1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
__udf_clear_extent_cache(struct inode * inode)64 static void __udf_clear_extent_cache(struct inode *inode)
65 {
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72 }
73
74 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)75 static void udf_clear_extent_cache(struct inode *inode)
76 {
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82 }
83
84 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87 {
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104 }
105
106 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109 {
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129
udf_evict_inode(struct inode * inode)130 void udf_evict_inode(struct inode *inode)
131 {
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!is_bad_inode(inode)) {
136 if (!inode->i_nlink) {
137 want_delete = 1;
138 udf_setsize(inode, 0);
139 udf_update_inode(inode, IS_SYNC(inode));
140 }
141 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
142 inode->i_size != iinfo->i_lenExtents) {
143 udf_warn(inode->i_sb,
144 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
145 inode->i_ino, inode->i_mode,
146 (unsigned long long)inode->i_size,
147 (unsigned long long)iinfo->i_lenExtents);
148 }
149 }
150 truncate_inode_pages_final(&inode->i_data);
151 invalidate_inode_buffers(inode);
152 clear_inode(inode);
153 kfree(iinfo->i_data);
154 iinfo->i_data = NULL;
155 udf_clear_extent_cache(inode);
156 if (want_delete) {
157 udf_free_inode(inode);
158 }
159 }
160
udf_write_failed(struct address_space * mapping,loff_t to)161 static void udf_write_failed(struct address_space *mapping, loff_t to)
162 {
163 struct inode *inode = mapping->host;
164 struct udf_inode_info *iinfo = UDF_I(inode);
165 loff_t isize = inode->i_size;
166
167 if (to > isize) {
168 truncate_pagecache(inode, isize);
169 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
170 down_write(&iinfo->i_data_sem);
171 udf_clear_extent_cache(inode);
172 udf_truncate_extents(inode);
173 up_write(&iinfo->i_data_sem);
174 }
175 }
176 }
177
udf_writepage(struct page * page,struct writeback_control * wbc)178 static int udf_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 return block_write_full_page(page, udf_get_block, wbc);
181 }
182
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)183 static int udf_writepages(struct address_space *mapping,
184 struct writeback_control *wbc)
185 {
186 return mpage_writepages(mapping, wbc, udf_get_block);
187 }
188
udf_readpage(struct file * file,struct page * page)189 static int udf_readpage(struct file *file, struct page *page)
190 {
191 return mpage_readpage(page, udf_get_block);
192 }
193
udf_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)194 static int udf_readpages(struct file *file, struct address_space *mapping,
195 struct list_head *pages, unsigned nr_pages)
196 {
197 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
198 }
199
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)200 static int udf_write_begin(struct file *file, struct address_space *mapping,
201 loff_t pos, unsigned len, unsigned flags,
202 struct page **pagep, void **fsdata)
203 {
204 int ret;
205
206 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
207 if (unlikely(ret))
208 udf_write_failed(mapping, pos + len);
209 return ret;
210 }
211
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)212 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
213 {
214 struct file *file = iocb->ki_filp;
215 struct address_space *mapping = file->f_mapping;
216 struct inode *inode = mapping->host;
217 size_t count = iov_iter_count(iter);
218 ssize_t ret;
219
220 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
221 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
222 udf_write_failed(mapping, iocb->ki_pos + count);
223 return ret;
224 }
225
udf_bmap(struct address_space * mapping,sector_t block)226 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
227 {
228 return generic_block_bmap(mapping, block, udf_get_block);
229 }
230
231 const struct address_space_operations udf_aops = {
232 .readpage = udf_readpage,
233 .readpages = udf_readpages,
234 .writepage = udf_writepage,
235 .writepages = udf_writepages,
236 .write_begin = udf_write_begin,
237 .write_end = generic_write_end,
238 .direct_IO = udf_direct_IO,
239 .bmap = udf_bmap,
240 };
241
242 /*
243 * Expand file stored in ICB to a normal one-block-file
244 *
245 * This function requires i_data_sem for writing and releases it.
246 * This function requires i_mutex held
247 */
udf_expand_file_adinicb(struct inode * inode)248 int udf_expand_file_adinicb(struct inode *inode)
249 {
250 struct page *page;
251 char *kaddr;
252 struct udf_inode_info *iinfo = UDF_I(inode);
253 int err;
254
255 WARN_ON_ONCE(!inode_is_locked(inode));
256 if (!iinfo->i_lenAlloc) {
257 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
258 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
259 else
260 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
261 /* from now on we have normal address_space methods */
262 inode->i_data.a_ops = &udf_aops;
263 up_write(&iinfo->i_data_sem);
264 mark_inode_dirty(inode);
265 return 0;
266 }
267 /*
268 * Release i_data_sem so that we can lock a page - page lock ranks
269 * above i_data_sem. i_mutex still protects us against file changes.
270 */
271 up_write(&iinfo->i_data_sem);
272
273 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
274 if (!page)
275 return -ENOMEM;
276
277 if (!PageUptodate(page)) {
278 kaddr = kmap_atomic(page);
279 memset(kaddr + iinfo->i_lenAlloc, 0x00,
280 PAGE_SIZE - iinfo->i_lenAlloc);
281 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
282 iinfo->i_lenAlloc);
283 flush_dcache_page(page);
284 SetPageUptodate(page);
285 kunmap_atomic(kaddr);
286 }
287 down_write(&iinfo->i_data_sem);
288 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
289 iinfo->i_lenAlloc);
290 iinfo->i_lenAlloc = 0;
291 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
292 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
293 else
294 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
295 /* from now on we have normal address_space methods */
296 inode->i_data.a_ops = &udf_aops;
297 set_page_dirty(page);
298 unlock_page(page);
299 up_write(&iinfo->i_data_sem);
300 err = filemap_fdatawrite(inode->i_mapping);
301 if (err) {
302 /* Restore everything back so that we don't lose data... */
303 lock_page(page);
304 down_write(&iinfo->i_data_sem);
305 kaddr = kmap_atomic(page);
306 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 iinfo->i_lenAlloc = inode->i_size;
312 up_write(&iinfo->i_data_sem);
313 }
314 put_page(page);
315 mark_inode_dirty(inode);
316
317 return err;
318 }
319
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)320 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
321 udf_pblk_t *block, int *err)
322 {
323 udf_pblk_t newblock;
324 struct buffer_head *dbh = NULL;
325 struct kernel_lb_addr eloc;
326 uint8_t alloctype;
327 struct extent_position epos;
328
329 struct udf_fileident_bh sfibh, dfibh;
330 loff_t f_pos = udf_ext0_offset(inode);
331 int size = udf_ext0_offset(inode) + inode->i_size;
332 struct fileIdentDesc cfi, *sfi, *dfi;
333 struct udf_inode_info *iinfo = UDF_I(inode);
334
335 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
336 alloctype = ICBTAG_FLAG_AD_SHORT;
337 else
338 alloctype = ICBTAG_FLAG_AD_LONG;
339
340 if (!inode->i_size) {
341 iinfo->i_alloc_type = alloctype;
342 mark_inode_dirty(inode);
343 return NULL;
344 }
345
346 /* alloc block, and copy data to it */
347 *block = udf_new_block(inode->i_sb, inode,
348 iinfo->i_location.partitionReferenceNum,
349 iinfo->i_location.logicalBlockNum, err);
350 if (!(*block))
351 return NULL;
352 newblock = udf_get_pblock(inode->i_sb, *block,
353 iinfo->i_location.partitionReferenceNum,
354 0);
355 if (!newblock)
356 return NULL;
357 dbh = udf_tgetblk(inode->i_sb, newblock);
358 if (!dbh)
359 return NULL;
360 lock_buffer(dbh);
361 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
362 set_buffer_uptodate(dbh);
363 unlock_buffer(dbh);
364 mark_buffer_dirty_inode(dbh, inode);
365
366 sfibh.soffset = sfibh.eoffset =
367 f_pos & (inode->i_sb->s_blocksize - 1);
368 sfibh.sbh = sfibh.ebh = NULL;
369 dfibh.soffset = dfibh.eoffset = 0;
370 dfibh.sbh = dfibh.ebh = dbh;
371 while (f_pos < size) {
372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
373 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
374 NULL, NULL, NULL);
375 if (!sfi) {
376 brelse(dbh);
377 return NULL;
378 }
379 iinfo->i_alloc_type = alloctype;
380 sfi->descTag.tagLocation = cpu_to_le32(*block);
381 dfibh.soffset = dfibh.eoffset;
382 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
383 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
384 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
385 sfi->fileIdent +
386 le16_to_cpu(sfi->lengthOfImpUse))) {
387 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
388 brelse(dbh);
389 return NULL;
390 }
391 }
392 mark_buffer_dirty_inode(dbh, inode);
393
394 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409 }
410
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)411 static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413 {
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 /*
436 * Block beyond EOF and prealloc extents? Just discard preallocation
437 * as it is not useful and complicates things.
438 */
439 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
440 udf_discard_prealloc(inode);
441 udf_clear_extent_cache(inode);
442 phys = inode_getblk(inode, block, &err, &new);
443 if (!phys)
444 goto abort;
445
446 if (new)
447 set_buffer_new(bh_result);
448 map_bh(bh_result, inode->i_sb, phys);
449
450 abort:
451 up_write(&iinfo->i_data_sem);
452 return err;
453 }
454
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)455 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
456 int create, int *err)
457 {
458 struct buffer_head *bh;
459 struct buffer_head dummy;
460
461 dummy.b_state = 0;
462 dummy.b_blocknr = -1000;
463 *err = udf_get_block(inode, block, &dummy, create);
464 if (!*err && buffer_mapped(&dummy)) {
465 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
466 if (buffer_new(&dummy)) {
467 lock_buffer(bh);
468 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
469 set_buffer_uptodate(bh);
470 unlock_buffer(bh);
471 mark_buffer_dirty_inode(bh, inode);
472 }
473 return bh;
474 }
475
476 return NULL;
477 }
478
479 /* Extend the file with new blocks totaling 'new_block_bytes',
480 * return the number of extents added
481 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)482 static int udf_do_extend_file(struct inode *inode,
483 struct extent_position *last_pos,
484 struct kernel_long_ad *last_ext,
485 loff_t new_block_bytes)
486 {
487 uint32_t add;
488 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
489 struct super_block *sb = inode->i_sb;
490 struct udf_inode_info *iinfo;
491 int err;
492
493 /* The previous extent is fake and we should not extend by anything
494 * - there's nothing to do... */
495 if (!new_block_bytes && fake)
496 return 0;
497
498 iinfo = UDF_I(inode);
499 /* Round the last extent up to a multiple of block size */
500 if (last_ext->extLength & (sb->s_blocksize - 1)) {
501 last_ext->extLength =
502 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
503 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
504 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
505 iinfo->i_lenExtents =
506 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
507 ~(sb->s_blocksize - 1);
508 }
509
510 /* Can we merge with the previous extent? */
511 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
512 EXT_NOT_RECORDED_NOT_ALLOCATED) {
513 add = (1 << 30) - sb->s_blocksize -
514 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
515 if (add > new_block_bytes)
516 add = new_block_bytes;
517 new_block_bytes -= add;
518 last_ext->extLength += add;
519 }
520
521 if (fake) {
522 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
523 last_ext->extLength, 1);
524 if (err < 0)
525 goto out_err;
526 count++;
527 } else {
528 struct kernel_lb_addr tmploc;
529 uint32_t tmplen;
530
531 udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 last_ext->extLength, 1);
533
534 /*
535 * We've rewritten the last extent. If we are going to add
536 * more extents, we may need to enter possible following
537 * empty indirect extent.
538 */
539 if (new_block_bytes)
540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 }
542
543 /* Managed to do everything necessary? */
544 if (!new_block_bytes)
545 goto out;
546
547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 last_ext->extLocation.logicalBlockNum = 0;
549 last_ext->extLocation.partitionReferenceNum = 0;
550 add = (1 << 30) - sb->s_blocksize;
551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552
553 /* Create enough extents to cover the whole hole */
554 while (new_block_bytes > add) {
555 new_block_bytes -= add;
556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 last_ext->extLength, 1);
558 if (err)
559 goto out_err;
560 count++;
561 }
562 if (new_block_bytes) {
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 new_block_bytes;
565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 last_ext->extLength, 1);
567 if (err)
568 goto out_err;
569 count++;
570 }
571
572 out:
573 /* last_pos should point to the last written extent... */
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 last_pos->offset -= sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 last_pos->offset -= sizeof(struct long_ad);
578 else
579 return -EIO;
580
581 return count;
582 out_err:
583 /* Remove extents we've created so far */
584 udf_clear_extent_cache(inode);
585 udf_truncate_extents(inode);
586 return err;
587 }
588
589 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)590 static void udf_do_extend_final_block(struct inode *inode,
591 struct extent_position *last_pos,
592 struct kernel_long_ad *last_ext,
593 uint32_t new_elen)
594 {
595 uint32_t added_bytes;
596
597 /*
598 * Extent already large enough? It may be already rounded up to block
599 * size...
600 */
601 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
602 return;
603 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
604 last_ext->extLength += added_bytes;
605 UDF_I(inode)->i_lenExtents += added_bytes;
606
607 udf_write_aext(inode, last_pos, &last_ext->extLocation,
608 last_ext->extLength, 1);
609 }
610
udf_extend_file(struct inode * inode,loff_t newsize)611 static int udf_extend_file(struct inode *inode, loff_t newsize)
612 {
613
614 struct extent_position epos;
615 struct kernel_lb_addr eloc;
616 uint32_t elen;
617 int8_t etype;
618 struct super_block *sb = inode->i_sb;
619 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
620 loff_t new_elen;
621 int adsize;
622 struct udf_inode_info *iinfo = UDF_I(inode);
623 struct kernel_long_ad extent;
624 int err = 0;
625 bool within_last_ext;
626
627 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
628 adsize = sizeof(struct short_ad);
629 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
630 adsize = sizeof(struct long_ad);
631 else
632 BUG();
633
634 /*
635 * When creating hole in file, just don't bother with preserving
636 * preallocation. It likely won't be very useful anyway.
637 */
638 udf_discard_prealloc(inode);
639
640 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
641 within_last_ext = (etype != -1);
642 /* We don't expect extents past EOF... */
643 WARN_ON_ONCE(within_last_ext &&
644 elen > ((loff_t)offset + 1) << inode->i_blkbits);
645
646 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
647 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
648 /* File has no extents at all or has empty last
649 * indirect extent! Create a fake extent... */
650 extent.extLocation.logicalBlockNum = 0;
651 extent.extLocation.partitionReferenceNum = 0;
652 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
653 } else {
654 epos.offset -= adsize;
655 etype = udf_next_aext(inode, &epos, &extent.extLocation,
656 &extent.extLength, 0);
657 extent.extLength |= etype << 30;
658 }
659
660 new_elen = ((loff_t)offset << inode->i_blkbits) |
661 (newsize & (sb->s_blocksize - 1));
662
663 /* File has extent covering the new size (could happen when extending
664 * inside a block)?
665 */
666 if (within_last_ext) {
667 /* Extending file within the last file block */
668 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
669 } else {
670 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
671 }
672
673 if (err < 0)
674 goto out;
675 err = 0;
676 iinfo->i_lenExtents = newsize;
677 out:
678 brelse(epos.bh);
679 return err;
680 }
681
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)682 static sector_t inode_getblk(struct inode *inode, sector_t block,
683 int *err, int *new)
684 {
685 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
686 struct extent_position prev_epos, cur_epos, next_epos;
687 int count = 0, startnum = 0, endnum = 0;
688 uint32_t elen = 0, tmpelen;
689 struct kernel_lb_addr eloc, tmpeloc;
690 int c = 1;
691 loff_t lbcount = 0, b_off = 0;
692 udf_pblk_t newblocknum, newblock = 0;
693 sector_t offset = 0;
694 int8_t etype;
695 struct udf_inode_info *iinfo = UDF_I(inode);
696 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
697 int lastblock = 0;
698 bool isBeyondEOF;
699
700 *err = 0;
701 *new = 0;
702 prev_epos.offset = udf_file_entry_alloc_offset(inode);
703 prev_epos.block = iinfo->i_location;
704 prev_epos.bh = NULL;
705 cur_epos = next_epos = prev_epos;
706 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
707
708 /* find the extent which contains the block we are looking for.
709 alternate between laarr[0] and laarr[1] for locations of the
710 current extent, and the previous extent */
711 do {
712 if (prev_epos.bh != cur_epos.bh) {
713 brelse(prev_epos.bh);
714 get_bh(cur_epos.bh);
715 prev_epos.bh = cur_epos.bh;
716 }
717 if (cur_epos.bh != next_epos.bh) {
718 brelse(cur_epos.bh);
719 get_bh(next_epos.bh);
720 cur_epos.bh = next_epos.bh;
721 }
722
723 lbcount += elen;
724
725 prev_epos.block = cur_epos.block;
726 cur_epos.block = next_epos.block;
727
728 prev_epos.offset = cur_epos.offset;
729 cur_epos.offset = next_epos.offset;
730
731 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
732 if (etype == -1)
733 break;
734
735 c = !c;
736
737 laarr[c].extLength = (etype << 30) | elen;
738 laarr[c].extLocation = eloc;
739
740 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
741 pgoal = eloc.logicalBlockNum +
742 ((elen + inode->i_sb->s_blocksize - 1) >>
743 inode->i_sb->s_blocksize_bits);
744
745 count++;
746 } while (lbcount + elen <= b_off);
747
748 b_off -= lbcount;
749 offset = b_off >> inode->i_sb->s_blocksize_bits;
750 /*
751 * Move prev_epos and cur_epos into indirect extent if we are at
752 * the pointer to it
753 */
754 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
755 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
756
757 /* if the extent is allocated and recorded, return the block
758 if the extent is not a multiple of the blocksize, round up */
759
760 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
761 if (elen & (inode->i_sb->s_blocksize - 1)) {
762 elen = EXT_RECORDED_ALLOCATED |
763 ((elen + inode->i_sb->s_blocksize - 1) &
764 ~(inode->i_sb->s_blocksize - 1));
765 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
766 }
767 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
768 goto out_free;
769 }
770
771 /* Are we beyond EOF and preallocated extent? */
772 if (etype == -1) {
773 int ret;
774 loff_t hole_len;
775
776 isBeyondEOF = true;
777 if (count) {
778 if (c)
779 laarr[0] = laarr[1];
780 startnum = 1;
781 } else {
782 /* Create a fake extent when there's not one */
783 memset(&laarr[0].extLocation, 0x00,
784 sizeof(struct kernel_lb_addr));
785 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
786 /* Will udf_do_extend_file() create real extent from
787 a fake one? */
788 startnum = (offset > 0);
789 }
790 /* Create extents for the hole between EOF and offset */
791 hole_len = (loff_t)offset << inode->i_blkbits;
792 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
793 if (ret < 0) {
794 *err = ret;
795 goto out_free;
796 }
797 c = 0;
798 offset = 0;
799 count += ret;
800 /*
801 * Is there any real extent? - otherwise we overwrite the fake
802 * one...
803 */
804 if (count)
805 c = !c;
806 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
807 inode->i_sb->s_blocksize;
808 memset(&laarr[c].extLocation, 0x00,
809 sizeof(struct kernel_lb_addr));
810 count++;
811 endnum = c + 1;
812 lastblock = 1;
813 } else {
814 isBeyondEOF = false;
815 endnum = startnum = ((count > 2) ? 2 : count);
816
817 /* if the current extent is in position 0,
818 swap it with the previous */
819 if (!c && count != 1) {
820 laarr[2] = laarr[0];
821 laarr[0] = laarr[1];
822 laarr[1] = laarr[2];
823 c = 1;
824 }
825
826 /* if the current block is located in an extent,
827 read the next extent */
828 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
829 if (etype != -1) {
830 laarr[c + 1].extLength = (etype << 30) | elen;
831 laarr[c + 1].extLocation = eloc;
832 count++;
833 startnum++;
834 endnum++;
835 } else
836 lastblock = 1;
837 }
838
839 /* if the current extent is not recorded but allocated, get the
840 * block in the extent corresponding to the requested block */
841 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
842 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
843 else { /* otherwise, allocate a new block */
844 if (iinfo->i_next_alloc_block == block)
845 goal = iinfo->i_next_alloc_goal;
846
847 if (!goal) {
848 if (!(goal = pgoal)) /* XXX: what was intended here? */
849 goal = iinfo->i_location.logicalBlockNum + 1;
850 }
851
852 newblocknum = udf_new_block(inode->i_sb, inode,
853 iinfo->i_location.partitionReferenceNum,
854 goal, err);
855 if (!newblocknum) {
856 *err = -ENOSPC;
857 goto out_free;
858 }
859 if (isBeyondEOF)
860 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
861 }
862
863 /* if the extent the requsted block is located in contains multiple
864 * blocks, split the extent into at most three extents. blocks prior
865 * to requested block, requested block, and blocks after requested
866 * block */
867 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
868
869 /* We preallocate blocks only for regular files. It also makes sense
870 * for directories but there's a problem when to drop the
871 * preallocation. We might use some delayed work for that but I feel
872 * it's overengineering for a filesystem like UDF. */
873 if (S_ISREG(inode->i_mode))
874 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
875
876 /* merge any continuous blocks in laarr */
877 udf_merge_extents(inode, laarr, &endnum);
878
879 /* write back the new extents, inserting new extents if the new number
880 * of extents is greater than the old number, and deleting extents if
881 * the new number of extents is less than the old number */
882 *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
883 if (*err < 0)
884 goto out_free;
885
886 newblock = udf_get_pblock(inode->i_sb, newblocknum,
887 iinfo->i_location.partitionReferenceNum, 0);
888 if (!newblock) {
889 *err = -EIO;
890 goto out_free;
891 }
892 *new = 1;
893 iinfo->i_next_alloc_block = block;
894 iinfo->i_next_alloc_goal = newblocknum;
895 inode->i_ctime = current_time(inode);
896
897 if (IS_SYNC(inode))
898 udf_sync_inode(inode);
899 else
900 mark_inode_dirty(inode);
901 out_free:
902 brelse(prev_epos.bh);
903 brelse(cur_epos.bh);
904 brelse(next_epos.bh);
905 return newblock;
906 }
907
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)908 static void udf_split_extents(struct inode *inode, int *c, int offset,
909 udf_pblk_t newblocknum,
910 struct kernel_long_ad *laarr, int *endnum)
911 {
912 unsigned long blocksize = inode->i_sb->s_blocksize;
913 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
914
915 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
916 (laarr[*c].extLength >> 30) ==
917 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
918 int curr = *c;
919 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
920 blocksize - 1) >> blocksize_bits;
921 int8_t etype = (laarr[curr].extLength >> 30);
922
923 if (blen == 1)
924 ;
925 else if (!offset || blen == offset + 1) {
926 laarr[curr + 2] = laarr[curr + 1];
927 laarr[curr + 1] = laarr[curr];
928 } else {
929 laarr[curr + 3] = laarr[curr + 1];
930 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
931 }
932
933 if (offset) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
935 udf_free_blocks(inode->i_sb, inode,
936 &laarr[curr].extLocation,
937 0, offset);
938 laarr[curr].extLength =
939 EXT_NOT_RECORDED_NOT_ALLOCATED |
940 (offset << blocksize_bits);
941 laarr[curr].extLocation.logicalBlockNum = 0;
942 laarr[curr].extLocation.
943 partitionReferenceNum = 0;
944 } else
945 laarr[curr].extLength = (etype << 30) |
946 (offset << blocksize_bits);
947 curr++;
948 (*c)++;
949 (*endnum)++;
950 }
951
952 laarr[curr].extLocation.logicalBlockNum = newblocknum;
953 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
954 laarr[curr].extLocation.partitionReferenceNum =
955 UDF_I(inode)->i_location.partitionReferenceNum;
956 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
957 blocksize;
958 curr++;
959
960 if (blen != offset + 1) {
961 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
962 laarr[curr].extLocation.logicalBlockNum +=
963 offset + 1;
964 laarr[curr].extLength = (etype << 30) |
965 ((blen - (offset + 1)) << blocksize_bits);
966 curr++;
967 (*endnum)++;
968 }
969 }
970 }
971
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)972 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
973 struct kernel_long_ad *laarr,
974 int *endnum)
975 {
976 int start, length = 0, currlength = 0, i;
977
978 if (*endnum >= (c + 1)) {
979 if (!lastblock)
980 return;
981 else
982 start = c;
983 } else {
984 if ((laarr[c + 1].extLength >> 30) ==
985 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
986 start = c + 1;
987 length = currlength =
988 (((laarr[c + 1].extLength &
989 UDF_EXTENT_LENGTH_MASK) +
990 inode->i_sb->s_blocksize - 1) >>
991 inode->i_sb->s_blocksize_bits);
992 } else
993 start = c;
994 }
995
996 for (i = start + 1; i <= *endnum; i++) {
997 if (i == *endnum) {
998 if (lastblock)
999 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1000 } else if ((laarr[i].extLength >> 30) ==
1001 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1002 length += (((laarr[i].extLength &
1003 UDF_EXTENT_LENGTH_MASK) +
1004 inode->i_sb->s_blocksize - 1) >>
1005 inode->i_sb->s_blocksize_bits);
1006 } else
1007 break;
1008 }
1009
1010 if (length) {
1011 int next = laarr[start].extLocation.logicalBlockNum +
1012 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1013 inode->i_sb->s_blocksize - 1) >>
1014 inode->i_sb->s_blocksize_bits);
1015 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1016 laarr[start].extLocation.partitionReferenceNum,
1017 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1018 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1019 currlength);
1020 if (numalloc) {
1021 if (start == (c + 1))
1022 laarr[start].extLength +=
1023 (numalloc <<
1024 inode->i_sb->s_blocksize_bits);
1025 else {
1026 memmove(&laarr[c + 2], &laarr[c + 1],
1027 sizeof(struct long_ad) * (*endnum - (c + 1)));
1028 (*endnum)++;
1029 laarr[c + 1].extLocation.logicalBlockNum = next;
1030 laarr[c + 1].extLocation.partitionReferenceNum =
1031 laarr[c].extLocation.
1032 partitionReferenceNum;
1033 laarr[c + 1].extLength =
1034 EXT_NOT_RECORDED_ALLOCATED |
1035 (numalloc <<
1036 inode->i_sb->s_blocksize_bits);
1037 start = c + 1;
1038 }
1039
1040 for (i = start + 1; numalloc && i < *endnum; i++) {
1041 int elen = ((laarr[i].extLength &
1042 UDF_EXTENT_LENGTH_MASK) +
1043 inode->i_sb->s_blocksize - 1) >>
1044 inode->i_sb->s_blocksize_bits;
1045
1046 if (elen > numalloc) {
1047 laarr[i].extLength -=
1048 (numalloc <<
1049 inode->i_sb->s_blocksize_bits);
1050 numalloc = 0;
1051 } else {
1052 numalloc -= elen;
1053 if (*endnum > (i + 1))
1054 memmove(&laarr[i],
1055 &laarr[i + 1],
1056 sizeof(struct long_ad) *
1057 (*endnum - (i + 1)));
1058 i--;
1059 (*endnum)--;
1060 }
1061 }
1062 UDF_I(inode)->i_lenExtents +=
1063 numalloc << inode->i_sb->s_blocksize_bits;
1064 }
1065 }
1066 }
1067
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1068 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1069 int *endnum)
1070 {
1071 int i;
1072 unsigned long blocksize = inode->i_sb->s_blocksize;
1073 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1074
1075 for (i = 0; i < (*endnum - 1); i++) {
1076 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1077 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1078
1079 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1080 (((li->extLength >> 30) ==
1081 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1082 ((lip1->extLocation.logicalBlockNum -
1083 li->extLocation.logicalBlockNum) ==
1084 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1085 blocksize - 1) >> blocksize_bits)))) {
1086
1087 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1088 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1089 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1090 li->extLength = lip1->extLength +
1091 (((li->extLength &
1092 UDF_EXTENT_LENGTH_MASK) +
1093 blocksize - 1) & ~(blocksize - 1));
1094 if (*endnum > (i + 2))
1095 memmove(&laarr[i + 1], &laarr[i + 2],
1096 sizeof(struct long_ad) *
1097 (*endnum - (i + 2)));
1098 i--;
1099 (*endnum)--;
1100 }
1101 } else if (((li->extLength >> 30) ==
1102 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1103 ((lip1->extLength >> 30) ==
1104 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1105 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1106 ((li->extLength &
1107 UDF_EXTENT_LENGTH_MASK) +
1108 blocksize - 1) >> blocksize_bits);
1109 li->extLocation.logicalBlockNum = 0;
1110 li->extLocation.partitionReferenceNum = 0;
1111
1112 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1113 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1114 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1115 lip1->extLength = (lip1->extLength -
1116 (li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 UDF_EXTENT_LENGTH_MASK) &
1119 ~(blocksize - 1);
1120 li->extLength = (li->extLength &
1121 UDF_EXTENT_FLAG_MASK) +
1122 (UDF_EXTENT_LENGTH_MASK + 1) -
1123 blocksize;
1124 } else {
1125 li->extLength = lip1->extLength +
1126 (((li->extLength &
1127 UDF_EXTENT_LENGTH_MASK) +
1128 blocksize - 1) & ~(blocksize - 1));
1129 if (*endnum > (i + 2))
1130 memmove(&laarr[i + 1], &laarr[i + 2],
1131 sizeof(struct long_ad) *
1132 (*endnum - (i + 2)));
1133 i--;
1134 (*endnum)--;
1135 }
1136 } else if ((li->extLength >> 30) ==
1137 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1138 udf_free_blocks(inode->i_sb, inode,
1139 &li->extLocation, 0,
1140 ((li->extLength &
1141 UDF_EXTENT_LENGTH_MASK) +
1142 blocksize - 1) >> blocksize_bits);
1143 li->extLocation.logicalBlockNum = 0;
1144 li->extLocation.partitionReferenceNum = 0;
1145 li->extLength = (li->extLength &
1146 UDF_EXTENT_LENGTH_MASK) |
1147 EXT_NOT_RECORDED_NOT_ALLOCATED;
1148 }
1149 }
1150 }
1151
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1152 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1153 int startnum, int endnum,
1154 struct extent_position *epos)
1155 {
1156 int start = 0, i;
1157 struct kernel_lb_addr tmploc;
1158 uint32_t tmplen;
1159 int err;
1160
1161 if (startnum > endnum) {
1162 for (i = 0; i < (startnum - endnum); i++)
1163 udf_delete_aext(inode, *epos);
1164 } else if (startnum < endnum) {
1165 for (i = 0; i < (endnum - startnum); i++) {
1166 err = udf_insert_aext(inode, *epos,
1167 laarr[i].extLocation,
1168 laarr[i].extLength);
1169 /*
1170 * If we fail here, we are likely corrupting the extent
1171 * list and leaking blocks. At least stop early to
1172 * limit the damage.
1173 */
1174 if (err < 0)
1175 return err;
1176 udf_next_aext(inode, epos, &laarr[i].extLocation,
1177 &laarr[i].extLength, 1);
1178 start++;
1179 }
1180 }
1181
1182 for (i = start; i < endnum; i++) {
1183 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1184 udf_write_aext(inode, epos, &laarr[i].extLocation,
1185 laarr[i].extLength, 1);
1186 }
1187 return 0;
1188 }
1189
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1190 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191 int create, int *err)
1192 {
1193 struct buffer_head *bh = NULL;
1194
1195 bh = udf_getblk(inode, block, create, err);
1196 if (!bh)
1197 return NULL;
1198
1199 if (buffer_uptodate(bh))
1200 return bh;
1201
1202 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1203
1204 wait_on_buffer(bh);
1205 if (buffer_uptodate(bh))
1206 return bh;
1207
1208 brelse(bh);
1209 *err = -EIO;
1210 return NULL;
1211 }
1212
udf_setsize(struct inode * inode,loff_t newsize)1213 int udf_setsize(struct inode *inode, loff_t newsize)
1214 {
1215 int err;
1216 struct udf_inode_info *iinfo;
1217 unsigned int bsize = i_blocksize(inode);
1218
1219 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1220 S_ISLNK(inode->i_mode)))
1221 return -EINVAL;
1222 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1223 return -EPERM;
1224
1225 iinfo = UDF_I(inode);
1226 if (newsize > inode->i_size) {
1227 down_write(&iinfo->i_data_sem);
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 if (bsize <
1230 (udf_file_entry_alloc_offset(inode) + newsize)) {
1231 err = udf_expand_file_adinicb(inode);
1232 if (err)
1233 return err;
1234 down_write(&iinfo->i_data_sem);
1235 } else {
1236 iinfo->i_lenAlloc = newsize;
1237 goto set_size;
1238 }
1239 }
1240 err = udf_extend_file(inode, newsize);
1241 if (err) {
1242 up_write(&iinfo->i_data_sem);
1243 return err;
1244 }
1245 set_size:
1246 up_write(&iinfo->i_data_sem);
1247 truncate_setsize(inode, newsize);
1248 } else {
1249 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1250 down_write(&iinfo->i_data_sem);
1251 udf_clear_extent_cache(inode);
1252 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1253 0x00, bsize - newsize -
1254 udf_file_entry_alloc_offset(inode));
1255 iinfo->i_lenAlloc = newsize;
1256 truncate_setsize(inode, newsize);
1257 up_write(&iinfo->i_data_sem);
1258 goto update_time;
1259 }
1260 err = block_truncate_page(inode->i_mapping, newsize,
1261 udf_get_block);
1262 if (err)
1263 return err;
1264 truncate_setsize(inode, newsize);
1265 down_write(&iinfo->i_data_sem);
1266 udf_clear_extent_cache(inode);
1267 udf_truncate_extents(inode);
1268 up_write(&iinfo->i_data_sem);
1269 }
1270 update_time:
1271 inode->i_mtime = inode->i_ctime = current_time(inode);
1272 if (IS_SYNC(inode))
1273 udf_sync_inode(inode);
1274 else
1275 mark_inode_dirty(inode);
1276 return 0;
1277 }
1278
1279 /*
1280 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1281 * arbitrary - just that we hopefully don't limit any real use of rewritten
1282 * inode on write-once media but avoid looping for too long on corrupted media.
1283 */
1284 #define UDF_MAX_ICB_NESTING 1024
1285
udf_read_inode(struct inode * inode,bool hidden_inode)1286 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1287 {
1288 struct buffer_head *bh = NULL;
1289 struct fileEntry *fe;
1290 struct extendedFileEntry *efe;
1291 uint16_t ident;
1292 struct udf_inode_info *iinfo = UDF_I(inode);
1293 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1294 struct kernel_lb_addr *iloc = &iinfo->i_location;
1295 unsigned int link_count;
1296 unsigned int indirections = 0;
1297 int bs = inode->i_sb->s_blocksize;
1298 int ret = -EIO;
1299 uint32_t uid, gid;
1300
1301 reread:
1302 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1303 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1304 iloc->partitionReferenceNum, sbi->s_partitions);
1305 return -EIO;
1306 }
1307
1308 if (iloc->logicalBlockNum >=
1309 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1310 udf_debug("block=%u, partition=%u out of range\n",
1311 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1312 return -EIO;
1313 }
1314
1315 /*
1316 * Set defaults, but the inode is still incomplete!
1317 * Note: get_new_inode() sets the following on a new inode:
1318 * i_sb = sb
1319 * i_no = ino
1320 * i_flags = sb->s_flags
1321 * i_state = 0
1322 * clean_inode(): zero fills and sets
1323 * i_count = 1
1324 * i_nlink = 1
1325 * i_op = NULL;
1326 */
1327 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1328 if (!bh) {
1329 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1330 return -EIO;
1331 }
1332
1333 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1334 ident != TAG_IDENT_USE) {
1335 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1336 inode->i_ino, ident);
1337 goto out;
1338 }
1339
1340 fe = (struct fileEntry *)bh->b_data;
1341 efe = (struct extendedFileEntry *)bh->b_data;
1342
1343 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1344 struct buffer_head *ibh;
1345
1346 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1347 if (ident == TAG_IDENT_IE && ibh) {
1348 struct kernel_lb_addr loc;
1349 struct indirectEntry *ie;
1350
1351 ie = (struct indirectEntry *)ibh->b_data;
1352 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1353
1354 if (ie->indirectICB.extLength) {
1355 brelse(ibh);
1356 memcpy(&iinfo->i_location, &loc,
1357 sizeof(struct kernel_lb_addr));
1358 if (++indirections > UDF_MAX_ICB_NESTING) {
1359 udf_err(inode->i_sb,
1360 "too many ICBs in ICB hierarchy"
1361 " (max %d supported)\n",
1362 UDF_MAX_ICB_NESTING);
1363 goto out;
1364 }
1365 brelse(bh);
1366 goto reread;
1367 }
1368 }
1369 brelse(ibh);
1370 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1371 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1372 le16_to_cpu(fe->icbTag.strategyType));
1373 goto out;
1374 }
1375 if (fe->icbTag.strategyType == cpu_to_le16(4))
1376 iinfo->i_strat4096 = 0;
1377 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1378 iinfo->i_strat4096 = 1;
1379
1380 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1381 ICBTAG_FLAG_AD_MASK;
1382 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1383 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1384 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1385 ret = -EIO;
1386 goto out;
1387 }
1388 iinfo->i_hidden = hidden_inode;
1389 iinfo->i_unique = 0;
1390 iinfo->i_lenEAttr = 0;
1391 iinfo->i_lenExtents = 0;
1392 iinfo->i_lenAlloc = 0;
1393 iinfo->i_next_alloc_block = 0;
1394 iinfo->i_next_alloc_goal = 0;
1395 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1396 iinfo->i_efe = 1;
1397 iinfo->i_use = 0;
1398 ret = udf_alloc_i_data(inode, bs -
1399 sizeof(struct extendedFileEntry));
1400 if (ret)
1401 goto out;
1402 memcpy(iinfo->i_data,
1403 bh->b_data + sizeof(struct extendedFileEntry),
1404 bs - sizeof(struct extendedFileEntry));
1405 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1406 iinfo->i_efe = 0;
1407 iinfo->i_use = 0;
1408 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1409 if (ret)
1410 goto out;
1411 memcpy(iinfo->i_data,
1412 bh->b_data + sizeof(struct fileEntry),
1413 bs - sizeof(struct fileEntry));
1414 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1415 iinfo->i_efe = 0;
1416 iinfo->i_use = 1;
1417 iinfo->i_lenAlloc = le32_to_cpu(
1418 ((struct unallocSpaceEntry *)bh->b_data)->
1419 lengthAllocDescs);
1420 ret = udf_alloc_i_data(inode, bs -
1421 sizeof(struct unallocSpaceEntry));
1422 if (ret)
1423 goto out;
1424 memcpy(iinfo->i_data,
1425 bh->b_data + sizeof(struct unallocSpaceEntry),
1426 bs - sizeof(struct unallocSpaceEntry));
1427 return 0;
1428 }
1429
1430 ret = -EIO;
1431 read_lock(&sbi->s_cred_lock);
1432 uid = le32_to_cpu(fe->uid);
1433 if (uid == UDF_INVALID_ID ||
1434 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1435 inode->i_uid = sbi->s_uid;
1436 else
1437 i_uid_write(inode, uid);
1438
1439 gid = le32_to_cpu(fe->gid);
1440 if (gid == UDF_INVALID_ID ||
1441 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1442 inode->i_gid = sbi->s_gid;
1443 else
1444 i_gid_write(inode, gid);
1445
1446 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1447 sbi->s_fmode != UDF_INVALID_MODE)
1448 inode->i_mode = sbi->s_fmode;
1449 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1450 sbi->s_dmode != UDF_INVALID_MODE)
1451 inode->i_mode = sbi->s_dmode;
1452 else
1453 inode->i_mode = udf_convert_permissions(fe);
1454 inode->i_mode &= ~sbi->s_umask;
1455 read_unlock(&sbi->s_cred_lock);
1456
1457 link_count = le16_to_cpu(fe->fileLinkCount);
1458 if (!link_count) {
1459 if (!hidden_inode) {
1460 ret = -ESTALE;
1461 goto out;
1462 }
1463 link_count = 1;
1464 }
1465 set_nlink(inode, link_count);
1466
1467 inode->i_size = le64_to_cpu(fe->informationLength);
1468 iinfo->i_lenExtents = inode->i_size;
1469
1470 if (iinfo->i_efe == 0) {
1471 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1472 (inode->i_sb->s_blocksize_bits - 9);
1473
1474 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1475 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1476 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1477
1478 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1479 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1480 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1481 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1482 iinfo->i_streamdir = 0;
1483 iinfo->i_lenStreams = 0;
1484 } else {
1485 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1486 (inode->i_sb->s_blocksize_bits - 9);
1487
1488 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1489 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1490 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1491 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1492
1493 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1494 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1495 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1496 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1497
1498 /* Named streams */
1499 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1500 iinfo->i_locStreamdir =
1501 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1502 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1503 if (iinfo->i_lenStreams >= inode->i_size)
1504 iinfo->i_lenStreams -= inode->i_size;
1505 else
1506 iinfo->i_lenStreams = 0;
1507 }
1508 inode->i_generation = iinfo->i_unique;
1509
1510 /*
1511 * Sanity check length of allocation descriptors and extended attrs to
1512 * avoid integer overflows
1513 */
1514 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1515 goto out;
1516 /* Now do exact checks */
1517 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1518 goto out;
1519 /* Sanity checks for files in ICB so that we don't get confused later */
1520 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1521 /*
1522 * For file in ICB data is stored in allocation descriptor
1523 * so sizes should match
1524 */
1525 if (iinfo->i_lenAlloc != inode->i_size)
1526 goto out;
1527 /* File in ICB has to fit in there... */
1528 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1529 goto out;
1530 }
1531
1532 switch (fe->icbTag.fileType) {
1533 case ICBTAG_FILE_TYPE_DIRECTORY:
1534 inode->i_op = &udf_dir_inode_operations;
1535 inode->i_fop = &udf_dir_operations;
1536 inode->i_mode |= S_IFDIR;
1537 inc_nlink(inode);
1538 break;
1539 case ICBTAG_FILE_TYPE_REALTIME:
1540 case ICBTAG_FILE_TYPE_REGULAR:
1541 case ICBTAG_FILE_TYPE_UNDEF:
1542 case ICBTAG_FILE_TYPE_VAT20:
1543 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1544 inode->i_data.a_ops = &udf_adinicb_aops;
1545 else
1546 inode->i_data.a_ops = &udf_aops;
1547 inode->i_op = &udf_file_inode_operations;
1548 inode->i_fop = &udf_file_operations;
1549 inode->i_mode |= S_IFREG;
1550 break;
1551 case ICBTAG_FILE_TYPE_BLOCK:
1552 inode->i_mode |= S_IFBLK;
1553 break;
1554 case ICBTAG_FILE_TYPE_CHAR:
1555 inode->i_mode |= S_IFCHR;
1556 break;
1557 case ICBTAG_FILE_TYPE_FIFO:
1558 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1559 break;
1560 case ICBTAG_FILE_TYPE_SOCKET:
1561 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1562 break;
1563 case ICBTAG_FILE_TYPE_SYMLINK:
1564 inode->i_data.a_ops = &udf_symlink_aops;
1565 inode->i_op = &udf_symlink_inode_operations;
1566 inode_nohighmem(inode);
1567 inode->i_mode = S_IFLNK | 0777;
1568 break;
1569 case ICBTAG_FILE_TYPE_MAIN:
1570 udf_debug("METADATA FILE-----\n");
1571 break;
1572 case ICBTAG_FILE_TYPE_MIRROR:
1573 udf_debug("METADATA MIRROR FILE-----\n");
1574 break;
1575 case ICBTAG_FILE_TYPE_BITMAP:
1576 udf_debug("METADATA BITMAP FILE-----\n");
1577 break;
1578 default:
1579 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1580 inode->i_ino, fe->icbTag.fileType);
1581 goto out;
1582 }
1583 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1584 struct deviceSpec *dsea =
1585 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1586 if (dsea) {
1587 init_special_inode(inode, inode->i_mode,
1588 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1589 le32_to_cpu(dsea->minorDeviceIdent)));
1590 /* Developer ID ??? */
1591 } else
1592 goto out;
1593 }
1594 ret = 0;
1595 out:
1596 brelse(bh);
1597 return ret;
1598 }
1599
udf_alloc_i_data(struct inode * inode,size_t size)1600 static int udf_alloc_i_data(struct inode *inode, size_t size)
1601 {
1602 struct udf_inode_info *iinfo = UDF_I(inode);
1603 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1604 if (!iinfo->i_data)
1605 return -ENOMEM;
1606 return 0;
1607 }
1608
udf_convert_permissions(struct fileEntry * fe)1609 static umode_t udf_convert_permissions(struct fileEntry *fe)
1610 {
1611 umode_t mode;
1612 uint32_t permissions;
1613 uint32_t flags;
1614
1615 permissions = le32_to_cpu(fe->permissions);
1616 flags = le16_to_cpu(fe->icbTag.flags);
1617
1618 mode = ((permissions) & 0007) |
1619 ((permissions >> 2) & 0070) |
1620 ((permissions >> 4) & 0700) |
1621 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1622 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1623 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1624
1625 return mode;
1626 }
1627
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1628 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1629 {
1630 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1631 }
1632
udf_sync_inode(struct inode * inode)1633 static int udf_sync_inode(struct inode *inode)
1634 {
1635 return udf_update_inode(inode, 1);
1636 }
1637
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1638 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1639 {
1640 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1641 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1642 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1643 iinfo->i_crtime = time;
1644 }
1645
udf_update_inode(struct inode * inode,int do_sync)1646 static int udf_update_inode(struct inode *inode, int do_sync)
1647 {
1648 struct buffer_head *bh = NULL;
1649 struct fileEntry *fe;
1650 struct extendedFileEntry *efe;
1651 uint64_t lb_recorded;
1652 uint32_t udfperms;
1653 uint16_t icbflags;
1654 uint16_t crclen;
1655 int err = 0;
1656 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1657 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1658 struct udf_inode_info *iinfo = UDF_I(inode);
1659
1660 bh = udf_tgetblk(inode->i_sb,
1661 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1662 if (!bh) {
1663 udf_debug("getblk failure\n");
1664 return -EIO;
1665 }
1666
1667 lock_buffer(bh);
1668 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1669 fe = (struct fileEntry *)bh->b_data;
1670 efe = (struct extendedFileEntry *)bh->b_data;
1671
1672 if (iinfo->i_use) {
1673 struct unallocSpaceEntry *use =
1674 (struct unallocSpaceEntry *)bh->b_data;
1675
1676 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1677 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1678 iinfo->i_data, inode->i_sb->s_blocksize -
1679 sizeof(struct unallocSpaceEntry));
1680 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1681 crclen = sizeof(struct unallocSpaceEntry);
1682
1683 goto finish;
1684 }
1685
1686 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1687 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1688 else
1689 fe->uid = cpu_to_le32(i_uid_read(inode));
1690
1691 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1692 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1693 else
1694 fe->gid = cpu_to_le32(i_gid_read(inode));
1695
1696 udfperms = ((inode->i_mode & 0007)) |
1697 ((inode->i_mode & 0070) << 2) |
1698 ((inode->i_mode & 0700) << 4);
1699
1700 udfperms |= (le32_to_cpu(fe->permissions) &
1701 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1702 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1703 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1704 fe->permissions = cpu_to_le32(udfperms);
1705
1706 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1707 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1708 else {
1709 if (iinfo->i_hidden)
1710 fe->fileLinkCount = cpu_to_le16(0);
1711 else
1712 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1713 }
1714
1715 fe->informationLength = cpu_to_le64(inode->i_size);
1716
1717 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1718 struct regid *eid;
1719 struct deviceSpec *dsea =
1720 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1721 if (!dsea) {
1722 dsea = (struct deviceSpec *)
1723 udf_add_extendedattr(inode,
1724 sizeof(struct deviceSpec) +
1725 sizeof(struct regid), 12, 0x3);
1726 dsea->attrType = cpu_to_le32(12);
1727 dsea->attrSubtype = 1;
1728 dsea->attrLength = cpu_to_le32(
1729 sizeof(struct deviceSpec) +
1730 sizeof(struct regid));
1731 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1732 }
1733 eid = (struct regid *)dsea->impUse;
1734 memset(eid, 0, sizeof(*eid));
1735 strcpy(eid->ident, UDF_ID_DEVELOPER);
1736 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1737 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1738 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1739 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1740 }
1741
1742 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1743 lb_recorded = 0; /* No extents => no blocks! */
1744 else
1745 lb_recorded =
1746 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1747 (blocksize_bits - 9);
1748
1749 if (iinfo->i_efe == 0) {
1750 memcpy(bh->b_data + sizeof(struct fileEntry),
1751 iinfo->i_data,
1752 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1753 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1754
1755 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1756 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1757 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1758 memset(&(fe->impIdent), 0, sizeof(struct regid));
1759 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1760 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1762 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1763 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1764 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1765 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1766 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1767 crclen = sizeof(struct fileEntry);
1768 } else {
1769 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1770 iinfo->i_data,
1771 inode->i_sb->s_blocksize -
1772 sizeof(struct extendedFileEntry));
1773 efe->objectSize =
1774 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1775 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1776
1777 if (iinfo->i_streamdir) {
1778 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1779
1780 icb_lad->extLocation =
1781 cpu_to_lelb(iinfo->i_locStreamdir);
1782 icb_lad->extLength =
1783 cpu_to_le32(inode->i_sb->s_blocksize);
1784 }
1785
1786 udf_adjust_time(iinfo, inode->i_atime);
1787 udf_adjust_time(iinfo, inode->i_mtime);
1788 udf_adjust_time(iinfo, inode->i_ctime);
1789
1790 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1791 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1792 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1793 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1794
1795 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1796 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1797 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1798 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1799 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1800 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1801 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1802 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1803 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1804 crclen = sizeof(struct extendedFileEntry);
1805 }
1806
1807 finish:
1808 if (iinfo->i_strat4096) {
1809 fe->icbTag.strategyType = cpu_to_le16(4096);
1810 fe->icbTag.strategyParameter = cpu_to_le16(1);
1811 fe->icbTag.numEntries = cpu_to_le16(2);
1812 } else {
1813 fe->icbTag.strategyType = cpu_to_le16(4);
1814 fe->icbTag.numEntries = cpu_to_le16(1);
1815 }
1816
1817 if (iinfo->i_use)
1818 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1819 else if (S_ISDIR(inode->i_mode))
1820 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1821 else if (S_ISREG(inode->i_mode))
1822 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1823 else if (S_ISLNK(inode->i_mode))
1824 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1825 else if (S_ISBLK(inode->i_mode))
1826 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1827 else if (S_ISCHR(inode->i_mode))
1828 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1829 else if (S_ISFIFO(inode->i_mode))
1830 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1831 else if (S_ISSOCK(inode->i_mode))
1832 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1833
1834 icbflags = iinfo->i_alloc_type |
1835 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1836 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1837 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1838 (le16_to_cpu(fe->icbTag.flags) &
1839 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1840 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1841
1842 fe->icbTag.flags = cpu_to_le16(icbflags);
1843 if (sbi->s_udfrev >= 0x0200)
1844 fe->descTag.descVersion = cpu_to_le16(3);
1845 else
1846 fe->descTag.descVersion = cpu_to_le16(2);
1847 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1848 fe->descTag.tagLocation = cpu_to_le32(
1849 iinfo->i_location.logicalBlockNum);
1850 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1851 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1852 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1853 crclen));
1854 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1855
1856 set_buffer_uptodate(bh);
1857 unlock_buffer(bh);
1858
1859 /* write the data blocks */
1860 mark_buffer_dirty(bh);
1861 if (do_sync) {
1862 sync_dirty_buffer(bh);
1863 if (buffer_write_io_error(bh)) {
1864 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1865 inode->i_ino);
1866 err = -EIO;
1867 }
1868 }
1869 brelse(bh);
1870
1871 return err;
1872 }
1873
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1874 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1875 bool hidden_inode)
1876 {
1877 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1878 struct inode *inode = iget_locked(sb, block);
1879 int err;
1880
1881 if (!inode)
1882 return ERR_PTR(-ENOMEM);
1883
1884 if (!(inode->i_state & I_NEW)) {
1885 if (UDF_I(inode)->i_hidden != hidden_inode) {
1886 iput(inode);
1887 return ERR_PTR(-EFSCORRUPTED);
1888 }
1889 return inode;
1890 }
1891
1892 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1893 err = udf_read_inode(inode, hidden_inode);
1894 if (err < 0) {
1895 iget_failed(inode);
1896 return ERR_PTR(err);
1897 }
1898 unlock_new_inode(inode);
1899
1900 return inode;
1901 }
1902
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1903 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1904 struct extent_position *epos)
1905 {
1906 struct super_block *sb = inode->i_sb;
1907 struct buffer_head *bh;
1908 struct allocExtDesc *aed;
1909 struct extent_position nepos;
1910 struct kernel_lb_addr neloc;
1911 int ver, adsize;
1912
1913 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1914 adsize = sizeof(struct short_ad);
1915 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1916 adsize = sizeof(struct long_ad);
1917 else
1918 return -EIO;
1919
1920 neloc.logicalBlockNum = block;
1921 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1922
1923 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1924 if (!bh)
1925 return -EIO;
1926 lock_buffer(bh);
1927 memset(bh->b_data, 0x00, sb->s_blocksize);
1928 set_buffer_uptodate(bh);
1929 unlock_buffer(bh);
1930 mark_buffer_dirty_inode(bh, inode);
1931
1932 aed = (struct allocExtDesc *)(bh->b_data);
1933 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1934 aed->previousAllocExtLocation =
1935 cpu_to_le32(epos->block.logicalBlockNum);
1936 }
1937 aed->lengthAllocDescs = cpu_to_le32(0);
1938 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1939 ver = 3;
1940 else
1941 ver = 2;
1942 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1943 sizeof(struct tag));
1944
1945 nepos.block = neloc;
1946 nepos.offset = sizeof(struct allocExtDesc);
1947 nepos.bh = bh;
1948
1949 /*
1950 * Do we have to copy current last extent to make space for indirect
1951 * one?
1952 */
1953 if (epos->offset + adsize > sb->s_blocksize) {
1954 struct kernel_lb_addr cp_loc;
1955 uint32_t cp_len;
1956 int cp_type;
1957
1958 epos->offset -= adsize;
1959 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1960 cp_len |= ((uint32_t)cp_type) << 30;
1961
1962 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1963 udf_write_aext(inode, epos, &nepos.block,
1964 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1965 } else {
1966 __udf_add_aext(inode, epos, &nepos.block,
1967 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1968 }
1969
1970 brelse(epos->bh);
1971 *epos = nepos;
1972
1973 return 0;
1974 }
1975
1976 /*
1977 * Append extent at the given position - should be the first free one in inode
1978 * / indirect extent. This function assumes there is enough space in the inode
1979 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1980 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)1981 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1982 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1983 {
1984 struct udf_inode_info *iinfo = UDF_I(inode);
1985 struct allocExtDesc *aed;
1986 int adsize;
1987
1988 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1989 adsize = sizeof(struct short_ad);
1990 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1991 adsize = sizeof(struct long_ad);
1992 else
1993 return -EIO;
1994
1995 if (!epos->bh) {
1996 WARN_ON(iinfo->i_lenAlloc !=
1997 epos->offset - udf_file_entry_alloc_offset(inode));
1998 } else {
1999 aed = (struct allocExtDesc *)epos->bh->b_data;
2000 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2001 epos->offset - sizeof(struct allocExtDesc));
2002 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2003 }
2004
2005 udf_write_aext(inode, epos, eloc, elen, inc);
2006
2007 if (!epos->bh) {
2008 iinfo->i_lenAlloc += adsize;
2009 mark_inode_dirty(inode);
2010 } else {
2011 aed = (struct allocExtDesc *)epos->bh->b_data;
2012 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2013 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2014 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2015 udf_update_tag(epos->bh->b_data,
2016 epos->offset + (inc ? 0 : adsize));
2017 else
2018 udf_update_tag(epos->bh->b_data,
2019 sizeof(struct allocExtDesc));
2020 mark_buffer_dirty_inode(epos->bh, inode);
2021 }
2022
2023 return 0;
2024 }
2025
2026 /*
2027 * Append extent at given position - should be the first free one in inode
2028 * / indirect extent. Takes care of allocating and linking indirect blocks.
2029 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2030 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2031 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2032 {
2033 int adsize;
2034 struct super_block *sb = inode->i_sb;
2035
2036 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2037 adsize = sizeof(struct short_ad);
2038 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2039 adsize = sizeof(struct long_ad);
2040 else
2041 return -EIO;
2042
2043 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2044 int err;
2045 udf_pblk_t new_block;
2046
2047 new_block = udf_new_block(sb, NULL,
2048 epos->block.partitionReferenceNum,
2049 epos->block.logicalBlockNum, &err);
2050 if (!new_block)
2051 return -ENOSPC;
2052
2053 err = udf_setup_indirect_aext(inode, new_block, epos);
2054 if (err)
2055 return err;
2056 }
2057
2058 return __udf_add_aext(inode, epos, eloc, elen, inc);
2059 }
2060
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2061 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2062 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2063 {
2064 int adsize;
2065 uint8_t *ptr;
2066 struct short_ad *sad;
2067 struct long_ad *lad;
2068 struct udf_inode_info *iinfo = UDF_I(inode);
2069
2070 if (!epos->bh)
2071 ptr = iinfo->i_data + epos->offset -
2072 udf_file_entry_alloc_offset(inode) +
2073 iinfo->i_lenEAttr;
2074 else
2075 ptr = epos->bh->b_data + epos->offset;
2076
2077 switch (iinfo->i_alloc_type) {
2078 case ICBTAG_FLAG_AD_SHORT:
2079 sad = (struct short_ad *)ptr;
2080 sad->extLength = cpu_to_le32(elen);
2081 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2082 adsize = sizeof(struct short_ad);
2083 break;
2084 case ICBTAG_FLAG_AD_LONG:
2085 lad = (struct long_ad *)ptr;
2086 lad->extLength = cpu_to_le32(elen);
2087 lad->extLocation = cpu_to_lelb(*eloc);
2088 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2089 adsize = sizeof(struct long_ad);
2090 break;
2091 default:
2092 return;
2093 }
2094
2095 if (epos->bh) {
2096 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2097 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2098 struct allocExtDesc *aed =
2099 (struct allocExtDesc *)epos->bh->b_data;
2100 udf_update_tag(epos->bh->b_data,
2101 le32_to_cpu(aed->lengthAllocDescs) +
2102 sizeof(struct allocExtDesc));
2103 }
2104 mark_buffer_dirty_inode(epos->bh, inode);
2105 } else {
2106 mark_inode_dirty(inode);
2107 }
2108
2109 if (inc)
2110 epos->offset += adsize;
2111 }
2112
2113 /*
2114 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2115 * someone does some weird stuff.
2116 */
2117 #define UDF_MAX_INDIR_EXTS 16
2118
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2119 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2120 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2121 {
2122 int8_t etype;
2123 unsigned int indirections = 0;
2124
2125 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2126 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2127 udf_pblk_t block;
2128
2129 if (++indirections > UDF_MAX_INDIR_EXTS) {
2130 udf_err(inode->i_sb,
2131 "too many indirect extents in inode %lu\n",
2132 inode->i_ino);
2133 return -1;
2134 }
2135
2136 epos->block = *eloc;
2137 epos->offset = sizeof(struct allocExtDesc);
2138 brelse(epos->bh);
2139 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2140 epos->bh = udf_tread(inode->i_sb, block);
2141 if (!epos->bh) {
2142 udf_debug("reading block %u failed!\n", block);
2143 return -1;
2144 }
2145 }
2146
2147 return etype;
2148 }
2149
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2150 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2151 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2152 {
2153 int alen;
2154 int8_t etype;
2155 uint8_t *ptr;
2156 struct short_ad *sad;
2157 struct long_ad *lad;
2158 struct udf_inode_info *iinfo = UDF_I(inode);
2159
2160 if (!epos->bh) {
2161 if (!epos->offset)
2162 epos->offset = udf_file_entry_alloc_offset(inode);
2163 ptr = iinfo->i_data + epos->offset -
2164 udf_file_entry_alloc_offset(inode) +
2165 iinfo->i_lenEAttr;
2166 alen = udf_file_entry_alloc_offset(inode) +
2167 iinfo->i_lenAlloc;
2168 } else {
2169 if (!epos->offset)
2170 epos->offset = sizeof(struct allocExtDesc);
2171 ptr = epos->bh->b_data + epos->offset;
2172 alen = sizeof(struct allocExtDesc) +
2173 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2174 lengthAllocDescs);
2175 }
2176
2177 switch (iinfo->i_alloc_type) {
2178 case ICBTAG_FLAG_AD_SHORT:
2179 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2180 if (!sad)
2181 return -1;
2182 etype = le32_to_cpu(sad->extLength) >> 30;
2183 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2184 eloc->partitionReferenceNum =
2185 iinfo->i_location.partitionReferenceNum;
2186 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2187 break;
2188 case ICBTAG_FLAG_AD_LONG:
2189 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2190 if (!lad)
2191 return -1;
2192 etype = le32_to_cpu(lad->extLength) >> 30;
2193 *eloc = lelb_to_cpu(lad->extLocation);
2194 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2195 break;
2196 default:
2197 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2198 return -1;
2199 }
2200
2201 return etype;
2202 }
2203
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2204 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2205 struct kernel_lb_addr neloc, uint32_t nelen)
2206 {
2207 struct kernel_lb_addr oeloc;
2208 uint32_t oelen;
2209 int8_t etype;
2210 int err;
2211
2212 if (epos.bh)
2213 get_bh(epos.bh);
2214
2215 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2216 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2217 neloc = oeloc;
2218 nelen = (etype << 30) | oelen;
2219 }
2220 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2221 brelse(epos.bh);
2222
2223 return err;
2224 }
2225
udf_delete_aext(struct inode * inode,struct extent_position epos)2226 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2227 {
2228 struct extent_position oepos;
2229 int adsize;
2230 int8_t etype;
2231 struct allocExtDesc *aed;
2232 struct udf_inode_info *iinfo;
2233 struct kernel_lb_addr eloc;
2234 uint32_t elen;
2235
2236 if (epos.bh) {
2237 get_bh(epos.bh);
2238 get_bh(epos.bh);
2239 }
2240
2241 iinfo = UDF_I(inode);
2242 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2243 adsize = sizeof(struct short_ad);
2244 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2245 adsize = sizeof(struct long_ad);
2246 else
2247 adsize = 0;
2248
2249 oepos = epos;
2250 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2251 return -1;
2252
2253 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2254 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2255 if (oepos.bh != epos.bh) {
2256 oepos.block = epos.block;
2257 brelse(oepos.bh);
2258 get_bh(epos.bh);
2259 oepos.bh = epos.bh;
2260 oepos.offset = epos.offset - adsize;
2261 }
2262 }
2263 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2264 elen = 0;
2265
2266 if (epos.bh != oepos.bh) {
2267 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2268 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2269 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270 if (!oepos.bh) {
2271 iinfo->i_lenAlloc -= (adsize * 2);
2272 mark_inode_dirty(inode);
2273 } else {
2274 aed = (struct allocExtDesc *)oepos.bh->b_data;
2275 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2276 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2277 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2278 udf_update_tag(oepos.bh->b_data,
2279 oepos.offset - (2 * adsize));
2280 else
2281 udf_update_tag(oepos.bh->b_data,
2282 sizeof(struct allocExtDesc));
2283 mark_buffer_dirty_inode(oepos.bh, inode);
2284 }
2285 } else {
2286 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287 if (!oepos.bh) {
2288 iinfo->i_lenAlloc -= adsize;
2289 mark_inode_dirty(inode);
2290 } else {
2291 aed = (struct allocExtDesc *)oepos.bh->b_data;
2292 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2293 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2294 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2295 udf_update_tag(oepos.bh->b_data,
2296 epos.offset - adsize);
2297 else
2298 udf_update_tag(oepos.bh->b_data,
2299 sizeof(struct allocExtDesc));
2300 mark_buffer_dirty_inode(oepos.bh, inode);
2301 }
2302 }
2303
2304 brelse(epos.bh);
2305 brelse(oepos.bh);
2306
2307 return (elen >> 30);
2308 }
2309
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2310 int8_t inode_bmap(struct inode *inode, sector_t block,
2311 struct extent_position *pos, struct kernel_lb_addr *eloc,
2312 uint32_t *elen, sector_t *offset)
2313 {
2314 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2315 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2316 int8_t etype;
2317 struct udf_inode_info *iinfo;
2318
2319 iinfo = UDF_I(inode);
2320 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2321 pos->offset = 0;
2322 pos->block = iinfo->i_location;
2323 pos->bh = NULL;
2324 }
2325 *elen = 0;
2326 do {
2327 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2328 if (etype == -1) {
2329 *offset = (bcount - lbcount) >> blocksize_bits;
2330 iinfo->i_lenExtents = lbcount;
2331 return -1;
2332 }
2333 lbcount += *elen;
2334 } while (lbcount <= bcount);
2335 /* update extent cache */
2336 udf_update_extent_cache(inode, lbcount - *elen, pos);
2337 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2338
2339 return etype;
2340 }
2341
udf_block_map(struct inode * inode,sector_t block)2342 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2343 {
2344 struct kernel_lb_addr eloc;
2345 uint32_t elen;
2346 sector_t offset;
2347 struct extent_position epos = {};
2348 udf_pblk_t ret;
2349
2350 down_read(&UDF_I(inode)->i_data_sem);
2351
2352 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2353 (EXT_RECORDED_ALLOCATED >> 30))
2354 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2355 else
2356 ret = 0;
2357
2358 up_read(&UDF_I(inode)->i_data_sem);
2359 brelse(epos.bh);
2360
2361 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2362 return udf_fixed_to_variable(ret);
2363 else
2364 return ret;
2365 }
2366