlock_t *ptl;
1010 	struct page *page;
1011 
1012 	ptl = pmd_trans_huge_lock(pmd, vma);
1013 	if (ptl) {
1014 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1015 			clear_soft_dirty_pmd(vma, addr, pmd);
1016 			goto out;
1017 		}
1018 
1019 		if (!pmd_present(*pmd))
1020 			goto out;
1021 
1022 		page = pmd_page(*pmd);
1023 
1024 		/* Clear accessed and referenced bits. */
1025 		pmdp_test_and_clear_young(vma, addr, pmd);
1026 		test_and_clear_page_young(page);
1027 		ClearPageReferenced(page);
1028 out:
1029 		spin_unlock(ptl);
1030 		return 0;
1031 	}
1032 
1033 	if (pmd_trans_unstable(pmd))
1034 		return 0;
1035 
1036 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1038 		ptent = *pte;
1039 
1040 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1041 			clear_soft_dirty(vma, addr, pte);
1042 			continue;
1043 		}
1044 
1045 		if (!pte_present(ptent))
1046 			continue;
1047 
1048 		page = vm_normal_page(vma, addr, ptent);
1049 		if (!page)
1050 			continue;
1051 
1052 		/* Clear accessed and referenced bits. */
1053 		ptep_test_and_clear_young(vma, addr, pte);
1054 		test_and_clear_page_young(page);
1055 		ClearPageReferenced(page);
1056 	}
1057 	pte_unmap_unlock(pte - 1, ptl);
1058 	cond_resched();
1059 	return 0;
1060 }
1061 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1062 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1063 				struct mm_walk *walk)
1064 {
1065 	struct clear_refs_private *cp = walk->private;
1066 	struct vm_area_struct *vma = walk->vma;
1067 
1068 	if (vma->vm_flags & VM_PFNMAP)
1069 		return 1;
1070 
1071 	/*
1072 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1073 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1074 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1075 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1076 	 */
1077 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1078 		return 1;
1079 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1080 		return 1;
1081 	return 0;
1082 }
1083 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1084 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1085 				size_t count, loff_t *ppos)
1086 {
1087 	struct task_struct *task;
1088 	char buffer[PROC_NUMBUF];
1089 	struct mm_struct *mm;
1090 	struct vm_area_struct *vma;
1091 	enum clear_refs_types type;
1092 	struct mmu_gather tlb;
1093 	int itype;
1094 	int rv;
1095 
1096 	memset(buffer, 0, sizeof(buffer));
1097 	if (count > sizeof(buffer) - 1)
1098 		count = sizeof(buffer) - 1;
1099 	if (copy_from_user(buffer, buf, count))
1100 		return -EFAULT;
1101 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1102 	if (rv < 0)
1103 		return rv;
1104 	type = (enum clear_refs_types)itype;
1105 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1106 		return -EINVAL;
1107 
1108 	task = get_proc_task(file_inode(file));
1109 	if (!task)
1110 		return -ESRCH;
1111 	mm = get_task_mm(task);
1112 	if (mm) {
1113 		struct clear_refs_private cp = {
1114 			.type = type,
1115 		};
1116 		struct mm_walk clear_refs_walk = {
1117 			.pmd_entry = clear_refs_pte_range,
1118 			.test_walk = clear_refs_test_walk,
1119 			.mm = mm,
1120 			.private = &cp,
1121 		};
1122 
1123 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1124 			if (down_write_killable(&mm->mmap_sem)) {
1125 				count = -EINTR;
1126 				goto out_mm;
1127 			}
1128 
1129 			/*
1130 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1131 			 * resident set size to this mm's current rss value.
1132 			 */
1133 			reset_mm_hiwater_rss(mm);
1134 			up_write(&mm->mmap_sem);
1135 			goto out_mm;
1136 		}
1137 
1138 		if (down_read_killable(&mm->mmap_sem)) {
1139 			count = -EINTR;
1140 			goto out_mm;
1141 		}
1142 		tlb_gather_mmu(&tlb, mm, 0, -1);
1143 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1144 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1145 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1146 					continue;
1147 				up_read(&mm->mmap_sem);
1148 				if (down_write_killable(&mm->mmap_sem)) {
1149 					count = -EINTR;
1150 					goto out_mm;
1151 				}
1152 				/*
1153 				 * Avoid to modify vma->vm_flags
1154 				 * without locked ops while the
1155 				 * coredump reads the vm_flags.
1156 				 */
1157 				if (!mmget_still_valid(mm)) {
1158 					/*
1159 					 * Silently return "count"
1160 					 * like if get_task_mm()
1161 					 * failed. FIXME: should this
1162 					 * function have returned
1163 					 * -ESRCH if get_task_mm()
1164 					 * failed like if
1165 					 * get_proc_task() fails?
1166 					 */
1167 					up_write(&mm->mmap_sem);
1168 					goto out_mm;
1169 				}
1170 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1171 					vma->vm_flags &= ~VM_SOFTDIRTY;
1172 					vma_set_page_prot(vma);
1173 				}
1174 				downgrade_write(&mm->mmap_sem);
1175 				break;
1176 			}
1177 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1178 		}
1179 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1180 		if (type == CLEAR_REFS_SOFT_DIRTY)
1181 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1182 		tlb_finish_mmu(&tlb, 0, -1);
1183 		up_read(&mm->mmap_sem);
1184 out_mm:
1185 		mmput(mm);
1186 	}
1187 	put_task_struct(task);
1188 
1189 	return count;
1190 }
1191 
1192 const struct file_operations proc_clear_refs_operations = {
1193 	.write		= clear_refs_write,
1194 	.llseek		= noop_llseek,
1195 };
1196 
1197 typedef struct {
1198 	u64 pme;
1199 } pagemap_entry_t;
1200 
1201 struct pagemapread {
1202 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1203 	pagemap_entry_t *buffer;
1204 	bool show_pfn;
1205 };
1206 
1207 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1208 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1209 
1210 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1211 #define PM_PFRAME_BITS		55
1212 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1213 #define PM_SOFT_DIRTY		BIT_ULL(55)
1214 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1215 #define PM_FILE			BIT_ULL(61)
1216 #define PM_SWAP			BIT_ULL(62)
1217 #define PM_PRESENT		BIT_ULL(63)
1218 
1219 #define PM_END_OF_BUFFER    1
1220 
make_pme(u64 frame,u64 flags)1221 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1222 {
1223 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1224 }
1225 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1226 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1227 			  struct pagemapread *pm)
1228 {
1229 	pm->buffer[pm->pos++] = *pme;
1230 	if (pm->pos >= pm->len)
1231 		return PM_END_OF_BUFFER;
1232 	return 0;
1233 }
1234 
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1235 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1236 				struct mm_walk *walk)
1237 {
1238 	struct pagemapread *pm = walk->private;
1239 	unsigned long addr = start;
1240 	int err = 0;
1241 
1242 	while (addr < end) {
1243 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1244 		pagemap_entry_t pme = make_pme(0, 0);
1245 		/* End of address space hole, which we mark as non-present. */
1246 		unsigned long hole_end;
1247 
1248 		if (vma)
1249 			hole_end = min(end, vma->vm_start);
1250 		else
1251 			hole_end = end;
1252 
1253 		for (; addr < hole_end; addr += PAGE_SIZE) {
1254 			err = add_to_pagemap(addr, &pme, pm);
1255 			if (err)
1256 				goto out;
1257 		}
1258 
1259 		if (!vma)
1260 			break;
1261 
1262 		/* Addresses in the VMA. */
1263 		if (vma->vm_flags & VM_SOFTDIRTY)
1264 			pme = make_pme(0, PM_SOFT_DIRTY);
1265 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1266 			err = add_to_pagemap(addr, &pme, pm);
1267 			if (err)
1268 				goto out;
1269 		}
1270 	}
1271 out:
1272 	return err;
1273 }
1274 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1275 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1276 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1277 {
1278 	u64 frame = 0, flags = 0;
1279 	struct page *page = NULL;
1280 
1281 	if (pte_present(pte)) {
1282 		if (pm->show_pfn)
1283 			frame = pte_pfn(pte);
1284 		flags |= PM_PRESENT;
1285 		page = _vm_normal_page(vma, addr, pte, true);
1286 		if (pte_soft_dirty(pte))
1287 			flags |= PM_SOFT_DIRTY;
1288 	} else if (is_swap_pte(pte)) {
1289 		swp_entry_t entry;
1290 		if (pte_swp_soft_dirty(pte))
1291 			flags |= PM_SOFT_DIRTY;
1292 		entry = pte_to_swp_entry(pte);
1293 		if (pm->show_pfn)
1294 			frame = swp_type(entry) |
1295 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1296 		flags |= PM_SWAP;
1297 		if (is_migration_entry(entry))
1298 			page = migration_entry_to_page(entry);
1299 
1300 		if (is_device_private_entry(entry))
1301 			page = device_private_entry_to_page(entry);
1302 	}
1303 
1304 	if (page && !PageAnon(page))
1305 		flags |= PM_FILE;
1306 	if (page && page_mapcount(page) == 1)
1307 		flags |= PM_MMAP_EXCLUSIVE;
1308 	if (vma->vm_flags & VM_SOFTDIRTY)
1309 		flags |= PM_SOFT_DIRTY;
1310 
1311 	return make_pme(frame, flags);
1312 }
1313 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1314 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1315 			     struct mm_walk *walk)
1316 {
1317 	struct vm_area_struct *vma = walk->vma;
1318 	struct pagemapread *pm = walk->private;
1319 	spinlock_t *ptl;
1320 	pte_t *pte, *orig_pte;
1321 	int err = 0;
1322 
1323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1324 	ptl = pmd_trans_huge_lock(pmdp, vma);
1325 	if (ptl) {
1326 		u64 flags = 0, frame = 0;
1327 		pmd_t pmd = *pmdp;
1328 		struct page *page = NULL;
1329 
1330 		if (vma->vm_flags & VM_SOFTDIRTY)
1331 			flags |= PM_SOFT_DIRTY;
1332 
1333 		if (pmd_present(pmd)) {
1334 			page = pmd_page(pmd);
1335 
1336 			flags |= PM_PRESENT;
1337 			if (pmd_soft_dirty(pmd))
1338 				flags |= PM_SOFT_DIRTY;
1339 			if (pm->show_pfn)
1340 				frame = pmd_pfn(pmd) +
1341 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1342 		}
1343 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1344 		else if (is_swap_pmd(pmd)) {
1345 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1346 			unsigned long offset;
1347 
1348 			if (pm->show_pfn) {
1349 				offset = swp_offset(entry) +
1350 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1351 				frame = swp_type(entry) |
1352 					(offset << MAX_SWAPFILES_SHIFT);
1353 			}
1354 			flags |= PM_SWAP;
1355 			if (pmd_swp_soft_dirty(pmd))
1356 				flags |= PM_SOFT_DIRTY;
1357 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1358 			page = migration_entry_to_page(entry);
1359 		}
1360 #endif
1361 
1362 		if (page && page_mapcount(page) == 1)
1363 			flags |= PM_MMAP_EXCLUSIVE;
1364 
1365 		for (; addr != end; addr += PAGE_SIZE) {
1366 			pagemap_entry_t pme = make_pme(frame, flags);
1367 
1368 			err = add_to_pagemap(addr, &pme, pm);
1369 			if (err)
1370 				break;
1371 			if (pm->show_pfn) {
1372 				if (flags & PM_PRESENT)
1373 					frame++;
1374 				else if (flags & PM_SWAP)
1375 					frame += (1 << MAX_SWAPFILES_SHIFT);
1376 			}
1377 		}
1378 		spin_unlock(ptl);
1379 		return err;
1380 	}
1381 
1382 	if (pmd_trans_unstable(pmdp))
1383 		return 0;
1384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1385 
1386 	/*
1387 	 * We can assume that @vma always points to a valid one and @end never
1388 	 * goes beyond vma->vm_end.
1389 	 */
1390 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1391 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1392 		pagemap_entry_t pme;
1393 
1394 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1395 		err = add_to_pagemap(addr, &pme, pm);
1396 		if (err)
1397 			break;
1398 	}
1399 	pte_unmap_unlock(orig_pte, ptl);
1400 
1401 	cond_resched();
1402 
1403 	return err;
1404 }
1405 
1406 #ifdef CONFIG_HUGETLB_PAGE
1407 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1408 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1409 				 unsigned long addr, unsigned long end,
1410 				 struct mm_walk *walk)
1411 {
1412 	struct pagemapread *pm = walk->private;
1413 	struct vm_area_struct *vma = walk->vma;
1414 	u64 flags = 0, frame = 0;
1415 	int err = 0;
1416 	pte_t pte;
1417 
1418 	if (vma->vm_flags & VM_SOFTDIRTY)
1419 		flags |= PM_SOFT_DIRTY;
1420 
1421 	pte = huge_ptep_get(ptep);
1422 	if (pte_present(pte)) {
1423 		struct page *page = pte_page(pte);
1424 
1425 		if (!PageAnon(page))
1426 			flags |= PM_FILE;
1427 
1428 		if (page_mapcount(page) == 1)
1429 			flags |= PM_MMAP_EXCLUSIVE;
1430 
1431 		flags |= PM_PRESENT;
1432 		if (pm->show_pfn)
1433 			frame = pte_pfn(pte) +
1434 				((addr & ~hmask) >> PAGE_SHIFT);
1435 	}
1436 
1437 	for (; addr != end; addr += PAGE_SIZE) {
1438 		pagemap_entry_t pme = make_pme(frame, flags);
1439 
1440 		err = add_to_pagemap(addr, &pme, pm);
1441 		if (err)
1442 			return err;
1443 		if (pm->show_pfn && (flags & PM_PRESENT))
1444 			frame++;
1445 	}
1446 
1447 	cond_resched();
1448 
1449 	return err;
1450 }
1451 #endif /* HUGETLB_PAGE */
1452 
1453 /*
1454  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1455  *
1456  * For each page in the address space, this file contains one 64-bit entry
1457  * consisting of the following:
1458  *
1459  * Bits 0-54  page frame number (PFN) if present
1460  * Bits 0-4   swap type if swapped
1461  * Bits 5-54  swap offset if swapped
1462  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1463  * Bit  56    page exclusively mapped
1464  * Bits 57-60 zero
1465  * Bit  61    page is file-page or shared-anon
1466  * Bit  62    page swapped
1467  * Bit  63    page present
1468  *
1469  * If the page is not present but in swap, then the PFN contains an
1470  * encoding of the swap file number and the page's offset into the
1471  * swap. Unmapped pages return a null PFN. This allows determining
1472  * precisely which pages are mapped (or in swap) and comparing mapped
1473  * pages between processes.
1474  *
1475  * Efficient users of this interface will use /proc/pid/maps to
1476  * determine which areas of memory are actually mapped and llseek to
1477  * skip over unmapped regions.
1478  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1479 static ssize_t pagemap_read(struct file *file, char __user *buf,
1480 			    size_t count, loff_t *ppos)
1481 {
1482 	struct mm_struct *mm = file->private_data;
1483 	struct pagemapread pm;
1484 	struct mm_walk pagemap_walk = {};
1485 	unsigned long src;
1486 	unsigned long svpfn;
1487 	unsigned long start_vaddr;
1488 	unsigned long end_vaddr;
1489 	int ret = 0, copied = 0;
1490 
1491 	if (!mm || !mmget_not_zero(mm))
1492 		goto out;
1493 
1494 	ret = -EINVAL;
1495 	/* file position must be aligned */
1496 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1497 		goto out_mm;
1498 
1499 	ret = 0;
1500 	if (!count)
1501 		goto out_mm;
1502 
1503 	/* do not disclose physical addresses: attack vector */
1504 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1505 
1506 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1507 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1508 	ret = -ENOMEM;
1509 	if (!pm.buffer)
1510 		goto out_mm;
1511 
1512 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1513 	pagemap_walk.pte_hole = pagemap_pte_hole;
1514 #ifdef CONFIG_HUGETLB_PAGE
1515 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1516 #endif
1517 	pagemap_walk.mm = mm;
1518 	pagemap_walk.private = &pm;
1519 
1520 	src = *ppos;
1521 	svpfn = src / PM_ENTRY_BYTES;
1522 	start_vaddr = svpfn << PAGE_SHIFT;
1523 	end_vaddr = mm->task_size;
1524 
1525 	/* watch out for wraparound */
1526 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1527 		start_vaddr = end_vaddr;
1528 
1529 	/*
1530 	 * The odds are that this will stop walking way
1531 	 * before end_vaddr, because the length of the
1532 	 * user buffer is tracked in "pm", and the walk
1533 	 * will stop when we hit the end of the buffer.
1534 	 */
1535 	ret = 0;
1536 	while (count && (start_vaddr < end_vaddr)) {
1537 		int len;
1538 		unsigned long end;
1539 
1540 		pm.pos = 0;
1541 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1542 		/* overflow ? */
1543 		if (end < start_vaddr || end > end_vaddr)
1544 			end = end_vaddr;
1545 		ret = down_read_killable(&mm->mmap_sem);
1546 		if (ret)
1547 			goto out_free;
1548 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1549 		up_read(&mm->mmap_sem);
1550 		start_vaddr = end;
1551 
1552 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1553 		if (copy_to_user(buf, pm.buffer, len)) {
1554 			ret = -EFAULT;
1555 			goto out_free;
1556 		}
1557 		copied += len;
1558 		buf += len;
1559 		count -= len;
1560 	}
1561 	*ppos += copied;
1562 	if (!ret || ret == PM_END_OF_BUFFER)
1563 		ret = copied;
1564 
1565 out_free:
1566 	kfree(pm.buffer);
1567 out_mm:
1568 	mmput(mm);
1569 out:
1570 	return ret;
1571 }
1572 
pagemap_open(struct inode * inode,struct file * file)1573 static int pagemap_open(struct inode *inode, struct file *file)
1574 {
1575 	struct mm_struct *mm;
1576 
1577 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1578 	if (IS_ERR(mm))
1579 		return PTR_ERR(mm);
1580 	file->private_data = mm;
1581 	return 0;
1582 }
1583 
pagemap_release(struct inode * inode,struct file * file)1584 static int pagemap_release(struct inode *inode, struct file *file)
1585 {
1586 	struct mm_struct *mm = file->private_data;
1587 
1588 	if (mm)
1589 		mmdrop(mm);
1590 	return 0;
1591 }
1592 
1593 const struct file_operations proc_pagemap_operations = {
1594 	.llseek		= mem_lseek, /* borrow this */
1595 	.read		= pagemap_read,
1596 	.open		= pagemap_open,
1597 	.release	= pagemap_release,
1598 };
1599 #endif /* CONFIG_PROC_PAGE_MONITOR */
1600 
1601 #ifdef CONFIG_NUMA
1602 
1603 struct numa_maps {
1604 	unsigned long pages;
1605 	unsigned long anon;
1606 	unsigned long active;
1607 	unsigned long writeback;
1608 	unsigned long mapcount_max;
1609 	unsigned long dirty;
1610 	unsigned long swapcache;
1611 	unsigned long node[MAX_NUMNODES];
1612 };
1613 
1614 struct numa_maps_private {
1615 	struct proc_maps_private proc_maps;
1616 	struct numa_maps md;
1617 };
1618 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1619 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1620 			unsigned long nr_pages)
1621 {
1622 	int count = page_mapcount(page);
1623 
1624 	md->pages += nr_pages;
1625 	if (pte_dirty || PageDirty(page))
1626 		md->dirty += nr_pages;
1627 
1628 	if (PageSwapCache(page))
1629 		md->swapcache += nr_pages;
1630 
1631 	if (PageActive(page) || PageUnevictable(page))
1632 		md->active += nr_pages;
1633 
1634 	if (PageWriteback(page))
1635 		md->writeback += nr_pages;
1636 
1637 	if (PageAnon(page))
1638 		md->anon += nr_pages;
1639 
1640 	if (count > md->mapcount_max)
1641 		md->mapcount_max = count;
1642 
1643 	md->node[page_to_nid(page)] += nr_pages;
1644 }
1645 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1646 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1647 		unsigned long addr)
1648 {
1649 	struct page *page;
1650 	int nid;
1651 
1652 	if (!pte_present(pte))
1653 		return NULL;
1654 
1655 	page = vm_normal_page(vma, addr, pte);
1656 	if (!page)
1657 		return NULL;
1658 
1659 	if (PageReserved(page))
1660 		return NULL;
1661 
1662 	nid = page_to_nid(page);
1663 	if (!node_isset(nid, node_states[N_MEMORY]))
1664 		return NULL;
1665 
1666 	return page;
1667 }
1668 
1669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1670 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1671 					      struct vm_area_struct *vma,
1672 					      unsigned long addr)
1673 {
1674 	struct page *page;
1675 	int nid;
1676 
1677 	if (!pmd_present(pmd))
1678 		return NULL;
1679 
1680 	page = vm_normal_page_pmd(vma, addr, pmd);
1681 	if (!page)
1682 		return NULL;
1683 
1684 	if (PageReserved(page))
1685 		return NULL;
1686 
1687 	nid = page_to_nid(page);
1688 	if (!node_isset(nid, node_states[N_MEMORY]))
1689 		return NULL;
1690 
1691 	return page;
1692 }
1693 #endif
1694 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1695 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1696 		unsigned long end, struct mm_walk *walk)
1697 {
1698 	struct numa_maps *md = walk->private;
1699 	struct vm_area_struct *vma = walk->vma;
1700 	spinlock_t *ptl;
1701 	pte_t *orig_pte;
1702 	pte_t *pte;
1703 
1704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1705 	ptl = pmd_trans_huge_lock(pmd, vma);
1706 	if (ptl) {
1707 		struct page *page;
1708 
1709 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1710 		if (page)
1711 			gather_stats(page, md, pmd_dirty(*pmd),
1712 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1713 		spin_unlock(ptl);
1714 		return 0;
1715 	}
1716 
1717 	if (pmd_trans_unstable(pmd))
1718 		return 0;
1719 #endif
1720 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1721 	do {
1722 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1723 		if (!page)
1724 			continue;
1725 		gather_stats(page, md, pte_dirty(*pte), 1);
1726 
1727 	} while (pte++, addr += PAGE_SIZE, addr != end);
1728 	pte_unmap_unlock(orig_pte, ptl);
1729 	cond_resched();
1730 	return 0;
1731 }
1732 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1733 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1734 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1735 {
1736 	pte_t huge_pte = huge_ptep_get(pte);
1737 	struct numa_maps *md;
1738 	struct page *page;
1739 
1740 	if (!pte_present(huge_pte))
1741 		return 0;
1742 
1743 	page = pte_page(huge_pte);
1744 	if (!page)
1745 		return 0;
1746 
1747 	md = walk->private;
1748 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1749 	return 0;
1750 }
1751 
1752 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1753 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1754 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1755 {
1756 	return 0;
1757 }
1758 #endif
1759 
1760 /*
1761  * Display pages allocated per node and memory policy via /proc.
1762  */
show_numa_map(struct seq_file * m,void * v)1763 static int show_numa_map(struct seq_file *m, void *v)
1764 {
1765 	struct numa_maps_private *numa_priv = m->private;
1766 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1767 	struct vm_area_struct *vma = v;
1768 	struct numa_maps *md = &numa_priv->md;
1769 	struct file *file = vma->vm_file;
1770 	struct mm_struct *mm = vma->vm_mm;
1771 	struct mm_walk walk = {
1772 		.hugetlb_entry = gather_hugetlb_stats,
1773 		.pmd_entry = gather_pte_stats,
1774 		.private = md,
1775 		.mm = mm,
1776 	};
1777 	struct mempolicy *pol;
1778 	char buffer[64];
1779 	int nid;
1780 
1781 	if (!mm)
1782 		return 0;
1783 
1784 	/* Ensure we start with an empty set of numa_maps statistics. */
1785 	memset(md, 0, sizeof(*md));
1786 
1787 	pol = __get_vma_policy(vma, vma->vm_start);
1788 	if (pol) {
1789 		mpol_to_str(buffer, sizeof(buffer), pol);
1790 		mpol_cond_put(pol);
1791 	} else {
1792 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1793 	}
1794 
1795 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1796 
1797 	if (file) {
1798 		seq_puts(m, " file=");
1799 		seq_file_path(m, file, "\n\t= ");
1800 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1801 		seq_puts(m, " heap");
1802 	} else if (is_stack(vma)) {
1803 		seq_puts(m, " stack");
1804 	}
1805 
1806 	if (is_vm_hugetlb_page(vma))
1807 		seq_puts(m, " huge");
1808 
1809 	/* mmap_sem is held by m_start */
1810 	walk_page_vma(vma, &walk);
1811 
1812 	if (!md->pages)
1813 		goto out;
1814 
1815 	if (md->anon)
1816 		seq_printf(m, " anon=%lu", md->anon);
1817 
1818 	if (md->dirty)
1819 		seq_printf(m, " dirty=%lu", md->dirty);
1820 
1821 	if (md->pages != md->anon && md->pages != md->dirty)
1822 		seq_printf(m, " mapped=%lu", md->pages);
1823 
1824 	if (md->mapcount_max > 1)
1825 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1826 
1827 	if (md->swapcache)
1828 		seq_printf(m, " swapcache=%lu", md->swapcache);
1829 
1830 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1831 		seq_printf(m, " active=%lu", md->active);
1832 
1833 	if (md->writeback)
1834 		seq_printf(m, " writeback=%lu", md->writeback);
1835 
1836 	for_each_node_state(nid, N_MEMORY)
1837 		if (md->node[nid])
1838 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1839 
1840 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1841 out:
1842 	seq_putc(m, '\n');
1843 	m_cache_vma(m, vma);
1844 	return 0;
1845 }
1846 
1847 static const struct seq_operations proc_pid_numa_maps_op = {
1848 	.start  = m_start,
1849 	.next   = m_next,
1850 	.stop   = m_stop,
1851 	.show   = show_numa_map,
1852 };
1853 
pid_numa_maps_open(struct inode * inode,struct file * file)1854 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1855 {
1856 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1857 				sizeof(struct numa_maps_private));
1858 }
1859 
1860 const struct file_operations proc_pid_numa_maps_operations = {
1861 	.open		= pid_numa_maps_open,
1862 	.read		= seq_read,
1863 	.llseek		= seq_lseek,
1864 	.release	= proc_map_release,
1865 };
1866 
1867 #endif /* CONFIG_NUMA */
1868