1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
56 
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 
82 	if (ubifs_crypt_is_encrypted(inode)) {
83 		err = ubifs_decrypt(inode, dn, &dlen, block);
84 		if (err)
85 			goto dump;
86 	}
87 
88 	out_len = UBIFS_BLOCK_SIZE;
89 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 			       le16_to_cpu(dn->compr_type));
91 	if (err || len != out_len)
92 		goto dump;
93 
94 	/*
95 	 * Data length can be less than a full block, even for blocks that are
96 	 * not the last in the file (e.g., as a result of making a hole and
97 	 * appending data). Ensure that the remainder is zeroed out.
98 	 */
99 	if (len < UBIFS_BLOCK_SIZE)
100 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
101 
102 	return 0;
103 
104 dump:
105 	ubifs_err(c, "bad data node (block %u, inode %lu)",
106 		  block, inode->i_ino);
107 	ubifs_dump_node(c, dn);
108 	return -EINVAL;
109 }
110 
do_readpage(struct page * page)111 static int do_readpage(struct page *page)
112 {
113 	void *addr;
114 	int err = 0, i;
115 	unsigned int block, beyond;
116 	struct ubifs_data_node *dn;
117 	struct inode *inode = page->mapping->host;
118 	struct ubifs_info *c = inode->i_sb->s_fs_info;
119 	loff_t i_size = i_size_read(inode);
120 
121 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 		inode->i_ino, page->index, i_size, page->flags);
123 	ubifs_assert(c, !PageChecked(page));
124 	ubifs_assert(c, !PagePrivate(page));
125 
126 	addr = kmap(page);
127 
128 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
129 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
130 	if (block >= beyond) {
131 		/* Reading beyond inode */
132 		SetPageChecked(page);
133 		memset(addr, 0, PAGE_SIZE);
134 		goto out;
135 	}
136 
137 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
138 	if (!dn) {
139 		err = -ENOMEM;
140 		goto error;
141 	}
142 
143 	i = 0;
144 	while (1) {
145 		int ret;
146 
147 		if (block >= beyond) {
148 			/* Reading beyond inode */
149 			err = -ENOENT;
150 			memset(addr, 0, UBIFS_BLOCK_SIZE);
151 		} else {
152 			ret = read_block(inode, addr, block, dn);
153 			if (ret) {
154 				err = ret;
155 				if (err != -ENOENT)
156 					break;
157 			} else if (block + 1 == beyond) {
158 				int dlen = le32_to_cpu(dn->size);
159 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
160 
161 				if (ilen && ilen < dlen)
162 					memset(addr + ilen, 0, dlen - ilen);
163 			}
164 		}
165 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
166 			break;
167 		block += 1;
168 		addr += UBIFS_BLOCK_SIZE;
169 	}
170 	if (err) {
171 		struct ubifs_info *c = inode->i_sb->s_fs_info;
172 		if (err == -ENOENT) {
173 			/* Not found, so it must be a hole */
174 			SetPageChecked(page);
175 			dbg_gen("hole");
176 			goto out_free;
177 		}
178 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
179 			  page->index, inode->i_ino, err);
180 		goto error;
181 	}
182 
183 out_free:
184 	kfree(dn);
185 out:
186 	SetPageUptodate(page);
187 	ClearPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return 0;
191 
192 error:
193 	kfree(dn);
194 	ClearPageUptodate(page);
195 	SetPageError(page);
196 	flush_dcache_page(page);
197 	kunmap(page);
198 	return err;
199 }
200 
201 /**
202  * release_new_page_budget - release budget of a new page.
203  * @c: UBIFS file-system description object
204  *
205  * This is a helper function which releases budget corresponding to the budget
206  * of one new page of data.
207  */
release_new_page_budget(struct ubifs_info * c)208 static void release_new_page_budget(struct ubifs_info *c)
209 {
210 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
211 
212 	ubifs_release_budget(c, &req);
213 }
214 
215 /**
216  * release_existing_page_budget - release budget of an existing page.
217  * @c: UBIFS file-system description object
218  *
219  * This is a helper function which releases budget corresponding to the budget
220  * of changing one one page of data which already exists on the flash media.
221  */
release_existing_page_budget(struct ubifs_info * c)222 static void release_existing_page_budget(struct ubifs_info *c)
223 {
224 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
225 
226 	ubifs_release_budget(c, &req);
227 }
228 
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)229 static int write_begin_slow(struct address_space *mapping,
230 			    loff_t pos, unsigned len, struct page **pagep,
231 			    unsigned flags)
232 {
233 	struct inode *inode = mapping->host;
234 	struct ubifs_info *c = inode->i_sb->s_fs_info;
235 	pgoff_t index = pos >> PAGE_SHIFT;
236 	struct ubifs_budget_req req = { .new_page = 1 };
237 	int err, appending = !!(pos + len > inode->i_size);
238 	struct page *page;
239 
240 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 		inode->i_ino, pos, len, inode->i_size);
242 
243 	/*
244 	 * At the slow path we have to budget before locking the page, because
245 	 * budgeting may force write-back, which would wait on locked pages and
246 	 * deadlock if we had the page locked. At this point we do not know
247 	 * anything about the page, so assume that this is a new page which is
248 	 * written to a hole. This corresponds to largest budget. Later the
249 	 * budget will be amended if this is not true.
250 	 */
251 	if (appending)
252 		/* We are appending data, budget for inode change */
253 		req.dirtied_ino = 1;
254 
255 	err = ubifs_budget_space(c, &req);
256 	if (unlikely(err))
257 		return err;
258 
259 	page = grab_cache_page_write_begin(mapping, index, flags);
260 	if (unlikely(!page)) {
261 		ubifs_release_budget(c, &req);
262 		return -ENOMEM;
263 	}
264 
265 	if (!PageUptodate(page)) {
266 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
267 			SetPageChecked(page);
268 		else {
269 			err = do_readpage(page);
270 			if (err) {
271 				unlock_page(page);
272 				put_page(page);
273 				ubifs_release_budget(c, &req);
274 				return err;
275 			}
276 		}
277 
278 		SetPageUptodate(page);
279 		ClearPageError(page);
280 	}
281 
282 	if (PagePrivate(page))
283 		/*
284 		 * The page is dirty, which means it was budgeted twice:
285 		 *   o first time the budget was allocated by the task which
286 		 *     made the page dirty and set the PG_private flag;
287 		 *   o and then we budgeted for it for the second time at the
288 		 *     very beginning of this function.
289 		 *
290 		 * So what we have to do is to release the page budget we
291 		 * allocated.
292 		 */
293 		release_new_page_budget(c);
294 	else if (!PageChecked(page))
295 		/*
296 		 * We are changing a page which already exists on the media.
297 		 * This means that changing the page does not make the amount
298 		 * of indexing information larger, and this part of the budget
299 		 * which we have already acquired may be released.
300 		 */
301 		ubifs_convert_page_budget(c);
302 
303 	if (appending) {
304 		struct ubifs_inode *ui = ubifs_inode(inode);
305 
306 		/*
307 		 * 'ubifs_write_end()' is optimized from the fast-path part of
308 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 		 * if data is appended.
310 		 */
311 		mutex_lock(&ui->ui_mutex);
312 		if (ui->dirty)
313 			/*
314 			 * The inode is dirty already, so we may free the
315 			 * budget we allocated.
316 			 */
317 			ubifs_release_dirty_inode_budget(c, ui);
318 	}
319 
320 	*pagep = page;
321 	return 0;
322 }
323 
324 /**
325  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326  * @c: UBIFS file-system description object
327  * @page: page to allocate budget for
328  * @ui: UBIFS inode object the page belongs to
329  * @appending: non-zero if the page is appended
330  *
331  * This is a helper function for 'ubifs_write_begin()' which allocates budget
332  * for the operation. The budget is allocated differently depending on whether
333  * this is appending, whether the page is dirty or not, and so on. This
334  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335  * in case of success and %-ENOSPC in case of failure.
336  */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)337 static int allocate_budget(struct ubifs_info *c, struct page *page,
338 			   struct ubifs_inode *ui, int appending)
339 {
340 	struct ubifs_budget_req req = { .fast = 1 };
341 
342 	if (PagePrivate(page)) {
343 		if (!appending)
344 			/*
345 			 * The page is dirty and we are not appending, which
346 			 * means no budget is needed at all.
347 			 */
348 			return 0;
349 
350 		mutex_lock(&ui->ui_mutex);
351 		if (ui->dirty)
352 			/*
353 			 * The page is dirty and we are appending, so the inode
354 			 * has to be marked as dirty. However, it is already
355 			 * dirty, so we do not need any budget. We may return,
356 			 * but @ui->ui_mutex hast to be left locked because we
357 			 * should prevent write-back from flushing the inode
358 			 * and freeing the budget. The lock will be released in
359 			 * 'ubifs_write_end()'.
360 			 */
361 			return 0;
362 
363 		/*
364 		 * The page is dirty, we are appending, the inode is clean, so
365 		 * we need to budget the inode change.
366 		 */
367 		req.dirtied_ino = 1;
368 	} else {
369 		if (PageChecked(page))
370 			/*
371 			 * The page corresponds to a hole and does not
372 			 * exist on the media. So changing it makes
373 			 * make the amount of indexing information
374 			 * larger, and we have to budget for a new
375 			 * page.
376 			 */
377 			req.new_page = 1;
378 		else
379 			/*
380 			 * Not a hole, the change will not add any new
381 			 * indexing information, budget for page
382 			 * change.
383 			 */
384 			req.dirtied_page = 1;
385 
386 		if (appending) {
387 			mutex_lock(&ui->ui_mutex);
388 			if (!ui->dirty)
389 				/*
390 				 * The inode is clean but we will have to mark
391 				 * it as dirty because we are appending. This
392 				 * needs a budget.
393 				 */
394 				req.dirtied_ino = 1;
395 		}
396 	}
397 
398 	return ubifs_budget_space(c, &req);
399 }
400 
401 /*
402  * This function is called when a page of data is going to be written. Since
403  * the page of data will not necessarily go to the flash straight away, UBIFS
404  * has to reserve space on the media for it, which is done by means of
405  * budgeting.
406  *
407  * This is the hot-path of the file-system and we are trying to optimize it as
408  * much as possible. For this reasons it is split on 2 parts - slow and fast.
409  *
410  * There many budgeting cases:
411  *     o a new page is appended - we have to budget for a new page and for
412  *       changing the inode; however, if the inode is already dirty, there is
413  *       no need to budget for it;
414  *     o an existing clean page is changed - we have budget for it; if the page
415  *       does not exist on the media (a hole), we have to budget for a new
416  *       page; otherwise, we may budget for changing an existing page; the
417  *       difference between these cases is that changing an existing page does
418  *       not introduce anything new to the FS indexing information, so it does
419  *       not grow, and smaller budget is acquired in this case;
420  *     o an existing dirty page is changed - no need to budget at all, because
421  *       the page budget has been acquired by earlier, when the page has been
422  *       marked dirty.
423  *
424  * UBIFS budgeting sub-system may force write-back if it thinks there is no
425  * space to reserve. This imposes some locking restrictions and makes it
426  * impossible to take into account the above cases, and makes it impossible to
427  * optimize budgeting.
428  *
429  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430  * there is a plenty of flash space and the budget will be acquired quickly,
431  * without forcing write-back. The slow path does not make this assumption.
432  */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)433 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
434 			     loff_t pos, unsigned len, unsigned flags,
435 			     struct page **pagep, void **fsdata)
436 {
437 	struct inode *inode = mapping->host;
438 	struct ubifs_info *c = inode->i_sb->s_fs_info;
439 	struct ubifs_inode *ui = ubifs_inode(inode);
440 	pgoff_t index = pos >> PAGE_SHIFT;
441 	int err, appending = !!(pos + len > inode->i_size);
442 	int skipped_read = 0;
443 	struct page *page;
444 
445 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
446 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
447 
448 	if (unlikely(c->ro_error))
449 		return -EROFS;
450 
451 	/* Try out the fast-path part first */
452 	page = grab_cache_page_write_begin(mapping, index, flags);
453 	if (unlikely(!page))
454 		return -ENOMEM;
455 
456 	if (!PageUptodate(page)) {
457 		/* The page is not loaded from the flash */
458 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
459 			/*
460 			 * We change whole page so no need to load it. But we
461 			 * do not know whether this page exists on the media or
462 			 * not, so we assume the latter because it requires
463 			 * larger budget. The assumption is that it is better
464 			 * to budget a bit more than to read the page from the
465 			 * media. Thus, we are setting the @PG_checked flag
466 			 * here.
467 			 */
468 			SetPageChecked(page);
469 			skipped_read = 1;
470 		} else {
471 			err = do_readpage(page);
472 			if (err) {
473 				unlock_page(page);
474 				put_page(page);
475 				return err;
476 			}
477 		}
478 
479 		SetPageUptodate(page);
480 		ClearPageError(page);
481 	}
482 
483 	err = allocate_budget(c, page, ui, appending);
484 	if (unlikely(err)) {
485 		ubifs_assert(c, err == -ENOSPC);
486 		/*
487 		 * If we skipped reading the page because we were going to
488 		 * write all of it, then it is not up to date.
489 		 */
490 		if (skipped_read) {
491 			ClearPageChecked(page);
492 			ClearPageUptodate(page);
493 		}
494 		/*
495 		 * Budgeting failed which means it would have to force
496 		 * write-back but didn't, because we set the @fast flag in the
497 		 * request. Write-back cannot be done now, while we have the
498 		 * page locked, because it would deadlock. Unlock and free
499 		 * everything and fall-back to slow-path.
500 		 */
501 		if (appending) {
502 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
503 			mutex_unlock(&ui->ui_mutex);
504 		}
505 		unlock_page(page);
506 		put_page(page);
507 
508 		return write_begin_slow(mapping, pos, len, pagep, flags);
509 	}
510 
511 	/*
512 	 * Whee, we acquired budgeting quickly - without involving
513 	 * garbage-collection, committing or forcing write-back. We return
514 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 	 * otherwise. This is an optimization (slightly hacky though).
516 	 */
517 	*pagep = page;
518 	return 0;
519 
520 }
521 
522 /**
523  * cancel_budget - cancel budget.
524  * @c: UBIFS file-system description object
525  * @page: page to cancel budget for
526  * @ui: UBIFS inode object the page belongs to
527  * @appending: non-zero if the page is appended
528  *
529  * This is a helper function for a page write operation. It unlocks the
530  * @ui->ui_mutex in case of appending.
531  */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)532 static void cancel_budget(struct ubifs_info *c, struct page *page,
533 			  struct ubifs_inode *ui, int appending)
534 {
535 	if (appending) {
536 		if (!ui->dirty)
537 			ubifs_release_dirty_inode_budget(c, ui);
538 		mutex_unlock(&ui->ui_mutex);
539 	}
540 	if (!PagePrivate(page)) {
541 		if (PageChecked(page))
542 			release_new_page_budget(c);
543 		else
544 			release_existing_page_budget(c);
545 	}
546 }
547 
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)548 static int ubifs_write_end(struct file *file, struct address_space *mapping,
549 			   loff_t pos, unsigned len, unsigned copied,
550 			   struct page *page, void *fsdata)
551 {
552 	struct inode *inode = mapping->host;
553 	struct ubifs_inode *ui = ubifs_inode(inode);
554 	struct ubifs_info *c = inode->i_sb->s_fs_info;
555 	loff_t end_pos = pos + len;
556 	int appending = !!(end_pos > inode->i_size);
557 
558 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
560 
561 	if (unlikely(copied < len && len == PAGE_SIZE)) {
562 		/*
563 		 * VFS copied less data to the page that it intended and
564 		 * declared in its '->write_begin()' call via the @len
565 		 * argument. If the page was not up-to-date, and @len was
566 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 		 * not load it from the media (for optimization reasons). This
568 		 * means that part of the page contains garbage. So read the
569 		 * page now.
570 		 */
571 		dbg_gen("copied %d instead of %d, read page and repeat",
572 			copied, len);
573 		cancel_budget(c, page, ui, appending);
574 		ClearPageChecked(page);
575 
576 		/*
577 		 * Return 0 to force VFS to repeat the whole operation, or the
578 		 * error code if 'do_readpage()' fails.
579 		 */
580 		copied = do_readpage(page);
581 		goto out;
582 	}
583 
584 	if (!PagePrivate(page)) {
585 		SetPagePrivate(page);
586 		atomic_long_inc(&c->dirty_pg_cnt);
587 		__set_page_dirty_nobuffers(page);
588 	}
589 
590 	if (appending) {
591 		i_size_write(inode, end_pos);
592 		ui->ui_size = end_pos;
593 		/*
594 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 		 * inode has dirty pages), this has been done in
596 		 * '__set_page_dirty_nobuffers()'.
597 		 */
598 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
599 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
600 		mutex_unlock(&ui->ui_mutex);
601 	}
602 
603 out:
604 	unlock_page(page);
605 	put_page(page);
606 	return copied;
607 }
608 
609 /**
610  * populate_page - copy data nodes into a page for bulk-read.
611  * @c: UBIFS file-system description object
612  * @page: page
613  * @bu: bulk-read information
614  * @n: next zbranch slot
615  *
616  * This function returns %0 on success and a negative error code on failure.
617  */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)618 static int populate_page(struct ubifs_info *c, struct page *page,
619 			 struct bu_info *bu, int *n)
620 {
621 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
622 	struct inode *inode = page->mapping->host;
623 	loff_t i_size = i_size_read(inode);
624 	unsigned int page_block;
625 	void *addr, *zaddr;
626 	pgoff_t end_index;
627 
628 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 		inode->i_ino, page->index, i_size, page->flags);
630 
631 	addr = zaddr = kmap(page);
632 
633 	end_index = (i_size - 1) >> PAGE_SHIFT;
634 	if (!i_size || page->index > end_index) {
635 		hole = 1;
636 		memset(addr, 0, PAGE_SIZE);
637 		goto out_hole;
638 	}
639 
640 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
641 	while (1) {
642 		int err, len, out_len, dlen;
643 
644 		if (nn >= bu->cnt) {
645 			hole = 1;
646 			memset(addr, 0, UBIFS_BLOCK_SIZE);
647 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
648 			struct ubifs_data_node *dn;
649 
650 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
651 
652 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
653 				     ubifs_inode(inode)->creat_sqnum);
654 
655 			len = le32_to_cpu(dn->size);
656 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
657 				goto out_err;
658 
659 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
660 			out_len = UBIFS_BLOCK_SIZE;
661 
662 			if (ubifs_crypt_is_encrypted(inode)) {
663 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
664 				if (err)
665 					goto out_err;
666 			}
667 
668 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
669 					       le16_to_cpu(dn->compr_type));
670 			if (err || len != out_len)
671 				goto out_err;
672 
673 			if (len < UBIFS_BLOCK_SIZE)
674 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
675 
676 			nn += 1;
677 			read = (i << UBIFS_BLOCK_SHIFT) + len;
678 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
679 			nn += 1;
680 			continue;
681 		} else {
682 			hole = 1;
683 			memset(addr, 0, UBIFS_BLOCK_SIZE);
684 		}
685 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
686 			break;
687 		addr += UBIFS_BLOCK_SIZE;
688 		page_block += 1;
689 	}
690 
691 	if (end_index == page->index) {
692 		int len = i_size & (PAGE_SIZE - 1);
693 
694 		if (len && len < read)
695 			memset(zaddr + len, 0, read - len);
696 	}
697 
698 out_hole:
699 	if (hole) {
700 		SetPageChecked(page);
701 		dbg_gen("hole");
702 	}
703 
704 	SetPageUptodate(page);
705 	ClearPageError(page);
706 	flush_dcache_page(page);
707 	kunmap(page);
708 	*n = nn;
709 	return 0;
710 
711 out_err:
712 	ClearPageUptodate(page);
713 	SetPageError(page);
714 	flush_dcache_page(page);
715 	kunmap(page);
716 	ubifs_err(c, "bad data node (block %u, inode %lu)",
717 		  page_block, inode->i_ino);
718 	return -EINVAL;
719 }
720 
721 /**
722  * ubifs_do_bulk_read - do bulk-read.
723  * @c: UBIFS file-system description object
724  * @bu: bulk-read information
725  * @page1: first page to read
726  *
727  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
728  */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)729 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
730 			      struct page *page1)
731 {
732 	pgoff_t offset = page1->index, end_index;
733 	struct address_space *mapping = page1->mapping;
734 	struct inode *inode = mapping->host;
735 	struct ubifs_inode *ui = ubifs_inode(inode);
736 	int err, page_idx, page_cnt, ret = 0, n = 0;
737 	int allocate = bu->buf ? 0 : 1;
738 	loff_t isize;
739 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
740 
741 	err = ubifs_tnc_get_bu_keys(c, bu);
742 	if (err)
743 		goto out_warn;
744 
745 	if (bu->eof) {
746 		/* Turn off bulk-read at the end of the file */
747 		ui->read_in_a_row = 1;
748 		ui->bulk_read = 0;
749 	}
750 
751 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
752 	if (!page_cnt) {
753 		/*
754 		 * This happens when there are multiple blocks per page and the
755 		 * blocks for the first page we are looking for, are not
756 		 * together. If all the pages were like this, bulk-read would
757 		 * reduce performance, so we turn it off for a while.
758 		 */
759 		goto out_bu_off;
760 	}
761 
762 	if (bu->cnt) {
763 		if (allocate) {
764 			/*
765 			 * Allocate bulk-read buffer depending on how many data
766 			 * nodes we are going to read.
767 			 */
768 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
769 				      bu->zbranch[bu->cnt - 1].len -
770 				      bu->zbranch[0].offs;
771 			ubifs_assert(c, bu->buf_len > 0);
772 			ubifs_assert(c, bu->buf_len <= c->leb_size);
773 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
774 			if (!bu->buf)
775 				goto out_bu_off;
776 		}
777 
778 		err = ubifs_tnc_bulk_read(c, bu);
779 		if (err)
780 			goto out_warn;
781 	}
782 
783 	err = populate_page(c, page1, bu, &n);
784 	if (err)
785 		goto out_warn;
786 
787 	unlock_page(page1);
788 	ret = 1;
789 
790 	isize = i_size_read(inode);
791 	if (isize == 0)
792 		goto out_free;
793 	end_index = ((isize - 1) >> PAGE_SHIFT);
794 
795 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
796 		pgoff_t page_offset = offset + page_idx;
797 		struct page *page;
798 
799 		if (page_offset > end_index)
800 			break;
801 		page = pagecache_get_page(mapping, page_offset,
802 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
803 				 ra_gfp_mask);
804 		if (!page)
805 			break;
806 		if (!PageUptodate(page))
807 			err = populate_page(c, page, bu, &n);
808 		unlock_page(page);
809 		put_page(page);
810 		if (err)
811 			break;
812 	}
813 
814 	ui->last_page_read = offset + page_idx - 1;
815 
816 out_free:
817 	if (allocate)
818 		kfree(bu->buf);
819 	return ret;
820 
821 out_warn:
822 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
823 	goto out_free;
824 
825 out_bu_off:
826 	ui->read_in_a_row = ui->bulk_read = 0;
827 	goto out_free;
828 }
829 
830 /**
831  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
832  * @page: page from which to start bulk-read.
833  *
834  * Some flash media are capable of reading sequentially at faster rates. UBIFS
835  * bulk-read facility is designed to take advantage of that, by reading in one
836  * go consecutive data nodes that are also located consecutively in the same
837  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
838  */
ubifs_bulk_read(struct page * page)839 static int ubifs_bulk_read(struct page *page)
840 {
841 	struct inode *inode = page->mapping->host;
842 	struct ubifs_info *c = inode->i_sb->s_fs_info;
843 	struct ubifs_inode *ui = ubifs_inode(inode);
844 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
845 	struct bu_info *bu;
846 	int err = 0, allocated = 0;
847 
848 	ui->last_page_read = index;
849 	if (!c->bulk_read)
850 		return 0;
851 
852 	/*
853 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
854 	 * so don't bother if we cannot lock the mutex.
855 	 */
856 	if (!mutex_trylock(&ui->ui_mutex))
857 		return 0;
858 
859 	if (index != last_page_read + 1) {
860 		/* Turn off bulk-read if we stop reading sequentially */
861 		ui->read_in_a_row = 1;
862 		if (ui->bulk_read)
863 			ui->bulk_read = 0;
864 		goto out_unlock;
865 	}
866 
867 	if (!ui->bulk_read) {
868 		ui->read_in_a_row += 1;
869 		if (ui->read_in_a_row < 3)
870 			goto out_unlock;
871 		/* Three reads in a row, so switch on bulk-read */
872 		ui->bulk_read = 1;
873 	}
874 
875 	/*
876 	 * If possible, try to use pre-allocated bulk-read information, which
877 	 * is protected by @c->bu_mutex.
878 	 */
879 	if (mutex_trylock(&c->bu_mutex))
880 		bu = &c->bu;
881 	else {
882 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
883 		if (!bu)
884 			goto out_unlock;
885 
886 		bu->buf = NULL;
887 		allocated = 1;
888 	}
889 
890 	bu->buf_len = c->max_bu_buf_len;
891 	data_key_init(c, &bu->key, inode->i_ino,
892 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
893 	err = ubifs_do_bulk_read(c, bu, page);
894 
895 	if (!allocated)
896 		mutex_unlock(&c->bu_mutex);
897 	else
898 		kfree(bu);
899 
900 out_unlock:
901 	mutex_unlock(&ui->ui_mutex);
902 	return err;
903 }
904 
ubifs_readpage(struct file * file,struct page * page)905 static int ubifs_readpage(struct file *file, struct page *page)
906 {
907 	if (ubifs_bulk_read(page))
908 		return 0;
909 	do_readpage(page);
910 	unlock_page(page);
911 	return 0;
912 }
913 
do_writepage(struct page * page,int len)914 static int do_writepage(struct page *page, int len)
915 {
916 	int err = 0, i, blen;
917 	unsigned int block;
918 	void *addr;
919 	union ubifs_key key;
920 	struct inode *inode = page->mapping->host;
921 	struct ubifs_info *c = inode->i_sb->s_fs_info;
922 
923 #ifdef UBIFS_DEBUG
924 	struct ubifs_inode *ui = ubifs_inode(inode);
925 	spin_lock(&ui->ui_lock);
926 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
927 	spin_unlock(&ui->ui_lock);
928 #endif
929 
930 	/* Update radix tree tags */
931 	set_page_writeback(page);
932 
933 	addr = kmap(page);
934 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
935 	i = 0;
936 	while (len) {
937 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
938 		data_key_init(c, &key, inode->i_ino, block);
939 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
940 		if (err)
941 			break;
942 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
943 			break;
944 		block += 1;
945 		addr += blen;
946 		len -= blen;
947 	}
948 	if (err) {
949 		SetPageError(page);
950 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
951 			  page->index, inode->i_ino, err);
952 		ubifs_ro_mode(c, err);
953 	}
954 
955 	ubifs_assert(c, PagePrivate(page));
956 	if (PageChecked(page))
957 		release_new_page_budget(c);
958 	else
959 		release_existing_page_budget(c);
960 
961 	atomic_long_dec(&c->dirty_pg_cnt);
962 	ClearPagePrivate(page);
963 	ClearPageChecked(page);
964 
965 	kunmap(page);
966 	unlock_page(page);
967 	end_page_writeback(page);
968 	return err;
969 }
970 
971 /*
972  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
973  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
974  * situation when a we have an inode with size 0, then a megabyte of data is
975  * appended to the inode, then write-back starts and flushes some amount of the
976  * dirty pages, the journal becomes full, commit happens and finishes, and then
977  * an unclean reboot happens. When the file system is mounted next time, the
978  * inode size would still be 0, but there would be many pages which are beyond
979  * the inode size, they would be indexed and consume flash space. Because the
980  * journal has been committed, the replay would not be able to detect this
981  * situation and correct the inode size. This means UBIFS would have to scan
982  * whole index and correct all inode sizes, which is long an unacceptable.
983  *
984  * To prevent situations like this, UBIFS writes pages back only if they are
985  * within the last synchronized inode size, i.e. the size which has been
986  * written to the flash media last time. Otherwise, UBIFS forces inode
987  * write-back, thus making sure the on-flash inode contains current inode size,
988  * and then keeps writing pages back.
989  *
990  * Some locking issues explanation. 'ubifs_writepage()' first is called with
991  * the page locked, and it locks @ui_mutex. However, write-back does take inode
992  * @i_mutex, which means other VFS operations may be run on this inode at the
993  * same time. And the problematic one is truncation to smaller size, from where
994  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
995  * then drops the truncated pages. And while dropping the pages, it takes the
996  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
997  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
998  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
999  *
1000  * XXX(truncate): with the new truncate sequence this is not true anymore,
1001  * and the calls to truncate_setsize can be move around freely.  They should
1002  * be moved to the very end of the truncate sequence.
1003  *
1004  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1005  * inode size. How do we do this if @inode->i_size may became smaller while we
1006  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1007  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1008  * internally and updates it under @ui_mutex.
1009  *
1010  * Q: why we do not worry that if we race with truncation, we may end up with a
1011  * situation when the inode is truncated while we are in the middle of
1012  * 'do_writepage()', so we do write beyond inode size?
1013  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1014  * on the page lock and it would not write the truncated inode node to the
1015  * journal before we have finished.
1016  */
ubifs_writepage(struct page * page,struct writeback_control * wbc)1017 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1018 {
1019 	struct inode *inode = page->mapping->host;
1020 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1021 	struct ubifs_inode *ui = ubifs_inode(inode);
1022 	loff_t i_size =  i_size_read(inode), synced_i_size;
1023 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1024 	int err, len = i_size & (PAGE_SIZE - 1);
1025 	void *kaddr;
1026 
1027 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1028 		inode->i_ino, page->index, page->flags);
1029 	ubifs_assert(c, PagePrivate(page));
1030 
1031 	/* Is the page fully outside @i_size? (truncate in progress) */
1032 	if (page->index > end_index || (page->index == end_index && !len)) {
1033 		err = 0;
1034 		goto out_unlock;
1035 	}
1036 
1037 	spin_lock(&ui->ui_lock);
1038 	synced_i_size = ui->synced_i_size;
1039 	spin_unlock(&ui->ui_lock);
1040 
1041 	/* Is the page fully inside @i_size? */
1042 	if (page->index < end_index) {
1043 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1044 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1045 			if (err)
1046 				goto out_redirty;
1047 			/*
1048 			 * The inode has been written, but the write-buffer has
1049 			 * not been synchronized, so in case of an unclean
1050 			 * reboot we may end up with some pages beyond inode
1051 			 * size, but they would be in the journal (because
1052 			 * commit flushes write buffers) and recovery would deal
1053 			 * with this.
1054 			 */
1055 		}
1056 		return do_writepage(page, PAGE_SIZE);
1057 	}
1058 
1059 	/*
1060 	 * The page straddles @i_size. It must be zeroed out on each and every
1061 	 * writepage invocation because it may be mmapped. "A file is mapped
1062 	 * in multiples of the page size. For a file that is not a multiple of
1063 	 * the page size, the remaining memory is zeroed when mapped, and
1064 	 * writes to that region are not written out to the file."
1065 	 */
1066 	kaddr = kmap_atomic(page);
1067 	memset(kaddr + len, 0, PAGE_SIZE - len);
1068 	flush_dcache_page(page);
1069 	kunmap_atomic(kaddr);
1070 
1071 	if (i_size > synced_i_size) {
1072 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1073 		if (err)
1074 			goto out_redirty;
1075 	}
1076 
1077 	return do_writepage(page, len);
1078 out_redirty:
1079 	/*
1080 	 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1081 	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1082 	 * there is no need to do space budget for dirty inode.
1083 	 */
1084 	redirty_page_for_writepage(wbc, page);
1085 out_unlock:
1086 	unlock_page(page);
1087 	return err;
1088 }
1089 
1090 /**
1091  * do_attr_changes - change inode attributes.
1092  * @inode: inode to change attributes for
1093  * @attr: describes attributes to change
1094  */
do_attr_changes(struct inode * inode,const struct iattr * attr)1095 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1096 {
1097 	if (attr->ia_valid & ATTR_UID)
1098 		inode->i_uid = attr->ia_uid;
1099 	if (attr->ia_valid & ATTR_GID)
1100 		inode->i_gid = attr->ia_gid;
1101 	if (attr->ia_valid & ATTR_ATIME)
1102 		inode->i_atime = timespec64_trunc(attr->ia_atime,
1103 						  inode->i_sb->s_time_gran);
1104 	if (attr->ia_valid & ATTR_MTIME)
1105 		inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1106 						  inode->i_sb->s_time_gran);
1107 	if (attr->ia_valid & ATTR_CTIME)
1108 		inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1109 						  inode->i_sb->s_time_gran);
1110 	if (attr->ia_valid & ATTR_MODE) {
1111 		umode_t mode = attr->ia_mode;
1112 
1113 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1114 			mode &= ~S_ISGID;
1115 		inode->i_mode = mode;
1116 	}
1117 }
1118 
1119 /**
1120  * do_truncation - truncate an inode.
1121  * @c: UBIFS file-system description object
1122  * @inode: inode to truncate
1123  * @attr: inode attribute changes description
1124  *
1125  * This function implements VFS '->setattr()' call when the inode is truncated
1126  * to a smaller size. Returns zero in case of success and a negative error code
1127  * in case of failure.
1128  */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1129 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1130 			 const struct iattr *attr)
1131 {
1132 	int err;
1133 	struct ubifs_budget_req req;
1134 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1135 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1136 	struct ubifs_inode *ui = ubifs_inode(inode);
1137 
1138 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1139 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1140 
1141 	/*
1142 	 * If this is truncation to a smaller size, and we do not truncate on a
1143 	 * block boundary, budget for changing one data block, because the last
1144 	 * block will be re-written.
1145 	 */
1146 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1147 		req.dirtied_page = 1;
1148 
1149 	req.dirtied_ino = 1;
1150 	/* A funny way to budget for truncation node */
1151 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1152 	err = ubifs_budget_space(c, &req);
1153 	if (err) {
1154 		/*
1155 		 * Treat truncations to zero as deletion and always allow them,
1156 		 * just like we do for '->unlink()'.
1157 		 */
1158 		if (new_size || err != -ENOSPC)
1159 			return err;
1160 		budgeted = 0;
1161 	}
1162 
1163 	truncate_setsize(inode, new_size);
1164 
1165 	if (offset) {
1166 		pgoff_t index = new_size >> PAGE_SHIFT;
1167 		struct page *page;
1168 
1169 		page = find_lock_page(inode->i_mapping, index);
1170 		if (page) {
1171 			if (PageDirty(page)) {
1172 				/*
1173 				 * 'ubifs_jnl_truncate()' will try to truncate
1174 				 * the last data node, but it contains
1175 				 * out-of-date data because the page is dirty.
1176 				 * Write the page now, so that
1177 				 * 'ubifs_jnl_truncate()' will see an already
1178 				 * truncated (and up to date) data node.
1179 				 */
1180 				ubifs_assert(c, PagePrivate(page));
1181 
1182 				clear_page_dirty_for_io(page);
1183 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1184 					offset = new_size &
1185 						 (PAGE_SIZE - 1);
1186 				err = do_writepage(page, offset);
1187 				put_page(page);
1188 				if (err)
1189 					goto out_budg;
1190 				/*
1191 				 * We could now tell 'ubifs_jnl_truncate()' not
1192 				 * to read the last block.
1193 				 */
1194 			} else {
1195 				/*
1196 				 * We could 'kmap()' the page and pass the data
1197 				 * to 'ubifs_jnl_truncate()' to save it from
1198 				 * having to read it.
1199 				 */
1200 				unlock_page(page);
1201 				put_page(page);
1202 			}
1203 		}
1204 	}
1205 
1206 	mutex_lock(&ui->ui_mutex);
1207 	ui->ui_size = inode->i_size;
1208 	/* Truncation changes inode [mc]time */
1209 	inode->i_mtime = inode->i_ctime = current_time(inode);
1210 	/* Other attributes may be changed at the same time as well */
1211 	do_attr_changes(inode, attr);
1212 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1213 	mutex_unlock(&ui->ui_mutex);
1214 
1215 out_budg:
1216 	if (budgeted)
1217 		ubifs_release_budget(c, &req);
1218 	else {
1219 		c->bi.nospace = c->bi.nospace_rp = 0;
1220 		smp_wmb();
1221 	}
1222 	return err;
1223 }
1224 
1225 /**
1226  * do_setattr - change inode attributes.
1227  * @c: UBIFS file-system description object
1228  * @inode: inode to change attributes for
1229  * @attr: inode attribute changes description
1230  *
1231  * This function implements VFS '->setattr()' call for all cases except
1232  * truncations to smaller size. Returns zero in case of success and a negative
1233  * error code in case of failure.
1234  */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1235 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1236 		      const struct iattr *attr)
1237 {
1238 	int err, release;
1239 	loff_t new_size = attr->ia_size;
1240 	struct ubifs_inode *ui = ubifs_inode(inode);
1241 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1242 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1243 
1244 	err = ubifs_budget_space(c, &req);
1245 	if (err)
1246 		return err;
1247 
1248 	if (attr->ia_valid & ATTR_SIZE) {
1249 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1250 		truncate_setsize(inode, new_size);
1251 	}
1252 
1253 	mutex_lock(&ui->ui_mutex);
1254 	if (attr->ia_valid & ATTR_SIZE) {
1255 		/* Truncation changes inode [mc]time */
1256 		inode->i_mtime = inode->i_ctime = current_time(inode);
1257 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1258 		ui->ui_size = inode->i_size;
1259 	}
1260 
1261 	do_attr_changes(inode, attr);
1262 
1263 	release = ui->dirty;
1264 	if (attr->ia_valid & ATTR_SIZE)
1265 		/*
1266 		 * Inode length changed, so we have to make sure
1267 		 * @I_DIRTY_DATASYNC is set.
1268 		 */
1269 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1270 	else
1271 		mark_inode_dirty_sync(inode);
1272 	mutex_unlock(&ui->ui_mutex);
1273 
1274 	if (release)
1275 		ubifs_release_budget(c, &req);
1276 	if (IS_SYNC(inode))
1277 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1278 	return err;
1279 }
1280 
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1281 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1282 {
1283 	int err;
1284 	struct inode *inode = d_inode(dentry);
1285 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1286 
1287 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1288 		inode->i_ino, inode->i_mode, attr->ia_valid);
1289 	err = setattr_prepare(dentry, attr);
1290 	if (err)
1291 		return err;
1292 
1293 	err = dbg_check_synced_i_size(c, inode);
1294 	if (err)
1295 		return err;
1296 
1297 	err = fscrypt_prepare_setattr(dentry, attr);
1298 	if (err)
1299 		return err;
1300 
1301 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1302 		/* Truncation to a smaller size */
1303 		err = do_truncation(c, inode, attr);
1304 	else
1305 		err = do_setattr(c, inode, attr);
1306 
1307 	return err;
1308 }
1309 
ubifs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1310 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1311 				 unsigned int length)
1312 {
1313 	struct inode *inode = page->mapping->host;
1314 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1315 
1316 	ubifs_assert(c, PagePrivate(page));
1317 	if (offset || length < PAGE_SIZE)
1318 		/* Partial page remains dirty */
1319 		return;
1320 
1321 	if (PageChecked(page))
1322 		release_new_page_budget(c);
1323 	else
1324 		release_existing_page_budget(c);
1325 
1326 	atomic_long_dec(&c->dirty_pg_cnt);
1327 	ClearPagePrivate(page);
1328 	ClearPageChecked(page);
1329 }
1330 
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1331 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1332 {
1333 	struct inode *inode = file->f_mapping->host;
1334 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1335 	int err;
1336 
1337 	dbg_gen("syncing inode %lu", inode->i_ino);
1338 
1339 	if (c->ro_mount)
1340 		/*
1341 		 * For some really strange reasons VFS does not filter out
1342 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1343 		 */
1344 		return 0;
1345 
1346 	err = file_write_and_wait_range(file, start, end);
1347 	if (err)
1348 		return err;
1349 	inode_lock(inode);
1350 
1351 	/* Synchronize the inode unless this is a 'datasync()' call. */
1352 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1353 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1354 		if (err)
1355 			goto out;
1356 	}
1357 
1358 	/*
1359 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1360 	 * them.
1361 	 */
1362 	err = ubifs_sync_wbufs_by_inode(c, inode);
1363 out:
1364 	inode_unlock(inode);
1365 	return err;
1366 }
1367 
1368 /**
1369  * mctime_update_needed - check if mtime or ctime update is needed.
1370  * @inode: the inode to do the check for
1371  * @now: current time
1372  *
1373  * This helper function checks if the inode mtime/ctime should be updated or
1374  * not. If current values of the time-stamps are within the UBIFS inode time
1375  * granularity, they are not updated. This is an optimization.
1376  */
mctime_update_needed(const struct inode * inode,const struct timespec64 * now)1377 static inline int mctime_update_needed(const struct inode *inode,
1378 				       const struct timespec64 *now)
1379 {
1380 	if (!timespec64_equal(&inode->i_mtime, now) ||
1381 	    !timespec64_equal(&inode->i_ctime, now))
1382 		return 1;
1383 	return 0;
1384 }
1385 
1386 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1387 /**
1388  * ubifs_update_time - update time of inode.
1389  * @inode: inode to update
1390  *
1391  * This function updates time of the inode.
1392  */
ubifs_update_time(struct inode * inode,struct timespec64 * time,int flags)1393 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1394 			     int flags)
1395 {
1396 	struct ubifs_inode *ui = ubifs_inode(inode);
1397 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1398 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1399 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1400 	int err, release;
1401 
1402 	err = ubifs_budget_space(c, &req);
1403 	if (err)
1404 		return err;
1405 
1406 	mutex_lock(&ui->ui_mutex);
1407 	if (flags & S_ATIME)
1408 		inode->i_atime = *time;
1409 	if (flags & S_CTIME)
1410 		inode->i_ctime = *time;
1411 	if (flags & S_MTIME)
1412 		inode->i_mtime = *time;
1413 
1414 	release = ui->dirty;
1415 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1416 	mutex_unlock(&ui->ui_mutex);
1417 	if (release)
1418 		ubifs_release_budget(c, &req);
1419 	return 0;
1420 }
1421 #endif
1422 
1423 /**
1424  * update_mctime - update mtime and ctime of an inode.
1425  * @inode: inode to update
1426  *
1427  * This function updates mtime and ctime of the inode if it is not equivalent to
1428  * current time. Returns zero in case of success and a negative error code in
1429  * case of failure.
1430  */
update_mctime(struct inode * inode)1431 static int update_mctime(struct inode *inode)
1432 {
1433 	struct timespec64 now = current_time(inode);
1434 	struct ubifs_inode *ui = ubifs_inode(inode);
1435 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1436 
1437 	if (mctime_update_needed(inode, &now)) {
1438 		int err, release;
1439 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1440 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1441 
1442 		err = ubifs_budget_space(c, &req);
1443 		if (err)
1444 			return err;
1445 
1446 		mutex_lock(&ui->ui_mutex);
1447 		inode->i_mtime = inode->i_ctime = current_time(inode);
1448 		release = ui->dirty;
1449 		mark_inode_dirty_sync(inode);
1450 		mutex_unlock(&ui->ui_mutex);
1451 		if (release)
1452 			ubifs_release_budget(c, &req);
1453 	}
1454 
1455 	return 0;
1456 }
1457 
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1458 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1459 {
1460 	int err = update_mctime(file_inode(iocb->ki_filp));
1461 	if (err)
1462 		return err;
1463 
1464 	return generic_file_write_iter(iocb, from);
1465 }
1466 
ubifs_set_page_dirty(struct page * page)1467 static int ubifs_set_page_dirty(struct page *page)
1468 {
1469 	int ret;
1470 	struct inode *inode = page->mapping->host;
1471 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1472 
1473 	ret = __set_page_dirty_nobuffers(page);
1474 	/*
1475 	 * An attempt to dirty a page without budgeting for it - should not
1476 	 * happen.
1477 	 */
1478 	ubifs_assert(c, ret == 0);
1479 	return ret;
1480 }
1481 
1482 #ifdef CONFIG_MIGRATION
ubifs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1483 static int ubifs_migrate_page(struct address_space *mapping,
1484 		struct page *newpage, struct page *page, enum migrate_mode mode)
1485 {
1486 	int rc;
1487 
1488 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1489 	if (rc != MIGRATEPAGE_SUCCESS)
1490 		return rc;
1491 
1492 	if (PagePrivate(page)) {
1493 		ClearPagePrivate(page);
1494 		SetPagePrivate(newpage);
1495 	}
1496 
1497 	if (mode != MIGRATE_SYNC_NO_COPY)
1498 		migrate_page_copy(newpage, page);
1499 	else
1500 		migrate_page_states(newpage, page);
1501 	return MIGRATEPAGE_SUCCESS;
1502 }
1503 #endif
1504 
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1505 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1506 {
1507 	struct inode *inode = page->mapping->host;
1508 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1509 
1510 	/*
1511 	 * An attempt to release a dirty page without budgeting for it - should
1512 	 * not happen.
1513 	 */
1514 	if (PageWriteback(page))
1515 		return 0;
1516 	ubifs_assert(c, PagePrivate(page));
1517 	ubifs_assert(c, 0);
1518 	ClearPagePrivate(page);
1519 	ClearPageChecked(page);
1520 	return 1;
1521 }
1522 
1523 /*
1524  * mmap()d file has taken write protection fault and is being made writable.
1525  * UBIFS must ensure page is budgeted for.
1526  */
ubifs_vm_page_mkwrite(struct vm_fault * vmf)1527 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1528 {
1529 	struct page *page = vmf->page;
1530 	struct inode *inode = file_inode(vmf->vma->vm_file);
1531 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1532 	struct timespec64 now = current_time(inode);
1533 	struct ubifs_budget_req req = { .new_page = 1 };
1534 	int err, update_time;
1535 
1536 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1537 		i_size_read(inode));
1538 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1539 
1540 	if (unlikely(c->ro_error))
1541 		return VM_FAULT_SIGBUS; /* -EROFS */
1542 
1543 	/*
1544 	 * We have not locked @page so far so we may budget for changing the
1545 	 * page. Note, we cannot do this after we locked the page, because
1546 	 * budgeting may cause write-back which would cause deadlock.
1547 	 *
1548 	 * At the moment we do not know whether the page is dirty or not, so we
1549 	 * assume that it is not and budget for a new page. We could look at
1550 	 * the @PG_private flag and figure this out, but we may race with write
1551 	 * back and the page state may change by the time we lock it, so this
1552 	 * would need additional care. We do not bother with this at the
1553 	 * moment, although it might be good idea to do. Instead, we allocate
1554 	 * budget for a new page and amend it later on if the page was in fact
1555 	 * dirty.
1556 	 *
1557 	 * The budgeting-related logic of this function is similar to what we
1558 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1559 	 * for more comments.
1560 	 */
1561 	update_time = mctime_update_needed(inode, &now);
1562 	if (update_time)
1563 		/*
1564 		 * We have to change inode time stamp which requires extra
1565 		 * budgeting.
1566 		 */
1567 		req.dirtied_ino = 1;
1568 
1569 	err = ubifs_budget_space(c, &req);
1570 	if (unlikely(err)) {
1571 		if (err == -ENOSPC)
1572 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1573 				   inode->i_ino);
1574 		return VM_FAULT_SIGBUS;
1575 	}
1576 
1577 	lock_page(page);
1578 	if (unlikely(page->mapping != inode->i_mapping ||
1579 		     page_offset(page) > i_size_read(inode))) {
1580 		/* Page got truncated out from underneath us */
1581 		goto sigbus;
1582 	}
1583 
1584 	if (PagePrivate(page))
1585 		release_new_page_budget(c);
1586 	else {
1587 		if (!PageChecked(page))
1588 			ubifs_convert_page_budget(c);
1589 		SetPagePrivate(page);
1590 		atomic_long_inc(&c->dirty_pg_cnt);
1591 		__set_page_dirty_nobuffers(page);
1592 	}
1593 
1594 	if (update_time) {
1595 		int release;
1596 		struct ubifs_inode *ui = ubifs_inode(inode);
1597 
1598 		mutex_lock(&ui->ui_mutex);
1599 		inode->i_mtime = inode->i_ctime = current_time(inode);
1600 		release = ui->dirty;
1601 		mark_inode_dirty_sync(inode);
1602 		mutex_unlock(&ui->ui_mutex);
1603 		if (release)
1604 			ubifs_release_dirty_inode_budget(c, ui);
1605 	}
1606 
1607 	wait_for_stable_page(page);
1608 	return VM_FAULT_LOCKED;
1609 
1610 sigbus:
1611 	unlock_page(page);
1612 	ubifs_release_budget(c, &req);
1613 	return VM_FAULT_SIGBUS;
1614 }
1615 
1616 static const struct vm_operations_struct ubifs_file_vm_ops = {
1617 	.fault        = filemap_fault,
1618 	.map_pages = filemap_map_pages,
1619 	.page_mkwrite = ubifs_vm_page_mkwrite,
1620 };
1621 
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1622 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1623 {
1624 	int err;
1625 
1626 	err = generic_file_mmap(file, vma);
1627 	if (err)
1628 		return err;
1629 	vma->vm_ops = &ubifs_file_vm_ops;
1630 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1631 	file_accessed(file);
1632 #endif
1633 	return 0;
1634 }
1635 
ubifs_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1636 static const char *ubifs_get_link(struct dentry *dentry,
1637 					    struct inode *inode,
1638 					    struct delayed_call *done)
1639 {
1640 	struct ubifs_inode *ui = ubifs_inode(inode);
1641 
1642 	if (!IS_ENCRYPTED(inode))
1643 		return ui->data;
1644 
1645 	if (!dentry)
1646 		return ERR_PTR(-ECHILD);
1647 
1648 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1649 }
1650 
ubifs_symlink_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1651 static int ubifs_symlink_getattr(const struct path *path, struct kstat *stat,
1652 				 u32 request_mask, unsigned int query_flags)
1653 {
1654 	ubifs_getattr(path, stat, request_mask, query_flags);
1655 
1656 	if (IS_ENCRYPTED(d_inode(path->dentry)))
1657 		return fscrypt_symlink_getattr(path, stat);
1658 	return 0;
1659 }
1660 
1661 const struct address_space_operations ubifs_file_address_operations = {
1662 	.readpage       = ubifs_readpage,
1663 	.writepage      = ubifs_writepage,
1664 	.write_begin    = ubifs_write_begin,
1665 	.write_end      = ubifs_write_end,
1666 	.invalidatepage = ubifs_invalidatepage,
1667 	.set_page_dirty = ubifs_set_page_dirty,
1668 #ifdef CONFIG_MIGRATION
1669 	.migratepage	= ubifs_migrate_page,
1670 #endif
1671 	.releasepage    = ubifs_releasepage,
1672 };
1673 
1674 const struct inode_operations ubifs_file_inode_operations = {
1675 	.setattr     = ubifs_setattr,
1676 	.getattr     = ubifs_getattr,
1677 #ifdef CONFIG_UBIFS_FS_XATTR
1678 	.listxattr   = ubifs_listxattr,
1679 #endif
1680 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1681 	.update_time = ubifs_update_time,
1682 #endif
1683 };
1684 
1685 const struct inode_operations ubifs_symlink_inode_operations = {
1686 	.get_link    = ubifs_get_link,
1687 	.setattr     = ubifs_setattr,
1688 	.getattr     = ubifs_symlink_getattr,
1689 #ifdef CONFIG_UBIFS_FS_XATTR
1690 	.listxattr   = ubifs_listxattr,
1691 #endif
1692 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1693 	.update_time = ubifs_update_time,
1694 #endif
1695 };
1696 
1697 const struct file_operations ubifs_file_operations = {
1698 	.llseek         = generic_file_llseek,
1699 	.read_iter      = generic_file_read_iter,
1700 	.write_iter     = ubifs_write_iter,
1701 	.mmap           = ubifs_file_mmap,
1702 	.fsync          = ubifs_fsync,
1703 	.unlocked_ioctl = ubifs_ioctl,
1704 	.splice_read	= generic_file_splice_read,
1705 	.splice_write	= iter_file_splice_write,
1706 	.open		= fscrypt_file_open,
1707 #ifdef CONFIG_COMPAT
1708 	.compat_ioctl   = ubifs_compat_ioctl,
1709 #endif
1710 };
1711