1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include <linux/bio.h>
15 #include "reiserfs.h"
16 #include <linux/buffer_head.h>
17 #include <linux/quotaops.h>
18
19 /* Does the buffer contain a disk block which is in the tree. */
B_IS_IN_TREE(const struct buffer_head * bh)20 inline int B_IS_IN_TREE(const struct buffer_head *bh)
21 {
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27 }
28
29 /* to get item head in le form */
copy_item_head(struct item_head * to,const struct item_head * from)30 inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32 {
33 memcpy(to, from, IH_SIZE);
34 }
35
36 /*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
comp_short_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)44 inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46 {
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59 }
60
61 /*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
comp_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)68 static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70 {
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96 }
97
comp_short_le_keys(const struct reiserfs_key * key1,const struct reiserfs_key * key2)98 inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100 {
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113 }
114
le_key2cpu_key(struct cpu_key * to,const struct reiserfs_key * from)115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116 {
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126 }
127
128 /*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
comp_le_keys(const struct reiserfs_key * k1,const struct reiserfs_key * k2)132 inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134 {
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136 }
137
138 /**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145 /*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
bin_search(const void * key,const void * base,int num,int width,int * pos)154 static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168 {
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193 }
194
195
196 /* Minimal possible key. It is never in the tree. */
197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199 /* Maximal possible key. It is never in the tree. */
200 static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205 };
206
207 /*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
get_lkey(const struct treepath * chk_path,const struct super_block * sb)215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217 {
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259 }
260
261 /* Get delimiting key of the buffer at the path and its right neighbor. */
get_rkey(const struct treepath * chk_path,const struct super_block * sb)262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264 {
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310 }
311
312 /*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
key_in_buffer(struct treepath * chk_path,const struct cpu_key * key,struct super_block * sb)321 static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328 {
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345 }
346
reiserfs_check_path(struct treepath * p)347 int reiserfs_check_path(struct treepath *p)
348 {
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352 }
353
354 /*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
pathrelse_and_restore(struct super_block * sb,struct treepath * search_path)359 void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361 {
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374 }
375
376 /* Drop the reference to each buffer in a path */
pathrelse(struct treepath * search_path)377 void pathrelse(struct treepath *search_path)
378 {
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388 }
389
has_valid_deh_location(struct buffer_head * bh,struct item_head * ih)390 static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
391 {
392 struct reiserfs_de_head *deh;
393 int i;
394
395 deh = B_I_DEH(bh, ih);
396 for (i = 0; i < ih_entry_count(ih); i++) {
397 if (deh_location(&deh[i]) > ih_item_len(ih)) {
398 reiserfs_warning(NULL, "reiserfs-5094",
399 "directory entry location seems wrong %h",
400 &deh[i]);
401 return 0;
402 }
403 }
404
405 return 1;
406 }
407
is_leaf(char * buf,int blocksize,struct buffer_head * bh)408 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
409 {
410 struct block_head *blkh;
411 struct item_head *ih;
412 int used_space;
413 int prev_location;
414 int i;
415 int nr;
416
417 blkh = (struct block_head *)buf;
418 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
419 reiserfs_warning(NULL, "reiserfs-5080",
420 "this should be caught earlier");
421 return 0;
422 }
423
424 nr = blkh_nr_item(blkh);
425 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
426 /* item number is too big or too small */
427 reiserfs_warning(NULL, "reiserfs-5081",
428 "nr_item seems wrong: %z", bh);
429 return 0;
430 }
431 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
432 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
433
434 /* free space does not match to calculated amount of use space */
435 if (used_space != blocksize - blkh_free_space(blkh)) {
436 reiserfs_warning(NULL, "reiserfs-5082",
437 "free space seems wrong: %z", bh);
438 return 0;
439 }
440 /*
441 * FIXME: it is_leaf will hit performance too much - we may have
442 * return 1 here
443 */
444
445 /* check tables of item heads */
446 ih = (struct item_head *)(buf + BLKH_SIZE);
447 prev_location = blocksize;
448 for (i = 0; i < nr; i++, ih++) {
449 if (le_ih_k_type(ih) == TYPE_ANY) {
450 reiserfs_warning(NULL, "reiserfs-5083",
451 "wrong item type for item %h",
452 ih);
453 return 0;
454 }
455 if (ih_location(ih) >= blocksize
456 || ih_location(ih) < IH_SIZE * nr) {
457 reiserfs_warning(NULL, "reiserfs-5084",
458 "item location seems wrong: %h",
459 ih);
460 return 0;
461 }
462 if (ih_item_len(ih) < 1
463 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
464 reiserfs_warning(NULL, "reiserfs-5085",
465 "item length seems wrong: %h",
466 ih);
467 return 0;
468 }
469 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
470 reiserfs_warning(NULL, "reiserfs-5086",
471 "item location seems wrong "
472 "(second one): %h", ih);
473 return 0;
474 }
475 if (is_direntry_le_ih(ih)) {
476 if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
477 reiserfs_warning(NULL, "reiserfs-5093",
478 "item entry count seems wrong %h",
479 ih);
480 return 0;
481 }
482 return has_valid_deh_location(bh, ih);
483 }
484 prev_location = ih_location(ih);
485 }
486
487 /* one may imagine many more checks */
488 return 1;
489 }
490
491 /* returns 1 if buf looks like an internal node, 0 otherwise */
is_internal(char * buf,int blocksize,struct buffer_head * bh)492 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
493 {
494 struct block_head *blkh;
495 int nr;
496 int used_space;
497
498 blkh = (struct block_head *)buf;
499 nr = blkh_level(blkh);
500 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
501 /* this level is not possible for internal nodes */
502 reiserfs_warning(NULL, "reiserfs-5087",
503 "this should be caught earlier");
504 return 0;
505 }
506
507 nr = blkh_nr_item(blkh);
508 /* for internal which is not root we might check min number of keys */
509 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
510 reiserfs_warning(NULL, "reiserfs-5088",
511 "number of key seems wrong: %z", bh);
512 return 0;
513 }
514
515 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
516 if (used_space != blocksize - blkh_free_space(blkh)) {
517 reiserfs_warning(NULL, "reiserfs-5089",
518 "free space seems wrong: %z", bh);
519 return 0;
520 }
521
522 /* one may imagine many more checks */
523 return 1;
524 }
525
526 /*
527 * make sure that bh contains formatted node of reiserfs tree of
528 * 'level'-th level
529 */
is_tree_node(struct buffer_head * bh,int level)530 static int is_tree_node(struct buffer_head *bh, int level)
531 {
532 if (B_LEVEL(bh) != level) {
533 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
534 "not match to the expected one %d",
535 B_LEVEL(bh), level);
536 return 0;
537 }
538 if (level == DISK_LEAF_NODE_LEVEL)
539 return is_leaf(bh->b_data, bh->b_size, bh);
540
541 return is_internal(bh->b_data, bh->b_size, bh);
542 }
543
544 #define SEARCH_BY_KEY_READA 16
545
546 /*
547 * The function is NOT SCHEDULE-SAFE!
548 * It might unlock the write lock if we needed to wait for a block
549 * to be read. Note that in this case it won't recover the lock to avoid
550 * high contention resulting from too much lock requests, especially
551 * the caller (search_by_key) will perform other schedule-unsafe
552 * operations just after calling this function.
553 *
554 * @return depth of lock to be restored after read completes
555 */
search_by_key_reada(struct super_block * s,struct buffer_head ** bh,b_blocknr_t * b,int num)556 static int search_by_key_reada(struct super_block *s,
557 struct buffer_head **bh,
558 b_blocknr_t *b, int num)
559 {
560 int i, j;
561 int depth = -1;
562
563 for (i = 0; i < num; i++) {
564 bh[i] = sb_getblk(s, b[i]);
565 }
566 /*
567 * We are going to read some blocks on which we
568 * have a reference. It's safe, though we might be
569 * reading blocks concurrently changed if we release
570 * the lock. But it's still fine because we check later
571 * if the tree changed
572 */
573 for (j = 0; j < i; j++) {
574 /*
575 * note, this needs attention if we are getting rid of the BKL
576 * you have to make sure the prepared bit isn't set on this
577 * buffer
578 */
579 if (!buffer_uptodate(bh[j])) {
580 if (depth == -1)
581 depth = reiserfs_write_unlock_nested(s);
582 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
583 }
584 brelse(bh[j]);
585 }
586 return depth;
587 }
588
589 /*
590 * This function fills up the path from the root to the leaf as it
591 * descends the tree looking for the key. It uses reiserfs_bread to
592 * try to find buffers in the cache given their block number. If it
593 * does not find them in the cache it reads them from disk. For each
594 * node search_by_key finds using reiserfs_bread it then uses
595 * bin_search to look through that node. bin_search will find the
596 * position of the block_number of the next node if it is looking
597 * through an internal node. If it is looking through a leaf node
598 * bin_search will find the position of the item which has key either
599 * equal to given key, or which is the maximal key less than the given
600 * key. search_by_key returns a path that must be checked for the
601 * correctness of the top of the path but need not be checked for the
602 * correctness of the bottom of the path
603 */
604 /*
605 * search_by_key - search for key (and item) in stree
606 * @sb: superblock
607 * @key: pointer to key to search for
608 * @search_path: Allocated and initialized struct treepath; Returned filled
609 * on success.
610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
611 * stop at leaf level.
612 *
613 * The function is NOT SCHEDULE-SAFE!
614 */
search_by_key(struct super_block * sb,const struct cpu_key * key,struct treepath * search_path,int stop_level)615 int search_by_key(struct super_block *sb, const struct cpu_key *key,
616 struct treepath *search_path, int stop_level)
617 {
618 b_blocknr_t block_number;
619 int expected_level;
620 struct buffer_head *bh;
621 struct path_element *last_element;
622 int node_level, retval;
623 int right_neighbor_of_leaf_node;
624 int fs_gen;
625 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
626 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
627 int reada_count = 0;
628
629 #ifdef CONFIG_REISERFS_CHECK
630 int repeat_counter = 0;
631 #endif
632
633 PROC_INFO_INC(sb, search_by_key);
634
635 /*
636 * As we add each node to a path we increase its count. This means
637 * that we must be careful to release all nodes in a path before we
638 * either discard the path struct or re-use the path struct, as we
639 * do here.
640 */
641
642 pathrelse(search_path);
643
644 right_neighbor_of_leaf_node = 0;
645
646 /*
647 * With each iteration of this loop we search through the items in the
648 * current node, and calculate the next current node(next path element)
649 * for the next iteration of this loop..
650 */
651 block_number = SB_ROOT_BLOCK(sb);
652 expected_level = -1;
653 while (1) {
654
655 #ifdef CONFIG_REISERFS_CHECK
656 if (!(++repeat_counter % 50000))
657 reiserfs_warning(sb, "PAP-5100",
658 "%s: there were %d iterations of "
659 "while loop looking for key %K",
660 current->comm, repeat_counter,
661 key);
662 #endif
663
664 /* prep path to have another element added to it. */
665 last_element =
666 PATH_OFFSET_PELEMENT(search_path,
667 ++search_path->path_length);
668 fs_gen = get_generation(sb);
669
670 /*
671 * Read the next tree node, and set the last element
672 * in the path to have a pointer to it.
673 */
674 if ((bh = last_element->pe_buffer =
675 sb_getblk(sb, block_number))) {
676
677 /*
678 * We'll need to drop the lock if we encounter any
679 * buffers that need to be read. If all of them are
680 * already up to date, we don't need to drop the lock.
681 */
682 int depth = -1;
683
684 if (!buffer_uptodate(bh) && reada_count > 1)
685 depth = search_by_key_reada(sb, reada_bh,
686 reada_blocks, reada_count);
687
688 if (!buffer_uptodate(bh) && depth == -1)
689 depth = reiserfs_write_unlock_nested(sb);
690
691 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
692 wait_on_buffer(bh);
693
694 if (depth != -1)
695 reiserfs_write_lock_nested(sb, depth);
696 if (!buffer_uptodate(bh))
697 goto io_error;
698 } else {
699 io_error:
700 search_path->path_length--;
701 pathrelse(search_path);
702 return IO_ERROR;
703 }
704 reada_count = 0;
705 if (expected_level == -1)
706 expected_level = SB_TREE_HEIGHT(sb);
707 expected_level--;
708
709 /*
710 * It is possible that schedule occurred. We must check
711 * whether the key to search is still in the tree rooted
712 * from the current buffer. If not then repeat search
713 * from the root.
714 */
715 if (fs_changed(fs_gen, sb) &&
716 (!B_IS_IN_TREE(bh) ||
717 B_LEVEL(bh) != expected_level ||
718 !key_in_buffer(search_path, key, sb))) {
719 PROC_INFO_INC(sb, search_by_key_fs_changed);
720 PROC_INFO_INC(sb, search_by_key_restarted);
721 PROC_INFO_INC(sb,
722 sbk_restarted[expected_level - 1]);
723 pathrelse(search_path);
724
725 /*
726 * Get the root block number so that we can
727 * repeat the search starting from the root.
728 */
729 block_number = SB_ROOT_BLOCK(sb);
730 expected_level = -1;
731 right_neighbor_of_leaf_node = 0;
732
733 /* repeat search from the root */
734 continue;
735 }
736
737 /*
738 * only check that the key is in the buffer if key is not
739 * equal to the MAX_KEY. Latter case is only possible in
740 * "finish_unfinished()" processing during mount.
741 */
742 RFALSE(comp_keys(&MAX_KEY, key) &&
743 !key_in_buffer(search_path, key, sb),
744 "PAP-5130: key is not in the buffer");
745 #ifdef CONFIG_REISERFS_CHECK
746 if (REISERFS_SB(sb)->cur_tb) {
747 print_cur_tb("5140");
748 reiserfs_panic(sb, "PAP-5140",
749 "schedule occurred in do_balance!");
750 }
751 #endif
752
753 /*
754 * make sure, that the node contents look like a node of
755 * certain level
756 */
757 if (!is_tree_node(bh, expected_level)) {
758 reiserfs_error(sb, "vs-5150",
759 "invalid format found in block %ld. "
760 "Fsck?", bh->b_blocknr);
761 pathrelse(search_path);
762 return IO_ERROR;
763 }
764
765 /* ok, we have acquired next formatted node in the tree */
766 node_level = B_LEVEL(bh);
767
768 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
769
770 RFALSE(node_level < stop_level,
771 "vs-5152: tree level (%d) is less than stop level (%d)",
772 node_level, stop_level);
773
774 retval = bin_search(key, item_head(bh, 0),
775 B_NR_ITEMS(bh),
776 (node_level ==
777 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
778 KEY_SIZE,
779 &last_element->pe_position);
780 if (node_level == stop_level) {
781 return retval;
782 }
783
784 /* we are not in the stop level */
785 /*
786 * item has been found, so we choose the pointer which
787 * is to the right of the found one
788 */
789 if (retval == ITEM_FOUND)
790 last_element->pe_position++;
791
792 /*
793 * if item was not found we choose the position which is to
794 * the left of the found item. This requires no code,
795 * bin_search did it already.
796 */
797
798 /*
799 * So we have chosen a position in the current node which is
800 * an internal node. Now we calculate child block number by
801 * position in the node.
802 */
803 block_number =
804 B_N_CHILD_NUM(bh, last_element->pe_position);
805
806 /*
807 * if we are going to read leaf nodes, try for read
808 * ahead as well
809 */
810 if ((search_path->reada & PATH_READA) &&
811 node_level == DISK_LEAF_NODE_LEVEL + 1) {
812 int pos = last_element->pe_position;
813 int limit = B_NR_ITEMS(bh);
814 struct reiserfs_key *le_key;
815
816 if (search_path->reada & PATH_READA_BACK)
817 limit = 0;
818 while (reada_count < SEARCH_BY_KEY_READA) {
819 if (pos == limit)
820 break;
821 reada_blocks[reada_count++] =
822 B_N_CHILD_NUM(bh, pos);
823 if (search_path->reada & PATH_READA_BACK)
824 pos--;
825 else
826 pos++;
827
828 /*
829 * check to make sure we're in the same object
830 */
831 le_key = internal_key(bh, pos);
832 if (le32_to_cpu(le_key->k_objectid) !=
833 key->on_disk_key.k_objectid) {
834 break;
835 }
836 }
837 }
838 }
839 }
840
841 /*
842 * Form the path to an item and position in this item which contains
843 * file byte defined by key. If there is no such item
844 * corresponding to the key, we point the path to the item with
845 * maximal key less than key, and *pos_in_item is set to one
846 * past the last entry/byte in the item. If searching for entry in a
847 * directory item, and it is not found, *pos_in_item is set to one
848 * entry more than the entry with maximal key which is less than the
849 * sought key.
850 *
851 * Note that if there is no entry in this same node which is one more,
852 * then we point to an imaginary entry. for direct items, the
853 * position is in units of bytes, for indirect items the position is
854 * in units of blocknr entries, for directory items the position is in
855 * units of directory entries.
856 */
857 /* The function is NOT SCHEDULE-SAFE! */
search_for_position_by_key(struct super_block * sb,const struct cpu_key * p_cpu_key,struct treepath * search_path)858 int search_for_position_by_key(struct super_block *sb,
859 /* Key to search (cpu variable) */
860 const struct cpu_key *p_cpu_key,
861 /* Filled up by this function. */
862 struct treepath *search_path)
863 {
864 struct item_head *p_le_ih; /* pointer to on-disk structure */
865 int blk_size;
866 loff_t item_offset, offset;
867 struct reiserfs_dir_entry de;
868 int retval;
869
870 /* If searching for directory entry. */
871 if (is_direntry_cpu_key(p_cpu_key))
872 return search_by_entry_key(sb, p_cpu_key, search_path,
873 &de);
874
875 /* If not searching for directory entry. */
876
877 /* If item is found. */
878 retval = search_item(sb, p_cpu_key, search_path);
879 if (retval == IO_ERROR)
880 return retval;
881 if (retval == ITEM_FOUND) {
882
883 RFALSE(!ih_item_len
884 (item_head
885 (PATH_PLAST_BUFFER(search_path),
886 PATH_LAST_POSITION(search_path))),
887 "PAP-5165: item length equals zero");
888
889 pos_in_item(search_path) = 0;
890 return POSITION_FOUND;
891 }
892
893 RFALSE(!PATH_LAST_POSITION(search_path),
894 "PAP-5170: position equals zero");
895
896 /* Item is not found. Set path to the previous item. */
897 p_le_ih =
898 item_head(PATH_PLAST_BUFFER(search_path),
899 --PATH_LAST_POSITION(search_path));
900 blk_size = sb->s_blocksize;
901
902 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
903 return FILE_NOT_FOUND;
904
905 /* FIXME: quite ugly this far */
906
907 item_offset = le_ih_k_offset(p_le_ih);
908 offset = cpu_key_k_offset(p_cpu_key);
909
910 /* Needed byte is contained in the item pointed to by the path. */
911 if (item_offset <= offset &&
912 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
913 pos_in_item(search_path) = offset - item_offset;
914 if (is_indirect_le_ih(p_le_ih)) {
915 pos_in_item(search_path) /= blk_size;
916 }
917 return POSITION_FOUND;
918 }
919
920 /*
921 * Needed byte is not contained in the item pointed to by the
922 * path. Set pos_in_item out of the item.
923 */
924 if (is_indirect_le_ih(p_le_ih))
925 pos_in_item(search_path) =
926 ih_item_len(p_le_ih) / UNFM_P_SIZE;
927 else
928 pos_in_item(search_path) = ih_item_len(p_le_ih);
929
930 return POSITION_NOT_FOUND;
931 }
932
933 /* Compare given item and item pointed to by the path. */
comp_items(const struct item_head * stored_ih,const struct treepath * path)934 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
935 {
936 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
937 struct item_head *ih;
938
939 /* Last buffer at the path is not in the tree. */
940 if (!B_IS_IN_TREE(bh))
941 return 1;
942
943 /* Last path position is invalid. */
944 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
945 return 1;
946
947 /* we need only to know, whether it is the same item */
948 ih = tp_item_head(path);
949 return memcmp(stored_ih, ih, IH_SIZE);
950 }
951
952 /* unformatted nodes are not logged anymore, ever. This is safe now */
953 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
954
955 /* block can not be forgotten as it is in I/O or held by someone */
956 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
957
958 /* prepare for delete or cut of direct item */
prepare_for_direct_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)959 static inline int prepare_for_direct_item(struct treepath *path,
960 struct item_head *le_ih,
961 struct inode *inode,
962 loff_t new_file_length, int *cut_size)
963 {
964 loff_t round_len;
965
966 if (new_file_length == max_reiserfs_offset(inode)) {
967 /* item has to be deleted */
968 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
969 return M_DELETE;
970 }
971 /* new file gets truncated */
972 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
973 round_len = ROUND_UP(new_file_length);
974 /* this was new_file_length < le_ih ... */
975 if (round_len < le_ih_k_offset(le_ih)) {
976 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
977 return M_DELETE; /* Delete this item. */
978 }
979 /* Calculate first position and size for cutting from item. */
980 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
981 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
982
983 return M_CUT; /* Cut from this item. */
984 }
985
986 /* old file: items may have any length */
987
988 if (new_file_length < le_ih_k_offset(le_ih)) {
989 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
990 return M_DELETE; /* Delete this item. */
991 }
992
993 /* Calculate first position and size for cutting from item. */
994 *cut_size = -(ih_item_len(le_ih) -
995 (pos_in_item(path) =
996 new_file_length + 1 - le_ih_k_offset(le_ih)));
997 return M_CUT; /* Cut from this item. */
998 }
999
prepare_for_direntry_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)1000 static inline int prepare_for_direntry_item(struct treepath *path,
1001 struct item_head *le_ih,
1002 struct inode *inode,
1003 loff_t new_file_length,
1004 int *cut_size)
1005 {
1006 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
1007 new_file_length == max_reiserfs_offset(inode)) {
1008 RFALSE(ih_entry_count(le_ih) != 2,
1009 "PAP-5220: incorrect empty directory item (%h)", le_ih);
1010 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1011 /* Delete the directory item containing "." and ".." entry. */
1012 return M_DELETE;
1013 }
1014
1015 if (ih_entry_count(le_ih) == 1) {
1016 /*
1017 * Delete the directory item such as there is one record only
1018 * in this item
1019 */
1020 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1021 return M_DELETE;
1022 }
1023
1024 /* Cut one record from the directory item. */
1025 *cut_size =
1026 -(DEH_SIZE +
1027 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1028 return M_CUT;
1029 }
1030
1031 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1032
1033 /*
1034 * If the path points to a directory or direct item, calculate mode
1035 * and the size cut, for balance.
1036 * If the path points to an indirect item, remove some number of its
1037 * unformatted nodes.
1038 * In case of file truncate calculate whether this item must be
1039 * deleted/truncated or last unformatted node of this item will be
1040 * converted to a direct item.
1041 * This function returns a determination of what balance mode the
1042 * calling function should employ.
1043 */
prepare_for_delete_or_cut(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path,const struct cpu_key * item_key,int * removed,int * cut_size,unsigned long long new_file_length)1044 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1045 struct inode *inode,
1046 struct treepath *path,
1047 const struct cpu_key *item_key,
1048 /*
1049 * Number of unformatted nodes
1050 * which were removed from end
1051 * of the file.
1052 */
1053 int *removed,
1054 int *cut_size,
1055 /* MAX_KEY_OFFSET in case of delete. */
1056 unsigned long long new_file_length
1057 )
1058 {
1059 struct super_block *sb = inode->i_sb;
1060 struct item_head *p_le_ih = tp_item_head(path);
1061 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1062
1063 BUG_ON(!th->t_trans_id);
1064
1065 /* Stat_data item. */
1066 if (is_statdata_le_ih(p_le_ih)) {
1067
1068 RFALSE(new_file_length != max_reiserfs_offset(inode),
1069 "PAP-5210: mode must be M_DELETE");
1070
1071 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1072 return M_DELETE;
1073 }
1074
1075 /* Directory item. */
1076 if (is_direntry_le_ih(p_le_ih))
1077 return prepare_for_direntry_item(path, p_le_ih, inode,
1078 new_file_length,
1079 cut_size);
1080
1081 /* Direct item. */
1082 if (is_direct_le_ih(p_le_ih))
1083 return prepare_for_direct_item(path, p_le_ih, inode,
1084 new_file_length, cut_size);
1085
1086 /* Case of an indirect item. */
1087 {
1088 int blk_size = sb->s_blocksize;
1089 struct item_head s_ih;
1090 int need_re_search;
1091 int delete = 0;
1092 int result = M_CUT;
1093 int pos = 0;
1094
1095 if ( new_file_length == max_reiserfs_offset (inode) ) {
1096 /*
1097 * prepare_for_delete_or_cut() is called by
1098 * reiserfs_delete_item()
1099 */
1100 new_file_length = 0;
1101 delete = 1;
1102 }
1103
1104 do {
1105 need_re_search = 0;
1106 *cut_size = 0;
1107 bh = PATH_PLAST_BUFFER(path);
1108 copy_item_head(&s_ih, tp_item_head(path));
1109 pos = I_UNFM_NUM(&s_ih);
1110
1111 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1112 __le32 *unfm;
1113 __u32 block;
1114
1115 /*
1116 * Each unformatted block deletion may involve
1117 * one additional bitmap block into the transaction,
1118 * thereby the initial journal space reservation
1119 * might not be enough.
1120 */
1121 if (!delete && (*cut_size) != 0 &&
1122 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1123 break;
1124
1125 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1126 block = get_block_num(unfm, 0);
1127
1128 if (block != 0) {
1129 reiserfs_prepare_for_journal(sb, bh, 1);
1130 put_block_num(unfm, 0, 0);
1131 journal_mark_dirty(th, bh);
1132 reiserfs_free_block(th, inode, block, 1);
1133 }
1134
1135 reiserfs_cond_resched(sb);
1136
1137 if (item_moved (&s_ih, path)) {
1138 need_re_search = 1;
1139 break;
1140 }
1141
1142 pos --;
1143 (*removed)++;
1144 (*cut_size) -= UNFM_P_SIZE;
1145
1146 if (pos == 0) {
1147 (*cut_size) -= IH_SIZE;
1148 result = M_DELETE;
1149 break;
1150 }
1151 }
1152 /*
1153 * a trick. If the buffer has been logged, this will
1154 * do nothing. If we've broken the loop without logging
1155 * it, it will restore the buffer
1156 */
1157 reiserfs_restore_prepared_buffer(sb, bh);
1158 } while (need_re_search &&
1159 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1160 pos_in_item(path) = pos * UNFM_P_SIZE;
1161
1162 if (*cut_size == 0) {
1163 /*
1164 * Nothing was cut. maybe convert last unformatted node to the
1165 * direct item?
1166 */
1167 result = M_CONVERT;
1168 }
1169 return result;
1170 }
1171 }
1172
1173 /* Calculate number of bytes which will be deleted or cut during balance */
calc_deleted_bytes_number(struct tree_balance * tb,char mode)1174 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1175 {
1176 int del_size;
1177 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1178
1179 if (is_statdata_le_ih(p_le_ih))
1180 return 0;
1181
1182 del_size =
1183 (mode ==
1184 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1185 if (is_direntry_le_ih(p_le_ih)) {
1186 /*
1187 * return EMPTY_DIR_SIZE; We delete emty directories only.
1188 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1189 * different empty size. ick. FIXME, is this right?
1190 */
1191 return del_size;
1192 }
1193
1194 if (is_indirect_le_ih(p_le_ih))
1195 del_size = (del_size / UNFM_P_SIZE) *
1196 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1197 return del_size;
1198 }
1199
init_tb_struct(struct reiserfs_transaction_handle * th,struct tree_balance * tb,struct super_block * sb,struct treepath * path,int size)1200 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1201 struct tree_balance *tb,
1202 struct super_block *sb,
1203 struct treepath *path, int size)
1204 {
1205
1206 BUG_ON(!th->t_trans_id);
1207
1208 memset(tb, '\0', sizeof(struct tree_balance));
1209 tb->transaction_handle = th;
1210 tb->tb_sb = sb;
1211 tb->tb_path = path;
1212 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1213 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1214 tb->insert_size[0] = size;
1215 }
1216
padd_item(char * item,int total_length,int length)1217 void padd_item(char *item, int total_length, int length)
1218 {
1219 int i;
1220
1221 for (i = total_length; i > length;)
1222 item[--i] = 0;
1223 }
1224
1225 #ifdef REISERQUOTA_DEBUG
key2type(struct reiserfs_key * ih)1226 char key2type(struct reiserfs_key *ih)
1227 {
1228 if (is_direntry_le_key(2, ih))
1229 return 'd';
1230 if (is_direct_le_key(2, ih))
1231 return 'D';
1232 if (is_indirect_le_key(2, ih))
1233 return 'i';
1234 if (is_statdata_le_key(2, ih))
1235 return 's';
1236 return 'u';
1237 }
1238
head2type(struct item_head * ih)1239 char head2type(struct item_head *ih)
1240 {
1241 if (is_direntry_le_ih(ih))
1242 return 'd';
1243 if (is_direct_le_ih(ih))
1244 return 'D';
1245 if (is_indirect_le_ih(ih))
1246 return 'i';
1247 if (is_statdata_le_ih(ih))
1248 return 's';
1249 return 'u';
1250 }
1251 #endif
1252
1253 /*
1254 * Delete object item.
1255 * th - active transaction handle
1256 * path - path to the deleted item
1257 * item_key - key to search for the deleted item
1258 * indode - used for updating i_blocks and quotas
1259 * un_bh - NULL or unformatted node pointer
1260 */
reiserfs_delete_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * item_key,struct inode * inode,struct buffer_head * un_bh)1261 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1262 struct treepath *path, const struct cpu_key *item_key,
1263 struct inode *inode, struct buffer_head *un_bh)
1264 {
1265 struct super_block *sb = inode->i_sb;
1266 struct tree_balance s_del_balance;
1267 struct item_head s_ih;
1268 struct item_head *q_ih;
1269 int quota_cut_bytes;
1270 int ret_value, del_size, removed;
1271 int depth;
1272
1273 #ifdef CONFIG_REISERFS_CHECK
1274 char mode;
1275 int iter = 0;
1276 #endif
1277
1278 BUG_ON(!th->t_trans_id);
1279
1280 init_tb_struct(th, &s_del_balance, sb, path,
1281 0 /*size is unknown */ );
1282
1283 while (1) {
1284 removed = 0;
1285
1286 #ifdef CONFIG_REISERFS_CHECK
1287 iter++;
1288 mode =
1289 #endif
1290 prepare_for_delete_or_cut(th, inode, path,
1291 item_key, &removed,
1292 &del_size,
1293 max_reiserfs_offset(inode));
1294
1295 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1296
1297 copy_item_head(&s_ih, tp_item_head(path));
1298 s_del_balance.insert_size[0] = del_size;
1299
1300 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1301 if (ret_value != REPEAT_SEARCH)
1302 break;
1303
1304 PROC_INFO_INC(sb, delete_item_restarted);
1305
1306 /* file system changed, repeat search */
1307 ret_value =
1308 search_for_position_by_key(sb, item_key, path);
1309 if (ret_value == IO_ERROR)
1310 break;
1311 if (ret_value == FILE_NOT_FOUND) {
1312 reiserfs_warning(sb, "vs-5340",
1313 "no items of the file %K found",
1314 item_key);
1315 break;
1316 }
1317 } /* while (1) */
1318
1319 if (ret_value != CARRY_ON) {
1320 unfix_nodes(&s_del_balance);
1321 return 0;
1322 }
1323
1324 /* reiserfs_delete_item returns item length when success */
1325 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1326 q_ih = tp_item_head(path);
1327 quota_cut_bytes = ih_item_len(q_ih);
1328
1329 /*
1330 * hack so the quota code doesn't have to guess if the file has a
1331 * tail. On tail insert, we allocate quota for 1 unformatted node.
1332 * We test the offset because the tail might have been
1333 * split into multiple items, and we only want to decrement for
1334 * the unfm node once
1335 */
1336 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1337 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1338 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1339 } else {
1340 quota_cut_bytes = 0;
1341 }
1342 }
1343
1344 if (un_bh) {
1345 int off;
1346 char *data;
1347
1348 /*
1349 * We are in direct2indirect conversion, so move tail contents
1350 * to the unformatted node
1351 */
1352 /*
1353 * note, we do the copy before preparing the buffer because we
1354 * don't care about the contents of the unformatted node yet.
1355 * the only thing we really care about is the direct item's
1356 * data is in the unformatted node.
1357 *
1358 * Otherwise, we would have to call
1359 * reiserfs_prepare_for_journal on the unformatted node,
1360 * which might schedule, meaning we'd have to loop all the
1361 * way back up to the start of the while loop.
1362 *
1363 * The unformatted node must be dirtied later on. We can't be
1364 * sure here if the entire tail has been deleted yet.
1365 *
1366 * un_bh is from the page cache (all unformatted nodes are
1367 * from the page cache) and might be a highmem page. So, we
1368 * can't use un_bh->b_data.
1369 * -clm
1370 */
1371
1372 data = kmap_atomic(un_bh->b_page);
1373 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1374 memcpy(data + off,
1375 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1376 ret_value);
1377 kunmap_atomic(data);
1378 }
1379
1380 /* Perform balancing after all resources have been collected at once. */
1381 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1382
1383 #ifdef REISERQUOTA_DEBUG
1384 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1385 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1386 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1387 #endif
1388 depth = reiserfs_write_unlock_nested(inode->i_sb);
1389 dquot_free_space_nodirty(inode, quota_cut_bytes);
1390 reiserfs_write_lock_nested(inode->i_sb, depth);
1391
1392 /* Return deleted body length */
1393 return ret_value;
1394 }
1395
1396 /*
1397 * Summary Of Mechanisms For Handling Collisions Between Processes:
1398 *
1399 * deletion of the body of the object is performed by iput(), with the
1400 * result that if multiple processes are operating on a file, the
1401 * deletion of the body of the file is deferred until the last process
1402 * that has an open inode performs its iput().
1403 *
1404 * writes and truncates are protected from collisions by use of
1405 * semaphores.
1406 *
1407 * creates, linking, and mknod are protected from collisions with other
1408 * processes by making the reiserfs_add_entry() the last step in the
1409 * creation, and then rolling back all changes if there was a collision.
1410 * - Hans
1411 */
1412
1413 /* this deletes item which never gets split */
reiserfs_delete_solid_item(struct reiserfs_transaction_handle * th,struct inode * inode,struct reiserfs_key * key)1414 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1415 struct inode *inode, struct reiserfs_key *key)
1416 {
1417 struct super_block *sb = th->t_super;
1418 struct tree_balance tb;
1419 INITIALIZE_PATH(path);
1420 int item_len = 0;
1421 int tb_init = 0;
1422 struct cpu_key cpu_key;
1423 int retval;
1424 int quota_cut_bytes = 0;
1425
1426 BUG_ON(!th->t_trans_id);
1427
1428 le_key2cpu_key(&cpu_key, key);
1429
1430 while (1) {
1431 retval = search_item(th->t_super, &cpu_key, &path);
1432 if (retval == IO_ERROR) {
1433 reiserfs_error(th->t_super, "vs-5350",
1434 "i/o failure occurred trying "
1435 "to delete %K", &cpu_key);
1436 break;
1437 }
1438 if (retval != ITEM_FOUND) {
1439 pathrelse(&path);
1440 /*
1441 * No need for a warning, if there is just no free
1442 * space to insert '..' item into the
1443 * newly-created subdir
1444 */
1445 if (!
1446 ((unsigned long long)
1447 GET_HASH_VALUE(le_key_k_offset
1448 (le_key_version(key), key)) == 0
1449 && (unsigned long long)
1450 GET_GENERATION_NUMBER(le_key_k_offset
1451 (le_key_version(key),
1452 key)) == 1))
1453 reiserfs_warning(th->t_super, "vs-5355",
1454 "%k not found", key);
1455 break;
1456 }
1457 if (!tb_init) {
1458 tb_init = 1;
1459 item_len = ih_item_len(tp_item_head(&path));
1460 init_tb_struct(th, &tb, th->t_super, &path,
1461 -(IH_SIZE + item_len));
1462 }
1463 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1464
1465 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1466 if (retval == REPEAT_SEARCH) {
1467 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1468 continue;
1469 }
1470
1471 if (retval == CARRY_ON) {
1472 do_balance(&tb, NULL, NULL, M_DELETE);
1473 /*
1474 * Should we count quota for item? (we don't
1475 * count quotas for save-links)
1476 */
1477 if (inode) {
1478 int depth;
1479 #ifdef REISERQUOTA_DEBUG
1480 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1481 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1482 quota_cut_bytes, inode->i_uid,
1483 key2type(key));
1484 #endif
1485 depth = reiserfs_write_unlock_nested(sb);
1486 dquot_free_space_nodirty(inode,
1487 quota_cut_bytes);
1488 reiserfs_write_lock_nested(sb, depth);
1489 }
1490 break;
1491 }
1492
1493 /* IO_ERROR, NO_DISK_SPACE, etc */
1494 reiserfs_warning(th->t_super, "vs-5360",
1495 "could not delete %K due to fix_nodes failure",
1496 &cpu_key);
1497 unfix_nodes(&tb);
1498 break;
1499 }
1500
1501 reiserfs_check_path(&path);
1502 }
1503
reiserfs_delete_object(struct reiserfs_transaction_handle * th,struct inode * inode)1504 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1505 struct inode *inode)
1506 {
1507 int err;
1508 inode->i_size = 0;
1509 BUG_ON(!th->t_trans_id);
1510
1511 /* for directory this deletes item containing "." and ".." */
1512 err =
1513 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1514 if (err)
1515 return err;
1516
1517 #if defined( USE_INODE_GENERATION_COUNTER )
1518 if (!old_format_only(th->t_super)) {
1519 __le32 *inode_generation;
1520
1521 inode_generation =
1522 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1523 le32_add_cpu(inode_generation, 1);
1524 }
1525 /* USE_INODE_GENERATION_COUNTER */
1526 #endif
1527 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1528
1529 return err;
1530 }
1531
unmap_buffers(struct page * page,loff_t pos)1532 static void unmap_buffers(struct page *page, loff_t pos)
1533 {
1534 struct buffer_head *bh;
1535 struct buffer_head *head;
1536 struct buffer_head *next;
1537 unsigned long tail_index;
1538 unsigned long cur_index;
1539
1540 if (page) {
1541 if (page_has_buffers(page)) {
1542 tail_index = pos & (PAGE_SIZE - 1);
1543 cur_index = 0;
1544 head = page_buffers(page);
1545 bh = head;
1546 do {
1547 next = bh->b_this_page;
1548
1549 /*
1550 * we want to unmap the buffers that contain
1551 * the tail, and all the buffers after it
1552 * (since the tail must be at the end of the
1553 * file). We don't want to unmap file data
1554 * before the tail, since it might be dirty
1555 * and waiting to reach disk
1556 */
1557 cur_index += bh->b_size;
1558 if (cur_index > tail_index) {
1559 reiserfs_unmap_buffer(bh);
1560 }
1561 bh = next;
1562 } while (bh != head);
1563 }
1564 }
1565 }
1566
maybe_indirect_to_direct(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,struct treepath * path,const struct cpu_key * item_key,loff_t new_file_size,char * mode)1567 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1568 struct inode *inode,
1569 struct page *page,
1570 struct treepath *path,
1571 const struct cpu_key *item_key,
1572 loff_t new_file_size, char *mode)
1573 {
1574 struct super_block *sb = inode->i_sb;
1575 int block_size = sb->s_blocksize;
1576 int cut_bytes;
1577 BUG_ON(!th->t_trans_id);
1578 BUG_ON(new_file_size != inode->i_size);
1579
1580 /*
1581 * the page being sent in could be NULL if there was an i/o error
1582 * reading in the last block. The user will hit problems trying to
1583 * read the file, but for now we just skip the indirect2direct
1584 */
1585 if (atomic_read(&inode->i_count) > 1 ||
1586 !tail_has_to_be_packed(inode) ||
1587 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1588 /* leave tail in an unformatted node */
1589 *mode = M_SKIP_BALANCING;
1590 cut_bytes =
1591 block_size - (new_file_size & (block_size - 1));
1592 pathrelse(path);
1593 return cut_bytes;
1594 }
1595
1596 /* Perform the conversion to a direct_item. */
1597 return indirect2direct(th, inode, page, path, item_key,
1598 new_file_size, mode);
1599 }
1600
1601 /*
1602 * we did indirect_to_direct conversion. And we have inserted direct
1603 * item successesfully, but there were no disk space to cut unfm
1604 * pointer being converted. Therefore we have to delete inserted
1605 * direct item(s)
1606 */
indirect_to_direct_roll_back(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)1607 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1608 struct inode *inode, struct treepath *path)
1609 {
1610 struct cpu_key tail_key;
1611 int tail_len;
1612 int removed;
1613 BUG_ON(!th->t_trans_id);
1614
1615 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1616 tail_key.key_length = 4;
1617
1618 tail_len =
1619 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1620 while (tail_len) {
1621 /* look for the last byte of the tail */
1622 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1623 POSITION_NOT_FOUND)
1624 reiserfs_panic(inode->i_sb, "vs-5615",
1625 "found invalid item");
1626 RFALSE(path->pos_in_item !=
1627 ih_item_len(tp_item_head(path)) - 1,
1628 "vs-5616: appended bytes found");
1629 PATH_LAST_POSITION(path)--;
1630
1631 removed =
1632 reiserfs_delete_item(th, path, &tail_key, inode,
1633 NULL /*unbh not needed */ );
1634 RFALSE(removed <= 0
1635 || removed > tail_len,
1636 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1637 tail_len, removed);
1638 tail_len -= removed;
1639 set_cpu_key_k_offset(&tail_key,
1640 cpu_key_k_offset(&tail_key) - removed);
1641 }
1642 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1643 "conversion has been rolled back due to "
1644 "lack of disk space");
1645 mark_inode_dirty(inode);
1646 }
1647
1648 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
reiserfs_cut_from_item(struct reiserfs_transaction_handle * th,struct treepath * path,struct cpu_key * item_key,struct inode * inode,struct page * page,loff_t new_file_size)1649 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1650 struct treepath *path,
1651 struct cpu_key *item_key,
1652 struct inode *inode,
1653 struct page *page, loff_t new_file_size)
1654 {
1655 struct super_block *sb = inode->i_sb;
1656 /*
1657 * Every function which is going to call do_balance must first
1658 * create a tree_balance structure. Then it must fill up this
1659 * structure by using the init_tb_struct and fix_nodes functions.
1660 * After that we can make tree balancing.
1661 */
1662 struct tree_balance s_cut_balance;
1663 struct item_head *p_le_ih;
1664 int cut_size = 0; /* Amount to be cut. */
1665 int ret_value = CARRY_ON;
1666 int removed = 0; /* Number of the removed unformatted nodes. */
1667 int is_inode_locked = 0;
1668 char mode; /* Mode of the balance. */
1669 int retval2 = -1;
1670 int quota_cut_bytes;
1671 loff_t tail_pos = 0;
1672 int depth;
1673
1674 BUG_ON(!th->t_trans_id);
1675
1676 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1677 cut_size);
1678
1679 /*
1680 * Repeat this loop until we either cut the item without needing
1681 * to balance, or we fix_nodes without schedule occurring
1682 */
1683 while (1) {
1684 /*
1685 * Determine the balance mode, position of the first byte to
1686 * be cut, and size to be cut. In case of the indirect item
1687 * free unformatted nodes which are pointed to by the cut
1688 * pointers.
1689 */
1690
1691 mode =
1692 prepare_for_delete_or_cut(th, inode, path,
1693 item_key, &removed,
1694 &cut_size, new_file_size);
1695 if (mode == M_CONVERT) {
1696 /*
1697 * convert last unformatted node to direct item or
1698 * leave tail in the unformatted node
1699 */
1700 RFALSE(ret_value != CARRY_ON,
1701 "PAP-5570: can not convert twice");
1702
1703 ret_value =
1704 maybe_indirect_to_direct(th, inode, page,
1705 path, item_key,
1706 new_file_size, &mode);
1707 if (mode == M_SKIP_BALANCING)
1708 /* tail has been left in the unformatted node */
1709 return ret_value;
1710
1711 is_inode_locked = 1;
1712
1713 /*
1714 * removing of last unformatted node will
1715 * change value we have to return to truncate.
1716 * Save it
1717 */
1718 retval2 = ret_value;
1719
1720 /*
1721 * So, we have performed the first part of the
1722 * conversion:
1723 * inserting the new direct item. Now we are
1724 * removing the last unformatted node pointer.
1725 * Set key to search for it.
1726 */
1727 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1728 item_key->key_length = 4;
1729 new_file_size -=
1730 (new_file_size & (sb->s_blocksize - 1));
1731 tail_pos = new_file_size;
1732 set_cpu_key_k_offset(item_key, new_file_size + 1);
1733 if (search_for_position_by_key
1734 (sb, item_key,
1735 path) == POSITION_NOT_FOUND) {
1736 print_block(PATH_PLAST_BUFFER(path), 3,
1737 PATH_LAST_POSITION(path) - 1,
1738 PATH_LAST_POSITION(path) + 1);
1739 reiserfs_panic(sb, "PAP-5580", "item to "
1740 "convert does not exist (%K)",
1741 item_key);
1742 }
1743 continue;
1744 }
1745 if (cut_size == 0) {
1746 pathrelse(path);
1747 return 0;
1748 }
1749
1750 s_cut_balance.insert_size[0] = cut_size;
1751
1752 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1753 if (ret_value != REPEAT_SEARCH)
1754 break;
1755
1756 PROC_INFO_INC(sb, cut_from_item_restarted);
1757
1758 ret_value =
1759 search_for_position_by_key(sb, item_key, path);
1760 if (ret_value == POSITION_FOUND)
1761 continue;
1762
1763 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1764 item_key);
1765 unfix_nodes(&s_cut_balance);
1766 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1767 } /* while */
1768
1769 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1770 if (ret_value != CARRY_ON) {
1771 if (is_inode_locked) {
1772 /*
1773 * FIXME: this seems to be not needed: we are always
1774 * able to cut item
1775 */
1776 indirect_to_direct_roll_back(th, inode, path);
1777 }
1778 if (ret_value == NO_DISK_SPACE)
1779 reiserfs_warning(sb, "reiserfs-5092",
1780 "NO_DISK_SPACE");
1781 unfix_nodes(&s_cut_balance);
1782 return -EIO;
1783 }
1784
1785 /* go ahead and perform balancing */
1786
1787 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1788
1789 /* Calculate number of bytes that need to be cut from the item. */
1790 quota_cut_bytes =
1791 (mode ==
1792 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1793 insert_size[0];
1794 if (retval2 == -1)
1795 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1796 else
1797 ret_value = retval2;
1798
1799 /*
1800 * For direct items, we only change the quota when deleting the last
1801 * item.
1802 */
1803 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1804 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1805 if (mode == M_DELETE &&
1806 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1807 1) {
1808 /* FIXME: this is to keep 3.5 happy */
1809 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1810 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1811 } else {
1812 quota_cut_bytes = 0;
1813 }
1814 }
1815 #ifdef CONFIG_REISERFS_CHECK
1816 if (is_inode_locked) {
1817 struct item_head *le_ih =
1818 tp_item_head(s_cut_balance.tb_path);
1819 /*
1820 * we are going to complete indirect2direct conversion. Make
1821 * sure, that we exactly remove last unformatted node pointer
1822 * of the item
1823 */
1824 if (!is_indirect_le_ih(le_ih))
1825 reiserfs_panic(sb, "vs-5652",
1826 "item must be indirect %h", le_ih);
1827
1828 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1829 reiserfs_panic(sb, "vs-5653", "completing "
1830 "indirect2direct conversion indirect "
1831 "item %h being deleted must be of "
1832 "4 byte long", le_ih);
1833
1834 if (mode == M_CUT
1835 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1836 reiserfs_panic(sb, "vs-5654", "can not complete "
1837 "indirect2direct conversion of %h "
1838 "(CUT, insert_size==%d)",
1839 le_ih, s_cut_balance.insert_size[0]);
1840 }
1841 /*
1842 * it would be useful to make sure, that right neighboring
1843 * item is direct item of this file
1844 */
1845 }
1846 #endif
1847
1848 do_balance(&s_cut_balance, NULL, NULL, mode);
1849 if (is_inode_locked) {
1850 /*
1851 * we've done an indirect->direct conversion. when the
1852 * data block was freed, it was removed from the list of
1853 * blocks that must be flushed before the transaction
1854 * commits, make sure to unmap and invalidate it
1855 */
1856 unmap_buffers(page, tail_pos);
1857 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1858 }
1859 #ifdef REISERQUOTA_DEBUG
1860 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1861 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1862 quota_cut_bytes, inode->i_uid, '?');
1863 #endif
1864 depth = reiserfs_write_unlock_nested(sb);
1865 dquot_free_space_nodirty(inode, quota_cut_bytes);
1866 reiserfs_write_lock_nested(sb, depth);
1867 return ret_value;
1868 }
1869
truncate_directory(struct reiserfs_transaction_handle * th,struct inode * inode)1870 static void truncate_directory(struct reiserfs_transaction_handle *th,
1871 struct inode *inode)
1872 {
1873 BUG_ON(!th->t_trans_id);
1874 if (inode->i_nlink)
1875 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1876
1877 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1878 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1879 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1880 reiserfs_update_sd(th, inode);
1881 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1882 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1883 }
1884
1885 /*
1886 * Truncate file to the new size. Note, this must be called with a
1887 * transaction already started
1888 */
reiserfs_do_truncate(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,int update_timestamps)1889 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1890 struct inode *inode, /* ->i_size contains new size */
1891 struct page *page, /* up to date for last block */
1892 /*
1893 * when it is called by file_release to convert
1894 * the tail - no timestamps should be updated
1895 */
1896 int update_timestamps
1897 )
1898 {
1899 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1900 struct item_head *p_le_ih; /* Pointer to an item header. */
1901
1902 /* Key to search for a previous file item. */
1903 struct cpu_key s_item_key;
1904 loff_t file_size, /* Old file size. */
1905 new_file_size; /* New file size. */
1906 int deleted; /* Number of deleted or truncated bytes. */
1907 int retval;
1908 int err = 0;
1909
1910 BUG_ON(!th->t_trans_id);
1911 if (!
1912 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1913 || S_ISLNK(inode->i_mode)))
1914 return 0;
1915
1916 /* deletion of directory - no need to update timestamps */
1917 if (S_ISDIR(inode->i_mode)) {
1918 truncate_directory(th, inode);
1919 return 0;
1920 }
1921
1922 /* Get new file size. */
1923 new_file_size = inode->i_size;
1924
1925 /* FIXME: note, that key type is unimportant here */
1926 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1927 TYPE_DIRECT, 3);
1928
1929 retval =
1930 search_for_position_by_key(inode->i_sb, &s_item_key,
1931 &s_search_path);
1932 if (retval == IO_ERROR) {
1933 reiserfs_error(inode->i_sb, "vs-5657",
1934 "i/o failure occurred trying to truncate %K",
1935 &s_item_key);
1936 err = -EIO;
1937 goto out;
1938 }
1939 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1940 reiserfs_error(inode->i_sb, "PAP-5660",
1941 "wrong result %d of search for %K", retval,
1942 &s_item_key);
1943
1944 err = -EIO;
1945 goto out;
1946 }
1947
1948 s_search_path.pos_in_item--;
1949
1950 /* Get real file size (total length of all file items) */
1951 p_le_ih = tp_item_head(&s_search_path);
1952 if (is_statdata_le_ih(p_le_ih))
1953 file_size = 0;
1954 else {
1955 loff_t offset = le_ih_k_offset(p_le_ih);
1956 int bytes =
1957 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1958
1959 /*
1960 * this may mismatch with real file size: if last direct item
1961 * had no padding zeros and last unformatted node had no free
1962 * space, this file would have this file size
1963 */
1964 file_size = offset + bytes - 1;
1965 }
1966 /*
1967 * are we doing a full truncate or delete, if so
1968 * kick in the reada code
1969 */
1970 if (new_file_size == 0)
1971 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1972
1973 if (file_size == 0 || file_size < new_file_size) {
1974 goto update_and_out;
1975 }
1976
1977 /* Update key to search for the last file item. */
1978 set_cpu_key_k_offset(&s_item_key, file_size);
1979
1980 do {
1981 /* Cut or delete file item. */
1982 deleted =
1983 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1984 inode, page, new_file_size);
1985 if (deleted < 0) {
1986 reiserfs_warning(inode->i_sb, "vs-5665",
1987 "reiserfs_cut_from_item failed");
1988 reiserfs_check_path(&s_search_path);
1989 return 0;
1990 }
1991
1992 RFALSE(deleted > file_size,
1993 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1994 deleted, file_size, &s_item_key);
1995
1996 /* Change key to search the last file item. */
1997 file_size -= deleted;
1998
1999 set_cpu_key_k_offset(&s_item_key, file_size);
2000
2001 /*
2002 * While there are bytes to truncate and previous
2003 * file item is presented in the tree.
2004 */
2005
2006 /*
2007 * This loop could take a really long time, and could log
2008 * many more blocks than a transaction can hold. So, we do
2009 * a polite journal end here, and if the transaction needs
2010 * ending, we make sure the file is consistent before ending
2011 * the current trans and starting a new one
2012 */
2013 if (journal_transaction_should_end(th, 0) ||
2014 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2015 pathrelse(&s_search_path);
2016
2017 if (update_timestamps) {
2018 inode->i_mtime = current_time(inode);
2019 inode->i_ctime = current_time(inode);
2020 }
2021 reiserfs_update_sd(th, inode);
2022
2023 err = journal_end(th);
2024 if (err)
2025 goto out;
2026 err = journal_begin(th, inode->i_sb,
2027 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2028 if (err)
2029 goto out;
2030 reiserfs_update_inode_transaction(inode);
2031 }
2032 } while (file_size > ROUND_UP(new_file_size) &&
2033 search_for_position_by_key(inode->i_sb, &s_item_key,
2034 &s_search_path) == POSITION_FOUND);
2035
2036 RFALSE(file_size > ROUND_UP(new_file_size),
2037 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2038 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2039
2040 update_and_out:
2041 if (update_timestamps) {
2042 /* this is truncate, not file closing */
2043 inode->i_mtime = current_time(inode);
2044 inode->i_ctime = current_time(inode);
2045 }
2046 reiserfs_update_sd(th, inode);
2047
2048 out:
2049 pathrelse(&s_search_path);
2050 return err;
2051 }
2052
2053 #ifdef CONFIG_REISERFS_CHECK
2054 /* this makes sure, that we __append__, not overwrite or add holes */
check_research_for_paste(struct treepath * path,const struct cpu_key * key)2055 static void check_research_for_paste(struct treepath *path,
2056 const struct cpu_key *key)
2057 {
2058 struct item_head *found_ih = tp_item_head(path);
2059
2060 if (is_direct_le_ih(found_ih)) {
2061 if (le_ih_k_offset(found_ih) +
2062 op_bytes_number(found_ih,
2063 get_last_bh(path)->b_size) !=
2064 cpu_key_k_offset(key)
2065 || op_bytes_number(found_ih,
2066 get_last_bh(path)->b_size) !=
2067 pos_in_item(path))
2068 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2069 "%h or position (%d) does not match "
2070 "to key %K", found_ih,
2071 pos_in_item(path), key);
2072 }
2073 if (is_indirect_le_ih(found_ih)) {
2074 if (le_ih_k_offset(found_ih) +
2075 op_bytes_number(found_ih,
2076 get_last_bh(path)->b_size) !=
2077 cpu_key_k_offset(key)
2078 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2079 || get_ih_free_space(found_ih) != 0)
2080 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2081 "item (%h) or position (%d) does not "
2082 "match to key (%K)",
2083 found_ih, pos_in_item(path), key);
2084 }
2085 }
2086 #endif /* config reiserfs check */
2087
2088 /*
2089 * Paste bytes to the existing item.
2090 * Returns bytes number pasted into the item.
2091 */
reiserfs_paste_into_item(struct reiserfs_transaction_handle * th,struct treepath * search_path,const struct cpu_key * key,struct inode * inode,const char * body,int pasted_size)2092 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2093 /* Path to the pasted item. */
2094 struct treepath *search_path,
2095 /* Key to search for the needed item. */
2096 const struct cpu_key *key,
2097 /* Inode item belongs to */
2098 struct inode *inode,
2099 /* Pointer to the bytes to paste. */
2100 const char *body,
2101 /* Size of pasted bytes. */
2102 int pasted_size)
2103 {
2104 struct super_block *sb = inode->i_sb;
2105 struct tree_balance s_paste_balance;
2106 int retval;
2107 int fs_gen;
2108 int depth;
2109
2110 BUG_ON(!th->t_trans_id);
2111
2112 fs_gen = get_generation(inode->i_sb);
2113
2114 #ifdef REISERQUOTA_DEBUG
2115 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2116 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2117 pasted_size, inode->i_uid,
2118 key2type(&key->on_disk_key));
2119 #endif
2120
2121 depth = reiserfs_write_unlock_nested(sb);
2122 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2123 reiserfs_write_lock_nested(sb, depth);
2124 if (retval) {
2125 pathrelse(search_path);
2126 return retval;
2127 }
2128 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2129 pasted_size);
2130 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2131 s_paste_balance.key = key->on_disk_key;
2132 #endif
2133
2134 /* DQUOT_* can schedule, must check before the fix_nodes */
2135 if (fs_changed(fs_gen, inode->i_sb)) {
2136 goto search_again;
2137 }
2138
2139 while ((retval =
2140 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2141 body)) == REPEAT_SEARCH) {
2142 search_again:
2143 /* file system changed while we were in the fix_nodes */
2144 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2145 retval =
2146 search_for_position_by_key(th->t_super, key,
2147 search_path);
2148 if (retval == IO_ERROR) {
2149 retval = -EIO;
2150 goto error_out;
2151 }
2152 if (retval == POSITION_FOUND) {
2153 reiserfs_warning(inode->i_sb, "PAP-5710",
2154 "entry or pasted byte (%K) exists",
2155 key);
2156 retval = -EEXIST;
2157 goto error_out;
2158 }
2159 #ifdef CONFIG_REISERFS_CHECK
2160 check_research_for_paste(search_path, key);
2161 #endif
2162 }
2163
2164 /*
2165 * Perform balancing after all resources are collected by fix_nodes,
2166 * and accessing them will not risk triggering schedule.
2167 */
2168 if (retval == CARRY_ON) {
2169 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2170 return 0;
2171 }
2172 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2173 error_out:
2174 /* this also releases the path */
2175 unfix_nodes(&s_paste_balance);
2176 #ifdef REISERQUOTA_DEBUG
2177 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2178 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2179 pasted_size, inode->i_uid,
2180 key2type(&key->on_disk_key));
2181 #endif
2182 depth = reiserfs_write_unlock_nested(sb);
2183 dquot_free_space_nodirty(inode, pasted_size);
2184 reiserfs_write_lock_nested(sb, depth);
2185 return retval;
2186 }
2187
2188 /*
2189 * Insert new item into the buffer at the path.
2190 * th - active transaction handle
2191 * path - path to the inserted item
2192 * ih - pointer to the item header to insert
2193 * body - pointer to the bytes to insert
2194 */
reiserfs_insert_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * key,struct item_head * ih,struct inode * inode,const char * body)2195 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2196 struct treepath *path, const struct cpu_key *key,
2197 struct item_head *ih, struct inode *inode,
2198 const char *body)
2199 {
2200 struct tree_balance s_ins_balance;
2201 int retval;
2202 int fs_gen = 0;
2203 int quota_bytes = 0;
2204
2205 BUG_ON(!th->t_trans_id);
2206
2207 if (inode) { /* Do we count quotas for item? */
2208 int depth;
2209 fs_gen = get_generation(inode->i_sb);
2210 quota_bytes = ih_item_len(ih);
2211
2212 /*
2213 * hack so the quota code doesn't have to guess
2214 * if the file has a tail, links are always tails,
2215 * so there's no guessing needed
2216 */
2217 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2218 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2219 #ifdef REISERQUOTA_DEBUG
2220 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2221 "reiserquota insert_item(): allocating %u id=%u type=%c",
2222 quota_bytes, inode->i_uid, head2type(ih));
2223 #endif
2224 /*
2225 * We can't dirty inode here. It would be immediately
2226 * written but appropriate stat item isn't inserted yet...
2227 */
2228 depth = reiserfs_write_unlock_nested(inode->i_sb);
2229 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2230 reiserfs_write_lock_nested(inode->i_sb, depth);
2231 if (retval) {
2232 pathrelse(path);
2233 return retval;
2234 }
2235 }
2236 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2237 IH_SIZE + ih_item_len(ih));
2238 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2239 s_ins_balance.key = key->on_disk_key;
2240 #endif
2241 /*
2242 * DQUOT_* can schedule, must check to be sure calling
2243 * fix_nodes is safe
2244 */
2245 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2246 goto search_again;
2247 }
2248
2249 while ((retval =
2250 fix_nodes(M_INSERT, &s_ins_balance, ih,
2251 body)) == REPEAT_SEARCH) {
2252 search_again:
2253 /* file system changed while we were in the fix_nodes */
2254 PROC_INFO_INC(th->t_super, insert_item_restarted);
2255 retval = search_item(th->t_super, key, path);
2256 if (retval == IO_ERROR) {
2257 retval = -EIO;
2258 goto error_out;
2259 }
2260 if (retval == ITEM_FOUND) {
2261 reiserfs_warning(th->t_super, "PAP-5760",
2262 "key %K already exists in the tree",
2263 key);
2264 retval = -EEXIST;
2265 goto error_out;
2266 }
2267 }
2268
2269 /* make balancing after all resources will be collected at a time */
2270 if (retval == CARRY_ON) {
2271 do_balance(&s_ins_balance, ih, body, M_INSERT);
2272 return 0;
2273 }
2274
2275 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2276 error_out:
2277 /* also releases the path */
2278 unfix_nodes(&s_ins_balance);
2279 #ifdef REISERQUOTA_DEBUG
2280 if (inode)
2281 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2282 "reiserquota insert_item(): freeing %u id=%u type=%c",
2283 quota_bytes, inode->i_uid, head2type(ih));
2284 #endif
2285 if (inode) {
2286 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2287 dquot_free_space_nodirty(inode, quota_bytes);
2288 reiserfs_write_lock_nested(inode->i_sb, depth);
2289 }
2290 return retval;
2291 }
2292