1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37 
38 static DEFINE_SPINLOCK(dbg_lock);
39 
get_key_fmt(int fmt)40 static const char *get_key_fmt(int fmt)
41 {
42 	switch (fmt) {
43 	case UBIFS_SIMPLE_KEY_FMT:
44 		return "simple";
45 	default:
46 		return "unknown/invalid format";
47 	}
48 }
49 
get_key_hash(int hash)50 static const char *get_key_hash(int hash)
51 {
52 	switch (hash) {
53 	case UBIFS_KEY_HASH_R5:
54 		return "R5";
55 	case UBIFS_KEY_HASH_TEST:
56 		return "test";
57 	default:
58 		return "unknown/invalid name hash";
59 	}
60 }
61 
get_key_type(int type)62 static const char *get_key_type(int type)
63 {
64 	switch (type) {
65 	case UBIFS_INO_KEY:
66 		return "inode";
67 	case UBIFS_DENT_KEY:
68 		return "direntry";
69 	case UBIFS_XENT_KEY:
70 		return "xentry";
71 	case UBIFS_DATA_KEY:
72 		return "data";
73 	case UBIFS_TRUN_KEY:
74 		return "truncate";
75 	default:
76 		return "unknown/invalid key";
77 	}
78 }
79 
get_dent_type(int type)80 static const char *get_dent_type(int type)
81 {
82 	switch (type) {
83 	case UBIFS_ITYPE_REG:
84 		return "file";
85 	case UBIFS_ITYPE_DIR:
86 		return "dir";
87 	case UBIFS_ITYPE_LNK:
88 		return "symlink";
89 	case UBIFS_ITYPE_BLK:
90 		return "blkdev";
91 	case UBIFS_ITYPE_CHR:
92 		return "char dev";
93 	case UBIFS_ITYPE_FIFO:
94 		return "fifo";
95 	case UBIFS_ITYPE_SOCK:
96 		return "socket";
97 	default:
98 		return "unknown/invalid type";
99 	}
100 }
101 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103 			     const union ubifs_key *key, char *buffer, int len)
104 {
105 	char *p = buffer;
106 	int type = key_type(c, key);
107 
108 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109 		switch (type) {
110 		case UBIFS_INO_KEY:
111 			len -= snprintf(p, len, "(%lu, %s)",
112 					(unsigned long)key_inum(c, key),
113 					get_key_type(type));
114 			break;
115 		case UBIFS_DENT_KEY:
116 		case UBIFS_XENT_KEY:
117 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
118 					(unsigned long)key_inum(c, key),
119 					get_key_type(type), key_hash(c, key));
120 			break;
121 		case UBIFS_DATA_KEY:
122 			len -= snprintf(p, len, "(%lu, %s, %u)",
123 					(unsigned long)key_inum(c, key),
124 					get_key_type(type), key_block(c, key));
125 			break;
126 		case UBIFS_TRUN_KEY:
127 			len -= snprintf(p, len, "(%lu, %s)",
128 					(unsigned long)key_inum(c, key),
129 					get_key_type(type));
130 			break;
131 		default:
132 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133 					key->u32[0], key->u32[1]);
134 		}
135 	} else
136 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137 	ubifs_assert(c, len > 0);
138 	return p;
139 }
140 
dbg_ntype(int type)141 const char *dbg_ntype(int type)
142 {
143 	switch (type) {
144 	case UBIFS_PAD_NODE:
145 		return "padding node";
146 	case UBIFS_SB_NODE:
147 		return "superblock node";
148 	case UBIFS_MST_NODE:
149 		return "master node";
150 	case UBIFS_REF_NODE:
151 		return "reference node";
152 	case UBIFS_INO_NODE:
153 		return "inode node";
154 	case UBIFS_DENT_NODE:
155 		return "direntry node";
156 	case UBIFS_XENT_NODE:
157 		return "xentry node";
158 	case UBIFS_DATA_NODE:
159 		return "data node";
160 	case UBIFS_TRUN_NODE:
161 		return "truncate node";
162 	case UBIFS_IDX_NODE:
163 		return "indexing node";
164 	case UBIFS_CS_NODE:
165 		return "commit start node";
166 	case UBIFS_ORPH_NODE:
167 		return "orphan node";
168 	default:
169 		return "unknown node";
170 	}
171 }
172 
dbg_gtype(int type)173 static const char *dbg_gtype(int type)
174 {
175 	switch (type) {
176 	case UBIFS_NO_NODE_GROUP:
177 		return "no node group";
178 	case UBIFS_IN_NODE_GROUP:
179 		return "in node group";
180 	case UBIFS_LAST_OF_NODE_GROUP:
181 		return "last of node group";
182 	default:
183 		return "unknown";
184 	}
185 }
186 
dbg_cstate(int cmt_state)187 const char *dbg_cstate(int cmt_state)
188 {
189 	switch (cmt_state) {
190 	case COMMIT_RESTING:
191 		return "commit resting";
192 	case COMMIT_BACKGROUND:
193 		return "background commit requested";
194 	case COMMIT_REQUIRED:
195 		return "commit required";
196 	case COMMIT_RUNNING_BACKGROUND:
197 		return "BACKGROUND commit running";
198 	case COMMIT_RUNNING_REQUIRED:
199 		return "commit running and required";
200 	case COMMIT_BROKEN:
201 		return "broken commit";
202 	default:
203 		return "unknown commit state";
204 	}
205 }
206 
dbg_jhead(int jhead)207 const char *dbg_jhead(int jhead)
208 {
209 	switch (jhead) {
210 	case GCHD:
211 		return "0 (GC)";
212 	case BASEHD:
213 		return "1 (base)";
214 	case DATAHD:
215 		return "2 (data)";
216 	default:
217 		return "unknown journal head";
218 	}
219 }
220 
dump_ch(const struct ubifs_ch * ch)221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226 	       dbg_ntype(ch->node_type));
227 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228 	       dbg_gtype(ch->group_type));
229 	pr_err("\tsqnum          %llu\n",
230 	       (unsigned long long)le64_to_cpu(ch->sqnum));
231 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233 
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236 	const struct ubifs_inode *ui = ubifs_inode(inode);
237 	struct fscrypt_name nm = {0};
238 	union ubifs_key key;
239 	struct ubifs_dent_node *dent, *pdent = NULL;
240 	int count = 2;
241 
242 	pr_err("Dump in-memory inode:");
243 	pr_err("\tinode          %lu\n", inode->i_ino);
244 	pr_err("\tsize           %llu\n",
245 	       (unsigned long long)i_size_read(inode));
246 	pr_err("\tnlink          %u\n", inode->i_nlink);
247 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249 	pr_err("\tatime          %u.%u\n",
250 	       (unsigned int)inode->i_atime.tv_sec,
251 	       (unsigned int)inode->i_atime.tv_nsec);
252 	pr_err("\tmtime          %u.%u\n",
253 	       (unsigned int)inode->i_mtime.tv_sec,
254 	       (unsigned int)inode->i_mtime.tv_nsec);
255 	pr_err("\tctime          %u.%u\n",
256 	       (unsigned int)inode->i_ctime.tv_sec,
257 	       (unsigned int)inode->i_ctime.tv_nsec);
258 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259 	pr_err("\txattr_size     %u\n", ui->xattr_size);
260 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261 	pr_err("\txattr_names    %u\n", ui->xattr_names);
262 	pr_err("\tdirty          %u\n", ui->dirty);
263 	pr_err("\txattr          %u\n", ui->xattr);
264 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
265 	pr_err("\tsynced_i_size  %llu\n",
266 	       (unsigned long long)ui->synced_i_size);
267 	pr_err("\tui_size        %llu\n",
268 	       (unsigned long long)ui->ui_size);
269 	pr_err("\tflags          %d\n", ui->flags);
270 	pr_err("\tcompr_type     %d\n", ui->compr_type);
271 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273 	pr_err("\tdata_len       %d\n", ui->data_len);
274 
275 	if (!S_ISDIR(inode->i_mode))
276 		return;
277 
278 	pr_err("List of directory entries:\n");
279 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
280 
281 	lowest_dent_key(c, &key, inode->i_ino);
282 	while (1) {
283 		dent = ubifs_tnc_next_ent(c, &key, &nm);
284 		if (IS_ERR(dent)) {
285 			if (PTR_ERR(dent) != -ENOENT)
286 				pr_err("error %ld\n", PTR_ERR(dent));
287 			break;
288 		}
289 
290 		pr_err("\t%d: inode %llu, type %s, len %d\n",
291 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
292 		       get_dent_type(dent->type),
293 		       le16_to_cpu(dent->nlen));
294 
295 		fname_name(&nm) = dent->name;
296 		fname_len(&nm) = le16_to_cpu(dent->nlen);
297 		kfree(pdent);
298 		pdent = dent;
299 		key_read(c, &dent->key, &key);
300 	}
301 	kfree(pdent);
302 }
303 
ubifs_dump_node(const struct ubifs_info * c,const void * node)304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306 	int i, n;
307 	union ubifs_key key;
308 	const struct ubifs_ch *ch = node;
309 	char key_buf[DBG_KEY_BUF_LEN];
310 
311 	/* If the magic is incorrect, just hexdump the first bytes */
312 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 			       (void *)node, UBIFS_CH_SZ, 1);
316 		return;
317 	}
318 
319 	spin_lock(&dbg_lock);
320 	dump_ch(node);
321 
322 	switch (ch->node_type) {
323 	case UBIFS_PAD_NODE:
324 	{
325 		const struct ubifs_pad_node *pad = node;
326 
327 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
328 		break;
329 	}
330 	case UBIFS_SB_NODE:
331 	{
332 		const struct ubifs_sb_node *sup = node;
333 		unsigned int sup_flags = le32_to_cpu(sup->flags);
334 
335 		pr_err("\tkey_hash       %d (%s)\n",
336 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
337 		pr_err("\tkey_fmt        %d (%s)\n",
338 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339 		pr_err("\tflags          %#x\n", sup_flags);
340 		pr_err("\tbig_lpt        %u\n",
341 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
342 		pr_err("\tspace_fixup    %u\n",
343 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
345 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
346 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
347 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
348 		pr_err("\tmax_bud_bytes  %llu\n",
349 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
351 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
352 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
353 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
354 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
355 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
356 		pr_err("\tdefault_compr  %u\n",
357 		       (int)le16_to_cpu(sup->default_compr));
358 		pr_err("\trp_size        %llu\n",
359 		       (unsigned long long)le64_to_cpu(sup->rp_size));
360 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
361 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
362 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
363 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
364 		pr_err("\tUUID           %pUB\n", sup->uuid);
365 		break;
366 	}
367 	case UBIFS_MST_NODE:
368 	{
369 		const struct ubifs_mst_node *mst = node;
370 
371 		pr_err("\thighest_inum   %llu\n",
372 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
373 		pr_err("\tcommit number  %llu\n",
374 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
375 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
376 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
377 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
378 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
379 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
380 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
381 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
382 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
383 		pr_err("\tindex_size     %llu\n",
384 		       (unsigned long long)le64_to_cpu(mst->index_size));
385 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
386 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
387 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
388 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
389 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
390 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
391 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
392 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
393 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
394 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
395 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
396 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
397 		pr_err("\ttotal_free     %llu\n",
398 		       (unsigned long long)le64_to_cpu(mst->total_free));
399 		pr_err("\ttotal_dirty    %llu\n",
400 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
401 		pr_err("\ttotal_used     %llu\n",
402 		       (unsigned long long)le64_to_cpu(mst->total_used));
403 		pr_err("\ttotal_dead     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->total_dead));
405 		pr_err("\ttotal_dark     %llu\n",
406 		       (unsigned long long)le64_to_cpu(mst->total_dark));
407 		break;
408 	}
409 	case UBIFS_REF_NODE:
410 	{
411 		const struct ubifs_ref_node *ref = node;
412 
413 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
414 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
415 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
416 		break;
417 	}
418 	case UBIFS_INO_NODE:
419 	{
420 		const struct ubifs_ino_node *ino = node;
421 
422 		key_read(c, &ino->key, &key);
423 		pr_err("\tkey            %s\n",
424 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425 		pr_err("\tcreat_sqnum    %llu\n",
426 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427 		pr_err("\tsize           %llu\n",
428 		       (unsigned long long)le64_to_cpu(ino->size));
429 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
430 		pr_err("\tatime          %lld.%u\n",
431 		       (long long)le64_to_cpu(ino->atime_sec),
432 		       le32_to_cpu(ino->atime_nsec));
433 		pr_err("\tmtime          %lld.%u\n",
434 		       (long long)le64_to_cpu(ino->mtime_sec),
435 		       le32_to_cpu(ino->mtime_nsec));
436 		pr_err("\tctime          %lld.%u\n",
437 		       (long long)le64_to_cpu(ino->ctime_sec),
438 		       le32_to_cpu(ino->ctime_nsec));
439 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
440 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
441 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
442 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
443 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
444 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
445 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
446 		pr_err("\tcompr_type     %#x\n",
447 		       (int)le16_to_cpu(ino->compr_type));
448 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
449 		break;
450 	}
451 	case UBIFS_DENT_NODE:
452 	case UBIFS_XENT_NODE:
453 	{
454 		const struct ubifs_dent_node *dent = node;
455 		int nlen = le16_to_cpu(dent->nlen);
456 
457 		key_read(c, &dent->key, &key);
458 		pr_err("\tkey            %s\n",
459 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460 		pr_err("\tinum           %llu\n",
461 		       (unsigned long long)le64_to_cpu(dent->inum));
462 		pr_err("\ttype           %d\n", (int)dent->type);
463 		pr_err("\tnlen           %d\n", nlen);
464 		pr_err("\tname           ");
465 
466 		if (nlen > UBIFS_MAX_NLEN)
467 			pr_err("(bad name length, not printing, bad or corrupted node)");
468 		else {
469 			for (i = 0; i < nlen && dent->name[i]; i++)
470 				pr_cont("%c", isprint(dent->name[i]) ?
471 					dent->name[i] : '?');
472 		}
473 		pr_cont("\n");
474 
475 		break;
476 	}
477 	case UBIFS_DATA_NODE:
478 	{
479 		const struct ubifs_data_node *dn = node;
480 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
481 
482 		key_read(c, &dn->key, &key);
483 		pr_err("\tkey            %s\n",
484 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
485 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
486 		pr_err("\tcompr_typ      %d\n",
487 		       (int)le16_to_cpu(dn->compr_type));
488 		pr_err("\tdata size      %d\n", dlen);
489 		pr_err("\tdata:\n");
490 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
491 			       (void *)&dn->data, dlen, 0);
492 		break;
493 	}
494 	case UBIFS_TRUN_NODE:
495 	{
496 		const struct ubifs_trun_node *trun = node;
497 
498 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
499 		pr_err("\told_size       %llu\n",
500 		       (unsigned long long)le64_to_cpu(trun->old_size));
501 		pr_err("\tnew_size       %llu\n",
502 		       (unsigned long long)le64_to_cpu(trun->new_size));
503 		break;
504 	}
505 	case UBIFS_IDX_NODE:
506 	{
507 		const struct ubifs_idx_node *idx = node;
508 
509 		n = le16_to_cpu(idx->child_cnt);
510 		pr_err("\tchild_cnt      %d\n", n);
511 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
512 		pr_err("\tBranches:\n");
513 
514 		for (i = 0; i < n && i < c->fanout - 1; i++) {
515 			const struct ubifs_branch *br;
516 
517 			br = ubifs_idx_branch(c, idx, i);
518 			key_read(c, &br->key, &key);
519 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
520 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
521 			       le32_to_cpu(br->len),
522 			       dbg_snprintf_key(c, &key, key_buf,
523 						DBG_KEY_BUF_LEN));
524 		}
525 		break;
526 	}
527 	case UBIFS_CS_NODE:
528 		break;
529 	case UBIFS_ORPH_NODE:
530 	{
531 		const struct ubifs_orph_node *orph = node;
532 
533 		pr_err("\tcommit number  %llu\n",
534 		       (unsigned long long)
535 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
536 		pr_err("\tlast node flag %llu\n",
537 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
538 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
539 		pr_err("\t%d orphan inode numbers:\n", n);
540 		for (i = 0; i < n; i++)
541 			pr_err("\t  ino %llu\n",
542 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
543 		break;
544 	}
545 	default:
546 		pr_err("node type %d was not recognized\n",
547 		       (int)ch->node_type);
548 	}
549 	spin_unlock(&dbg_lock);
550 }
551 
ubifs_dump_budget_req(const struct ubifs_budget_req * req)552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
553 {
554 	spin_lock(&dbg_lock);
555 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556 	       req->new_ino, req->dirtied_ino);
557 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
558 	       req->new_ino_d, req->dirtied_ino_d);
559 	pr_err("\tnew_page    %d, dirtied_page %d\n",
560 	       req->new_page, req->dirtied_page);
561 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
562 	       req->new_dent, req->mod_dent);
563 	pr_err("\tidx_growth  %d\n", req->idx_growth);
564 	pr_err("\tdata_growth %d dd_growth     %d\n",
565 	       req->data_growth, req->dd_growth);
566 	spin_unlock(&dbg_lock);
567 }
568 
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
570 {
571 	spin_lock(&dbg_lock);
572 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
573 	       current->pid, lst->empty_lebs, lst->idx_lebs);
574 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
576 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577 	       lst->total_used, lst->total_dark, lst->total_dead);
578 	spin_unlock(&dbg_lock);
579 }
580 
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583 	int i;
584 	struct rb_node *rb;
585 	struct ubifs_bud *bud;
586 	struct ubifs_gced_idx_leb *idx_gc;
587 	long long available, outstanding, free;
588 
589 	spin_lock(&c->space_lock);
590 	spin_lock(&dbg_lock);
591 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592 	       current->pid, bi->data_growth + bi->dd_growth,
593 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
594 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
596 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
600 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603 
604 	if (bi != &c->bi)
605 		/*
606 		 * If we are dumping saved budgeting data, do not print
607 		 * additional information which is about the current state, not
608 		 * the old one which corresponded to the saved budgeting data.
609 		 */
610 		goto out_unlock;
611 
612 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615 	       atomic_long_read(&c->dirty_pg_cnt),
616 	       atomic_long_read(&c->dirty_zn_cnt),
617 	       atomic_long_read(&c->clean_zn_cnt));
618 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619 
620 	/* If we are in R/O mode, journal heads do not exist */
621 	if (c->jheads)
622 		for (i = 0; i < c->jhead_cnt; i++)
623 			pr_err("\tjhead %s\t LEB %d\n",
624 			       dbg_jhead(c->jheads[i].wbuf.jhead),
625 			       c->jheads[i].wbuf.lnum);
626 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 		bud = rb_entry(rb, struct ubifs_bud, rb);
628 		pr_err("\tbud LEB %d\n", bud->lnum);
629 	}
630 	list_for_each_entry(bud, &c->old_buds, list)
631 		pr_err("\told bud LEB %d\n", bud->lnum);
632 	list_for_each_entry(idx_gc, &c->idx_gc, list)
633 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
634 		       idx_gc->lnum, idx_gc->unmap);
635 	pr_err("\tcommit state %d\n", c->cmt_state);
636 
637 	/* Print budgeting predictions */
638 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639 	outstanding = c->bi.data_growth + c->bi.dd_growth;
640 	free = ubifs_get_free_space_nolock(c);
641 	pr_err("Budgeting predictions:\n");
642 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643 	       available, outstanding, free);
644 out_unlock:
645 	spin_unlock(&dbg_lock);
646 	spin_unlock(&c->space_lock);
647 }
648 
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650 {
651 	int i, spc, dark = 0, dead = 0;
652 	struct rb_node *rb;
653 	struct ubifs_bud *bud;
654 
655 	spc = lp->free + lp->dirty;
656 	if (spc < c->dead_wm)
657 		dead = spc;
658 	else
659 		dark = ubifs_calc_dark(c, spc);
660 
661 	if (lp->flags & LPROPS_INDEX)
662 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 		       lp->flags);
665 	else
666 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
669 
670 	if (lp->flags & LPROPS_TAKEN) {
671 		if (lp->flags & LPROPS_INDEX)
672 			pr_cont("index, taken");
673 		else
674 			pr_cont("taken");
675 	} else {
676 		const char *s;
677 
678 		if (lp->flags & LPROPS_INDEX) {
679 			switch (lp->flags & LPROPS_CAT_MASK) {
680 			case LPROPS_DIRTY_IDX:
681 				s = "dirty index";
682 				break;
683 			case LPROPS_FRDI_IDX:
684 				s = "freeable index";
685 				break;
686 			default:
687 				s = "index";
688 			}
689 		} else {
690 			switch (lp->flags & LPROPS_CAT_MASK) {
691 			case LPROPS_UNCAT:
692 				s = "not categorized";
693 				break;
694 			case LPROPS_DIRTY:
695 				s = "dirty";
696 				break;
697 			case LPROPS_FREE:
698 				s = "free";
699 				break;
700 			case LPROPS_EMPTY:
701 				s = "empty";
702 				break;
703 			case LPROPS_FREEABLE:
704 				s = "freeable";
705 				break;
706 			default:
707 				s = NULL;
708 				break;
709 			}
710 		}
711 		pr_cont("%s", s);
712 	}
713 
714 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
715 		bud = rb_entry(rb, struct ubifs_bud, rb);
716 		if (bud->lnum == lp->lnum) {
717 			int head = 0;
718 			for (i = 0; i < c->jhead_cnt; i++) {
719 				/*
720 				 * Note, if we are in R/O mode or in the middle
721 				 * of mounting/re-mounting, the write-buffers do
722 				 * not exist.
723 				 */
724 				if (c->jheads &&
725 				    lp->lnum == c->jheads[i].wbuf.lnum) {
726 					pr_cont(", jhead %s", dbg_jhead(i));
727 					head = 1;
728 				}
729 			}
730 			if (!head)
731 				pr_cont(", bud of jhead %s",
732 				       dbg_jhead(bud->jhead));
733 		}
734 	}
735 	if (lp->lnum == c->gc_lnum)
736 		pr_cont(", GC LEB");
737 	pr_cont(")\n");
738 }
739 
ubifs_dump_lprops(struct ubifs_info * c)740 void ubifs_dump_lprops(struct ubifs_info *c)
741 {
742 	int lnum, err;
743 	struct ubifs_lprops lp;
744 	struct ubifs_lp_stats lst;
745 
746 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
747 	ubifs_get_lp_stats(c, &lst);
748 	ubifs_dump_lstats(&lst);
749 
750 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
751 		err = ubifs_read_one_lp(c, lnum, &lp);
752 		if (err) {
753 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
754 			continue;
755 		}
756 
757 		ubifs_dump_lprop(c, &lp);
758 	}
759 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760 }
761 
ubifs_dump_lpt_info(struct ubifs_info * c)762 void ubifs_dump_lpt_info(struct ubifs_info *c)
763 {
764 	int i;
765 
766 	spin_lock(&dbg_lock);
767 	pr_err("(pid %d) dumping LPT information\n", current->pid);
768 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
769 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
770 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
771 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
772 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
773 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
774 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
775 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
776 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
777 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
778 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
779 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
780 	pr_err("\tspace_bits:    %d\n", c->space_bits);
781 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
784 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
785 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
786 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787 	pr_err("\tLPT head is at %d:%d\n",
788 	       c->nhead_lnum, c->nhead_offs);
789 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790 	if (c->big_lpt)
791 		pr_err("\tLPT lsave is at %d:%d\n",
792 		       c->lsave_lnum, c->lsave_offs);
793 	for (i = 0; i < c->lpt_lebs; i++)
794 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796 		       c->ltab[i].tgc, c->ltab[i].cmt);
797 	spin_unlock(&dbg_lock);
798 }
799 
ubifs_dump_sleb(const struct ubifs_info * c,const struct ubifs_scan_leb * sleb,int offs)800 void ubifs_dump_sleb(const struct ubifs_info *c,
801 		     const struct ubifs_scan_leb *sleb, int offs)
802 {
803 	struct ubifs_scan_node *snod;
804 
805 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806 	       current->pid, sleb->lnum, offs);
807 
808 	list_for_each_entry(snod, &sleb->nodes, list) {
809 		cond_resched();
810 		pr_err("Dumping node at LEB %d:%d len %d\n",
811 		       sleb->lnum, snod->offs, snod->len);
812 		ubifs_dump_node(c, snod->node);
813 	}
814 }
815 
ubifs_dump_leb(const struct ubifs_info * c,int lnum)816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817 {
818 	struct ubifs_scan_leb *sleb;
819 	struct ubifs_scan_node *snod;
820 	void *buf;
821 
822 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823 
824 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825 	if (!buf) {
826 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
827 		return;
828 	}
829 
830 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
831 	if (IS_ERR(sleb)) {
832 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
833 		goto out;
834 	}
835 
836 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837 	       sleb->nodes_cnt, sleb->endpt);
838 
839 	list_for_each_entry(snod, &sleb->nodes, list) {
840 		cond_resched();
841 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842 		       snod->offs, snod->len);
843 		ubifs_dump_node(c, snod->node);
844 	}
845 
846 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847 	ubifs_scan_destroy(sleb);
848 
849 out:
850 	vfree(buf);
851 	return;
852 }
853 
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)854 void ubifs_dump_znode(const struct ubifs_info *c,
855 		      const struct ubifs_znode *znode)
856 {
857 	int n;
858 	const struct ubifs_zbranch *zbr;
859 	char key_buf[DBG_KEY_BUF_LEN];
860 
861 	spin_lock(&dbg_lock);
862 	if (znode->parent)
863 		zbr = &znode->parent->zbranch[znode->iip];
864 	else
865 		zbr = &c->zroot;
866 
867 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869 	       znode->level, znode->child_cnt, znode->flags);
870 
871 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872 		spin_unlock(&dbg_lock);
873 		return;
874 	}
875 
876 	pr_err("zbranches:\n");
877 	for (n = 0; n < znode->child_cnt; n++) {
878 		zbr = &znode->zbranch[n];
879 		if (znode->level > 0)
880 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882 			       dbg_snprintf_key(c, &zbr->key, key_buf,
883 						DBG_KEY_BUF_LEN));
884 		else
885 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887 			       dbg_snprintf_key(c, &zbr->key, key_buf,
888 						DBG_KEY_BUF_LEN));
889 	}
890 	spin_unlock(&dbg_lock);
891 }
892 
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894 {
895 	int i;
896 
897 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898 	       current->pid, cat, heap->cnt);
899 	for (i = 0; i < heap->cnt; i++) {
900 		struct ubifs_lprops *lprops = heap->arr[i];
901 
902 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903 		       i, lprops->lnum, lprops->hpos, lprops->free,
904 		       lprops->dirty, lprops->flags);
905 	}
906 	pr_err("(pid %d) finish dumping heap\n", current->pid);
907 }
908 
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910 		      struct ubifs_nnode *parent, int iip)
911 {
912 	int i;
913 
914 	pr_err("(pid %d) dumping pnode:\n", current->pid);
915 	pr_err("\taddress %zx parent %zx cnext %zx\n",
916 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917 	pr_err("\tflags %lu iip %d level %d num %d\n",
918 	       pnode->flags, iip, pnode->level, pnode->num);
919 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920 		struct ubifs_lprops *lp = &pnode->lprops[i];
921 
922 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
924 	}
925 }
926 
ubifs_dump_tnc(struct ubifs_info * c)927 void ubifs_dump_tnc(struct ubifs_info *c)
928 {
929 	struct ubifs_znode *znode;
930 	int level;
931 
932 	pr_err("\n");
933 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
935 	level = znode->level;
936 	pr_err("== Level %d ==\n", level);
937 	while (znode) {
938 		if (level != znode->level) {
939 			level = znode->level;
940 			pr_err("== Level %d ==\n", level);
941 		}
942 		ubifs_dump_znode(c, znode);
943 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
944 	}
945 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946 }
947 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949 		      void *priv)
950 {
951 	ubifs_dump_znode(c, znode);
952 	return 0;
953 }
954 
955 /**
956  * ubifs_dump_index - dump the on-flash index.
957  * @c: UBIFS file-system description object
958  *
959  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960  * which dumps only in-memory znodes and does not read znodes which from flash.
961  */
ubifs_dump_index(struct ubifs_info * c)962 void ubifs_dump_index(struct ubifs_info *c)
963 {
964 	dbg_walk_index(c, NULL, dump_znode, NULL);
965 }
966 
967 /**
968  * dbg_save_space_info - save information about flash space.
969  * @c: UBIFS file-system description object
970  *
971  * This function saves information about UBIFS free space, dirty space, etc, in
972  * order to check it later.
973  */
dbg_save_space_info(struct ubifs_info * c)974 void dbg_save_space_info(struct ubifs_info *c)
975 {
976 	struct ubifs_debug_info *d = c->dbg;
977 	int freeable_cnt;
978 
979 	spin_lock(&c->space_lock);
980 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
981 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
982 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
983 
984 	/*
985 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
986 	 * affects the free space calculations, and UBIFS might not know about
987 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988 	 * only when we read their lprops, and we do this only lazily, upon the
989 	 * need. So at any given point of time @c->freeable_cnt might be not
990 	 * exactly accurate.
991 	 *
992 	 * Just one example about the issue we hit when we did not zero
993 	 * @c->freeable_cnt.
994 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995 	 *    amount of free space in @d->saved_free
996 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997 	 *    information from flash, where we cache LEBs from various
998 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1001 	 *    -> 'ubifs_add_to_cat()').
1002 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003 	 *    becomes %1.
1004 	 * 4. We calculate the amount of free space when the re-mount is
1005 	 *    finished in 'dbg_check_space_info()' and it does not match
1006 	 *    @d->saved_free.
1007 	 */
1008 	freeable_cnt = c->freeable_cnt;
1009 	c->freeable_cnt = 0;
1010 	d->saved_free = ubifs_get_free_space_nolock(c);
1011 	c->freeable_cnt = freeable_cnt;
1012 	spin_unlock(&c->space_lock);
1013 }
1014 
1015 /**
1016  * dbg_check_space_info - check flash space information.
1017  * @c: UBIFS file-system description object
1018  *
1019  * This function compares current flash space information with the information
1020  * which was saved when the 'dbg_save_space_info()' function was called.
1021  * Returns zero if the information has not changed, and %-EINVAL it it has
1022  * changed.
1023  */
dbg_check_space_info(struct ubifs_info * c)1024 int dbg_check_space_info(struct ubifs_info *c)
1025 {
1026 	struct ubifs_debug_info *d = c->dbg;
1027 	struct ubifs_lp_stats lst;
1028 	long long free;
1029 	int freeable_cnt;
1030 
1031 	spin_lock(&c->space_lock);
1032 	freeable_cnt = c->freeable_cnt;
1033 	c->freeable_cnt = 0;
1034 	free = ubifs_get_free_space_nolock(c);
1035 	c->freeable_cnt = freeable_cnt;
1036 	spin_unlock(&c->space_lock);
1037 
1038 	if (free != d->saved_free) {
1039 		ubifs_err(c, "free space changed from %lld to %lld",
1040 			  d->saved_free, free);
1041 		goto out;
1042 	}
1043 
1044 	return 0;
1045 
1046 out:
1047 	ubifs_msg(c, "saved lprops statistics dump");
1048 	ubifs_dump_lstats(&d->saved_lst);
1049 	ubifs_msg(c, "saved budgeting info dump");
1050 	ubifs_dump_budg(c, &d->saved_bi);
1051 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052 	ubifs_msg(c, "current lprops statistics dump");
1053 	ubifs_get_lp_stats(c, &lst);
1054 	ubifs_dump_lstats(&lst);
1055 	ubifs_msg(c, "current budgeting info dump");
1056 	ubifs_dump_budg(c, &c->bi);
1057 	dump_stack();
1058 	return -EINVAL;
1059 }
1060 
1061 /**
1062  * dbg_check_synced_i_size - check synchronized inode size.
1063  * @c: UBIFS file-system description object
1064  * @inode: inode to check
1065  *
1066  * If inode is clean, synchronized inode size has to be equivalent to current
1067  * inode size. This function has to be called only for locked inodes (@i_mutex
1068  * has to be locked). Returns %0 if synchronized inode size if correct, and
1069  * %-EINVAL if not.
1070  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1072 {
1073 	int err = 0;
1074 	struct ubifs_inode *ui = ubifs_inode(inode);
1075 
1076 	if (!dbg_is_chk_gen(c))
1077 		return 0;
1078 	if (!S_ISREG(inode->i_mode))
1079 		return 0;
1080 
1081 	mutex_lock(&ui->ui_mutex);
1082 	spin_lock(&ui->ui_lock);
1083 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085 			  ui->ui_size, ui->synced_i_size);
1086 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087 			  inode->i_mode, i_size_read(inode));
1088 		dump_stack();
1089 		err = -EINVAL;
1090 	}
1091 	spin_unlock(&ui->ui_lock);
1092 	mutex_unlock(&ui->ui_mutex);
1093 	return err;
1094 }
1095 
1096 /*
1097  * dbg_check_dir - check directory inode size and link count.
1098  * @c: UBIFS file-system description object
1099  * @dir: the directory to calculate size for
1100  * @size: the result is returned here
1101  *
1102  * This function makes sure that directory size and link count are correct.
1103  * Returns zero in case of success and a negative error code in case of
1104  * failure.
1105  *
1106  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107  * calling this function.
1108  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1110 {
1111 	unsigned int nlink = 2;
1112 	union ubifs_key key;
1113 	struct ubifs_dent_node *dent, *pdent = NULL;
1114 	struct fscrypt_name nm = {0};
1115 	loff_t size = UBIFS_INO_NODE_SZ;
1116 
1117 	if (!dbg_is_chk_gen(c))
1118 		return 0;
1119 
1120 	if (!S_ISDIR(dir->i_mode))
1121 		return 0;
1122 
1123 	lowest_dent_key(c, &key, dir->i_ino);
1124 	while (1) {
1125 		int err;
1126 
1127 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1128 		if (IS_ERR(dent)) {
1129 			err = PTR_ERR(dent);
1130 			if (err == -ENOENT)
1131 				break;
1132 			kfree(pdent);
1133 			return err;
1134 		}
1135 
1136 		fname_name(&nm) = dent->name;
1137 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1138 		size += CALC_DENT_SIZE(fname_len(&nm));
1139 		if (dent->type == UBIFS_ITYPE_DIR)
1140 			nlink += 1;
1141 		kfree(pdent);
1142 		pdent = dent;
1143 		key_read(c, &dent->key, &key);
1144 	}
1145 	kfree(pdent);
1146 
1147 	if (i_size_read(dir) != size) {
1148 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1149 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1150 			  (unsigned long long)size);
1151 		ubifs_dump_inode(c, dir);
1152 		dump_stack();
1153 		return -EINVAL;
1154 	}
1155 	if (dir->i_nlink != nlink) {
1156 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1157 			  dir->i_ino, dir->i_nlink, nlink);
1158 		ubifs_dump_inode(c, dir);
1159 		dump_stack();
1160 		return -EINVAL;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 /**
1167  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1168  * @c: UBIFS file-system description object
1169  * @zbr1: first zbranch
1170  * @zbr2: following zbranch
1171  *
1172  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1173  * names of the direntries/xentries which are referred by the keys. This
1174  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1175  * sure the name of direntry/xentry referred by @zbr1 is less than
1176  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1177  * and a negative error code in case of failure.
1178  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1179 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1180 			       struct ubifs_zbranch *zbr2)
1181 {
1182 	int err, nlen1, nlen2, cmp;
1183 	struct ubifs_dent_node *dent1, *dent2;
1184 	union ubifs_key key;
1185 	char key_buf[DBG_KEY_BUF_LEN];
1186 
1187 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1188 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189 	if (!dent1)
1190 		return -ENOMEM;
1191 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192 	if (!dent2) {
1193 		err = -ENOMEM;
1194 		goto out_free;
1195 	}
1196 
1197 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1198 	if (err)
1199 		goto out_free;
1200 	err = ubifs_validate_entry(c, dent1);
1201 	if (err)
1202 		goto out_free;
1203 
1204 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1205 	if (err)
1206 		goto out_free;
1207 	err = ubifs_validate_entry(c, dent2);
1208 	if (err)
1209 		goto out_free;
1210 
1211 	/* Make sure node keys are the same as in zbranch */
1212 	err = 1;
1213 	key_read(c, &dent1->key, &key);
1214 	if (keys_cmp(c, &zbr1->key, &key)) {
1215 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1216 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1217 						       DBG_KEY_BUF_LEN));
1218 		ubifs_err(c, "but it should have key %s according to tnc",
1219 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1220 					   DBG_KEY_BUF_LEN));
1221 		ubifs_dump_node(c, dent1);
1222 		goto out_free;
1223 	}
1224 
1225 	key_read(c, &dent2->key, &key);
1226 	if (keys_cmp(c, &zbr2->key, &key)) {
1227 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1228 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1229 						       DBG_KEY_BUF_LEN));
1230 		ubifs_err(c, "but it should have key %s according to tnc",
1231 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1232 					   DBG_KEY_BUF_LEN));
1233 		ubifs_dump_node(c, dent2);
1234 		goto out_free;
1235 	}
1236 
1237 	nlen1 = le16_to_cpu(dent1->nlen);
1238 	nlen2 = le16_to_cpu(dent2->nlen);
1239 
1240 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1241 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1242 		err = 0;
1243 		goto out_free;
1244 	}
1245 	if (cmp == 0 && nlen1 == nlen2)
1246 		ubifs_err(c, "2 xent/dent nodes with the same name");
1247 	else
1248 		ubifs_err(c, "bad order of colliding key %s",
1249 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250 
1251 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1252 	ubifs_dump_node(c, dent1);
1253 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1254 	ubifs_dump_node(c, dent2);
1255 
1256 out_free:
1257 	kfree(dent2);
1258 	kfree(dent1);
1259 	return err;
1260 }
1261 
1262 /**
1263  * dbg_check_znode - check if znode is all right.
1264  * @c: UBIFS file-system description object
1265  * @zbr: zbranch which points to this znode
1266  *
1267  * This function makes sure that znode referred to by @zbr is all right.
1268  * Returns zero if it is, and %-EINVAL if it is not.
1269  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1270 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271 {
1272 	struct ubifs_znode *znode = zbr->znode;
1273 	struct ubifs_znode *zp = znode->parent;
1274 	int n, err, cmp;
1275 
1276 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1277 		err = 1;
1278 		goto out;
1279 	}
1280 	if (znode->level < 0) {
1281 		err = 2;
1282 		goto out;
1283 	}
1284 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1285 		err = 3;
1286 		goto out;
1287 	}
1288 
1289 	if (zbr->len == 0)
1290 		/* Only dirty zbranch may have no on-flash nodes */
1291 		if (!ubifs_zn_dirty(znode)) {
1292 			err = 4;
1293 			goto out;
1294 		}
1295 
1296 	if (ubifs_zn_dirty(znode)) {
1297 		/*
1298 		 * If znode is dirty, its parent has to be dirty as well. The
1299 		 * order of the operation is important, so we have to have
1300 		 * memory barriers.
1301 		 */
1302 		smp_mb();
1303 		if (zp && !ubifs_zn_dirty(zp)) {
1304 			/*
1305 			 * The dirty flag is atomic and is cleared outside the
1306 			 * TNC mutex, so znode's dirty flag may now have
1307 			 * been cleared. The child is always cleared before the
1308 			 * parent, so we just need to check again.
1309 			 */
1310 			smp_mb();
1311 			if (ubifs_zn_dirty(znode)) {
1312 				err = 5;
1313 				goto out;
1314 			}
1315 		}
1316 	}
1317 
1318 	if (zp) {
1319 		const union ubifs_key *min, *max;
1320 
1321 		if (znode->level != zp->level - 1) {
1322 			err = 6;
1323 			goto out;
1324 		}
1325 
1326 		/* Make sure the 'parent' pointer in our znode is correct */
1327 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1328 		if (!err) {
1329 			/* This zbranch does not exist in the parent */
1330 			err = 7;
1331 			goto out;
1332 		}
1333 
1334 		if (znode->iip >= zp->child_cnt) {
1335 			err = 8;
1336 			goto out;
1337 		}
1338 
1339 		if (znode->iip != n) {
1340 			/* This may happen only in case of collisions */
1341 			if (keys_cmp(c, &zp->zbranch[n].key,
1342 				     &zp->zbranch[znode->iip].key)) {
1343 				err = 9;
1344 				goto out;
1345 			}
1346 			n = znode->iip;
1347 		}
1348 
1349 		/*
1350 		 * Make sure that the first key in our znode is greater than or
1351 		 * equal to the key in the pointing zbranch.
1352 		 */
1353 		min = &zbr->key;
1354 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1355 		if (cmp == 1) {
1356 			err = 10;
1357 			goto out;
1358 		}
1359 
1360 		if (n + 1 < zp->child_cnt) {
1361 			max = &zp->zbranch[n + 1].key;
1362 
1363 			/*
1364 			 * Make sure the last key in our znode is less or
1365 			 * equivalent than the key in the zbranch which goes
1366 			 * after our pointing zbranch.
1367 			 */
1368 			cmp = keys_cmp(c, max,
1369 				&znode->zbranch[znode->child_cnt - 1].key);
1370 			if (cmp == -1) {
1371 				err = 11;
1372 				goto out;
1373 			}
1374 		}
1375 	} else {
1376 		/* This may only be root znode */
1377 		if (zbr != &c->zroot) {
1378 			err = 12;
1379 			goto out;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * Make sure that next key is greater or equivalent then the previous
1385 	 * one.
1386 	 */
1387 	for (n = 1; n < znode->child_cnt; n++) {
1388 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1389 			       &znode->zbranch[n].key);
1390 		if (cmp > 0) {
1391 			err = 13;
1392 			goto out;
1393 		}
1394 		if (cmp == 0) {
1395 			/* This can only be keys with colliding hash */
1396 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1397 				err = 14;
1398 				goto out;
1399 			}
1400 
1401 			if (znode->level != 0 || c->replaying)
1402 				continue;
1403 
1404 			/*
1405 			 * Colliding keys should follow binary order of
1406 			 * corresponding xentry/dentry names.
1407 			 */
1408 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1409 						  &znode->zbranch[n]);
1410 			if (err < 0)
1411 				return err;
1412 			if (err) {
1413 				err = 15;
1414 				goto out;
1415 			}
1416 		}
1417 	}
1418 
1419 	for (n = 0; n < znode->child_cnt; n++) {
1420 		if (!znode->zbranch[n].znode &&
1421 		    (znode->zbranch[n].lnum == 0 ||
1422 		     znode->zbranch[n].len == 0)) {
1423 			err = 16;
1424 			goto out;
1425 		}
1426 
1427 		if (znode->zbranch[n].lnum != 0 &&
1428 		    znode->zbranch[n].len == 0) {
1429 			err = 17;
1430 			goto out;
1431 		}
1432 
1433 		if (znode->zbranch[n].lnum == 0 &&
1434 		    znode->zbranch[n].len != 0) {
1435 			err = 18;
1436 			goto out;
1437 		}
1438 
1439 		if (znode->zbranch[n].lnum == 0 &&
1440 		    znode->zbranch[n].offs != 0) {
1441 			err = 19;
1442 			goto out;
1443 		}
1444 
1445 		if (znode->level != 0 && znode->zbranch[n].znode)
1446 			if (znode->zbranch[n].znode->parent != znode) {
1447 				err = 20;
1448 				goto out;
1449 			}
1450 	}
1451 
1452 	return 0;
1453 
1454 out:
1455 	ubifs_err(c, "failed, error %d", err);
1456 	ubifs_msg(c, "dump of the znode");
1457 	ubifs_dump_znode(c, znode);
1458 	if (zp) {
1459 		ubifs_msg(c, "dump of the parent znode");
1460 		ubifs_dump_znode(c, zp);
1461 	}
1462 	dump_stack();
1463 	return -EINVAL;
1464 }
1465 
1466 /**
1467  * dbg_check_tnc - check TNC tree.
1468  * @c: UBIFS file-system description object
1469  * @extra: do extra checks that are possible at start commit
1470  *
1471  * This function traverses whole TNC tree and checks every znode. Returns zero
1472  * if everything is all right and %-EINVAL if something is wrong with TNC.
1473  */
dbg_check_tnc(struct ubifs_info * c,int extra)1474 int dbg_check_tnc(struct ubifs_info *c, int extra)
1475 {
1476 	struct ubifs_znode *znode;
1477 	long clean_cnt = 0, dirty_cnt = 0;
1478 	int err, last;
1479 
1480 	if (!dbg_is_chk_index(c))
1481 		return 0;
1482 
1483 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1484 	if (!c->zroot.znode)
1485 		return 0;
1486 
1487 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1488 	while (1) {
1489 		struct ubifs_znode *prev;
1490 		struct ubifs_zbranch *zbr;
1491 
1492 		if (!znode->parent)
1493 			zbr = &c->zroot;
1494 		else
1495 			zbr = &znode->parent->zbranch[znode->iip];
1496 
1497 		err = dbg_check_znode(c, zbr);
1498 		if (err)
1499 			return err;
1500 
1501 		if (extra) {
1502 			if (ubifs_zn_dirty(znode))
1503 				dirty_cnt += 1;
1504 			else
1505 				clean_cnt += 1;
1506 		}
1507 
1508 		prev = znode;
1509 		znode = ubifs_tnc_postorder_next(c, znode);
1510 		if (!znode)
1511 			break;
1512 
1513 		/*
1514 		 * If the last key of this znode is equivalent to the first key
1515 		 * of the next znode (collision), then check order of the keys.
1516 		 */
1517 		last = prev->child_cnt - 1;
1518 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1519 		    !keys_cmp(c, &prev->zbranch[last].key,
1520 			      &znode->zbranch[0].key)) {
1521 			err = dbg_check_key_order(c, &prev->zbranch[last],
1522 						  &znode->zbranch[0]);
1523 			if (err < 0)
1524 				return err;
1525 			if (err) {
1526 				ubifs_msg(c, "first znode");
1527 				ubifs_dump_znode(c, prev);
1528 				ubifs_msg(c, "second znode");
1529 				ubifs_dump_znode(c, znode);
1530 				return -EINVAL;
1531 			}
1532 		}
1533 	}
1534 
1535 	if (extra) {
1536 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1537 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1538 				  atomic_long_read(&c->clean_zn_cnt),
1539 				  clean_cnt);
1540 			return -EINVAL;
1541 		}
1542 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1543 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1544 				  atomic_long_read(&c->dirty_zn_cnt),
1545 				  dirty_cnt);
1546 			return -EINVAL;
1547 		}
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 /**
1554  * dbg_walk_index - walk the on-flash index.
1555  * @c: UBIFS file-system description object
1556  * @leaf_cb: called for each leaf node
1557  * @znode_cb: called for each indexing node
1558  * @priv: private data which is passed to callbacks
1559  *
1560  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1561  * node and @znode_cb for each indexing node. Returns zero in case of success
1562  * and a negative error code in case of failure.
1563  *
1564  * It would be better if this function removed every znode it pulled to into
1565  * the TNC, so that the behavior more closely matched the non-debugging
1566  * behavior.
1567  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1568 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1569 		   dbg_znode_callback znode_cb, void *priv)
1570 {
1571 	int err;
1572 	struct ubifs_zbranch *zbr;
1573 	struct ubifs_znode *znode, *child;
1574 
1575 	mutex_lock(&c->tnc_mutex);
1576 	/* If the root indexing node is not in TNC - pull it */
1577 	if (!c->zroot.znode) {
1578 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1579 		if (IS_ERR(c->zroot.znode)) {
1580 			err = PTR_ERR(c->zroot.znode);
1581 			c->zroot.znode = NULL;
1582 			goto out_unlock;
1583 		}
1584 	}
1585 
1586 	/*
1587 	 * We are going to traverse the indexing tree in the postorder manner.
1588 	 * Go down and find the leftmost indexing node where we are going to
1589 	 * start from.
1590 	 */
1591 	znode = c->zroot.znode;
1592 	while (znode->level > 0) {
1593 		zbr = &znode->zbranch[0];
1594 		child = zbr->znode;
1595 		if (!child) {
1596 			child = ubifs_load_znode(c, zbr, znode, 0);
1597 			if (IS_ERR(child)) {
1598 				err = PTR_ERR(child);
1599 				goto out_unlock;
1600 			}
1601 			zbr->znode = child;
1602 		}
1603 
1604 		znode = child;
1605 	}
1606 
1607 	/* Iterate over all indexing nodes */
1608 	while (1) {
1609 		int idx;
1610 
1611 		cond_resched();
1612 
1613 		if (znode_cb) {
1614 			err = znode_cb(c, znode, priv);
1615 			if (err) {
1616 				ubifs_err(c, "znode checking function returned error %d",
1617 					  err);
1618 				ubifs_dump_znode(c, znode);
1619 				goto out_dump;
1620 			}
1621 		}
1622 		if (leaf_cb && znode->level == 0) {
1623 			for (idx = 0; idx < znode->child_cnt; idx++) {
1624 				zbr = &znode->zbranch[idx];
1625 				err = leaf_cb(c, zbr, priv);
1626 				if (err) {
1627 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1628 						  err, zbr->lnum, zbr->offs);
1629 					goto out_dump;
1630 				}
1631 			}
1632 		}
1633 
1634 		if (!znode->parent)
1635 			break;
1636 
1637 		idx = znode->iip + 1;
1638 		znode = znode->parent;
1639 		if (idx < znode->child_cnt) {
1640 			/* Switch to the next index in the parent */
1641 			zbr = &znode->zbranch[idx];
1642 			child = zbr->znode;
1643 			if (!child) {
1644 				child = ubifs_load_znode(c, zbr, znode, idx);
1645 				if (IS_ERR(child)) {
1646 					err = PTR_ERR(child);
1647 					goto out_unlock;
1648 				}
1649 				zbr->znode = child;
1650 			}
1651 			znode = child;
1652 		} else
1653 			/*
1654 			 * This is the last child, switch to the parent and
1655 			 * continue.
1656 			 */
1657 			continue;
1658 
1659 		/* Go to the lowest leftmost znode in the new sub-tree */
1660 		while (znode->level > 0) {
1661 			zbr = &znode->zbranch[0];
1662 			child = zbr->znode;
1663 			if (!child) {
1664 				child = ubifs_load_znode(c, zbr, znode, 0);
1665 				if (IS_ERR(child)) {
1666 					err = PTR_ERR(child);
1667 					goto out_unlock;
1668 				}
1669 				zbr->znode = child;
1670 			}
1671 			znode = child;
1672 		}
1673 	}
1674 
1675 	mutex_unlock(&c->tnc_mutex);
1676 	return 0;
1677 
1678 out_dump:
1679 	if (znode->parent)
1680 		zbr = &znode->parent->zbranch[znode->iip];
1681 	else
1682 		zbr = &c->zroot;
1683 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1684 	ubifs_dump_znode(c, znode);
1685 out_unlock:
1686 	mutex_unlock(&c->tnc_mutex);
1687 	return err;
1688 }
1689 
1690 /**
1691  * add_size - add znode size to partially calculated index size.
1692  * @c: UBIFS file-system description object
1693  * @znode: znode to add size for
1694  * @priv: partially calculated index size
1695  *
1696  * This is a helper function for 'dbg_check_idx_size()' which is called for
1697  * every indexing node and adds its size to the 'long long' variable pointed to
1698  * by @priv.
1699  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1700 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1701 {
1702 	long long *idx_size = priv;
1703 	int add;
1704 
1705 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1706 	add = ALIGN(add, 8);
1707 	*idx_size += add;
1708 	return 0;
1709 }
1710 
1711 /**
1712  * dbg_check_idx_size - check index size.
1713  * @c: UBIFS file-system description object
1714  * @idx_size: size to check
1715  *
1716  * This function walks the UBIFS index, calculates its size and checks that the
1717  * size is equivalent to @idx_size. Returns zero in case of success and a
1718  * negative error code in case of failure.
1719  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1720 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1721 {
1722 	int err;
1723 	long long calc = 0;
1724 
1725 	if (!dbg_is_chk_index(c))
1726 		return 0;
1727 
1728 	err = dbg_walk_index(c, NULL, add_size, &calc);
1729 	if (err) {
1730 		ubifs_err(c, "error %d while walking the index", err);
1731 		return err;
1732 	}
1733 
1734 	if (calc != idx_size) {
1735 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1736 			  calc, idx_size);
1737 		dump_stack();
1738 		return -EINVAL;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  * struct fsck_inode - information about an inode used when checking the file-system.
1746  * @rb: link in the RB-tree of inodes
1747  * @inum: inode number
1748  * @mode: inode type, permissions, etc
1749  * @nlink: inode link count
1750  * @xattr_cnt: count of extended attributes
1751  * @references: how many directory/xattr entries refer this inode (calculated
1752  *              while walking the index)
1753  * @calc_cnt: for directory inode count of child directories
1754  * @size: inode size (read from on-flash inode)
1755  * @xattr_sz: summary size of all extended attributes (read from on-flash
1756  *            inode)
1757  * @calc_sz: for directories calculated directory size
1758  * @calc_xcnt: count of extended attributes
1759  * @calc_xsz: calculated summary size of all extended attributes
1760  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1761  *             inode (read from on-flash inode)
1762  * @calc_xnms: calculated sum of lengths of all extended attribute names
1763  */
1764 struct fsck_inode {
1765 	struct rb_node rb;
1766 	ino_t inum;
1767 	umode_t mode;
1768 	unsigned int nlink;
1769 	unsigned int xattr_cnt;
1770 	int references;
1771 	int calc_cnt;
1772 	long long size;
1773 	unsigned int xattr_sz;
1774 	long long calc_sz;
1775 	long long calc_xcnt;
1776 	long long calc_xsz;
1777 	unsigned int xattr_nms;
1778 	long long calc_xnms;
1779 };
1780 
1781 /**
1782  * struct fsck_data - private FS checking information.
1783  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1784  */
1785 struct fsck_data {
1786 	struct rb_root inodes;
1787 };
1788 
1789 /**
1790  * add_inode - add inode information to RB-tree of inodes.
1791  * @c: UBIFS file-system description object
1792  * @fsckd: FS checking information
1793  * @ino: raw UBIFS inode to add
1794  *
1795  * This is a helper function for 'check_leaf()' which adds information about
1796  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1797  * case of success and a negative error code in case of failure.
1798  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1799 static struct fsck_inode *add_inode(struct ubifs_info *c,
1800 				    struct fsck_data *fsckd,
1801 				    struct ubifs_ino_node *ino)
1802 {
1803 	struct rb_node **p, *parent = NULL;
1804 	struct fsck_inode *fscki;
1805 	ino_t inum = key_inum_flash(c, &ino->key);
1806 	struct inode *inode;
1807 	struct ubifs_inode *ui;
1808 
1809 	p = &fsckd->inodes.rb_node;
1810 	while (*p) {
1811 		parent = *p;
1812 		fscki = rb_entry(parent, struct fsck_inode, rb);
1813 		if (inum < fscki->inum)
1814 			p = &(*p)->rb_left;
1815 		else if (inum > fscki->inum)
1816 			p = &(*p)->rb_right;
1817 		else
1818 			return fscki;
1819 	}
1820 
1821 	if (inum > c->highest_inum) {
1822 		ubifs_err(c, "too high inode number, max. is %lu",
1823 			  (unsigned long)c->highest_inum);
1824 		return ERR_PTR(-EINVAL);
1825 	}
1826 
1827 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1828 	if (!fscki)
1829 		return ERR_PTR(-ENOMEM);
1830 
1831 	inode = ilookup(c->vfs_sb, inum);
1832 
1833 	fscki->inum = inum;
1834 	/*
1835 	 * If the inode is present in the VFS inode cache, use it instead of
1836 	 * the on-flash inode which might be out-of-date. E.g., the size might
1837 	 * be out-of-date. If we do not do this, the following may happen, for
1838 	 * example:
1839 	 *   1. A power cut happens
1840 	 *   2. We mount the file-system R/O, the replay process fixes up the
1841 	 *      inode size in the VFS cache, but on on-flash.
1842 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1843 	 *      size.
1844 	 */
1845 	if (!inode) {
1846 		fscki->nlink = le32_to_cpu(ino->nlink);
1847 		fscki->size = le64_to_cpu(ino->size);
1848 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1849 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1850 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1851 		fscki->mode = le32_to_cpu(ino->mode);
1852 	} else {
1853 		ui = ubifs_inode(inode);
1854 		fscki->nlink = inode->i_nlink;
1855 		fscki->size = inode->i_size;
1856 		fscki->xattr_cnt = ui->xattr_cnt;
1857 		fscki->xattr_sz = ui->xattr_size;
1858 		fscki->xattr_nms = ui->xattr_names;
1859 		fscki->mode = inode->i_mode;
1860 		iput(inode);
1861 	}
1862 
1863 	if (S_ISDIR(fscki->mode)) {
1864 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1865 		fscki->calc_cnt = 2;
1866 	}
1867 
1868 	rb_link_node(&fscki->rb, parent, p);
1869 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1870 
1871 	return fscki;
1872 }
1873 
1874 /**
1875  * search_inode - search inode in the RB-tree of inodes.
1876  * @fsckd: FS checking information
1877  * @inum: inode number to search
1878  *
1879  * This is a helper function for 'check_leaf()' which searches inode @inum in
1880  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1881  * the inode was not found.
1882  */
search_inode(struct fsck_data * fsckd,ino_t inum)1883 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1884 {
1885 	struct rb_node *p;
1886 	struct fsck_inode *fscki;
1887 
1888 	p = fsckd->inodes.rb_node;
1889 	while (p) {
1890 		fscki = rb_entry(p, struct fsck_inode, rb);
1891 		if (inum < fscki->inum)
1892 			p = p->rb_left;
1893 		else if (inum > fscki->inum)
1894 			p = p->rb_right;
1895 		else
1896 			return fscki;
1897 	}
1898 	return NULL;
1899 }
1900 
1901 /**
1902  * read_add_inode - read inode node and add it to RB-tree of inodes.
1903  * @c: UBIFS file-system description object
1904  * @fsckd: FS checking information
1905  * @inum: inode number to read
1906  *
1907  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1908  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1909  * information pointer in case of success and a negative error code in case of
1910  * failure.
1911  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1912 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1913 					 struct fsck_data *fsckd, ino_t inum)
1914 {
1915 	int n, err;
1916 	union ubifs_key key;
1917 	struct ubifs_znode *znode;
1918 	struct ubifs_zbranch *zbr;
1919 	struct ubifs_ino_node *ino;
1920 	struct fsck_inode *fscki;
1921 
1922 	fscki = search_inode(fsckd, inum);
1923 	if (fscki)
1924 		return fscki;
1925 
1926 	ino_key_init(c, &key, inum);
1927 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1928 	if (!err) {
1929 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1930 		return ERR_PTR(-ENOENT);
1931 	} else if (err < 0) {
1932 		ubifs_err(c, "error %d while looking up inode %lu",
1933 			  err, (unsigned long)inum);
1934 		return ERR_PTR(err);
1935 	}
1936 
1937 	zbr = &znode->zbranch[n];
1938 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1939 		ubifs_err(c, "bad node %lu node length %d",
1940 			  (unsigned long)inum, zbr->len);
1941 		return ERR_PTR(-EINVAL);
1942 	}
1943 
1944 	ino = kmalloc(zbr->len, GFP_NOFS);
1945 	if (!ino)
1946 		return ERR_PTR(-ENOMEM);
1947 
1948 	err = ubifs_tnc_read_node(c, zbr, ino);
1949 	if (err) {
1950 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1951 			  zbr->lnum, zbr->offs, err);
1952 		kfree(ino);
1953 		return ERR_PTR(err);
1954 	}
1955 
1956 	fscki = add_inode(c, fsckd, ino);
1957 	kfree(ino);
1958 	if (IS_ERR(fscki)) {
1959 		ubifs_err(c, "error %ld while adding inode %lu node",
1960 			  PTR_ERR(fscki), (unsigned long)inum);
1961 		return fscki;
1962 	}
1963 
1964 	return fscki;
1965 }
1966 
1967 /**
1968  * check_leaf - check leaf node.
1969  * @c: UBIFS file-system description object
1970  * @zbr: zbranch of the leaf node to check
1971  * @priv: FS checking information
1972  *
1973  * This is a helper function for 'dbg_check_filesystem()' which is called for
1974  * every single leaf node while walking the indexing tree. It checks that the
1975  * leaf node referred from the indexing tree exists, has correct CRC, and does
1976  * some other basic validation. This function is also responsible for building
1977  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1978  * calculates reference count, size, etc for each inode in order to later
1979  * compare them to the information stored inside the inodes and detect possible
1980  * inconsistencies. Returns zero in case of success and a negative error code
1981  * in case of failure.
1982  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)1983 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1984 		      void *priv)
1985 {
1986 	ino_t inum;
1987 	void *node;
1988 	struct ubifs_ch *ch;
1989 	int err, type = key_type(c, &zbr->key);
1990 	struct fsck_inode *fscki;
1991 
1992 	if (zbr->len < UBIFS_CH_SZ) {
1993 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1994 			  zbr->len, zbr->lnum, zbr->offs);
1995 		return -EINVAL;
1996 	}
1997 
1998 	node = kmalloc(zbr->len, GFP_NOFS);
1999 	if (!node)
2000 		return -ENOMEM;
2001 
2002 	err = ubifs_tnc_read_node(c, zbr, node);
2003 	if (err) {
2004 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2005 			  zbr->lnum, zbr->offs, err);
2006 		goto out_free;
2007 	}
2008 
2009 	/* If this is an inode node, add it to RB-tree of inodes */
2010 	if (type == UBIFS_INO_KEY) {
2011 		fscki = add_inode(c, priv, node);
2012 		if (IS_ERR(fscki)) {
2013 			err = PTR_ERR(fscki);
2014 			ubifs_err(c, "error %d while adding inode node", err);
2015 			goto out_dump;
2016 		}
2017 		goto out;
2018 	}
2019 
2020 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2021 	    type != UBIFS_DATA_KEY) {
2022 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2023 			  type, zbr->lnum, zbr->offs);
2024 		err = -EINVAL;
2025 		goto out_free;
2026 	}
2027 
2028 	ch = node;
2029 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2030 		ubifs_err(c, "too high sequence number, max. is %llu",
2031 			  c->max_sqnum);
2032 		err = -EINVAL;
2033 		goto out_dump;
2034 	}
2035 
2036 	if (type == UBIFS_DATA_KEY) {
2037 		long long blk_offs;
2038 		struct ubifs_data_node *dn = node;
2039 
2040 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2041 
2042 		/*
2043 		 * Search the inode node this data node belongs to and insert
2044 		 * it to the RB-tree of inodes.
2045 		 */
2046 		inum = key_inum_flash(c, &dn->key);
2047 		fscki = read_add_inode(c, priv, inum);
2048 		if (IS_ERR(fscki)) {
2049 			err = PTR_ERR(fscki);
2050 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2051 				  err, (unsigned long)inum);
2052 			goto out_dump;
2053 		}
2054 
2055 		/* Make sure the data node is within inode size */
2056 		blk_offs = key_block_flash(c, &dn->key);
2057 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2058 		blk_offs += le32_to_cpu(dn->size);
2059 		if (blk_offs > fscki->size) {
2060 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2061 				  zbr->lnum, zbr->offs, fscki->size);
2062 			err = -EINVAL;
2063 			goto out_dump;
2064 		}
2065 	} else {
2066 		int nlen;
2067 		struct ubifs_dent_node *dent = node;
2068 		struct fsck_inode *fscki1;
2069 
2070 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2071 
2072 		err = ubifs_validate_entry(c, dent);
2073 		if (err)
2074 			goto out_dump;
2075 
2076 		/*
2077 		 * Search the inode node this entry refers to and the parent
2078 		 * inode node and insert them to the RB-tree of inodes.
2079 		 */
2080 		inum = le64_to_cpu(dent->inum);
2081 		fscki = read_add_inode(c, priv, inum);
2082 		if (IS_ERR(fscki)) {
2083 			err = PTR_ERR(fscki);
2084 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2085 				  err, (unsigned long)inum);
2086 			goto out_dump;
2087 		}
2088 
2089 		/* Count how many direntries or xentries refers this inode */
2090 		fscki->references += 1;
2091 
2092 		inum = key_inum_flash(c, &dent->key);
2093 		fscki1 = read_add_inode(c, priv, inum);
2094 		if (IS_ERR(fscki1)) {
2095 			err = PTR_ERR(fscki1);
2096 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2097 				  err, (unsigned long)inum);
2098 			goto out_dump;
2099 		}
2100 
2101 		nlen = le16_to_cpu(dent->nlen);
2102 		if (type == UBIFS_XENT_KEY) {
2103 			fscki1->calc_xcnt += 1;
2104 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2105 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2106 			fscki1->calc_xnms += nlen;
2107 		} else {
2108 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2109 			if (dent->type == UBIFS_ITYPE_DIR)
2110 				fscki1->calc_cnt += 1;
2111 		}
2112 	}
2113 
2114 out:
2115 	kfree(node);
2116 	return 0;
2117 
2118 out_dump:
2119 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2120 	ubifs_dump_node(c, node);
2121 out_free:
2122 	kfree(node);
2123 	return err;
2124 }
2125 
2126 /**
2127  * free_inodes - free RB-tree of inodes.
2128  * @fsckd: FS checking information
2129  */
free_inodes(struct fsck_data * fsckd)2130 static void free_inodes(struct fsck_data *fsckd)
2131 {
2132 	struct fsck_inode *fscki, *n;
2133 
2134 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2135 		kfree(fscki);
2136 }
2137 
2138 /**
2139  * check_inodes - checks all inodes.
2140  * @c: UBIFS file-system description object
2141  * @fsckd: FS checking information
2142  *
2143  * This is a helper function for 'dbg_check_filesystem()' which walks the
2144  * RB-tree of inodes after the index scan has been finished, and checks that
2145  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2146  * %-EINVAL if not, and a negative error code in case of failure.
2147  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2148 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2149 {
2150 	int n, err;
2151 	union ubifs_key key;
2152 	struct ubifs_znode *znode;
2153 	struct ubifs_zbranch *zbr;
2154 	struct ubifs_ino_node *ino;
2155 	struct fsck_inode *fscki;
2156 	struct rb_node *this = rb_first(&fsckd->inodes);
2157 
2158 	while (this) {
2159 		fscki = rb_entry(this, struct fsck_inode, rb);
2160 		this = rb_next(this);
2161 
2162 		if (S_ISDIR(fscki->mode)) {
2163 			/*
2164 			 * Directories have to have exactly one reference (they
2165 			 * cannot have hardlinks), although root inode is an
2166 			 * exception.
2167 			 */
2168 			if (fscki->inum != UBIFS_ROOT_INO &&
2169 			    fscki->references != 1) {
2170 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2171 					  (unsigned long)fscki->inum,
2172 					  fscki->references);
2173 				goto out_dump;
2174 			}
2175 			if (fscki->inum == UBIFS_ROOT_INO &&
2176 			    fscki->references != 0) {
2177 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2178 					  (unsigned long)fscki->inum,
2179 					  fscki->references);
2180 				goto out_dump;
2181 			}
2182 			if (fscki->calc_sz != fscki->size) {
2183 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2184 					  (unsigned long)fscki->inum,
2185 					  fscki->size, fscki->calc_sz);
2186 				goto out_dump;
2187 			}
2188 			if (fscki->calc_cnt != fscki->nlink) {
2189 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2190 					  (unsigned long)fscki->inum,
2191 					  fscki->nlink, fscki->calc_cnt);
2192 				goto out_dump;
2193 			}
2194 		} else {
2195 			if (fscki->references != fscki->nlink) {
2196 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2197 					  (unsigned long)fscki->inum,
2198 					  fscki->nlink, fscki->references);
2199 				goto out_dump;
2200 			}
2201 		}
2202 		if (fscki->xattr_sz != fscki->calc_xsz) {
2203 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2204 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2205 				  fscki->calc_xsz);
2206 			goto out_dump;
2207 		}
2208 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2209 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2210 				  (unsigned long)fscki->inum,
2211 				  fscki->xattr_cnt, fscki->calc_xcnt);
2212 			goto out_dump;
2213 		}
2214 		if (fscki->xattr_nms != fscki->calc_xnms) {
2215 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2216 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2217 				  fscki->calc_xnms);
2218 			goto out_dump;
2219 		}
2220 	}
2221 
2222 	return 0;
2223 
2224 out_dump:
2225 	/* Read the bad inode and dump it */
2226 	ino_key_init(c, &key, fscki->inum);
2227 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2228 	if (!err) {
2229 		ubifs_err(c, "inode %lu not found in index",
2230 			  (unsigned long)fscki->inum);
2231 		return -ENOENT;
2232 	} else if (err < 0) {
2233 		ubifs_err(c, "error %d while looking up inode %lu",
2234 			  err, (unsigned long)fscki->inum);
2235 		return err;
2236 	}
2237 
2238 	zbr = &znode->zbranch[n];
2239 	ino = kmalloc(zbr->len, GFP_NOFS);
2240 	if (!ino)
2241 		return -ENOMEM;
2242 
2243 	err = ubifs_tnc_read_node(c, zbr, ino);
2244 	if (err) {
2245 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2246 			  zbr->lnum, zbr->offs, err);
2247 		kfree(ino);
2248 		return err;
2249 	}
2250 
2251 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2252 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2253 	ubifs_dump_node(c, ino);
2254 	kfree(ino);
2255 	return -EINVAL;
2256 }
2257 
2258 /**
2259  * dbg_check_filesystem - check the file-system.
2260  * @c: UBIFS file-system description object
2261  *
2262  * This function checks the file system, namely:
2263  * o makes sure that all leaf nodes exist and their CRCs are correct;
2264  * o makes sure inode nlink, size, xattr size/count are correct (for all
2265  *   inodes).
2266  *
2267  * The function reads whole indexing tree and all nodes, so it is pretty
2268  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2269  * not, and a negative error code in case of failure.
2270  */
dbg_check_filesystem(struct ubifs_info * c)2271 int dbg_check_filesystem(struct ubifs_info *c)
2272 {
2273 	int err;
2274 	struct fsck_data fsckd;
2275 
2276 	if (!dbg_is_chk_fs(c))
2277 		return 0;
2278 
2279 	fsckd.inodes = RB_ROOT;
2280 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2281 	if (err)
2282 		goto out_free;
2283 
2284 	err = check_inodes(c, &fsckd);
2285 	if (err)
2286 		goto out_free;
2287 
2288 	free_inodes(&fsckd);
2289 	return 0;
2290 
2291 out_free:
2292 	ubifs_err(c, "file-system check failed with error %d", err);
2293 	dump_stack();
2294 	free_inodes(&fsckd);
2295 	return err;
2296 }
2297 
2298 /**
2299  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2300  * @c: UBIFS file-system description object
2301  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2302  *
2303  * This function returns zero if the list of data nodes is sorted correctly,
2304  * and %-EINVAL if not.
2305  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2306 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2307 {
2308 	struct list_head *cur;
2309 	struct ubifs_scan_node *sa, *sb;
2310 
2311 	if (!dbg_is_chk_gen(c))
2312 		return 0;
2313 
2314 	for (cur = head->next; cur->next != head; cur = cur->next) {
2315 		ino_t inuma, inumb;
2316 		uint32_t blka, blkb;
2317 
2318 		cond_resched();
2319 		sa = container_of(cur, struct ubifs_scan_node, list);
2320 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2321 
2322 		if (sa->type != UBIFS_DATA_NODE) {
2323 			ubifs_err(c, "bad node type %d", sa->type);
2324 			ubifs_dump_node(c, sa->node);
2325 			return -EINVAL;
2326 		}
2327 		if (sb->type != UBIFS_DATA_NODE) {
2328 			ubifs_err(c, "bad node type %d", sb->type);
2329 			ubifs_dump_node(c, sb->node);
2330 			return -EINVAL;
2331 		}
2332 
2333 		inuma = key_inum(c, &sa->key);
2334 		inumb = key_inum(c, &sb->key);
2335 
2336 		if (inuma < inumb)
2337 			continue;
2338 		if (inuma > inumb) {
2339 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2340 				  (unsigned long)inuma, (unsigned long)inumb);
2341 			goto error_dump;
2342 		}
2343 
2344 		blka = key_block(c, &sa->key);
2345 		blkb = key_block(c, &sb->key);
2346 
2347 		if (blka > blkb) {
2348 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2349 			goto error_dump;
2350 		}
2351 		if (blka == blkb) {
2352 			ubifs_err(c, "two data nodes for the same block");
2353 			goto error_dump;
2354 		}
2355 	}
2356 
2357 	return 0;
2358 
2359 error_dump:
2360 	ubifs_dump_node(c, sa->node);
2361 	ubifs_dump_node(c, sb->node);
2362 	return -EINVAL;
2363 }
2364 
2365 /**
2366  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2367  * @c: UBIFS file-system description object
2368  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2369  *
2370  * This function returns zero if the list of non-data nodes is sorted correctly,
2371  * and %-EINVAL if not.
2372  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2373 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2374 {
2375 	struct list_head *cur;
2376 	struct ubifs_scan_node *sa, *sb;
2377 
2378 	if (!dbg_is_chk_gen(c))
2379 		return 0;
2380 
2381 	for (cur = head->next; cur->next != head; cur = cur->next) {
2382 		ino_t inuma, inumb;
2383 		uint32_t hasha, hashb;
2384 
2385 		cond_resched();
2386 		sa = container_of(cur, struct ubifs_scan_node, list);
2387 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2388 
2389 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2390 		    sa->type != UBIFS_XENT_NODE) {
2391 			ubifs_err(c, "bad node type %d", sa->type);
2392 			ubifs_dump_node(c, sa->node);
2393 			return -EINVAL;
2394 		}
2395 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2396 		    sb->type != UBIFS_XENT_NODE) {
2397 			ubifs_err(c, "bad node type %d", sb->type);
2398 			ubifs_dump_node(c, sb->node);
2399 			return -EINVAL;
2400 		}
2401 
2402 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403 			ubifs_err(c, "non-inode node goes before inode node");
2404 			goto error_dump;
2405 		}
2406 
2407 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2408 			continue;
2409 
2410 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2411 			/* Inode nodes are sorted in descending size order */
2412 			if (sa->len < sb->len) {
2413 				ubifs_err(c, "smaller inode node goes first");
2414 				goto error_dump;
2415 			}
2416 			continue;
2417 		}
2418 
2419 		/*
2420 		 * This is either a dentry or xentry, which should be sorted in
2421 		 * ascending (parent ino, hash) order.
2422 		 */
2423 		inuma = key_inum(c, &sa->key);
2424 		inumb = key_inum(c, &sb->key);
2425 
2426 		if (inuma < inumb)
2427 			continue;
2428 		if (inuma > inumb) {
2429 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2430 				  (unsigned long)inuma, (unsigned long)inumb);
2431 			goto error_dump;
2432 		}
2433 
2434 		hasha = key_block(c, &sa->key);
2435 		hashb = key_block(c, &sb->key);
2436 
2437 		if (hasha > hashb) {
2438 			ubifs_err(c, "larger hash %u goes before %u",
2439 				  hasha, hashb);
2440 			goto error_dump;
2441 		}
2442 	}
2443 
2444 	return 0;
2445 
2446 error_dump:
2447 	ubifs_msg(c, "dumping first node");
2448 	ubifs_dump_node(c, sa->node);
2449 	ubifs_msg(c, "dumping second node");
2450 	ubifs_dump_node(c, sb->node);
2451 	return -EINVAL;
2452 	return 0;
2453 }
2454 
chance(unsigned int n,unsigned int out_of)2455 static inline int chance(unsigned int n, unsigned int out_of)
2456 {
2457 	return !!((prandom_u32() % out_of) + 1 <= n);
2458 
2459 }
2460 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2461 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2462 {
2463 	struct ubifs_debug_info *d = c->dbg;
2464 
2465 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2466 
2467 	if (!d->pc_cnt) {
2468 		/* First call - decide delay to the power cut */
2469 		if (chance(1, 2)) {
2470 			unsigned long delay;
2471 
2472 			if (chance(1, 2)) {
2473 				d->pc_delay = 1;
2474 				/* Fail within 1 minute */
2475 				delay = prandom_u32() % 60000;
2476 				d->pc_timeout = jiffies;
2477 				d->pc_timeout += msecs_to_jiffies(delay);
2478 				ubifs_warn(c, "failing after %lums", delay);
2479 			} else {
2480 				d->pc_delay = 2;
2481 				delay = prandom_u32() % 10000;
2482 				/* Fail within 10000 operations */
2483 				d->pc_cnt_max = delay;
2484 				ubifs_warn(c, "failing after %lu calls", delay);
2485 			}
2486 		}
2487 
2488 		d->pc_cnt += 1;
2489 	}
2490 
2491 	/* Determine if failure delay has expired */
2492 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2493 			return 0;
2494 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2495 			return 0;
2496 
2497 	if (lnum == UBIFS_SB_LNUM) {
2498 		if (write && chance(1, 2))
2499 			return 0;
2500 		if (chance(19, 20))
2501 			return 0;
2502 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2503 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2504 		if (chance(19, 20))
2505 			return 0;
2506 		ubifs_warn(c, "failing in master LEB %d", lnum);
2507 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2508 		if (write && chance(99, 100))
2509 			return 0;
2510 		if (chance(399, 400))
2511 			return 0;
2512 		ubifs_warn(c, "failing in log LEB %d", lnum);
2513 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2514 		if (write && chance(7, 8))
2515 			return 0;
2516 		if (chance(19, 20))
2517 			return 0;
2518 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2519 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2520 		if (write && chance(1, 2))
2521 			return 0;
2522 		if (chance(9, 10))
2523 			return 0;
2524 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2525 	} else if (lnum == c->ihead_lnum) {
2526 		if (chance(99, 100))
2527 			return 0;
2528 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2529 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2530 		if (chance(9, 10))
2531 			return 0;
2532 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2533 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2534 		   !ubifs_search_bud(c, lnum)) {
2535 		if (chance(19, 20))
2536 			return 0;
2537 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2538 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2539 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2540 		if (chance(999, 1000))
2541 			return 0;
2542 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2543 	} else {
2544 		if (chance(9999, 10000))
2545 			return 0;
2546 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2547 	}
2548 
2549 	d->pc_happened = 1;
2550 	ubifs_warn(c, "========== Power cut emulated ==========");
2551 	dump_stack();
2552 	return 1;
2553 }
2554 
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2555 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2556 			unsigned int len)
2557 {
2558 	unsigned int from, to, ffs = chance(1, 2);
2559 	unsigned char *p = (void *)buf;
2560 
2561 	from = prandom_u32() % len;
2562 	/* Corruption span max to end of write unit */
2563 	to = min(len, ALIGN(from + 1, c->max_write_size));
2564 
2565 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2566 		   ffs ? "0xFFs" : "random data");
2567 
2568 	if (ffs)
2569 		memset(p + from, 0xFF, to - from);
2570 	else
2571 		prandom_bytes(p + from, to - from);
2572 
2573 	return to;
2574 }
2575 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2576 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2577 		  int offs, int len)
2578 {
2579 	int err, failing;
2580 
2581 	if (dbg_is_power_cut(c))
2582 		return -EROFS;
2583 
2584 	failing = power_cut_emulated(c, lnum, 1);
2585 	if (failing) {
2586 		len = corrupt_data(c, buf, len);
2587 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2588 			   len, lnum, offs);
2589 	}
2590 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2591 	if (err)
2592 		return err;
2593 	if (failing)
2594 		return -EROFS;
2595 	return 0;
2596 }
2597 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2598 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2599 		   int len)
2600 {
2601 	int err;
2602 
2603 	if (dbg_is_power_cut(c))
2604 		return -EROFS;
2605 	if (power_cut_emulated(c, lnum, 1))
2606 		return -EROFS;
2607 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2608 	if (err)
2609 		return err;
2610 	if (power_cut_emulated(c, lnum, 1))
2611 		return -EROFS;
2612 	return 0;
2613 }
2614 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2615 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2616 {
2617 	int err;
2618 
2619 	if (dbg_is_power_cut(c))
2620 		return -EROFS;
2621 	if (power_cut_emulated(c, lnum, 0))
2622 		return -EROFS;
2623 	err = ubi_leb_unmap(c->ubi, lnum);
2624 	if (err)
2625 		return err;
2626 	if (power_cut_emulated(c, lnum, 0))
2627 		return -EROFS;
2628 	return 0;
2629 }
2630 
dbg_leb_map(struct ubifs_info * c,int lnum)2631 int dbg_leb_map(struct ubifs_info *c, int lnum)
2632 {
2633 	int err;
2634 
2635 	if (dbg_is_power_cut(c))
2636 		return -EROFS;
2637 	if (power_cut_emulated(c, lnum, 0))
2638 		return -EROFS;
2639 	err = ubi_leb_map(c->ubi, lnum);
2640 	if (err)
2641 		return err;
2642 	if (power_cut_emulated(c, lnum, 0))
2643 		return -EROFS;
2644 	return 0;
2645 }
2646 
2647 /*
2648  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2649  * contain the stuff specific to particular file-system mounts.
2650  */
2651 static struct dentry *dfs_rootdir;
2652 
dfs_file_open(struct inode * inode,struct file * file)2653 static int dfs_file_open(struct inode *inode, struct file *file)
2654 {
2655 	file->private_data = inode->i_private;
2656 	return nonseekable_open(inode, file);
2657 }
2658 
2659 /**
2660  * provide_user_output - provide output to the user reading a debugfs file.
2661  * @val: boolean value for the answer
2662  * @u: the buffer to store the answer at
2663  * @count: size of the buffer
2664  * @ppos: position in the @u output buffer
2665  *
2666  * This is a simple helper function which stores @val boolean value in the user
2667  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2668  * bytes written to @u in case of success and a negative error code in case of
2669  * failure.
2670  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2671 static int provide_user_output(int val, char __user *u, size_t count,
2672 			       loff_t *ppos)
2673 {
2674 	char buf[3];
2675 
2676 	if (val)
2677 		buf[0] = '1';
2678 	else
2679 		buf[0] = '0';
2680 	buf[1] = '\n';
2681 	buf[2] = 0x00;
2682 
2683 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2684 }
2685 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2686 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2687 			     loff_t *ppos)
2688 {
2689 	struct dentry *dent = file->f_path.dentry;
2690 	struct ubifs_info *c = file->private_data;
2691 	struct ubifs_debug_info *d = c->dbg;
2692 	int val;
2693 
2694 	if (dent == d->dfs_chk_gen)
2695 		val = d->chk_gen;
2696 	else if (dent == d->dfs_chk_index)
2697 		val = d->chk_index;
2698 	else if (dent == d->dfs_chk_orph)
2699 		val = d->chk_orph;
2700 	else if (dent == d->dfs_chk_lprops)
2701 		val = d->chk_lprops;
2702 	else if (dent == d->dfs_chk_fs)
2703 		val = d->chk_fs;
2704 	else if (dent == d->dfs_tst_rcvry)
2705 		val = d->tst_rcvry;
2706 	else if (dent == d->dfs_ro_error)
2707 		val = c->ro_error;
2708 	else
2709 		return -EINVAL;
2710 
2711 	return provide_user_output(val, u, count, ppos);
2712 }
2713 
2714 /**
2715  * interpret_user_input - interpret user debugfs file input.
2716  * @u: user-provided buffer with the input
2717  * @count: buffer size
2718  *
2719  * This is a helper function which interpret user input to a boolean UBIFS
2720  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2721  * in case of failure.
2722  */
interpret_user_input(const char __user * u,size_t count)2723 static int interpret_user_input(const char __user *u, size_t count)
2724 {
2725 	size_t buf_size;
2726 	char buf[8];
2727 
2728 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2729 	if (copy_from_user(buf, u, buf_size))
2730 		return -EFAULT;
2731 
2732 	if (buf[0] == '1')
2733 		return 1;
2734 	else if (buf[0] == '0')
2735 		return 0;
2736 
2737 	return -EINVAL;
2738 }
2739 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2740 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2741 			      size_t count, loff_t *ppos)
2742 {
2743 	struct ubifs_info *c = file->private_data;
2744 	struct ubifs_debug_info *d = c->dbg;
2745 	struct dentry *dent = file->f_path.dentry;
2746 	int val;
2747 
2748 	/*
2749 	 * TODO: this is racy - the file-system might have already been
2750 	 * unmounted and we'd oops in this case. The plan is to fix it with
2751 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2752 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2753 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2754 	 * superblocks and fine the one with the same UUID, and take the
2755 	 * locking right.
2756 	 *
2757 	 * The other way to go suggested by Al Viro is to create a separate
2758 	 * 'ubifs-debug' file-system instead.
2759 	 */
2760 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2761 		ubifs_dump_lprops(c);
2762 		return count;
2763 	}
2764 	if (file->f_path.dentry == d->dfs_dump_budg) {
2765 		ubifs_dump_budg(c, &c->bi);
2766 		return count;
2767 	}
2768 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2769 		mutex_lock(&c->tnc_mutex);
2770 		ubifs_dump_tnc(c);
2771 		mutex_unlock(&c->tnc_mutex);
2772 		return count;
2773 	}
2774 
2775 	val = interpret_user_input(u, count);
2776 	if (val < 0)
2777 		return val;
2778 
2779 	if (dent == d->dfs_chk_gen)
2780 		d->chk_gen = val;
2781 	else if (dent == d->dfs_chk_index)
2782 		d->chk_index = val;
2783 	else if (dent == d->dfs_chk_orph)
2784 		d->chk_orph = val;
2785 	else if (dent == d->dfs_chk_lprops)
2786 		d->chk_lprops = val;
2787 	else if (dent == d->dfs_chk_fs)
2788 		d->chk_fs = val;
2789 	else if (dent == d->dfs_tst_rcvry)
2790 		d->tst_rcvry = val;
2791 	else if (dent == d->dfs_ro_error)
2792 		c->ro_error = !!val;
2793 	else
2794 		return -EINVAL;
2795 
2796 	return count;
2797 }
2798 
2799 static const struct file_operations dfs_fops = {
2800 	.open = dfs_file_open,
2801 	.read = dfs_file_read,
2802 	.write = dfs_file_write,
2803 	.owner = THIS_MODULE,
2804 	.llseek = no_llseek,
2805 };
2806 
2807 /**
2808  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2809  * @c: UBIFS file-system description object
2810  *
2811  * This function creates all debugfs files for this instance of UBIFS. Returns
2812  * zero in case of success and a negative error code in case of failure.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
dbg_debugfs_init_fs(struct ubifs_info * c)2819 int dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821 	int err, n;
2822 	const char *fname;
2823 	struct dentry *dent;
2824 	struct ubifs_debug_info *d = c->dbg;
2825 
2826 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2827 		return 0;
2828 
2829 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2830 		     c->vi.ubi_num, c->vi.vol_id);
2831 	if (n == UBIFS_DFS_DIR_LEN) {
2832 		/* The array size is too small */
2833 		fname = UBIFS_DFS_DIR_NAME;
2834 		dent = ERR_PTR(-EINVAL);
2835 		goto out;
2836 	}
2837 
2838 	fname = d->dfs_dir_name;
2839 	dent = debugfs_create_dir(fname, dfs_rootdir);
2840 	if (IS_ERR_OR_NULL(dent))
2841 		goto out;
2842 	d->dfs_dir = dent;
2843 
2844 	fname = "dump_lprops";
2845 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2846 	if (IS_ERR_OR_NULL(dent))
2847 		goto out_remove;
2848 	d->dfs_dump_lprops = dent;
2849 
2850 	fname = "dump_budg";
2851 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2852 	if (IS_ERR_OR_NULL(dent))
2853 		goto out_remove;
2854 	d->dfs_dump_budg = dent;
2855 
2856 	fname = "dump_tnc";
2857 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2858 	if (IS_ERR_OR_NULL(dent))
2859 		goto out_remove;
2860 	d->dfs_dump_tnc = dent;
2861 
2862 	fname = "chk_general";
2863 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2864 				   &dfs_fops);
2865 	if (IS_ERR_OR_NULL(dent))
2866 		goto out_remove;
2867 	d->dfs_chk_gen = dent;
2868 
2869 	fname = "chk_index";
2870 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2871 				   &dfs_fops);
2872 	if (IS_ERR_OR_NULL(dent))
2873 		goto out_remove;
2874 	d->dfs_chk_index = dent;
2875 
2876 	fname = "chk_orphans";
2877 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2878 				   &dfs_fops);
2879 	if (IS_ERR_OR_NULL(dent))
2880 		goto out_remove;
2881 	d->dfs_chk_orph = dent;
2882 
2883 	fname = "chk_lprops";
2884 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2885 				   &dfs_fops);
2886 	if (IS_ERR_OR_NULL(dent))
2887 		goto out_remove;
2888 	d->dfs_chk_lprops = dent;
2889 
2890 	fname = "chk_fs";
2891 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2892 				   &dfs_fops);
2893 	if (IS_ERR_OR_NULL(dent))
2894 		goto out_remove;
2895 	d->dfs_chk_fs = dent;
2896 
2897 	fname = "tst_recovery";
2898 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2899 				   &dfs_fops);
2900 	if (IS_ERR_OR_NULL(dent))
2901 		goto out_remove;
2902 	d->dfs_tst_rcvry = dent;
2903 
2904 	fname = "ro_error";
2905 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2906 				   &dfs_fops);
2907 	if (IS_ERR_OR_NULL(dent))
2908 		goto out_remove;
2909 	d->dfs_ro_error = dent;
2910 
2911 	return 0;
2912 
2913 out_remove:
2914 	debugfs_remove_recursive(d->dfs_dir);
2915 out:
2916 	err = dent ? PTR_ERR(dent) : -ENODEV;
2917 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2918 		  fname, err);
2919 	return err;
2920 }
2921 
2922 /**
2923  * dbg_debugfs_exit_fs - remove all debugfs files.
2924  * @c: UBIFS file-system description object
2925  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2926 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2927 {
2928 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2929 		debugfs_remove_recursive(c->dbg->dfs_dir);
2930 }
2931 
2932 struct ubifs_global_debug_info ubifs_dbg;
2933 
2934 static struct dentry *dfs_chk_gen;
2935 static struct dentry *dfs_chk_index;
2936 static struct dentry *dfs_chk_orph;
2937 static struct dentry *dfs_chk_lprops;
2938 static struct dentry *dfs_chk_fs;
2939 static struct dentry *dfs_tst_rcvry;
2940 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2941 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2942 				    size_t count, loff_t *ppos)
2943 {
2944 	struct dentry *dent = file->f_path.dentry;
2945 	int val;
2946 
2947 	if (dent == dfs_chk_gen)
2948 		val = ubifs_dbg.chk_gen;
2949 	else if (dent == dfs_chk_index)
2950 		val = ubifs_dbg.chk_index;
2951 	else if (dent == dfs_chk_orph)
2952 		val = ubifs_dbg.chk_orph;
2953 	else if (dent == dfs_chk_lprops)
2954 		val = ubifs_dbg.chk_lprops;
2955 	else if (dent == dfs_chk_fs)
2956 		val = ubifs_dbg.chk_fs;
2957 	else if (dent == dfs_tst_rcvry)
2958 		val = ubifs_dbg.tst_rcvry;
2959 	else
2960 		return -EINVAL;
2961 
2962 	return provide_user_output(val, u, count, ppos);
2963 }
2964 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2965 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2966 				     size_t count, loff_t *ppos)
2967 {
2968 	struct dentry *dent = file->f_path.dentry;
2969 	int val;
2970 
2971 	val = interpret_user_input(u, count);
2972 	if (val < 0)
2973 		return val;
2974 
2975 	if (dent == dfs_chk_gen)
2976 		ubifs_dbg.chk_gen = val;
2977 	else if (dent == dfs_chk_index)
2978 		ubifs_dbg.chk_index = val;
2979 	else if (dent == dfs_chk_orph)
2980 		ubifs_dbg.chk_orph = val;
2981 	else if (dent == dfs_chk_lprops)
2982 		ubifs_dbg.chk_lprops = val;
2983 	else if (dent == dfs_chk_fs)
2984 		ubifs_dbg.chk_fs = val;
2985 	else if (dent == dfs_tst_rcvry)
2986 		ubifs_dbg.tst_rcvry = val;
2987 	else
2988 		return -EINVAL;
2989 
2990 	return count;
2991 }
2992 
2993 static const struct file_operations dfs_global_fops = {
2994 	.read = dfs_global_file_read,
2995 	.write = dfs_global_file_write,
2996 	.owner = THIS_MODULE,
2997 	.llseek = no_llseek,
2998 };
2999 
3000 /**
3001  * dbg_debugfs_init - initialize debugfs file-system.
3002  *
3003  * UBIFS uses debugfs file-system to expose various debugging knobs to
3004  * user-space. This function creates "ubifs" directory in the debugfs
3005  * file-system. Returns zero in case of success and a negative error code in
3006  * case of failure.
3007  */
dbg_debugfs_init(void)3008 int dbg_debugfs_init(void)
3009 {
3010 	int err;
3011 	const char *fname;
3012 	struct dentry *dent;
3013 
3014 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3015 		return 0;
3016 
3017 	fname = "ubifs";
3018 	dent = debugfs_create_dir(fname, NULL);
3019 	if (IS_ERR_OR_NULL(dent))
3020 		goto out;
3021 	dfs_rootdir = dent;
3022 
3023 	fname = "chk_general";
3024 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3025 				   &dfs_global_fops);
3026 	if (IS_ERR_OR_NULL(dent))
3027 		goto out_remove;
3028 	dfs_chk_gen = dent;
3029 
3030 	fname = "chk_index";
3031 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3032 				   &dfs_global_fops);
3033 	if (IS_ERR_OR_NULL(dent))
3034 		goto out_remove;
3035 	dfs_chk_index = dent;
3036 
3037 	fname = "chk_orphans";
3038 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3039 				   &dfs_global_fops);
3040 	if (IS_ERR_OR_NULL(dent))
3041 		goto out_remove;
3042 	dfs_chk_orph = dent;
3043 
3044 	fname = "chk_lprops";
3045 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3046 				   &dfs_global_fops);
3047 	if (IS_ERR_OR_NULL(dent))
3048 		goto out_remove;
3049 	dfs_chk_lprops = dent;
3050 
3051 	fname = "chk_fs";
3052 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3053 				   &dfs_global_fops);
3054 	if (IS_ERR_OR_NULL(dent))
3055 		goto out_remove;
3056 	dfs_chk_fs = dent;
3057 
3058 	fname = "tst_recovery";
3059 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3060 				   &dfs_global_fops);
3061 	if (IS_ERR_OR_NULL(dent))
3062 		goto out_remove;
3063 	dfs_tst_rcvry = dent;
3064 
3065 	return 0;
3066 
3067 out_remove:
3068 	debugfs_remove_recursive(dfs_rootdir);
3069 out:
3070 	err = dent ? PTR_ERR(dent) : -ENODEV;
3071 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3072 	       current->pid, fname, err);
3073 	return err;
3074 }
3075 
3076 /**
3077  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3078  */
dbg_debugfs_exit(void)3079 void dbg_debugfs_exit(void)
3080 {
3081 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3082 		debugfs_remove_recursive(dfs_rootdir);
3083 }
3084 
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3085 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3086 			 const char *file, int line)
3087 {
3088 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3089 
3090 	switch (c->assert_action) {
3091 		case ASSACT_PANIC:
3092 		BUG();
3093 		break;
3094 
3095 		case ASSACT_RO:
3096 		ubifs_ro_mode(c, -EINVAL);
3097 		break;
3098 
3099 		case ASSACT_REPORT:
3100 		default:
3101 		dump_stack();
3102 		break;
3103 
3104 	}
3105 }
3106 
3107 /**
3108  * ubifs_debugging_init - initialize UBIFS debugging.
3109  * @c: UBIFS file-system description object
3110  *
3111  * This function initializes debugging-related data for the file system.
3112  * Returns zero in case of success and a negative error code in case of
3113  * failure.
3114  */
ubifs_debugging_init(struct ubifs_info * c)3115 int ubifs_debugging_init(struct ubifs_info *c)
3116 {
3117 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3118 	if (!c->dbg)
3119 		return -ENOMEM;
3120 
3121 	return 0;
3122 }
3123 
3124 /**
3125  * ubifs_debugging_exit - free debugging data.
3126  * @c: UBIFS file-system description object
3127  */
ubifs_debugging_exit(struct ubifs_info * c)3128 void ubifs_debugging_exit(struct ubifs_info *c)
3129 {
3130 	kfree(c->dbg);
3131 }
3132