1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_sb.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/iversion.h>
29 
30 /*
31  * Allocate and initialise an xfs_inode.
32  */
33 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)34 xfs_inode_alloc(
35 	struct xfs_mount	*mp,
36 	xfs_ino_t		ino)
37 {
38 	struct xfs_inode	*ip;
39 
40 	/*
41 	 * if this didn't occur in transactions, we could use
42 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
43 	 * code up to do this anyway.
44 	 */
45 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
46 	if (!ip)
47 		return NULL;
48 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
49 		kmem_zone_free(xfs_inode_zone, ip);
50 		return NULL;
51 	}
52 
53 	/* VFS doesn't initialise i_mode! */
54 	VFS_I(ip)->i_mode = 0;
55 
56 	XFS_STATS_INC(mp, vn_active);
57 	ASSERT(atomic_read(&ip->i_pincount) == 0);
58 	ASSERT(!xfs_isiflocked(ip));
59 	ASSERT(ip->i_ino == 0);
60 
61 	/* initialise the xfs inode */
62 	ip->i_ino = ino;
63 	ip->i_mount = mp;
64 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
65 	ip->i_afp = NULL;
66 	ip->i_cowfp = NULL;
67 	ip->i_cnextents = 0;
68 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
69 	memset(&ip->i_df, 0, sizeof(ip->i_df));
70 	ip->i_flags = 0;
71 	ip->i_delayed_blks = 0;
72 	memset(&ip->i_d, 0, sizeof(ip->i_d));
73 
74 	return ip;
75 }
76 
77 STATIC void
xfs_inode_free_callback(struct rcu_head * head)78 xfs_inode_free_callback(
79 	struct rcu_head		*head)
80 {
81 	struct inode		*inode = container_of(head, struct inode, i_rcu);
82 	struct xfs_inode	*ip = XFS_I(inode);
83 
84 	switch (VFS_I(ip)->i_mode & S_IFMT) {
85 	case S_IFREG:
86 	case S_IFDIR:
87 	case S_IFLNK:
88 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
89 		break;
90 	}
91 
92 	if (ip->i_afp)
93 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
94 	if (ip->i_cowfp)
95 		xfs_idestroy_fork(ip, XFS_COW_FORK);
96 
97 	if (ip->i_itemp) {
98 		ASSERT(!test_bit(XFS_LI_IN_AIL,
99 				 &ip->i_itemp->ili_item.li_flags));
100 		xfs_inode_item_destroy(ip);
101 		ip->i_itemp = NULL;
102 	}
103 
104 	kmem_zone_free(xfs_inode_zone, ip);
105 }
106 
107 static void
__xfs_inode_free(struct xfs_inode * ip)108 __xfs_inode_free(
109 	struct xfs_inode	*ip)
110 {
111 	/* asserts to verify all state is correct here */
112 	ASSERT(atomic_read(&ip->i_pincount) == 0);
113 	XFS_STATS_DEC(ip->i_mount, vn_active);
114 
115 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
116 }
117 
118 void
xfs_inode_free(struct xfs_inode * ip)119 xfs_inode_free(
120 	struct xfs_inode	*ip)
121 {
122 	ASSERT(!xfs_isiflocked(ip));
123 
124 	/*
125 	 * Because we use RCU freeing we need to ensure the inode always
126 	 * appears to be reclaimed with an invalid inode number when in the
127 	 * free state. The ip->i_flags_lock provides the barrier against lookup
128 	 * races.
129 	 */
130 	spin_lock(&ip->i_flags_lock);
131 	ip->i_flags = XFS_IRECLAIM;
132 	ip->i_ino = 0;
133 	spin_unlock(&ip->i_flags_lock);
134 
135 	__xfs_inode_free(ip);
136 }
137 
138 /*
139  * Queue a new inode reclaim pass if there are reclaimable inodes and there
140  * isn't a reclaim pass already in progress. By default it runs every 5s based
141  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
142  * tunable, but that can be done if this method proves to be ineffective or too
143  * aggressive.
144  */
145 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)146 xfs_reclaim_work_queue(
147 	struct xfs_mount        *mp)
148 {
149 
150 	rcu_read_lock();
151 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
152 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
153 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
154 	}
155 	rcu_read_unlock();
156 }
157 
158 /*
159  * This is a fast pass over the inode cache to try to get reclaim moving on as
160  * many inodes as possible in a short period of time. It kicks itself every few
161  * seconds, as well as being kicked by the inode cache shrinker when memory
162  * goes low. It scans as quickly as possible avoiding locked inodes or those
163  * already being flushed, and once done schedules a future pass.
164  */
165 void
xfs_reclaim_worker(struct work_struct * work)166 xfs_reclaim_worker(
167 	struct work_struct *work)
168 {
169 	struct xfs_mount *mp = container_of(to_delayed_work(work),
170 					struct xfs_mount, m_reclaim_work);
171 
172 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
173 	xfs_reclaim_work_queue(mp);
174 }
175 
176 static void
xfs_perag_set_reclaim_tag(struct xfs_perag * pag)177 xfs_perag_set_reclaim_tag(
178 	struct xfs_perag	*pag)
179 {
180 	struct xfs_mount	*mp = pag->pag_mount;
181 
182 	lockdep_assert_held(&pag->pag_ici_lock);
183 	if (pag->pag_ici_reclaimable++)
184 		return;
185 
186 	/* propagate the reclaim tag up into the perag radix tree */
187 	spin_lock(&mp->m_perag_lock);
188 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
189 			   XFS_ICI_RECLAIM_TAG);
190 	spin_unlock(&mp->m_perag_lock);
191 
192 	/* schedule periodic background inode reclaim */
193 	xfs_reclaim_work_queue(mp);
194 
195 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
196 }
197 
198 static void
xfs_perag_clear_reclaim_tag(struct xfs_perag * pag)199 xfs_perag_clear_reclaim_tag(
200 	struct xfs_perag	*pag)
201 {
202 	struct xfs_mount	*mp = pag->pag_mount;
203 
204 	lockdep_assert_held(&pag->pag_ici_lock);
205 	if (--pag->pag_ici_reclaimable)
206 		return;
207 
208 	/* clear the reclaim tag from the perag radix tree */
209 	spin_lock(&mp->m_perag_lock);
210 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
211 			     XFS_ICI_RECLAIM_TAG);
212 	spin_unlock(&mp->m_perag_lock);
213 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
214 }
215 
216 
217 /*
218  * We set the inode flag atomically with the radix tree tag.
219  * Once we get tag lookups on the radix tree, this inode flag
220  * can go away.
221  */
222 void
xfs_inode_set_reclaim_tag(struct xfs_inode * ip)223 xfs_inode_set_reclaim_tag(
224 	struct xfs_inode	*ip)
225 {
226 	struct xfs_mount	*mp = ip->i_mount;
227 	struct xfs_perag	*pag;
228 
229 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
230 	spin_lock(&pag->pag_ici_lock);
231 	spin_lock(&ip->i_flags_lock);
232 
233 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
234 			   XFS_ICI_RECLAIM_TAG);
235 	xfs_perag_set_reclaim_tag(pag);
236 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
237 
238 	spin_unlock(&ip->i_flags_lock);
239 	spin_unlock(&pag->pag_ici_lock);
240 	xfs_perag_put(pag);
241 }
242 
243 STATIC void
xfs_inode_clear_reclaim_tag(struct xfs_perag * pag,xfs_ino_t ino)244 xfs_inode_clear_reclaim_tag(
245 	struct xfs_perag	*pag,
246 	xfs_ino_t		ino)
247 {
248 	radix_tree_tag_clear(&pag->pag_ici_root,
249 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
250 			     XFS_ICI_RECLAIM_TAG);
251 	xfs_perag_clear_reclaim_tag(pag);
252 }
253 
254 static void
xfs_inew_wait(struct xfs_inode * ip)255 xfs_inew_wait(
256 	struct xfs_inode	*ip)
257 {
258 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
259 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
260 
261 	do {
262 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
263 		if (!xfs_iflags_test(ip, XFS_INEW))
264 			break;
265 		schedule();
266 	} while (true);
267 	finish_wait(wq, &wait.wq_entry);
268 }
269 
270 /*
271  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
272  * part of the structure. This is made more complex by the fact we store
273  * information about the on-disk values in the VFS inode and so we can't just
274  * overwrite the values unconditionally. Hence we save the parameters we
275  * need to retain across reinitialisation, and rewrite them into the VFS inode
276  * after reinitialisation even if it fails.
277  */
278 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)279 xfs_reinit_inode(
280 	struct xfs_mount	*mp,
281 	struct inode		*inode)
282 {
283 	int		error;
284 	uint32_t	nlink = inode->i_nlink;
285 	uint32_t	generation = inode->i_generation;
286 	uint64_t	version = inode_peek_iversion(inode);
287 	umode_t		mode = inode->i_mode;
288 	dev_t		dev = inode->i_rdev;
289 
290 	error = inode_init_always(mp->m_super, inode);
291 
292 	set_nlink(inode, nlink);
293 	inode->i_generation = generation;
294 	inode_set_iversion_queried(inode, version);
295 	inode->i_mode = mode;
296 	inode->i_rdev = dev;
297 	return error;
298 }
299 
300 /*
301  * If we are allocating a new inode, then check what was returned is
302  * actually a free, empty inode. If we are not allocating an inode,
303  * then check we didn't find a free inode.
304  *
305  * Returns:
306  *	0		if the inode free state matches the lookup context
307  *	-ENOENT		if the inode is free and we are not allocating
308  *	-EFSCORRUPTED	if there is any state mismatch at all
309  */
310 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)311 xfs_iget_check_free_state(
312 	struct xfs_inode	*ip,
313 	int			flags)
314 {
315 	if (flags & XFS_IGET_CREATE) {
316 		/* should be a free inode */
317 		if (VFS_I(ip)->i_mode != 0) {
318 			xfs_warn(ip->i_mount,
319 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
320 				ip->i_ino, VFS_I(ip)->i_mode);
321 			return -EFSCORRUPTED;
322 		}
323 
324 		if (ip->i_d.di_nblocks != 0) {
325 			xfs_warn(ip->i_mount,
326 "Corruption detected! Free inode 0x%llx has blocks allocated!",
327 				ip->i_ino);
328 			return -EFSCORRUPTED;
329 		}
330 		return 0;
331 	}
332 
333 	/* should be an allocated inode */
334 	if (VFS_I(ip)->i_mode == 0)
335 		return -ENOENT;
336 
337 	return 0;
338 }
339 
340 /*
341  * Check the validity of the inode we just found it the cache
342  */
343 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)344 xfs_iget_cache_hit(
345 	struct xfs_perag	*pag,
346 	struct xfs_inode	*ip,
347 	xfs_ino_t		ino,
348 	int			flags,
349 	int			lock_flags) __releases(RCU)
350 {
351 	struct inode		*inode = VFS_I(ip);
352 	struct xfs_mount	*mp = ip->i_mount;
353 	int			error;
354 
355 	/*
356 	 * check for re-use of an inode within an RCU grace period due to the
357 	 * radix tree nodes not being updated yet. We monitor for this by
358 	 * setting the inode number to zero before freeing the inode structure.
359 	 * If the inode has been reallocated and set up, then the inode number
360 	 * will not match, so check for that, too.
361 	 */
362 	spin_lock(&ip->i_flags_lock);
363 	if (ip->i_ino != ino) {
364 		trace_xfs_iget_skip(ip);
365 		XFS_STATS_INC(mp, xs_ig_frecycle);
366 		error = -EAGAIN;
367 		goto out_error;
368 	}
369 
370 
371 	/*
372 	 * If we are racing with another cache hit that is currently
373 	 * instantiating this inode or currently recycling it out of
374 	 * reclaimabe state, wait for the initialisation to complete
375 	 * before continuing.
376 	 *
377 	 * XXX(hch): eventually we should do something equivalent to
378 	 *	     wait_on_inode to wait for these flags to be cleared
379 	 *	     instead of polling for it.
380 	 */
381 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
382 		trace_xfs_iget_skip(ip);
383 		XFS_STATS_INC(mp, xs_ig_frecycle);
384 		error = -EAGAIN;
385 		goto out_error;
386 	}
387 
388 	/*
389 	 * Check the inode free state is valid. This also detects lookup
390 	 * racing with unlinks.
391 	 */
392 	error = xfs_iget_check_free_state(ip, flags);
393 	if (error)
394 		goto out_error;
395 
396 	/*
397 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
398 	 * Need to carefully get it back into useable state.
399 	 */
400 	if (ip->i_flags & XFS_IRECLAIMABLE) {
401 		trace_xfs_iget_reclaim(ip);
402 
403 		if (flags & XFS_IGET_INCORE) {
404 			error = -EAGAIN;
405 			goto out_error;
406 		}
407 
408 		/*
409 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
410 		 * from stomping over us while we recycle the inode.  We can't
411 		 * clear the radix tree reclaimable tag yet as it requires
412 		 * pag_ici_lock to be held exclusive.
413 		 */
414 		ip->i_flags |= XFS_IRECLAIM;
415 
416 		spin_unlock(&ip->i_flags_lock);
417 		rcu_read_unlock();
418 
419 		error = xfs_reinit_inode(mp, inode);
420 		if (error) {
421 			bool wake;
422 			/*
423 			 * Re-initializing the inode failed, and we are in deep
424 			 * trouble.  Try to re-add it to the reclaim list.
425 			 */
426 			rcu_read_lock();
427 			spin_lock(&ip->i_flags_lock);
428 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
429 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
430 			if (wake)
431 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
432 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
433 			trace_xfs_iget_reclaim_fail(ip);
434 			goto out_error;
435 		}
436 
437 		spin_lock(&pag->pag_ici_lock);
438 		spin_lock(&ip->i_flags_lock);
439 
440 		/*
441 		 * Clear the per-lifetime state in the inode as we are now
442 		 * effectively a new inode and need to return to the initial
443 		 * state before reuse occurs.
444 		 */
445 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
446 		ip->i_flags |= XFS_INEW;
447 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
448 		inode->i_state = I_NEW;
449 
450 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
451 		init_rwsem(&inode->i_rwsem);
452 
453 		spin_unlock(&ip->i_flags_lock);
454 		spin_unlock(&pag->pag_ici_lock);
455 	} else {
456 		/* If the VFS inode is being torn down, pause and try again. */
457 		if (!igrab(inode)) {
458 			trace_xfs_iget_skip(ip);
459 			error = -EAGAIN;
460 			goto out_error;
461 		}
462 
463 		/* We've got a live one. */
464 		spin_unlock(&ip->i_flags_lock);
465 		rcu_read_unlock();
466 		trace_xfs_iget_hit(ip);
467 	}
468 
469 	if (lock_flags != 0)
470 		xfs_ilock(ip, lock_flags);
471 
472 	if (!(flags & XFS_IGET_INCORE))
473 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
474 	XFS_STATS_INC(mp, xs_ig_found);
475 
476 	return 0;
477 
478 out_error:
479 	spin_unlock(&ip->i_flags_lock);
480 	rcu_read_unlock();
481 	return error;
482 }
483 
484 
485 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)486 xfs_iget_cache_miss(
487 	struct xfs_mount	*mp,
488 	struct xfs_perag	*pag,
489 	xfs_trans_t		*tp,
490 	xfs_ino_t		ino,
491 	struct xfs_inode	**ipp,
492 	int			flags,
493 	int			lock_flags)
494 {
495 	struct xfs_inode	*ip;
496 	int			error;
497 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
498 	int			iflags;
499 
500 	ip = xfs_inode_alloc(mp, ino);
501 	if (!ip)
502 		return -ENOMEM;
503 
504 	error = xfs_iread(mp, tp, ip, flags);
505 	if (error)
506 		goto out_destroy;
507 
508 	if (!xfs_inode_verify_forks(ip)) {
509 		error = -EFSCORRUPTED;
510 		goto out_destroy;
511 	}
512 
513 	trace_xfs_iget_miss(ip);
514 
515 
516 	/*
517 	 * Check the inode free state is valid. This also detects lookup
518 	 * racing with unlinks.
519 	 */
520 	error = xfs_iget_check_free_state(ip, flags);
521 	if (error)
522 		goto out_destroy;
523 
524 	/*
525 	 * Preload the radix tree so we can insert safely under the
526 	 * write spinlock. Note that we cannot sleep inside the preload
527 	 * region. Since we can be called from transaction context, don't
528 	 * recurse into the file system.
529 	 */
530 	if (radix_tree_preload(GFP_NOFS)) {
531 		error = -EAGAIN;
532 		goto out_destroy;
533 	}
534 
535 	/*
536 	 * Because the inode hasn't been added to the radix-tree yet it can't
537 	 * be found by another thread, so we can do the non-sleeping lock here.
538 	 */
539 	if (lock_flags) {
540 		if (!xfs_ilock_nowait(ip, lock_flags))
541 			BUG();
542 	}
543 
544 	/*
545 	 * These values must be set before inserting the inode into the radix
546 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
547 	 * RCU locking mechanism) can find it and that lookup must see that this
548 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
549 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
550 	 * memory barrier that ensures this detection works correctly at lookup
551 	 * time.
552 	 */
553 	iflags = XFS_INEW;
554 	if (flags & XFS_IGET_DONTCACHE)
555 		iflags |= XFS_IDONTCACHE;
556 	ip->i_udquot = NULL;
557 	ip->i_gdquot = NULL;
558 	ip->i_pdquot = NULL;
559 	xfs_iflags_set(ip, iflags);
560 
561 	/* insert the new inode */
562 	spin_lock(&pag->pag_ici_lock);
563 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
564 	if (unlikely(error)) {
565 		WARN_ON(error != -EEXIST);
566 		XFS_STATS_INC(mp, xs_ig_dup);
567 		error = -EAGAIN;
568 		goto out_preload_end;
569 	}
570 	spin_unlock(&pag->pag_ici_lock);
571 	radix_tree_preload_end();
572 
573 	*ipp = ip;
574 	return 0;
575 
576 out_preload_end:
577 	spin_unlock(&pag->pag_ici_lock);
578 	radix_tree_preload_end();
579 	if (lock_flags)
580 		xfs_iunlock(ip, lock_flags);
581 out_destroy:
582 	__destroy_inode(VFS_I(ip));
583 	xfs_inode_free(ip);
584 	return error;
585 }
586 
587 /*
588  * Look up an inode by number in the given file system.
589  * The inode is looked up in the cache held in each AG.
590  * If the inode is found in the cache, initialise the vfs inode
591  * if necessary.
592  *
593  * If it is not in core, read it in from the file system's device,
594  * add it to the cache and initialise the vfs inode.
595  *
596  * The inode is locked according to the value of the lock_flags parameter.
597  * This flag parameter indicates how and if the inode's IO lock and inode lock
598  * should be taken.
599  *
600  * mp -- the mount point structure for the current file system.  It points
601  *       to the inode hash table.
602  * tp -- a pointer to the current transaction if there is one.  This is
603  *       simply passed through to the xfs_iread() call.
604  * ino -- the number of the inode desired.  This is the unique identifier
605  *        within the file system for the inode being requested.
606  * lock_flags -- flags indicating how to lock the inode.  See the comment
607  *		 for xfs_ilock() for a list of valid values.
608  */
609 int
xfs_iget(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp)610 xfs_iget(
611 	xfs_mount_t	*mp,
612 	xfs_trans_t	*tp,
613 	xfs_ino_t	ino,
614 	uint		flags,
615 	uint		lock_flags,
616 	xfs_inode_t	**ipp)
617 {
618 	xfs_inode_t	*ip;
619 	int		error;
620 	xfs_perag_t	*pag;
621 	xfs_agino_t	agino;
622 
623 	/*
624 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
625 	 * doesn't get freed while it's being referenced during a
626 	 * radix tree traversal here.  It assumes this function
627 	 * aqcuires only the ILOCK (and therefore it has no need to
628 	 * involve the IOLOCK in this synchronization).
629 	 */
630 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
631 
632 	/* reject inode numbers outside existing AGs */
633 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
634 		return -EINVAL;
635 
636 	XFS_STATS_INC(mp, xs_ig_attempts);
637 
638 	/* get the perag structure and ensure that it's inode capable */
639 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
640 	agino = XFS_INO_TO_AGINO(mp, ino);
641 
642 again:
643 	error = 0;
644 	rcu_read_lock();
645 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
646 
647 	if (ip) {
648 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
649 		if (error)
650 			goto out_error_or_again;
651 	} else {
652 		rcu_read_unlock();
653 		if (flags & XFS_IGET_INCORE) {
654 			error = -ENODATA;
655 			goto out_error_or_again;
656 		}
657 		XFS_STATS_INC(mp, xs_ig_missed);
658 
659 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
660 							flags, lock_flags);
661 		if (error)
662 			goto out_error_or_again;
663 	}
664 	xfs_perag_put(pag);
665 
666 	*ipp = ip;
667 
668 	/*
669 	 * If we have a real type for an on-disk inode, we can setup the inode
670 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
671 	 */
672 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
673 		xfs_setup_existing_inode(ip);
674 	return 0;
675 
676 out_error_or_again:
677 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
678 		delay(1);
679 		goto again;
680 	}
681 	xfs_perag_put(pag);
682 	return error;
683 }
684 
685 /*
686  * "Is this a cached inode that's also allocated?"
687  *
688  * Look up an inode by number in the given file system.  If the inode is
689  * in cache and isn't in purgatory, return 1 if the inode is allocated
690  * and 0 if it is not.  For all other cases (not in cache, being torn
691  * down, etc.), return a negative error code.
692  *
693  * The caller has to prevent inode allocation and freeing activity,
694  * presumably by locking the AGI buffer.   This is to ensure that an
695  * inode cannot transition from allocated to freed until the caller is
696  * ready to allow that.  If the inode is in an intermediate state (new,
697  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
698  * inode is not in the cache, -ENOENT will be returned.  The caller must
699  * deal with these scenarios appropriately.
700  *
701  * This is a specialized use case for the online scrubber; if you're
702  * reading this, you probably want xfs_iget.
703  */
704 int
xfs_icache_inode_is_allocated(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,bool * inuse)705 xfs_icache_inode_is_allocated(
706 	struct xfs_mount	*mp,
707 	struct xfs_trans	*tp,
708 	xfs_ino_t		ino,
709 	bool			*inuse)
710 {
711 	struct xfs_inode	*ip;
712 	int			error;
713 
714 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
715 	if (error)
716 		return error;
717 
718 	*inuse = !!(VFS_I(ip)->i_mode);
719 	xfs_irele(ip);
720 	return 0;
721 }
722 
723 /*
724  * The inode lookup is done in batches to keep the amount of lock traffic and
725  * radix tree lookups to a minimum. The batch size is a trade off between
726  * lookup reduction and stack usage. This is in the reclaim path, so we can't
727  * be too greedy.
728  */
729 #define XFS_LOOKUP_BATCH	32
730 
731 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip,int flags)732 xfs_inode_ag_walk_grab(
733 	struct xfs_inode	*ip,
734 	int			flags)
735 {
736 	struct inode		*inode = VFS_I(ip);
737 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
738 
739 	ASSERT(rcu_read_lock_held());
740 
741 	/*
742 	 * check for stale RCU freed inode
743 	 *
744 	 * If the inode has been reallocated, it doesn't matter if it's not in
745 	 * the AG we are walking - we are walking for writeback, so if it
746 	 * passes all the "valid inode" checks and is dirty, then we'll write
747 	 * it back anyway.  If it has been reallocated and still being
748 	 * initialised, the XFS_INEW check below will catch it.
749 	 */
750 	spin_lock(&ip->i_flags_lock);
751 	if (!ip->i_ino)
752 		goto out_unlock_noent;
753 
754 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
755 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
756 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
757 		goto out_unlock_noent;
758 	spin_unlock(&ip->i_flags_lock);
759 
760 	/* nothing to sync during shutdown */
761 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
762 		return -EFSCORRUPTED;
763 
764 	/* If we can't grab the inode, it must on it's way to reclaim. */
765 	if (!igrab(inode))
766 		return -ENOENT;
767 
768 	/* inode is valid */
769 	return 0;
770 
771 out_unlock_noent:
772 	spin_unlock(&ip->i_flags_lock);
773 	return -ENOENT;
774 }
775 
776 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag,int iter_flags)777 xfs_inode_ag_walk(
778 	struct xfs_mount	*mp,
779 	struct xfs_perag	*pag,
780 	int			(*execute)(struct xfs_inode *ip, int flags,
781 					   void *args),
782 	int			flags,
783 	void			*args,
784 	int			tag,
785 	int			iter_flags)
786 {
787 	uint32_t		first_index;
788 	int			last_error = 0;
789 	int			skipped;
790 	int			done;
791 	int			nr_found;
792 
793 restart:
794 	done = 0;
795 	skipped = 0;
796 	first_index = 0;
797 	nr_found = 0;
798 	do {
799 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
800 		int		error = 0;
801 		int		i;
802 
803 		rcu_read_lock();
804 
805 		if (tag == -1)
806 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
807 					(void **)batch, first_index,
808 					XFS_LOOKUP_BATCH);
809 		else
810 			nr_found = radix_tree_gang_lookup_tag(
811 					&pag->pag_ici_root,
812 					(void **) batch, first_index,
813 					XFS_LOOKUP_BATCH, tag);
814 
815 		if (!nr_found) {
816 			rcu_read_unlock();
817 			break;
818 		}
819 
820 		/*
821 		 * Grab the inodes before we drop the lock. if we found
822 		 * nothing, nr == 0 and the loop will be skipped.
823 		 */
824 		for (i = 0; i < nr_found; i++) {
825 			struct xfs_inode *ip = batch[i];
826 
827 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
828 				batch[i] = NULL;
829 
830 			/*
831 			 * Update the index for the next lookup. Catch
832 			 * overflows into the next AG range which can occur if
833 			 * we have inodes in the last block of the AG and we
834 			 * are currently pointing to the last inode.
835 			 *
836 			 * Because we may see inodes that are from the wrong AG
837 			 * due to RCU freeing and reallocation, only update the
838 			 * index if it lies in this AG. It was a race that lead
839 			 * us to see this inode, so another lookup from the
840 			 * same index will not find it again.
841 			 */
842 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
843 				continue;
844 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
845 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
846 				done = 1;
847 		}
848 
849 		/* unlock now we've grabbed the inodes. */
850 		rcu_read_unlock();
851 
852 		for (i = 0; i < nr_found; i++) {
853 			if (!batch[i])
854 				continue;
855 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
856 			    xfs_iflags_test(batch[i], XFS_INEW))
857 				xfs_inew_wait(batch[i]);
858 			error = execute(batch[i], flags, args);
859 			xfs_irele(batch[i]);
860 			if (error == -EAGAIN) {
861 				skipped++;
862 				continue;
863 			}
864 			if (error && last_error != -EFSCORRUPTED)
865 				last_error = error;
866 		}
867 
868 		/* bail out if the filesystem is corrupted.  */
869 		if (error == -EFSCORRUPTED)
870 			break;
871 
872 		cond_resched();
873 
874 	} while (nr_found && !done);
875 
876 	if (skipped) {
877 		delay(1);
878 		goto restart;
879 	}
880 	return last_error;
881 }
882 
883 /*
884  * Background scanning to trim post-EOF preallocated space. This is queued
885  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
886  */
887 void
xfs_queue_eofblocks(struct xfs_mount * mp)888 xfs_queue_eofblocks(
889 	struct xfs_mount *mp)
890 {
891 	rcu_read_lock();
892 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
893 		queue_delayed_work(mp->m_eofblocks_workqueue,
894 				   &mp->m_eofblocks_work,
895 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
896 	rcu_read_unlock();
897 }
898 
899 void
xfs_eofblocks_worker(struct work_struct * work)900 xfs_eofblocks_worker(
901 	struct work_struct *work)
902 {
903 	struct xfs_mount *mp = container_of(to_delayed_work(work),
904 				struct xfs_mount, m_eofblocks_work);
905 
906 	if (!sb_start_write_trylock(mp->m_super))
907 		return;
908 	xfs_icache_free_eofblocks(mp, NULL);
909 	sb_end_write(mp->m_super);
910 
911 	xfs_queue_eofblocks(mp);
912 }
913 
914 /*
915  * Background scanning to trim preallocated CoW space. This is queued
916  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
917  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
918  */
919 void
xfs_queue_cowblocks(struct xfs_mount * mp)920 xfs_queue_cowblocks(
921 	struct xfs_mount *mp)
922 {
923 	rcu_read_lock();
924 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
925 		queue_delayed_work(mp->m_eofblocks_workqueue,
926 				   &mp->m_cowblocks_work,
927 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
928 	rcu_read_unlock();
929 }
930 
931 void
xfs_cowblocks_worker(struct work_struct * work)932 xfs_cowblocks_worker(
933 	struct work_struct *work)
934 {
935 	struct xfs_mount *mp = container_of(to_delayed_work(work),
936 				struct xfs_mount, m_cowblocks_work);
937 
938 	if (!sb_start_write_trylock(mp->m_super))
939 		return;
940 	xfs_icache_free_cowblocks(mp, NULL);
941 	sb_end_write(mp->m_super);
942 
943 	xfs_queue_cowblocks(mp);
944 }
945 
946 int
xfs_inode_ag_iterator_flags(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int iter_flags)947 xfs_inode_ag_iterator_flags(
948 	struct xfs_mount	*mp,
949 	int			(*execute)(struct xfs_inode *ip, int flags,
950 					   void *args),
951 	int			flags,
952 	void			*args,
953 	int			iter_flags)
954 {
955 	struct xfs_perag	*pag;
956 	int			error = 0;
957 	int			last_error = 0;
958 	xfs_agnumber_t		ag;
959 
960 	ag = 0;
961 	while ((pag = xfs_perag_get(mp, ag))) {
962 		ag = pag->pag_agno + 1;
963 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
964 					  iter_flags);
965 		xfs_perag_put(pag);
966 		if (error) {
967 			last_error = error;
968 			if (error == -EFSCORRUPTED)
969 				break;
970 		}
971 	}
972 	return last_error;
973 }
974 
975 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args)976 xfs_inode_ag_iterator(
977 	struct xfs_mount	*mp,
978 	int			(*execute)(struct xfs_inode *ip, int flags,
979 					   void *args),
980 	int			flags,
981 	void			*args)
982 {
983 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
984 }
985 
986 int
xfs_inode_ag_iterator_tag(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag)987 xfs_inode_ag_iterator_tag(
988 	struct xfs_mount	*mp,
989 	int			(*execute)(struct xfs_inode *ip, int flags,
990 					   void *args),
991 	int			flags,
992 	void			*args,
993 	int			tag)
994 {
995 	struct xfs_perag	*pag;
996 	int			error = 0;
997 	int			last_error = 0;
998 	xfs_agnumber_t		ag;
999 
1000 	ag = 0;
1001 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1002 		ag = pag->pag_agno + 1;
1003 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1004 					  0);
1005 		xfs_perag_put(pag);
1006 		if (error) {
1007 			last_error = error;
1008 			if (error == -EFSCORRUPTED)
1009 				break;
1010 		}
1011 	}
1012 	return last_error;
1013 }
1014 
1015 /*
1016  * Grab the inode for reclaim exclusively.
1017  * Return 0 if we grabbed it, non-zero otherwise.
1018  */
1019 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)1020 xfs_reclaim_inode_grab(
1021 	struct xfs_inode	*ip,
1022 	int			flags)
1023 {
1024 	ASSERT(rcu_read_lock_held());
1025 
1026 	/* quick check for stale RCU freed inode */
1027 	if (!ip->i_ino)
1028 		return 1;
1029 
1030 	/*
1031 	 * If we are asked for non-blocking operation, do unlocked checks to
1032 	 * see if the inode already is being flushed or in reclaim to avoid
1033 	 * lock traffic.
1034 	 */
1035 	if ((flags & SYNC_TRYLOCK) &&
1036 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1037 		return 1;
1038 
1039 	/*
1040 	 * The radix tree lock here protects a thread in xfs_iget from racing
1041 	 * with us starting reclaim on the inode.  Once we have the
1042 	 * XFS_IRECLAIM flag set it will not touch us.
1043 	 *
1044 	 * Due to RCU lookup, we may find inodes that have been freed and only
1045 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1046 	 * aren't candidates for reclaim at all, so we must check the
1047 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1048 	 */
1049 	spin_lock(&ip->i_flags_lock);
1050 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1051 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1052 		/* not a reclaim candidate. */
1053 		spin_unlock(&ip->i_flags_lock);
1054 		return 1;
1055 	}
1056 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1057 	spin_unlock(&ip->i_flags_lock);
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Inodes in different states need to be treated differently. The following
1063  * table lists the inode states and the reclaim actions necessary:
1064  *
1065  *	inode state	     iflush ret		required action
1066  *      ---------------      ----------         ---------------
1067  *	bad			-		reclaim
1068  *	shutdown		EIO		unpin and reclaim
1069  *	clean, unpinned		0		reclaim
1070  *	stale, unpinned		0		reclaim
1071  *	clean, pinned(*)	0		requeue
1072  *	stale, pinned		EAGAIN		requeue
1073  *	dirty, async		-		requeue
1074  *	dirty, sync		0		reclaim
1075  *
1076  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1077  * handled anyway given the order of checks implemented.
1078  *
1079  * Also, because we get the flush lock first, we know that any inode that has
1080  * been flushed delwri has had the flush completed by the time we check that
1081  * the inode is clean.
1082  *
1083  * Note that because the inode is flushed delayed write by AIL pushing, the
1084  * flush lock may already be held here and waiting on it can result in very
1085  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1086  * the caller should push the AIL first before trying to reclaim inodes to
1087  * minimise the amount of time spent waiting.  For background relaim, we only
1088  * bother to reclaim clean inodes anyway.
1089  *
1090  * Hence the order of actions after gaining the locks should be:
1091  *	bad		=> reclaim
1092  *	shutdown	=> unpin and reclaim
1093  *	pinned, async	=> requeue
1094  *	pinned, sync	=> unpin
1095  *	stale		=> reclaim
1096  *	clean		=> reclaim
1097  *	dirty, async	=> requeue
1098  *	dirty, sync	=> flush, wait and reclaim
1099  */
1100 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)1101 xfs_reclaim_inode(
1102 	struct xfs_inode	*ip,
1103 	struct xfs_perag	*pag,
1104 	int			sync_mode)
1105 {
1106 	struct xfs_buf		*bp = NULL;
1107 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1108 	int			error;
1109 
1110 restart:
1111 	error = 0;
1112 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1113 	if (!xfs_iflock_nowait(ip)) {
1114 		if (!(sync_mode & SYNC_WAIT))
1115 			goto out;
1116 		xfs_iflock(ip);
1117 	}
1118 
1119 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1120 		xfs_iunpin_wait(ip);
1121 		/* xfs_iflush_abort() drops the flush lock */
1122 		xfs_iflush_abort(ip, false);
1123 		goto reclaim;
1124 	}
1125 	if (xfs_ipincount(ip)) {
1126 		if (!(sync_mode & SYNC_WAIT))
1127 			goto out_ifunlock;
1128 		xfs_iunpin_wait(ip);
1129 	}
1130 	if (xfs_inode_clean(ip)) {
1131 		xfs_ifunlock(ip);
1132 		goto reclaim;
1133 	}
1134 
1135 	/*
1136 	 * Never flush out dirty data during non-blocking reclaim, as it would
1137 	 * just contend with AIL pushing trying to do the same job.
1138 	 */
1139 	if (!(sync_mode & SYNC_WAIT))
1140 		goto out_ifunlock;
1141 
1142 	/*
1143 	 * Now we have an inode that needs flushing.
1144 	 *
1145 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1146 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1147 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1148 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1149 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1150 	 *
1151 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1152 	 * cache to mark them stale, if we hit this case we don't actually want
1153 	 * to do IO here - we want the inode marked stale so we can simply
1154 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1155 	 * inode, back off and try again.  Hopefully the next pass through will
1156 	 * see the stale flag set on the inode.
1157 	 */
1158 	error = xfs_iflush(ip, &bp);
1159 	if (error == -EAGAIN) {
1160 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1161 		/* backoff longer than in xfs_ifree_cluster */
1162 		delay(2);
1163 		goto restart;
1164 	}
1165 
1166 	if (!error) {
1167 		error = xfs_bwrite(bp);
1168 		xfs_buf_relse(bp);
1169 	}
1170 
1171 reclaim:
1172 	ASSERT(!xfs_isiflocked(ip));
1173 
1174 	/*
1175 	 * Because we use RCU freeing we need to ensure the inode always appears
1176 	 * to be reclaimed with an invalid inode number when in the free state.
1177 	 * We do this as early as possible under the ILOCK so that
1178 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1179 	 * detect races with us here. By doing this, we guarantee that once
1180 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1181 	 * it will see either a valid inode that will serialise correctly, or it
1182 	 * will see an invalid inode that it can skip.
1183 	 */
1184 	spin_lock(&ip->i_flags_lock);
1185 	ip->i_flags = XFS_IRECLAIM;
1186 	ip->i_ino = 0;
1187 	spin_unlock(&ip->i_flags_lock);
1188 
1189 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1190 
1191 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1192 	/*
1193 	 * Remove the inode from the per-AG radix tree.
1194 	 *
1195 	 * Because radix_tree_delete won't complain even if the item was never
1196 	 * added to the tree assert that it's been there before to catch
1197 	 * problems with the inode life time early on.
1198 	 */
1199 	spin_lock(&pag->pag_ici_lock);
1200 	if (!radix_tree_delete(&pag->pag_ici_root,
1201 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1202 		ASSERT(0);
1203 	xfs_perag_clear_reclaim_tag(pag);
1204 	spin_unlock(&pag->pag_ici_lock);
1205 
1206 	/*
1207 	 * Here we do an (almost) spurious inode lock in order to coordinate
1208 	 * with inode cache radix tree lookups.  This is because the lookup
1209 	 * can reference the inodes in the cache without taking references.
1210 	 *
1211 	 * We make that OK here by ensuring that we wait until the inode is
1212 	 * unlocked after the lookup before we go ahead and free it.
1213 	 */
1214 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1215 	xfs_qm_dqdetach(ip);
1216 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1217 	ASSERT(xfs_inode_clean(ip));
1218 
1219 	__xfs_inode_free(ip);
1220 	return error;
1221 
1222 out_ifunlock:
1223 	xfs_ifunlock(ip);
1224 out:
1225 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1226 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1227 	/*
1228 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1229 	 * a short while. However, this just burns CPU time scanning the tree
1230 	 * waiting for IO to complete and the reclaim work never goes back to
1231 	 * the idle state. Instead, return 0 to let the next scheduled
1232 	 * background reclaim attempt to reclaim the inode again.
1233 	 */
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1239  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1240  * then a shut down during filesystem unmount reclaim walk leak all the
1241  * unreclaimed inodes.
1242  */
1243 STATIC int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)1244 xfs_reclaim_inodes_ag(
1245 	struct xfs_mount	*mp,
1246 	int			flags,
1247 	int			*nr_to_scan)
1248 {
1249 	struct xfs_perag	*pag;
1250 	int			error = 0;
1251 	int			last_error = 0;
1252 	xfs_agnumber_t		ag;
1253 	int			trylock = flags & SYNC_TRYLOCK;
1254 	int			skipped;
1255 
1256 restart:
1257 	ag = 0;
1258 	skipped = 0;
1259 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1260 		unsigned long	first_index = 0;
1261 		int		done = 0;
1262 		int		nr_found = 0;
1263 
1264 		ag = pag->pag_agno + 1;
1265 
1266 		if (trylock) {
1267 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1268 				skipped++;
1269 				xfs_perag_put(pag);
1270 				continue;
1271 			}
1272 			first_index = pag->pag_ici_reclaim_cursor;
1273 		} else
1274 			mutex_lock(&pag->pag_ici_reclaim_lock);
1275 
1276 		do {
1277 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1278 			int	i;
1279 
1280 			rcu_read_lock();
1281 			nr_found = radix_tree_gang_lookup_tag(
1282 					&pag->pag_ici_root,
1283 					(void **)batch, first_index,
1284 					XFS_LOOKUP_BATCH,
1285 					XFS_ICI_RECLAIM_TAG);
1286 			if (!nr_found) {
1287 				done = 1;
1288 				rcu_read_unlock();
1289 				break;
1290 			}
1291 
1292 			/*
1293 			 * Grab the inodes before we drop the lock. if we found
1294 			 * nothing, nr == 0 and the loop will be skipped.
1295 			 */
1296 			for (i = 0; i < nr_found; i++) {
1297 				struct xfs_inode *ip = batch[i];
1298 
1299 				if (done || xfs_reclaim_inode_grab(ip, flags))
1300 					batch[i] = NULL;
1301 
1302 				/*
1303 				 * Update the index for the next lookup. Catch
1304 				 * overflows into the next AG range which can
1305 				 * occur if we have inodes in the last block of
1306 				 * the AG and we are currently pointing to the
1307 				 * last inode.
1308 				 *
1309 				 * Because we may see inodes that are from the
1310 				 * wrong AG due to RCU freeing and
1311 				 * reallocation, only update the index if it
1312 				 * lies in this AG. It was a race that lead us
1313 				 * to see this inode, so another lookup from
1314 				 * the same index will not find it again.
1315 				 */
1316 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1317 								pag->pag_agno)
1318 					continue;
1319 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1320 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1321 					done = 1;
1322 			}
1323 
1324 			/* unlock now we've grabbed the inodes. */
1325 			rcu_read_unlock();
1326 
1327 			for (i = 0; i < nr_found; i++) {
1328 				if (!batch[i])
1329 					continue;
1330 				error = xfs_reclaim_inode(batch[i], pag, flags);
1331 				if (error && last_error != -EFSCORRUPTED)
1332 					last_error = error;
1333 			}
1334 
1335 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1336 
1337 			cond_resched();
1338 
1339 		} while (nr_found && !done && *nr_to_scan > 0);
1340 
1341 		if (trylock && !done)
1342 			pag->pag_ici_reclaim_cursor = first_index;
1343 		else
1344 			pag->pag_ici_reclaim_cursor = 0;
1345 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1346 		xfs_perag_put(pag);
1347 	}
1348 
1349 	/*
1350 	 * if we skipped any AG, and we still have scan count remaining, do
1351 	 * another pass this time using blocking reclaim semantics (i.e
1352 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1353 	 * ensure that when we get more reclaimers than AGs we block rather
1354 	 * than spin trying to execute reclaim.
1355 	 */
1356 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1357 		trylock = 0;
1358 		goto restart;
1359 	}
1360 	return last_error;
1361 }
1362 
1363 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1364 xfs_reclaim_inodes(
1365 	xfs_mount_t	*mp,
1366 	int		mode)
1367 {
1368 	int		nr_to_scan = INT_MAX;
1369 
1370 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1371 }
1372 
1373 /*
1374  * Scan a certain number of inodes for reclaim.
1375  *
1376  * When called we make sure that there is a background (fast) inode reclaim in
1377  * progress, while we will throttle the speed of reclaim via doing synchronous
1378  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1379  * them to be cleaned, which we hope will not be very long due to the
1380  * background walker having already kicked the IO off on those dirty inodes.
1381  */
1382 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,int nr_to_scan)1383 xfs_reclaim_inodes_nr(
1384 	struct xfs_mount	*mp,
1385 	int			nr_to_scan)
1386 {
1387 	/* kick background reclaimer and push the AIL */
1388 	xfs_reclaim_work_queue(mp);
1389 	xfs_ail_push_all(mp->m_ail);
1390 
1391 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1392 }
1393 
1394 /*
1395  * Return the number of reclaimable inodes in the filesystem for
1396  * the shrinker to determine how much to reclaim.
1397  */
1398 int
xfs_reclaim_inodes_count(struct xfs_mount * mp)1399 xfs_reclaim_inodes_count(
1400 	struct xfs_mount	*mp)
1401 {
1402 	struct xfs_perag	*pag;
1403 	xfs_agnumber_t		ag = 0;
1404 	int			reclaimable = 0;
1405 
1406 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1407 		ag = pag->pag_agno + 1;
1408 		reclaimable += pag->pag_ici_reclaimable;
1409 		xfs_perag_put(pag);
1410 	}
1411 	return reclaimable;
1412 }
1413 
1414 STATIC int
xfs_inode_match_id(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1415 xfs_inode_match_id(
1416 	struct xfs_inode	*ip,
1417 	struct xfs_eofblocks	*eofb)
1418 {
1419 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1420 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1421 		return 0;
1422 
1423 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1424 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1425 		return 0;
1426 
1427 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1428 	    xfs_get_projid(ip) != eofb->eof_prid)
1429 		return 0;
1430 
1431 	return 1;
1432 }
1433 
1434 /*
1435  * A union-based inode filtering algorithm. Process the inode if any of the
1436  * criteria match. This is for global/internal scans only.
1437  */
1438 STATIC int
xfs_inode_match_id_union(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1439 xfs_inode_match_id_union(
1440 	struct xfs_inode	*ip,
1441 	struct xfs_eofblocks	*eofb)
1442 {
1443 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1444 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1445 		return 1;
1446 
1447 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1448 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1449 		return 1;
1450 
1451 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1452 	    xfs_get_projid(ip) == eofb->eof_prid)
1453 		return 1;
1454 
1455 	return 0;
1456 }
1457 
1458 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,int flags,void * args)1459 xfs_inode_free_eofblocks(
1460 	struct xfs_inode	*ip,
1461 	int			flags,
1462 	void			*args)
1463 {
1464 	int ret = 0;
1465 	struct xfs_eofblocks *eofb = args;
1466 	int match;
1467 
1468 	if (!xfs_can_free_eofblocks(ip, false)) {
1469 		/* inode could be preallocated or append-only */
1470 		trace_xfs_inode_free_eofblocks_invalid(ip);
1471 		xfs_inode_clear_eofblocks_tag(ip);
1472 		return 0;
1473 	}
1474 
1475 	/*
1476 	 * If the mapping is dirty the operation can block and wait for some
1477 	 * time. Unless we are waiting, skip it.
1478 	 */
1479 	if (!(flags & SYNC_WAIT) &&
1480 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1481 		return 0;
1482 
1483 	if (eofb) {
1484 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1485 			match = xfs_inode_match_id_union(ip, eofb);
1486 		else
1487 			match = xfs_inode_match_id(ip, eofb);
1488 		if (!match)
1489 			return 0;
1490 
1491 		/* skip the inode if the file size is too small */
1492 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1493 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1494 			return 0;
1495 	}
1496 
1497 	/*
1498 	 * If the caller is waiting, return -EAGAIN to keep the background
1499 	 * scanner moving and revisit the inode in a subsequent pass.
1500 	 */
1501 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1502 		if (flags & SYNC_WAIT)
1503 			ret = -EAGAIN;
1504 		return ret;
1505 	}
1506 	ret = xfs_free_eofblocks(ip);
1507 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1508 
1509 	return ret;
1510 }
1511 
1512 static int
__xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb,int (* execute)(struct xfs_inode * ip,int flags,void * args),int tag)1513 __xfs_icache_free_eofblocks(
1514 	struct xfs_mount	*mp,
1515 	struct xfs_eofblocks	*eofb,
1516 	int			(*execute)(struct xfs_inode *ip, int flags,
1517 					   void *args),
1518 	int			tag)
1519 {
1520 	int flags = SYNC_TRYLOCK;
1521 
1522 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1523 		flags = SYNC_WAIT;
1524 
1525 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1526 					 eofb, tag);
1527 }
1528 
1529 int
xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1530 xfs_icache_free_eofblocks(
1531 	struct xfs_mount	*mp,
1532 	struct xfs_eofblocks	*eofb)
1533 {
1534 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1535 			XFS_ICI_EOFBLOCKS_TAG);
1536 }
1537 
1538 /*
1539  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1540  * multiple quotas, we don't know exactly which quota caused an allocation
1541  * failure. We make a best effort by including each quota under low free space
1542  * conditions (less than 1% free space) in the scan.
1543  */
1544 static int
__xfs_inode_free_quota_eofblocks(struct xfs_inode * ip,int (* execute)(struct xfs_mount * mp,struct xfs_eofblocks * eofb))1545 __xfs_inode_free_quota_eofblocks(
1546 	struct xfs_inode	*ip,
1547 	int			(*execute)(struct xfs_mount *mp,
1548 					   struct xfs_eofblocks	*eofb))
1549 {
1550 	int scan = 0;
1551 	struct xfs_eofblocks eofb = {0};
1552 	struct xfs_dquot *dq;
1553 
1554 	/*
1555 	 * Run a sync scan to increase effectiveness and use the union filter to
1556 	 * cover all applicable quotas in a single scan.
1557 	 */
1558 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1559 
1560 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1561 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1562 		if (dq && xfs_dquot_lowsp(dq)) {
1563 			eofb.eof_uid = VFS_I(ip)->i_uid;
1564 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1565 			scan = 1;
1566 		}
1567 	}
1568 
1569 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1570 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1571 		if (dq && xfs_dquot_lowsp(dq)) {
1572 			eofb.eof_gid = VFS_I(ip)->i_gid;
1573 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1574 			scan = 1;
1575 		}
1576 	}
1577 
1578 	if (scan)
1579 		execute(ip->i_mount, &eofb);
1580 
1581 	return scan;
1582 }
1583 
1584 int
xfs_inode_free_quota_eofblocks(struct xfs_inode * ip)1585 xfs_inode_free_quota_eofblocks(
1586 	struct xfs_inode *ip)
1587 {
1588 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1589 }
1590 
1591 static inline unsigned long
xfs_iflag_for_tag(int tag)1592 xfs_iflag_for_tag(
1593 	int		tag)
1594 {
1595 	switch (tag) {
1596 	case XFS_ICI_EOFBLOCKS_TAG:
1597 		return XFS_IEOFBLOCKS;
1598 	case XFS_ICI_COWBLOCKS_TAG:
1599 		return XFS_ICOWBLOCKS;
1600 	default:
1601 		ASSERT(0);
1602 		return 0;
1603 	}
1604 }
1605 
1606 static void
__xfs_inode_set_blocks_tag(xfs_inode_t * ip,void (* execute)(struct xfs_mount * mp),void (* set_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1607 __xfs_inode_set_blocks_tag(
1608 	xfs_inode_t	*ip,
1609 	void		(*execute)(struct xfs_mount *mp),
1610 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1611 				  int error, unsigned long caller_ip),
1612 	int		tag)
1613 {
1614 	struct xfs_mount *mp = ip->i_mount;
1615 	struct xfs_perag *pag;
1616 	int tagged;
1617 
1618 	/*
1619 	 * Don't bother locking the AG and looking up in the radix trees
1620 	 * if we already know that we have the tag set.
1621 	 */
1622 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1623 		return;
1624 	spin_lock(&ip->i_flags_lock);
1625 	ip->i_flags |= xfs_iflag_for_tag(tag);
1626 	spin_unlock(&ip->i_flags_lock);
1627 
1628 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1629 	spin_lock(&pag->pag_ici_lock);
1630 
1631 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1632 	radix_tree_tag_set(&pag->pag_ici_root,
1633 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1634 	if (!tagged) {
1635 		/* propagate the eofblocks tag up into the perag radix tree */
1636 		spin_lock(&ip->i_mount->m_perag_lock);
1637 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1638 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1639 				   tag);
1640 		spin_unlock(&ip->i_mount->m_perag_lock);
1641 
1642 		/* kick off background trimming */
1643 		execute(ip->i_mount);
1644 
1645 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1646 	}
1647 
1648 	spin_unlock(&pag->pag_ici_lock);
1649 	xfs_perag_put(pag);
1650 }
1651 
1652 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1653 xfs_inode_set_eofblocks_tag(
1654 	xfs_inode_t	*ip)
1655 {
1656 	trace_xfs_inode_set_eofblocks_tag(ip);
1657 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1658 			trace_xfs_perag_set_eofblocks,
1659 			XFS_ICI_EOFBLOCKS_TAG);
1660 }
1661 
1662 static void
__xfs_inode_clear_blocks_tag(xfs_inode_t * ip,void (* clear_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1663 __xfs_inode_clear_blocks_tag(
1664 	xfs_inode_t	*ip,
1665 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1666 				    int error, unsigned long caller_ip),
1667 	int		tag)
1668 {
1669 	struct xfs_mount *mp = ip->i_mount;
1670 	struct xfs_perag *pag;
1671 
1672 	spin_lock(&ip->i_flags_lock);
1673 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1674 	spin_unlock(&ip->i_flags_lock);
1675 
1676 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1677 	spin_lock(&pag->pag_ici_lock);
1678 
1679 	radix_tree_tag_clear(&pag->pag_ici_root,
1680 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1681 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1682 		/* clear the eofblocks tag from the perag radix tree */
1683 		spin_lock(&ip->i_mount->m_perag_lock);
1684 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1685 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1686 				     tag);
1687 		spin_unlock(&ip->i_mount->m_perag_lock);
1688 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1689 	}
1690 
1691 	spin_unlock(&pag->pag_ici_lock);
1692 	xfs_perag_put(pag);
1693 }
1694 
1695 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1696 xfs_inode_clear_eofblocks_tag(
1697 	xfs_inode_t	*ip)
1698 {
1699 	trace_xfs_inode_clear_eofblocks_tag(ip);
1700 	return __xfs_inode_clear_blocks_tag(ip,
1701 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1702 }
1703 
1704 /*
1705  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1706  * then we can bail out quickly, but otherwise we must back off if the file
1707  * is undergoing some kind of write.
1708  */
1709 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip)1710 xfs_prep_free_cowblocks(
1711 	struct xfs_inode	*ip)
1712 {
1713 	/*
1714 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1715 	 * possible the inode was fully unshared since it was originally tagged.
1716 	 */
1717 	if (!xfs_inode_has_cow_data(ip)) {
1718 		trace_xfs_inode_free_cowblocks_invalid(ip);
1719 		xfs_inode_clear_cowblocks_tag(ip);
1720 		return false;
1721 	}
1722 
1723 	/*
1724 	 * If the mapping is dirty or under writeback we cannot touch the
1725 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1726 	 */
1727 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1728 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1729 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1730 	    atomic_read(&VFS_I(ip)->i_dio_count))
1731 		return false;
1732 
1733 	return true;
1734 }
1735 
1736 /*
1737  * Automatic CoW Reservation Freeing
1738  *
1739  * These functions automatically garbage collect leftover CoW reservations
1740  * that were made on behalf of a cowextsize hint when we start to run out
1741  * of quota or when the reservations sit around for too long.  If the file
1742  * has dirty pages or is undergoing writeback, its CoW reservations will
1743  * be retained.
1744  *
1745  * The actual garbage collection piggybacks off the same code that runs
1746  * the speculative EOF preallocation garbage collector.
1747  */
1748 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,int flags,void * args)1749 xfs_inode_free_cowblocks(
1750 	struct xfs_inode	*ip,
1751 	int			flags,
1752 	void			*args)
1753 {
1754 	struct xfs_eofblocks	*eofb = args;
1755 	int			match;
1756 	int			ret = 0;
1757 
1758 	if (!xfs_prep_free_cowblocks(ip))
1759 		return 0;
1760 
1761 	if (eofb) {
1762 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1763 			match = xfs_inode_match_id_union(ip, eofb);
1764 		else
1765 			match = xfs_inode_match_id(ip, eofb);
1766 		if (!match)
1767 			return 0;
1768 
1769 		/* skip the inode if the file size is too small */
1770 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1771 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1772 			return 0;
1773 	}
1774 
1775 	/* Free the CoW blocks */
1776 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1777 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1778 
1779 	/*
1780 	 * Check again, nobody else should be able to dirty blocks or change
1781 	 * the reflink iflag now that we have the first two locks held.
1782 	 */
1783 	if (xfs_prep_free_cowblocks(ip))
1784 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1785 
1786 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1787 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1788 
1789 	return ret;
1790 }
1791 
1792 int
xfs_icache_free_cowblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1793 xfs_icache_free_cowblocks(
1794 	struct xfs_mount	*mp,
1795 	struct xfs_eofblocks	*eofb)
1796 {
1797 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1798 			XFS_ICI_COWBLOCKS_TAG);
1799 }
1800 
1801 int
xfs_inode_free_quota_cowblocks(struct xfs_inode * ip)1802 xfs_inode_free_quota_cowblocks(
1803 	struct xfs_inode *ip)
1804 {
1805 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1806 }
1807 
1808 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1809 xfs_inode_set_cowblocks_tag(
1810 	xfs_inode_t	*ip)
1811 {
1812 	trace_xfs_inode_set_cowblocks_tag(ip);
1813 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1814 			trace_xfs_perag_set_cowblocks,
1815 			XFS_ICI_COWBLOCKS_TAG);
1816 }
1817 
1818 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1819 xfs_inode_clear_cowblocks_tag(
1820 	xfs_inode_t	*ip)
1821 {
1822 	trace_xfs_inode_clear_cowblocks_tag(ip);
1823 	return __xfs_inode_clear_blocks_tag(ip,
1824 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1825 }
1826 
1827 /* Disable post-EOF and CoW block auto-reclamation. */
1828 void
xfs_icache_disable_reclaim(struct xfs_mount * mp)1829 xfs_icache_disable_reclaim(
1830 	struct xfs_mount	*mp)
1831 {
1832 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1833 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1834 }
1835 
1836 /* Enable post-EOF and CoW block auto-reclamation. */
1837 void
xfs_icache_enable_reclaim(struct xfs_mount * mp)1838 xfs_icache_enable_reclaim(
1839 	struct xfs_mount	*mp)
1840 {
1841 	xfs_queue_eofblocks(mp);
1842 	xfs_queue_cowblocks(mp);
1843 }
1844