1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
validate_inode(struct ubifs_info * c,const struct inode * inode)67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(c, ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
ubifs_iget(struct super_block * sb,unsigned long inum)101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
ubifs_alloc_inode(struct super_block * sb)260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
ubifs_i_callback(struct rcu_head * head)275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
ubifs_destroy_inode(struct inode * inode)282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(c, !ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err(c, "can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
ubifs_evict_inode(struct inode * inode)337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(c, !atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages_final(&inode->i_data);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err(c, "can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 	fscrypt_put_encryption_info(inode);
383 }
384 
ubifs_dirty_inode(struct inode * inode,int flags)385 static void ubifs_dirty_inode(struct inode *inode, int flags)
386 {
387 	struct ubifs_info *c = inode->i_sb->s_fs_info;
388 	struct ubifs_inode *ui = ubifs_inode(inode);
389 
390 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
391 	if (!ui->dirty) {
392 		ui->dirty = 1;
393 		dbg_gen("inode %lu",  inode->i_ino);
394 	}
395 }
396 
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)397 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
398 {
399 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
400 	unsigned long long free;
401 	__le32 *uuid = (__le32 *)c->uuid;
402 
403 	free = ubifs_get_free_space(c);
404 	dbg_gen("free space %lld bytes (%lld blocks)",
405 		free, free >> UBIFS_BLOCK_SHIFT);
406 
407 	buf->f_type = UBIFS_SUPER_MAGIC;
408 	buf->f_bsize = UBIFS_BLOCK_SIZE;
409 	buf->f_blocks = c->block_cnt;
410 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
411 	if (free > c->report_rp_size)
412 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
413 	else
414 		buf->f_bavail = 0;
415 	buf->f_files = 0;
416 	buf->f_ffree = 0;
417 	buf->f_namelen = UBIFS_MAX_NLEN;
418 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
419 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
420 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
421 	return 0;
422 }
423 
ubifs_show_options(struct seq_file * s,struct dentry * root)424 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
425 {
426 	struct ubifs_info *c = root->d_sb->s_fs_info;
427 
428 	if (c->mount_opts.unmount_mode == 2)
429 		seq_puts(s, ",fast_unmount");
430 	else if (c->mount_opts.unmount_mode == 1)
431 		seq_puts(s, ",norm_unmount");
432 
433 	if (c->mount_opts.bulk_read == 2)
434 		seq_puts(s, ",bulk_read");
435 	else if (c->mount_opts.bulk_read == 1)
436 		seq_puts(s, ",no_bulk_read");
437 
438 	if (c->mount_opts.chk_data_crc == 2)
439 		seq_puts(s, ",chk_data_crc");
440 	else if (c->mount_opts.chk_data_crc == 1)
441 		seq_puts(s, ",no_chk_data_crc");
442 
443 	if (c->mount_opts.override_compr) {
444 		seq_printf(s, ",compr=%s",
445 			   ubifs_compr_name(c, c->mount_opts.compr_type));
446 	}
447 
448 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
449 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
450 
451 	return 0;
452 }
453 
ubifs_sync_fs(struct super_block * sb,int wait)454 static int ubifs_sync_fs(struct super_block *sb, int wait)
455 {
456 	int i, err;
457 	struct ubifs_info *c = sb->s_fs_info;
458 
459 	/*
460 	 * Zero @wait is just an advisory thing to help the file system shove
461 	 * lots of data into the queues, and there will be the second
462 	 * '->sync_fs()' call, with non-zero @wait.
463 	 */
464 	if (!wait)
465 		return 0;
466 
467 	/*
468 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 	 * do this if it waits for an already running commit.
470 	 */
471 	for (i = 0; i < c->jhead_cnt; i++) {
472 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
473 		if (err)
474 			return err;
475 	}
476 
477 	/*
478 	 * Strictly speaking, it is not necessary to commit the journal here,
479 	 * synchronizing write-buffers would be enough. But committing makes
480 	 * UBIFS free space predictions much more accurate, so we want to let
481 	 * the user be able to get more accurate results of 'statfs()' after
482 	 * they synchronize the file system.
483 	 */
484 	err = ubifs_run_commit(c);
485 	if (err)
486 		return err;
487 
488 	return ubi_sync(c->vi.ubi_num);
489 }
490 
491 /**
492  * init_constants_early - initialize UBIFS constants.
493  * @c: UBIFS file-system description object
494  *
495  * This function initialize UBIFS constants which do not need the superblock to
496  * be read. It also checks that the UBI volume satisfies basic UBIFS
497  * requirements. Returns zero in case of success and a negative error code in
498  * case of failure.
499  */
init_constants_early(struct ubifs_info * c)500 static int init_constants_early(struct ubifs_info *c)
501 {
502 	if (c->vi.corrupted) {
503 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
504 		c->ro_media = 1;
505 	}
506 
507 	if (c->di.ro_mode) {
508 		ubifs_msg(c, "read-only UBI device");
509 		c->ro_media = 1;
510 	}
511 
512 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
513 		ubifs_msg(c, "static UBI volume - read-only mode");
514 		c->ro_media = 1;
515 	}
516 
517 	c->leb_cnt = c->vi.size;
518 	c->leb_size = c->vi.usable_leb_size;
519 	c->leb_start = c->di.leb_start;
520 	c->half_leb_size = c->leb_size / 2;
521 	c->min_io_size = c->di.min_io_size;
522 	c->min_io_shift = fls(c->min_io_size) - 1;
523 	c->max_write_size = c->di.max_write_size;
524 	c->max_write_shift = fls(c->max_write_size) - 1;
525 
526 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
527 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
528 			   c->leb_size, UBIFS_MIN_LEB_SZ);
529 		return -EINVAL;
530 	}
531 
532 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
533 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
534 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
535 		return -EINVAL;
536 	}
537 
538 	if (!is_power_of_2(c->min_io_size)) {
539 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Maximum write size has to be greater or equivalent to min. I/O
545 	 * size, and be multiple of min. I/O size.
546 	 */
547 	if (c->max_write_size < c->min_io_size ||
548 	    c->max_write_size % c->min_io_size ||
549 	    !is_power_of_2(c->max_write_size)) {
550 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
551 			   c->max_write_size, c->min_io_size);
552 		return -EINVAL;
553 	}
554 
555 	/*
556 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
558 	 * less than 8.
559 	 */
560 	if (c->min_io_size < 8) {
561 		c->min_io_size = 8;
562 		c->min_io_shift = 3;
563 		if (c->max_write_size < c->min_io_size) {
564 			c->max_write_size = c->min_io_size;
565 			c->max_write_shift = c->min_io_shift;
566 		}
567 	}
568 
569 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
570 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
571 
572 	/*
573 	 * Initialize node length ranges which are mostly needed for node
574 	 * length validation.
575 	 */
576 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
577 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
578 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
579 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
580 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
581 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
582 
583 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
584 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
585 	c->ranges[UBIFS_ORPH_NODE].min_len =
586 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
587 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
588 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
589 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
590 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
591 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
592 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
593 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
594 	/*
595 	 * Minimum indexing node size is amended later when superblock is
596 	 * read and the key length is known.
597 	 */
598 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
599 	/*
600 	 * Maximum indexing node size is amended later when superblock is
601 	 * read and the fanout is known.
602 	 */
603 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
604 
605 	/*
606 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 	 * about these values.
608 	 */
609 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
610 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
611 
612 	/*
613 	 * Calculate how many bytes would be wasted at the end of LEB if it was
614 	 * fully filled with data nodes of maximum size. This is used in
615 	 * calculations when reporting free space.
616 	 */
617 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
618 
619 	/* Buffer size for bulk-reads */
620 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
621 	if (c->max_bu_buf_len > c->leb_size)
622 		c->max_bu_buf_len = c->leb_size;
623 	return 0;
624 }
625 
626 /**
627  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
628  * @c: UBIFS file-system description object
629  * @lnum: LEB the write-buffer was synchronized to
630  * @free: how many free bytes left in this LEB
631  * @pad: how many bytes were padded
632  *
633  * This is a callback function which is called by the I/O unit when the
634  * write-buffer is synchronized. We need this to correctly maintain space
635  * accounting in bud logical eraseblocks. This function returns zero in case of
636  * success and a negative error code in case of failure.
637  *
638  * This function actually belongs to the journal, but we keep it here because
639  * we want to keep it static.
640  */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)641 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
642 {
643 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
644 }
645 
646 /*
647  * init_constants_sb - initialize UBIFS constants.
648  * @c: UBIFS file-system description object
649  *
650  * This is a helper function which initializes various UBIFS constants after
651  * the superblock has been read. It also checks various UBIFS parameters and
652  * makes sure they are all right. Returns zero in case of success and a
653  * negative error code in case of failure.
654  */
init_constants_sb(struct ubifs_info * c)655 static int init_constants_sb(struct ubifs_info *c)
656 {
657 	int tmp, err;
658 	long long tmp64;
659 
660 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
661 	c->max_znode_sz = sizeof(struct ubifs_znode) +
662 				c->fanout * sizeof(struct ubifs_zbranch);
663 
664 	tmp = ubifs_idx_node_sz(c, 1);
665 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
666 	c->min_idx_node_sz = ALIGN(tmp, 8);
667 
668 	tmp = ubifs_idx_node_sz(c, c->fanout);
669 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
670 	c->max_idx_node_sz = ALIGN(tmp, 8);
671 
672 	/* Make sure LEB size is large enough to fit full commit */
673 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
674 	tmp = ALIGN(tmp, c->min_io_size);
675 	if (tmp > c->leb_size) {
676 		ubifs_err(c, "too small LEB size %d, at least %d needed",
677 			  c->leb_size, tmp);
678 		return -EINVAL;
679 	}
680 
681 	/*
682 	 * Make sure that the log is large enough to fit reference nodes for
683 	 * all buds plus one reserved LEB.
684 	 */
685 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
686 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
687 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
688 	tmp /= c->leb_size;
689 	tmp += 1;
690 	if (c->log_lebs < tmp) {
691 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
692 			  c->log_lebs, tmp);
693 		return -EINVAL;
694 	}
695 
696 	/*
697 	 * When budgeting we assume worst-case scenarios when the pages are not
698 	 * be compressed and direntries are of the maximum size.
699 	 *
700 	 * Note, data, which may be stored in inodes is budgeted separately, so
701 	 * it is not included into 'c->bi.inode_budget'.
702 	 */
703 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
704 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
705 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
706 
707 	/*
708 	 * When the amount of flash space used by buds becomes
709 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
710 	 * The writers are unblocked when the commit is finished. To avoid
711 	 * writers to be blocked UBIFS initiates background commit in advance,
712 	 * when number of bud bytes becomes above the limit defined below.
713 	 */
714 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
715 
716 	/*
717 	 * Ensure minimum journal size. All the bytes in the journal heads are
718 	 * considered to be used, when calculating the current journal usage.
719 	 * Consequently, if the journal is too small, UBIFS will treat it as
720 	 * always full.
721 	 */
722 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
723 	if (c->bg_bud_bytes < tmp64)
724 		c->bg_bud_bytes = tmp64;
725 	if (c->max_bud_bytes < tmp64 + c->leb_size)
726 		c->max_bud_bytes = tmp64 + c->leb_size;
727 
728 	err = ubifs_calc_lpt_geom(c);
729 	if (err)
730 		return err;
731 
732 	/* Initialize effective LEB size used in budgeting calculations */
733 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
734 	return 0;
735 }
736 
737 /*
738  * init_constants_master - initialize UBIFS constants.
739  * @c: UBIFS file-system description object
740  *
741  * This is a helper function which initializes various UBIFS constants after
742  * the master node has been read. It also checks various UBIFS parameters and
743  * makes sure they are all right.
744  */
init_constants_master(struct ubifs_info * c)745 static void init_constants_master(struct ubifs_info *c)
746 {
747 	long long tmp64;
748 
749 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
750 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
751 
752 	/*
753 	 * Calculate total amount of FS blocks. This number is not used
754 	 * internally because it does not make much sense for UBIFS, but it is
755 	 * necessary to report something for the 'statfs()' call.
756 	 *
757 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
758 	 * deletions, minimum LEBs for the index, and assume only one journal
759 	 * head is available.
760 	 */
761 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
762 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
763 	tmp64 = ubifs_reported_space(c, tmp64);
764 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
765 }
766 
767 /**
768  * take_gc_lnum - reserve GC LEB.
769  * @c: UBIFS file-system description object
770  *
771  * This function ensures that the LEB reserved for garbage collection is marked
772  * as "taken" in lprops. We also have to set free space to LEB size and dirty
773  * space to zero, because lprops may contain out-of-date information if the
774  * file-system was un-mounted before it has been committed. This function
775  * returns zero in case of success and a negative error code in case of
776  * failure.
777  */
take_gc_lnum(struct ubifs_info * c)778 static int take_gc_lnum(struct ubifs_info *c)
779 {
780 	int err;
781 
782 	if (c->gc_lnum == -1) {
783 		ubifs_err(c, "no LEB for GC");
784 		return -EINVAL;
785 	}
786 
787 	/* And we have to tell lprops that this LEB is taken */
788 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
789 				  LPROPS_TAKEN, 0, 0);
790 	return err;
791 }
792 
793 /**
794  * alloc_wbufs - allocate write-buffers.
795  * @c: UBIFS file-system description object
796  *
797  * This helper function allocates and initializes UBIFS write-buffers. Returns
798  * zero in case of success and %-ENOMEM in case of failure.
799  */
alloc_wbufs(struct ubifs_info * c)800 static int alloc_wbufs(struct ubifs_info *c)
801 {
802 	int i, err;
803 
804 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
805 			    GFP_KERNEL);
806 	if (!c->jheads)
807 		return -ENOMEM;
808 
809 	/* Initialize journal heads */
810 	for (i = 0; i < c->jhead_cnt; i++) {
811 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
812 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
813 		if (err)
814 			return err;
815 
816 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
817 		c->jheads[i].wbuf.jhead = i;
818 		c->jheads[i].grouped = 1;
819 	}
820 
821 	/*
822 	 * Garbage Collector head does not need to be synchronized by timer.
823 	 * Also GC head nodes are not grouped.
824 	 */
825 	c->jheads[GCHD].wbuf.no_timer = 1;
826 	c->jheads[GCHD].grouped = 0;
827 
828 	return 0;
829 }
830 
831 /**
832  * free_wbufs - free write-buffers.
833  * @c: UBIFS file-system description object
834  */
free_wbufs(struct ubifs_info * c)835 static void free_wbufs(struct ubifs_info *c)
836 {
837 	int i;
838 
839 	if (c->jheads) {
840 		for (i = 0; i < c->jhead_cnt; i++) {
841 			kfree(c->jheads[i].wbuf.buf);
842 			kfree(c->jheads[i].wbuf.inodes);
843 		}
844 		kfree(c->jheads);
845 		c->jheads = NULL;
846 	}
847 }
848 
849 /**
850  * free_orphans - free orphans.
851  * @c: UBIFS file-system description object
852  */
free_orphans(struct ubifs_info * c)853 static void free_orphans(struct ubifs_info *c)
854 {
855 	struct ubifs_orphan *orph;
856 
857 	while (c->orph_dnext) {
858 		orph = c->orph_dnext;
859 		c->orph_dnext = orph->dnext;
860 		list_del(&orph->list);
861 		kfree(orph);
862 	}
863 
864 	while (!list_empty(&c->orph_list)) {
865 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
866 		list_del(&orph->list);
867 		kfree(orph);
868 		ubifs_err(c, "orphan list not empty at unmount");
869 	}
870 
871 	vfree(c->orph_buf);
872 	c->orph_buf = NULL;
873 }
874 
875 /**
876  * free_buds - free per-bud objects.
877  * @c: UBIFS file-system description object
878  */
free_buds(struct ubifs_info * c)879 static void free_buds(struct ubifs_info *c)
880 {
881 	struct ubifs_bud *bud, *n;
882 
883 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
884 		kfree(bud);
885 }
886 
887 /**
888  * check_volume_empty - check if the UBI volume is empty.
889  * @c: UBIFS file-system description object
890  *
891  * This function checks if the UBIFS volume is empty by looking if its LEBs are
892  * mapped or not. The result of checking is stored in the @c->empty variable.
893  * Returns zero in case of success and a negative error code in case of
894  * failure.
895  */
check_volume_empty(struct ubifs_info * c)896 static int check_volume_empty(struct ubifs_info *c)
897 {
898 	int lnum, err;
899 
900 	c->empty = 1;
901 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
902 		err = ubifs_is_mapped(c, lnum);
903 		if (unlikely(err < 0))
904 			return err;
905 		if (err == 1) {
906 			c->empty = 0;
907 			break;
908 		}
909 
910 		cond_resched();
911 	}
912 
913 	return 0;
914 }
915 
916 /*
917  * UBIFS mount options.
918  *
919  * Opt_fast_unmount: do not run a journal commit before un-mounting
920  * Opt_norm_unmount: run a journal commit before un-mounting
921  * Opt_bulk_read: enable bulk-reads
922  * Opt_no_bulk_read: disable bulk-reads
923  * Opt_chk_data_crc: check CRCs when reading data nodes
924  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
925  * Opt_override_compr: override default compressor
926  * Opt_assert: set ubifs_assert() action
927  * Opt_err: just end of array marker
928  */
929 enum {
930 	Opt_fast_unmount,
931 	Opt_norm_unmount,
932 	Opt_bulk_read,
933 	Opt_no_bulk_read,
934 	Opt_chk_data_crc,
935 	Opt_no_chk_data_crc,
936 	Opt_override_compr,
937 	Opt_assert,
938 	Opt_ignore,
939 	Opt_err,
940 };
941 
942 static const match_table_t tokens = {
943 	{Opt_fast_unmount, "fast_unmount"},
944 	{Opt_norm_unmount, "norm_unmount"},
945 	{Opt_bulk_read, "bulk_read"},
946 	{Opt_no_bulk_read, "no_bulk_read"},
947 	{Opt_chk_data_crc, "chk_data_crc"},
948 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
949 	{Opt_override_compr, "compr=%s"},
950 	{Opt_ignore, "ubi=%s"},
951 	{Opt_ignore, "vol=%s"},
952 	{Opt_assert, "assert=%s"},
953 	{Opt_err, NULL},
954 };
955 
956 /**
957  * parse_standard_option - parse a standard mount option.
958  * @option: the option to parse
959  *
960  * Normally, standard mount options like "sync" are passed to file-systems as
961  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
962  * be present in the options string. This function tries to deal with this
963  * situation and parse standard options. Returns 0 if the option was not
964  * recognized, and the corresponding integer flag if it was.
965  *
966  * UBIFS is only interested in the "sync" option, so do not check for anything
967  * else.
968  */
parse_standard_option(const char * option)969 static int parse_standard_option(const char *option)
970 {
971 
972 	pr_notice("UBIFS: parse %s\n", option);
973 	if (!strcmp(option, "sync"))
974 		return SB_SYNCHRONOUS;
975 	return 0;
976 }
977 
978 /**
979  * ubifs_parse_options - parse mount parameters.
980  * @c: UBIFS file-system description object
981  * @options: parameters to parse
982  * @is_remount: non-zero if this is FS re-mount
983  *
984  * This function parses UBIFS mount options and returns zero in case success
985  * and a negative error code in case of failure.
986  */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)987 static int ubifs_parse_options(struct ubifs_info *c, char *options,
988 			       int is_remount)
989 {
990 	char *p;
991 	substring_t args[MAX_OPT_ARGS];
992 
993 	if (!options)
994 		return 0;
995 
996 	while ((p = strsep(&options, ","))) {
997 		int token;
998 
999 		if (!*p)
1000 			continue;
1001 
1002 		token = match_token(p, tokens, args);
1003 		switch (token) {
1004 		/*
1005 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1006 		 * We accept them in order to be backward-compatible. But this
1007 		 * should be removed at some point.
1008 		 */
1009 		case Opt_fast_unmount:
1010 			c->mount_opts.unmount_mode = 2;
1011 			break;
1012 		case Opt_norm_unmount:
1013 			c->mount_opts.unmount_mode = 1;
1014 			break;
1015 		case Opt_bulk_read:
1016 			c->mount_opts.bulk_read = 2;
1017 			c->bulk_read = 1;
1018 			break;
1019 		case Opt_no_bulk_read:
1020 			c->mount_opts.bulk_read = 1;
1021 			c->bulk_read = 0;
1022 			break;
1023 		case Opt_chk_data_crc:
1024 			c->mount_opts.chk_data_crc = 2;
1025 			c->no_chk_data_crc = 0;
1026 			break;
1027 		case Opt_no_chk_data_crc:
1028 			c->mount_opts.chk_data_crc = 1;
1029 			c->no_chk_data_crc = 1;
1030 			break;
1031 		case Opt_override_compr:
1032 		{
1033 			char *name = match_strdup(&args[0]);
1034 
1035 			if (!name)
1036 				return -ENOMEM;
1037 			if (!strcmp(name, "none"))
1038 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1039 			else if (!strcmp(name, "lzo"))
1040 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1041 			else if (!strcmp(name, "zlib"))
1042 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1043 			else {
1044 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1045 				kfree(name);
1046 				return -EINVAL;
1047 			}
1048 			kfree(name);
1049 			c->mount_opts.override_compr = 1;
1050 			c->default_compr = c->mount_opts.compr_type;
1051 			break;
1052 		}
1053 		case Opt_assert:
1054 		{
1055 			char *act = match_strdup(&args[0]);
1056 
1057 			if (!act)
1058 				return -ENOMEM;
1059 			if (!strcmp(act, "report"))
1060 				c->assert_action = ASSACT_REPORT;
1061 			else if (!strcmp(act, "read-only"))
1062 				c->assert_action = ASSACT_RO;
1063 			else if (!strcmp(act, "panic"))
1064 				c->assert_action = ASSACT_PANIC;
1065 			else {
1066 				ubifs_err(c, "unknown assert action \"%s\"", act);
1067 				kfree(act);
1068 				return -EINVAL;
1069 			}
1070 			kfree(act);
1071 			break;
1072 		}
1073 		case Opt_ignore:
1074 			break;
1075 		default:
1076 		{
1077 			unsigned long flag;
1078 			struct super_block *sb = c->vfs_sb;
1079 
1080 			flag = parse_standard_option(p);
1081 			if (!flag) {
1082 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1083 					  p);
1084 				return -EINVAL;
1085 			}
1086 			sb->s_flags |= flag;
1087 			break;
1088 		}
1089 		}
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  * destroy_journal - destroy journal data structures.
1097  * @c: UBIFS file-system description object
1098  *
1099  * This function destroys journal data structures including those that may have
1100  * been created by recovery functions.
1101  */
destroy_journal(struct ubifs_info * c)1102 static void destroy_journal(struct ubifs_info *c)
1103 {
1104 	while (!list_empty(&c->unclean_leb_list)) {
1105 		struct ubifs_unclean_leb *ucleb;
1106 
1107 		ucleb = list_entry(c->unclean_leb_list.next,
1108 				   struct ubifs_unclean_leb, list);
1109 		list_del(&ucleb->list);
1110 		kfree(ucleb);
1111 	}
1112 	while (!list_empty(&c->old_buds)) {
1113 		struct ubifs_bud *bud;
1114 
1115 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1116 		list_del(&bud->list);
1117 		kfree(bud);
1118 	}
1119 	ubifs_destroy_idx_gc(c);
1120 	ubifs_destroy_size_tree(c);
1121 	ubifs_tnc_close(c);
1122 	free_buds(c);
1123 }
1124 
1125 /**
1126  * bu_init - initialize bulk-read information.
1127  * @c: UBIFS file-system description object
1128  */
bu_init(struct ubifs_info * c)1129 static void bu_init(struct ubifs_info *c)
1130 {
1131 	ubifs_assert(c, c->bulk_read == 1);
1132 
1133 	if (c->bu.buf)
1134 		return; /* Already initialized */
1135 
1136 again:
1137 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1138 	if (!c->bu.buf) {
1139 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1140 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1141 			goto again;
1142 		}
1143 
1144 		/* Just disable bulk-read */
1145 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1146 			   c->max_bu_buf_len);
1147 		c->mount_opts.bulk_read = 1;
1148 		c->bulk_read = 0;
1149 		return;
1150 	}
1151 }
1152 
1153 /**
1154  * check_free_space - check if there is enough free space to mount.
1155  * @c: UBIFS file-system description object
1156  *
1157  * This function makes sure UBIFS has enough free space to be mounted in
1158  * read/write mode. UBIFS must always have some free space to allow deletions.
1159  */
check_free_space(struct ubifs_info * c)1160 static int check_free_space(struct ubifs_info *c)
1161 {
1162 	ubifs_assert(c, c->dark_wm > 0);
1163 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1164 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1165 		ubifs_dump_budg(c, &c->bi);
1166 		ubifs_dump_lprops(c);
1167 		return -ENOSPC;
1168 	}
1169 	return 0;
1170 }
1171 
1172 /**
1173  * mount_ubifs - mount UBIFS file-system.
1174  * @c: UBIFS file-system description object
1175  *
1176  * This function mounts UBIFS file system. Returns zero in case of success and
1177  * a negative error code in case of failure.
1178  */
mount_ubifs(struct ubifs_info * c)1179 static int mount_ubifs(struct ubifs_info *c)
1180 {
1181 	int err;
1182 	long long x, y;
1183 	size_t sz;
1184 
1185 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1186 	/* Suppress error messages while probing if SB_SILENT is set */
1187 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1188 
1189 	err = init_constants_early(c);
1190 	if (err)
1191 		return err;
1192 
1193 	err = ubifs_debugging_init(c);
1194 	if (err)
1195 		return err;
1196 
1197 	err = check_volume_empty(c);
1198 	if (err)
1199 		goto out_free;
1200 
1201 	if (c->empty && (c->ro_mount || c->ro_media)) {
1202 		/*
1203 		 * This UBI volume is empty, and read-only, or the file system
1204 		 * is mounted read-only - we cannot format it.
1205 		 */
1206 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1207 			  c->ro_media ? "UBI volume" : "mount");
1208 		err = -EROFS;
1209 		goto out_free;
1210 	}
1211 
1212 	if (c->ro_media && !c->ro_mount) {
1213 		ubifs_err(c, "cannot mount read-write - read-only media");
1214 		err = -EROFS;
1215 		goto out_free;
1216 	}
1217 
1218 	/*
1219 	 * The requirement for the buffer is that it should fit indexing B-tree
1220 	 * height amount of integers. We assume the height if the TNC tree will
1221 	 * never exceed 64.
1222 	 */
1223 	err = -ENOMEM;
1224 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1225 					 GFP_KERNEL);
1226 	if (!c->bottom_up_buf)
1227 		goto out_free;
1228 
1229 	c->sbuf = vmalloc(c->leb_size);
1230 	if (!c->sbuf)
1231 		goto out_free;
1232 
1233 	if (!c->ro_mount) {
1234 		c->ileb_buf = vmalloc(c->leb_size);
1235 		if (!c->ileb_buf)
1236 			goto out_free;
1237 	}
1238 
1239 	if (c->bulk_read == 1)
1240 		bu_init(c);
1241 
1242 	if (!c->ro_mount) {
1243 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1244 					       UBIFS_CIPHER_BLOCK_SIZE,
1245 					       GFP_KERNEL);
1246 		if (!c->write_reserve_buf)
1247 			goto out_free;
1248 	}
1249 
1250 	c->mounting = 1;
1251 
1252 	err = ubifs_read_superblock(c);
1253 	if (err)
1254 		goto out_free;
1255 
1256 	c->probing = 0;
1257 
1258 	/*
1259 	 * Make sure the compressor which is set as default in the superblock
1260 	 * or overridden by mount options is actually compiled in.
1261 	 */
1262 	if (!ubifs_compr_present(c, c->default_compr)) {
1263 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1264 			  ubifs_compr_name(c, c->default_compr));
1265 		err = -ENOTSUPP;
1266 		goto out_free;
1267 	}
1268 
1269 	err = init_constants_sb(c);
1270 	if (err)
1271 		goto out_free;
1272 
1273 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1274 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1275 	c->cbuf = kmalloc(sz, GFP_NOFS);
1276 	if (!c->cbuf) {
1277 		err = -ENOMEM;
1278 		goto out_free;
1279 	}
1280 
1281 	err = alloc_wbufs(c);
1282 	if (err)
1283 		goto out_cbuf;
1284 
1285 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1286 	if (!c->ro_mount) {
1287 		/* Create background thread */
1288 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1289 		if (IS_ERR(c->bgt)) {
1290 			err = PTR_ERR(c->bgt);
1291 			c->bgt = NULL;
1292 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1293 				  c->bgt_name, err);
1294 			goto out_wbufs;
1295 		}
1296 		wake_up_process(c->bgt);
1297 	}
1298 
1299 	err = ubifs_read_master(c);
1300 	if (err)
1301 		goto out_master;
1302 
1303 	init_constants_master(c);
1304 
1305 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1306 		ubifs_msg(c, "recovery needed");
1307 		c->need_recovery = 1;
1308 	}
1309 
1310 	if (c->need_recovery && !c->ro_mount) {
1311 		err = ubifs_recover_inl_heads(c, c->sbuf);
1312 		if (err)
1313 			goto out_master;
1314 	}
1315 
1316 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1317 	if (err)
1318 		goto out_master;
1319 
1320 	if (!c->ro_mount && c->space_fixup) {
1321 		err = ubifs_fixup_free_space(c);
1322 		if (err)
1323 			goto out_lpt;
1324 	}
1325 
1326 	if (!c->ro_mount && !c->need_recovery) {
1327 		/*
1328 		 * Set the "dirty" flag so that if we reboot uncleanly we
1329 		 * will notice this immediately on the next mount.
1330 		 */
1331 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1332 		err = ubifs_write_master(c);
1333 		if (err)
1334 			goto out_lpt;
1335 	}
1336 
1337 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1338 	if (err)
1339 		goto out_lpt;
1340 
1341 	err = ubifs_replay_journal(c);
1342 	if (err)
1343 		goto out_journal;
1344 
1345 	/* Calculate 'min_idx_lebs' after journal replay */
1346 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1347 
1348 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1349 	if (err)
1350 		goto out_orphans;
1351 
1352 	if (!c->ro_mount) {
1353 		int lnum;
1354 
1355 		err = check_free_space(c);
1356 		if (err)
1357 			goto out_orphans;
1358 
1359 		/* Check for enough log space */
1360 		lnum = c->lhead_lnum + 1;
1361 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1362 			lnum = UBIFS_LOG_LNUM;
1363 		if (lnum == c->ltail_lnum) {
1364 			err = ubifs_consolidate_log(c);
1365 			if (err)
1366 				goto out_orphans;
1367 		}
1368 
1369 		if (c->need_recovery) {
1370 			err = ubifs_recover_size(c);
1371 			if (err)
1372 				goto out_orphans;
1373 			err = ubifs_rcvry_gc_commit(c);
1374 			if (err)
1375 				goto out_orphans;
1376 		} else {
1377 			err = take_gc_lnum(c);
1378 			if (err)
1379 				goto out_orphans;
1380 
1381 			/*
1382 			 * GC LEB may contain garbage if there was an unclean
1383 			 * reboot, and it should be un-mapped.
1384 			 */
1385 			err = ubifs_leb_unmap(c, c->gc_lnum);
1386 			if (err)
1387 				goto out_orphans;
1388 		}
1389 
1390 		err = dbg_check_lprops(c);
1391 		if (err)
1392 			goto out_orphans;
1393 	} else if (c->need_recovery) {
1394 		err = ubifs_recover_size(c);
1395 		if (err)
1396 			goto out_orphans;
1397 	} else {
1398 		/*
1399 		 * Even if we mount read-only, we have to set space in GC LEB
1400 		 * to proper value because this affects UBIFS free space
1401 		 * reporting. We do not want to have a situation when
1402 		 * re-mounting from R/O to R/W changes amount of free space.
1403 		 */
1404 		err = take_gc_lnum(c);
1405 		if (err)
1406 			goto out_orphans;
1407 	}
1408 
1409 	spin_lock(&ubifs_infos_lock);
1410 	list_add_tail(&c->infos_list, &ubifs_infos);
1411 	spin_unlock(&ubifs_infos_lock);
1412 
1413 	if (c->need_recovery) {
1414 		if (c->ro_mount)
1415 			ubifs_msg(c, "recovery deferred");
1416 		else {
1417 			c->need_recovery = 0;
1418 			ubifs_msg(c, "recovery completed");
1419 			/*
1420 			 * GC LEB has to be empty and taken at this point. But
1421 			 * the journal head LEBs may also be accounted as
1422 			 * "empty taken" if they are empty.
1423 			 */
1424 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1425 		}
1426 	} else
1427 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1428 
1429 	err = dbg_check_filesystem(c);
1430 	if (err)
1431 		goto out_infos;
1432 
1433 	err = dbg_debugfs_init_fs(c);
1434 	if (err)
1435 		goto out_infos;
1436 
1437 	c->mounting = 0;
1438 
1439 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1440 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1441 		  c->ro_mount ? ", R/O mode" : "");
1442 	x = (long long)c->main_lebs * c->leb_size;
1443 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1444 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1445 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1446 		  c->max_write_size);
1447 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1448 		  x, x >> 20, c->main_lebs,
1449 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1450 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1451 		  c->report_rp_size, c->report_rp_size >> 10);
1452 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1453 		  c->fmt_version, c->ro_compat_version,
1454 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1455 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1456 
1457 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1458 	dbg_gen("data journal heads:  %d",
1459 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1460 	dbg_gen("log LEBs:            %d (%d - %d)",
1461 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1462 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1463 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1464 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1465 		c->orph_lebs, c->orph_first, c->orph_last);
1466 	dbg_gen("main area LEBs:      %d (%d - %d)",
1467 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1468 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1469 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1470 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1471 		c->bi.old_idx_sz >> 20);
1472 	dbg_gen("key hash type:       %d", c->key_hash_type);
1473 	dbg_gen("tree fanout:         %d", c->fanout);
1474 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1475 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1476 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1477 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1478 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1479 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1480 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1481 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1482 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1483 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1484 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1485 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1486 	dbg_gen("dead watermark:      %d", c->dead_wm);
1487 	dbg_gen("dark watermark:      %d", c->dark_wm);
1488 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1489 	x = (long long)c->main_lebs * c->dark_wm;
1490 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1491 		x, x >> 10, x >> 20);
1492 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1493 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1494 		c->max_bud_bytes >> 20);
1495 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1496 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1497 		c->bg_bud_bytes >> 20);
1498 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1499 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1500 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1501 	dbg_gen("commit number:       %llu", c->cmt_no);
1502 
1503 	return 0;
1504 
1505 out_infos:
1506 	spin_lock(&ubifs_infos_lock);
1507 	list_del(&c->infos_list);
1508 	spin_unlock(&ubifs_infos_lock);
1509 out_orphans:
1510 	free_orphans(c);
1511 out_journal:
1512 	destroy_journal(c);
1513 out_lpt:
1514 	ubifs_lpt_free(c, 0);
1515 out_master:
1516 	kfree(c->mst_node);
1517 	kfree(c->rcvrd_mst_node);
1518 	if (c->bgt)
1519 		kthread_stop(c->bgt);
1520 out_wbufs:
1521 	free_wbufs(c);
1522 out_cbuf:
1523 	kfree(c->cbuf);
1524 out_free:
1525 	kfree(c->write_reserve_buf);
1526 	kfree(c->bu.buf);
1527 	vfree(c->ileb_buf);
1528 	vfree(c->sbuf);
1529 	kfree(c->bottom_up_buf);
1530 	ubifs_debugging_exit(c);
1531 	return err;
1532 }
1533 
1534 /**
1535  * ubifs_umount - un-mount UBIFS file-system.
1536  * @c: UBIFS file-system description object
1537  *
1538  * Note, this function is called to free allocated resourced when un-mounting,
1539  * as well as free resources when an error occurred while we were half way
1540  * through mounting (error path cleanup function). So it has to make sure the
1541  * resource was actually allocated before freeing it.
1542  */
ubifs_umount(struct ubifs_info * c)1543 static void ubifs_umount(struct ubifs_info *c)
1544 {
1545 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1546 		c->vi.vol_id);
1547 
1548 	dbg_debugfs_exit_fs(c);
1549 	spin_lock(&ubifs_infos_lock);
1550 	list_del(&c->infos_list);
1551 	spin_unlock(&ubifs_infos_lock);
1552 
1553 	if (c->bgt)
1554 		kthread_stop(c->bgt);
1555 
1556 	destroy_journal(c);
1557 	free_wbufs(c);
1558 	free_orphans(c);
1559 	ubifs_lpt_free(c, 0);
1560 
1561 	kfree(c->cbuf);
1562 	kfree(c->rcvrd_mst_node);
1563 	kfree(c->mst_node);
1564 	kfree(c->write_reserve_buf);
1565 	kfree(c->bu.buf);
1566 	vfree(c->ileb_buf);
1567 	vfree(c->sbuf);
1568 	kfree(c->bottom_up_buf);
1569 	ubifs_debugging_exit(c);
1570 }
1571 
1572 /**
1573  * ubifs_remount_rw - re-mount in read-write mode.
1574  * @c: UBIFS file-system description object
1575  *
1576  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1577  * mode. This function allocates the needed resources and re-mounts UBIFS in
1578  * read-write mode.
1579  */
ubifs_remount_rw(struct ubifs_info * c)1580 static int ubifs_remount_rw(struct ubifs_info *c)
1581 {
1582 	int err, lnum;
1583 
1584 	if (c->rw_incompat) {
1585 		ubifs_err(c, "the file-system is not R/W-compatible");
1586 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1587 			  c->fmt_version, c->ro_compat_version,
1588 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1589 		return -EROFS;
1590 	}
1591 
1592 	mutex_lock(&c->umount_mutex);
1593 	dbg_save_space_info(c);
1594 	c->remounting_rw = 1;
1595 	c->ro_mount = 0;
1596 
1597 	if (c->space_fixup) {
1598 		err = ubifs_fixup_free_space(c);
1599 		if (err)
1600 			goto out;
1601 	}
1602 
1603 	err = check_free_space(c);
1604 	if (err)
1605 		goto out;
1606 
1607 	if (c->old_leb_cnt != c->leb_cnt) {
1608 		struct ubifs_sb_node *sup;
1609 
1610 		sup = ubifs_read_sb_node(c);
1611 		if (IS_ERR(sup)) {
1612 			err = PTR_ERR(sup);
1613 			goto out;
1614 		}
1615 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1616 		err = ubifs_write_sb_node(c, sup);
1617 		kfree(sup);
1618 		if (err)
1619 			goto out;
1620 	}
1621 
1622 	if (c->need_recovery) {
1623 		ubifs_msg(c, "completing deferred recovery");
1624 		err = ubifs_write_rcvrd_mst_node(c);
1625 		if (err)
1626 			goto out;
1627 		err = ubifs_recover_size(c);
1628 		if (err)
1629 			goto out;
1630 		err = ubifs_clean_lebs(c, c->sbuf);
1631 		if (err)
1632 			goto out;
1633 		err = ubifs_recover_inl_heads(c, c->sbuf);
1634 		if (err)
1635 			goto out;
1636 	} else {
1637 		/* A readonly mount is not allowed to have orphans */
1638 		ubifs_assert(c, c->tot_orphans == 0);
1639 		err = ubifs_clear_orphans(c);
1640 		if (err)
1641 			goto out;
1642 	}
1643 
1644 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1645 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1646 		err = ubifs_write_master(c);
1647 		if (err)
1648 			goto out;
1649 	}
1650 
1651 	c->ileb_buf = vmalloc(c->leb_size);
1652 	if (!c->ileb_buf) {
1653 		err = -ENOMEM;
1654 		goto out;
1655 	}
1656 
1657 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1658 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1659 	if (!c->write_reserve_buf) {
1660 		err = -ENOMEM;
1661 		goto out;
1662 	}
1663 
1664 	err = ubifs_lpt_init(c, 0, 1);
1665 	if (err)
1666 		goto out;
1667 
1668 	/* Create background thread */
1669 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1670 	if (IS_ERR(c->bgt)) {
1671 		err = PTR_ERR(c->bgt);
1672 		c->bgt = NULL;
1673 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1674 			  c->bgt_name, err);
1675 		goto out;
1676 	}
1677 	wake_up_process(c->bgt);
1678 
1679 	c->orph_buf = vmalloc(c->leb_size);
1680 	if (!c->orph_buf) {
1681 		err = -ENOMEM;
1682 		goto out;
1683 	}
1684 
1685 	/* Check for enough log space */
1686 	lnum = c->lhead_lnum + 1;
1687 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1688 		lnum = UBIFS_LOG_LNUM;
1689 	if (lnum == c->ltail_lnum) {
1690 		err = ubifs_consolidate_log(c);
1691 		if (err)
1692 			goto out;
1693 	}
1694 
1695 	if (c->need_recovery)
1696 		err = ubifs_rcvry_gc_commit(c);
1697 	else
1698 		err = ubifs_leb_unmap(c, c->gc_lnum);
1699 	if (err)
1700 		goto out;
1701 
1702 	dbg_gen("re-mounted read-write");
1703 	c->remounting_rw = 0;
1704 
1705 	if (c->need_recovery) {
1706 		c->need_recovery = 0;
1707 		ubifs_msg(c, "deferred recovery completed");
1708 	} else {
1709 		/*
1710 		 * Do not run the debugging space check if the were doing
1711 		 * recovery, because when we saved the information we had the
1712 		 * file-system in a state where the TNC and lprops has been
1713 		 * modified in memory, but all the I/O operations (including a
1714 		 * commit) were deferred. So the file-system was in
1715 		 * "non-committed" state. Now the file-system is in committed
1716 		 * state, and of course the amount of free space will change
1717 		 * because, for example, the old index size was imprecise.
1718 		 */
1719 		err = dbg_check_space_info(c);
1720 	}
1721 
1722 	mutex_unlock(&c->umount_mutex);
1723 	return err;
1724 
1725 out:
1726 	c->ro_mount = 1;
1727 	vfree(c->orph_buf);
1728 	c->orph_buf = NULL;
1729 	if (c->bgt) {
1730 		kthread_stop(c->bgt);
1731 		c->bgt = NULL;
1732 	}
1733 	kfree(c->write_reserve_buf);
1734 	c->write_reserve_buf = NULL;
1735 	vfree(c->ileb_buf);
1736 	c->ileb_buf = NULL;
1737 	ubifs_lpt_free(c, 1);
1738 	c->remounting_rw = 0;
1739 	mutex_unlock(&c->umount_mutex);
1740 	return err;
1741 }
1742 
1743 /**
1744  * ubifs_remount_ro - re-mount in read-only mode.
1745  * @c: UBIFS file-system description object
1746  *
1747  * We assume VFS has stopped writing. Possibly the background thread could be
1748  * running a commit, however kthread_stop will wait in that case.
1749  */
ubifs_remount_ro(struct ubifs_info * c)1750 static void ubifs_remount_ro(struct ubifs_info *c)
1751 {
1752 	int i, err;
1753 
1754 	ubifs_assert(c, !c->need_recovery);
1755 	ubifs_assert(c, !c->ro_mount);
1756 
1757 	mutex_lock(&c->umount_mutex);
1758 	if (c->bgt) {
1759 		kthread_stop(c->bgt);
1760 		c->bgt = NULL;
1761 	}
1762 
1763 	dbg_save_space_info(c);
1764 
1765 	for (i = 0; i < c->jhead_cnt; i++) {
1766 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1767 		if (err)
1768 			ubifs_ro_mode(c, err);
1769 	}
1770 
1771 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1772 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1773 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1774 	err = ubifs_write_master(c);
1775 	if (err)
1776 		ubifs_ro_mode(c, err);
1777 
1778 	vfree(c->orph_buf);
1779 	c->orph_buf = NULL;
1780 	kfree(c->write_reserve_buf);
1781 	c->write_reserve_buf = NULL;
1782 	vfree(c->ileb_buf);
1783 	c->ileb_buf = NULL;
1784 	ubifs_lpt_free(c, 1);
1785 	c->ro_mount = 1;
1786 	err = dbg_check_space_info(c);
1787 	if (err)
1788 		ubifs_ro_mode(c, err);
1789 	mutex_unlock(&c->umount_mutex);
1790 }
1791 
ubifs_put_super(struct super_block * sb)1792 static void ubifs_put_super(struct super_block *sb)
1793 {
1794 	int i;
1795 	struct ubifs_info *c = sb->s_fs_info;
1796 
1797 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1798 
1799 	/*
1800 	 * The following asserts are only valid if there has not been a failure
1801 	 * of the media. For example, there will be dirty inodes if we failed
1802 	 * to write them back because of I/O errors.
1803 	 */
1804 	if (!c->ro_error) {
1805 		ubifs_assert(c, c->bi.idx_growth == 0);
1806 		ubifs_assert(c, c->bi.dd_growth == 0);
1807 		ubifs_assert(c, c->bi.data_growth == 0);
1808 	}
1809 
1810 	/*
1811 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1812 	 * and file system un-mount. Namely, it prevents the shrinker from
1813 	 * picking this superblock for shrinking - it will be just skipped if
1814 	 * the mutex is locked.
1815 	 */
1816 	mutex_lock(&c->umount_mutex);
1817 	if (!c->ro_mount) {
1818 		/*
1819 		 * First of all kill the background thread to make sure it does
1820 		 * not interfere with un-mounting and freeing resources.
1821 		 */
1822 		if (c->bgt) {
1823 			kthread_stop(c->bgt);
1824 			c->bgt = NULL;
1825 		}
1826 
1827 		/*
1828 		 * On fatal errors c->ro_error is set to 1, in which case we do
1829 		 * not write the master node.
1830 		 */
1831 		if (!c->ro_error) {
1832 			int err;
1833 
1834 			/* Synchronize write-buffers */
1835 			for (i = 0; i < c->jhead_cnt; i++) {
1836 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1837 				if (err)
1838 					ubifs_ro_mode(c, err);
1839 			}
1840 
1841 			/*
1842 			 * We are being cleanly unmounted which means the
1843 			 * orphans were killed - indicate this in the master
1844 			 * node. Also save the reserved GC LEB number.
1845 			 */
1846 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1847 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1848 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1849 			err = ubifs_write_master(c);
1850 			if (err)
1851 				/*
1852 				 * Recovery will attempt to fix the master area
1853 				 * next mount, so we just print a message and
1854 				 * continue to unmount normally.
1855 				 */
1856 				ubifs_err(c, "failed to write master node, error %d",
1857 					  err);
1858 		} else {
1859 			for (i = 0; i < c->jhead_cnt; i++)
1860 				/* Make sure write-buffer timers are canceled */
1861 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1862 		}
1863 	}
1864 
1865 	ubifs_umount(c);
1866 	ubi_close_volume(c->ubi);
1867 	mutex_unlock(&c->umount_mutex);
1868 }
1869 
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)1870 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1871 {
1872 	int err;
1873 	struct ubifs_info *c = sb->s_fs_info;
1874 
1875 	sync_filesystem(sb);
1876 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1877 
1878 	err = ubifs_parse_options(c, data, 1);
1879 	if (err) {
1880 		ubifs_err(c, "invalid or unknown remount parameter");
1881 		return err;
1882 	}
1883 
1884 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1885 		if (c->ro_error) {
1886 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1887 			return -EROFS;
1888 		}
1889 		if (c->ro_media) {
1890 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1891 			return -EROFS;
1892 		}
1893 		err = ubifs_remount_rw(c);
1894 		if (err)
1895 			return err;
1896 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1897 		if (c->ro_error) {
1898 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1899 			return -EROFS;
1900 		}
1901 		ubifs_remount_ro(c);
1902 	}
1903 
1904 	if (c->bulk_read == 1)
1905 		bu_init(c);
1906 	else {
1907 		dbg_gen("disable bulk-read");
1908 		mutex_lock(&c->bu_mutex);
1909 		kfree(c->bu.buf);
1910 		c->bu.buf = NULL;
1911 		mutex_unlock(&c->bu_mutex);
1912 	}
1913 
1914 	if (!c->need_recovery)
1915 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1916 
1917 	return 0;
1918 }
1919 
1920 const struct super_operations ubifs_super_operations = {
1921 	.alloc_inode   = ubifs_alloc_inode,
1922 	.destroy_inode = ubifs_destroy_inode,
1923 	.put_super     = ubifs_put_super,
1924 	.write_inode   = ubifs_write_inode,
1925 	.evict_inode   = ubifs_evict_inode,
1926 	.statfs        = ubifs_statfs,
1927 	.dirty_inode   = ubifs_dirty_inode,
1928 	.remount_fs    = ubifs_remount_fs,
1929 	.show_options  = ubifs_show_options,
1930 	.sync_fs       = ubifs_sync_fs,
1931 };
1932 
1933 /**
1934  * open_ubi - parse UBI device name string and open the UBI device.
1935  * @name: UBI volume name
1936  * @mode: UBI volume open mode
1937  *
1938  * The primary method of mounting UBIFS is by specifying the UBI volume
1939  * character device node path. However, UBIFS may also be mounted withoug any
1940  * character device node using one of the following methods:
1941  *
1942  * o ubiX_Y    - mount UBI device number X, volume Y;
1943  * o ubiY      - mount UBI device number 0, volume Y;
1944  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1945  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1946  *
1947  * Alternative '!' separator may be used instead of ':' (because some shells
1948  * like busybox may interpret ':' as an NFS host name separator). This function
1949  * returns UBI volume description object in case of success and a negative
1950  * error code in case of failure.
1951  */
open_ubi(const char * name,int mode)1952 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1953 {
1954 	struct ubi_volume_desc *ubi;
1955 	int dev, vol;
1956 	char *endptr;
1957 
1958 	if (!name || !*name)
1959 		return ERR_PTR(-EINVAL);
1960 
1961 	/* First, try to open using the device node path method */
1962 	ubi = ubi_open_volume_path(name, mode);
1963 	if (!IS_ERR(ubi))
1964 		return ubi;
1965 
1966 	/* Try the "nodev" method */
1967 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1968 		return ERR_PTR(-EINVAL);
1969 
1970 	/* ubi:NAME method */
1971 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1972 		return ubi_open_volume_nm(0, name + 4, mode);
1973 
1974 	if (!isdigit(name[3]))
1975 		return ERR_PTR(-EINVAL);
1976 
1977 	dev = simple_strtoul(name + 3, &endptr, 0);
1978 
1979 	/* ubiY method */
1980 	if (*endptr == '\0')
1981 		return ubi_open_volume(0, dev, mode);
1982 
1983 	/* ubiX_Y method */
1984 	if (*endptr == '_' && isdigit(endptr[1])) {
1985 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1986 		if (*endptr != '\0')
1987 			return ERR_PTR(-EINVAL);
1988 		return ubi_open_volume(dev, vol, mode);
1989 	}
1990 
1991 	/* ubiX:NAME method */
1992 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1993 		return ubi_open_volume_nm(dev, ++endptr, mode);
1994 
1995 	return ERR_PTR(-EINVAL);
1996 }
1997 
alloc_ubifs_info(struct ubi_volume_desc * ubi)1998 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1999 {
2000 	struct ubifs_info *c;
2001 
2002 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2003 	if (c) {
2004 		spin_lock_init(&c->cnt_lock);
2005 		spin_lock_init(&c->cs_lock);
2006 		spin_lock_init(&c->buds_lock);
2007 		spin_lock_init(&c->space_lock);
2008 		spin_lock_init(&c->orphan_lock);
2009 		init_rwsem(&c->commit_sem);
2010 		mutex_init(&c->lp_mutex);
2011 		mutex_init(&c->tnc_mutex);
2012 		mutex_init(&c->log_mutex);
2013 		mutex_init(&c->umount_mutex);
2014 		mutex_init(&c->bu_mutex);
2015 		mutex_init(&c->write_reserve_mutex);
2016 		init_waitqueue_head(&c->cmt_wq);
2017 		c->buds = RB_ROOT;
2018 		c->old_idx = RB_ROOT;
2019 		c->size_tree = RB_ROOT;
2020 		c->orph_tree = RB_ROOT;
2021 		INIT_LIST_HEAD(&c->infos_list);
2022 		INIT_LIST_HEAD(&c->idx_gc);
2023 		INIT_LIST_HEAD(&c->replay_list);
2024 		INIT_LIST_HEAD(&c->replay_buds);
2025 		INIT_LIST_HEAD(&c->uncat_list);
2026 		INIT_LIST_HEAD(&c->empty_list);
2027 		INIT_LIST_HEAD(&c->freeable_list);
2028 		INIT_LIST_HEAD(&c->frdi_idx_list);
2029 		INIT_LIST_HEAD(&c->unclean_leb_list);
2030 		INIT_LIST_HEAD(&c->old_buds);
2031 		INIT_LIST_HEAD(&c->orph_list);
2032 		INIT_LIST_HEAD(&c->orph_new);
2033 		c->no_chk_data_crc = 1;
2034 		c->assert_action = ASSACT_RO;
2035 
2036 		c->highest_inum = UBIFS_FIRST_INO;
2037 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2038 
2039 		ubi_get_volume_info(ubi, &c->vi);
2040 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2041 	}
2042 	return c;
2043 }
2044 
ubifs_fill_super(struct super_block * sb,void * data,int silent)2045 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2046 {
2047 	struct ubifs_info *c = sb->s_fs_info;
2048 	struct inode *root;
2049 	int err;
2050 
2051 	c->vfs_sb = sb;
2052 	/* Re-open the UBI device in read-write mode */
2053 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2054 	if (IS_ERR(c->ubi)) {
2055 		err = PTR_ERR(c->ubi);
2056 		goto out;
2057 	}
2058 
2059 	err = ubifs_parse_options(c, data, 0);
2060 	if (err)
2061 		goto out_close;
2062 
2063 	/*
2064 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2065 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2066 	 * which means the user would have to wait not just for their own I/O
2067 	 * but the read-ahead I/O as well i.e. completely pointless.
2068 	 *
2069 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2070 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2071 	 * writeback happening.
2072 	 */
2073 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2074 				   c->vi.vol_id);
2075 	if (err)
2076 		goto out_close;
2077 
2078 	sb->s_fs_info = c;
2079 	sb->s_magic = UBIFS_SUPER_MAGIC;
2080 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2081 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2082 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2083 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2084 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2085 	sb->s_op = &ubifs_super_operations;
2086 #ifdef CONFIG_UBIFS_FS_XATTR
2087 	sb->s_xattr = ubifs_xattr_handlers;
2088 #endif
2089 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
2090 	sb->s_cop = &ubifs_crypt_operations;
2091 #endif
2092 
2093 	mutex_lock(&c->umount_mutex);
2094 	err = mount_ubifs(c);
2095 	if (err) {
2096 		ubifs_assert(c, err < 0);
2097 		goto out_unlock;
2098 	}
2099 
2100 	/* Read the root inode */
2101 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2102 	if (IS_ERR(root)) {
2103 		err = PTR_ERR(root);
2104 		goto out_umount;
2105 	}
2106 
2107 	sb->s_root = d_make_root(root);
2108 	if (!sb->s_root) {
2109 		err = -ENOMEM;
2110 		goto out_umount;
2111 	}
2112 
2113 	mutex_unlock(&c->umount_mutex);
2114 	return 0;
2115 
2116 out_umount:
2117 	ubifs_umount(c);
2118 out_unlock:
2119 	mutex_unlock(&c->umount_mutex);
2120 out_close:
2121 	ubi_close_volume(c->ubi);
2122 out:
2123 	return err;
2124 }
2125 
sb_test(struct super_block * sb,void * data)2126 static int sb_test(struct super_block *sb, void *data)
2127 {
2128 	struct ubifs_info *c1 = data;
2129 	struct ubifs_info *c = sb->s_fs_info;
2130 
2131 	return c->vi.cdev == c1->vi.cdev;
2132 }
2133 
sb_set(struct super_block * sb,void * data)2134 static int sb_set(struct super_block *sb, void *data)
2135 {
2136 	sb->s_fs_info = data;
2137 	return set_anon_super(sb, NULL);
2138 }
2139 
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2140 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2141 			const char *name, void *data)
2142 {
2143 	struct ubi_volume_desc *ubi;
2144 	struct ubifs_info *c;
2145 	struct super_block *sb;
2146 	int err;
2147 
2148 	dbg_gen("name %s, flags %#x", name, flags);
2149 
2150 	/*
2151 	 * Get UBI device number and volume ID. Mount it read-only so far
2152 	 * because this might be a new mount point, and UBI allows only one
2153 	 * read-write user at a time.
2154 	 */
2155 	ubi = open_ubi(name, UBI_READONLY);
2156 	if (IS_ERR(ubi)) {
2157 		if (!(flags & SB_SILENT))
2158 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2159 			       current->pid, name, (int)PTR_ERR(ubi));
2160 		return ERR_CAST(ubi);
2161 	}
2162 
2163 	c = alloc_ubifs_info(ubi);
2164 	if (!c) {
2165 		err = -ENOMEM;
2166 		goto out_close;
2167 	}
2168 
2169 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2170 
2171 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2172 	if (IS_ERR(sb)) {
2173 		err = PTR_ERR(sb);
2174 		kfree(c);
2175 		goto out_close;
2176 	}
2177 
2178 	if (sb->s_root) {
2179 		struct ubifs_info *c1 = sb->s_fs_info;
2180 		kfree(c);
2181 		/* A new mount point for already mounted UBIFS */
2182 		dbg_gen("this ubi volume is already mounted");
2183 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2184 			err = -EBUSY;
2185 			goto out_deact;
2186 		}
2187 	} else {
2188 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2189 		if (err)
2190 			goto out_deact;
2191 		/* We do not support atime */
2192 		sb->s_flags |= SB_ACTIVE;
2193 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2194 		sb->s_flags |= SB_NOATIME;
2195 #else
2196 		ubifs_msg(c, "full atime support is enabled.");
2197 #endif
2198 	}
2199 
2200 	/* 'fill_super()' opens ubi again so we must close it here */
2201 	ubi_close_volume(ubi);
2202 
2203 	return dget(sb->s_root);
2204 
2205 out_deact:
2206 	deactivate_locked_super(sb);
2207 out_close:
2208 	ubi_close_volume(ubi);
2209 	return ERR_PTR(err);
2210 }
2211 
kill_ubifs_super(struct super_block * s)2212 static void kill_ubifs_super(struct super_block *s)
2213 {
2214 	struct ubifs_info *c = s->s_fs_info;
2215 	kill_anon_super(s);
2216 	kfree(c);
2217 }
2218 
2219 static struct file_system_type ubifs_fs_type = {
2220 	.name    = "ubifs",
2221 	.owner   = THIS_MODULE,
2222 	.mount   = ubifs_mount,
2223 	.kill_sb = kill_ubifs_super,
2224 };
2225 MODULE_ALIAS_FS("ubifs");
2226 
2227 /*
2228  * Inode slab cache constructor.
2229  */
inode_slab_ctor(void * obj)2230 static void inode_slab_ctor(void *obj)
2231 {
2232 	struct ubifs_inode *ui = obj;
2233 	inode_init_once(&ui->vfs_inode);
2234 }
2235 
ubifs_init(void)2236 static int __init ubifs_init(void)
2237 {
2238 	int err;
2239 
2240 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2241 
2242 	/* Make sure node sizes are 8-byte aligned */
2243 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2244 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2245 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2246 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2247 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2248 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2249 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2250 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2251 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2252 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2253 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2254 
2255 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2256 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2257 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2258 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2259 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2260 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2261 
2262 	/* Check min. node size */
2263 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2264 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2265 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2266 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2267 
2268 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2269 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2270 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2271 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2272 
2273 	/* Defined node sizes */
2274 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2275 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2276 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2277 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2278 
2279 	/*
2280 	 * We use 2 bit wide bit-fields to store compression type, which should
2281 	 * be amended if more compressors are added. The bit-fields are:
2282 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2283 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2284 	 */
2285 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2286 
2287 	/*
2288 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2289 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2290 	 */
2291 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2292 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2293 		       current->pid, (unsigned int)PAGE_SIZE);
2294 		return -EINVAL;
2295 	}
2296 
2297 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2298 				sizeof(struct ubifs_inode), 0,
2299 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2300 				SLAB_ACCOUNT, &inode_slab_ctor);
2301 	if (!ubifs_inode_slab)
2302 		return -ENOMEM;
2303 
2304 	err = register_shrinker(&ubifs_shrinker_info);
2305 	if (err)
2306 		goto out_slab;
2307 
2308 	err = ubifs_compressors_init();
2309 	if (err)
2310 		goto out_shrinker;
2311 
2312 	err = dbg_debugfs_init();
2313 	if (err)
2314 		goto out_compr;
2315 
2316 	err = register_filesystem(&ubifs_fs_type);
2317 	if (err) {
2318 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2319 		       current->pid, err);
2320 		goto out_dbg;
2321 	}
2322 	return 0;
2323 
2324 out_dbg:
2325 	dbg_debugfs_exit();
2326 out_compr:
2327 	ubifs_compressors_exit();
2328 out_shrinker:
2329 	unregister_shrinker(&ubifs_shrinker_info);
2330 out_slab:
2331 	kmem_cache_destroy(ubifs_inode_slab);
2332 	return err;
2333 }
2334 /* late_initcall to let compressors initialize first */
2335 late_initcall(ubifs_init);
2336 
ubifs_exit(void)2337 static void __exit ubifs_exit(void)
2338 {
2339 	WARN_ON(!list_empty(&ubifs_infos));
2340 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2341 
2342 	dbg_debugfs_exit();
2343 	ubifs_compressors_exit();
2344 	unregister_shrinker(&ubifs_shrinker_info);
2345 
2346 	/*
2347 	 * Make sure all delayed rcu free inodes are flushed before we
2348 	 * destroy cache.
2349 	 */
2350 	rcu_barrier();
2351 	kmem_cache_destroy(ubifs_inode_slab);
2352 	unregister_filesystem(&ubifs_fs_type);
2353 }
2354 module_exit(ubifs_exit);
2355 
2356 MODULE_LICENSE("GPL");
2357 MODULE_VERSION(__stringify(UBIFS_VERSION));
2358 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2359 MODULE_DESCRIPTION("UBIFS - UBI File System");
2360