1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_sb.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/iversion.h>
29
30 /*
31 * Allocate and initialise an xfs_inode.
32 */
33 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)34 xfs_inode_alloc(
35 struct xfs_mount *mp,
36 xfs_ino_t ino)
37 {
38 struct xfs_inode *ip;
39
40 /*
41 * if this didn't occur in transactions, we could use
42 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
43 * code up to do this anyway.
44 */
45 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
46 if (!ip)
47 return NULL;
48 if (inode_init_always(mp->m_super, VFS_I(ip))) {
49 kmem_zone_free(xfs_inode_zone, ip);
50 return NULL;
51 }
52
53 /* VFS doesn't initialise i_mode! */
54 VFS_I(ip)->i_mode = 0;
55
56 XFS_STATS_INC(mp, vn_active);
57 ASSERT(atomic_read(&ip->i_pincount) == 0);
58 ASSERT(!xfs_isiflocked(ip));
59 ASSERT(ip->i_ino == 0);
60
61 /* initialise the xfs inode */
62 ip->i_ino = ino;
63 ip->i_mount = mp;
64 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
65 ip->i_afp = NULL;
66 ip->i_cowfp = NULL;
67 ip->i_cnextents = 0;
68 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
69 memset(&ip->i_df, 0, sizeof(ip->i_df));
70 ip->i_flags = 0;
71 ip->i_delayed_blks = 0;
72 memset(&ip->i_d, 0, sizeof(ip->i_d));
73
74 return ip;
75 }
76
77 STATIC void
xfs_inode_free_callback(struct rcu_head * head)78 xfs_inode_free_callback(
79 struct rcu_head *head)
80 {
81 struct inode *inode = container_of(head, struct inode, i_rcu);
82 struct xfs_inode *ip = XFS_I(inode);
83
84 switch (VFS_I(ip)->i_mode & S_IFMT) {
85 case S_IFREG:
86 case S_IFDIR:
87 case S_IFLNK:
88 xfs_idestroy_fork(ip, XFS_DATA_FORK);
89 break;
90 }
91
92 if (ip->i_afp)
93 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
94 if (ip->i_cowfp)
95 xfs_idestroy_fork(ip, XFS_COW_FORK);
96
97 if (ip->i_itemp) {
98 ASSERT(!test_bit(XFS_LI_IN_AIL,
99 &ip->i_itemp->ili_item.li_flags));
100 xfs_inode_item_destroy(ip);
101 ip->i_itemp = NULL;
102 }
103
104 kmem_zone_free(xfs_inode_zone, ip);
105 }
106
107 static void
__xfs_inode_free(struct xfs_inode * ip)108 __xfs_inode_free(
109 struct xfs_inode *ip)
110 {
111 /* asserts to verify all state is correct here */
112 ASSERT(atomic_read(&ip->i_pincount) == 0);
113 XFS_STATS_DEC(ip->i_mount, vn_active);
114
115 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
116 }
117
118 void
xfs_inode_free(struct xfs_inode * ip)119 xfs_inode_free(
120 struct xfs_inode *ip)
121 {
122 ASSERT(!xfs_isiflocked(ip));
123
124 /*
125 * Because we use RCU freeing we need to ensure the inode always
126 * appears to be reclaimed with an invalid inode number when in the
127 * free state. The ip->i_flags_lock provides the barrier against lookup
128 * races.
129 */
130 spin_lock(&ip->i_flags_lock);
131 ip->i_flags = XFS_IRECLAIM;
132 ip->i_ino = 0;
133 spin_unlock(&ip->i_flags_lock);
134
135 __xfs_inode_free(ip);
136 }
137
138 /*
139 * Queue a new inode reclaim pass if there are reclaimable inodes and there
140 * isn't a reclaim pass already in progress. By default it runs every 5s based
141 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
142 * tunable, but that can be done if this method proves to be ineffective or too
143 * aggressive.
144 */
145 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)146 xfs_reclaim_work_queue(
147 struct xfs_mount *mp)
148 {
149
150 rcu_read_lock();
151 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
152 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
153 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
154 }
155 rcu_read_unlock();
156 }
157
158 /*
159 * This is a fast pass over the inode cache to try to get reclaim moving on as
160 * many inodes as possible in a short period of time. It kicks itself every few
161 * seconds, as well as being kicked by the inode cache shrinker when memory
162 * goes low. It scans as quickly as possible avoiding locked inodes or those
163 * already being flushed, and once done schedules a future pass.
164 */
165 void
xfs_reclaim_worker(struct work_struct * work)166 xfs_reclaim_worker(
167 struct work_struct *work)
168 {
169 struct xfs_mount *mp = container_of(to_delayed_work(work),
170 struct xfs_mount, m_reclaim_work);
171
172 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
173 xfs_reclaim_work_queue(mp);
174 }
175
176 static void
xfs_perag_set_reclaim_tag(struct xfs_perag * pag)177 xfs_perag_set_reclaim_tag(
178 struct xfs_perag *pag)
179 {
180 struct xfs_mount *mp = pag->pag_mount;
181
182 lockdep_assert_held(&pag->pag_ici_lock);
183 if (pag->pag_ici_reclaimable++)
184 return;
185
186 /* propagate the reclaim tag up into the perag radix tree */
187 spin_lock(&mp->m_perag_lock);
188 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
189 XFS_ICI_RECLAIM_TAG);
190 spin_unlock(&mp->m_perag_lock);
191
192 /* schedule periodic background inode reclaim */
193 xfs_reclaim_work_queue(mp);
194
195 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
196 }
197
198 static void
xfs_perag_clear_reclaim_tag(struct xfs_perag * pag)199 xfs_perag_clear_reclaim_tag(
200 struct xfs_perag *pag)
201 {
202 struct xfs_mount *mp = pag->pag_mount;
203
204 lockdep_assert_held(&pag->pag_ici_lock);
205 if (--pag->pag_ici_reclaimable)
206 return;
207
208 /* clear the reclaim tag from the perag radix tree */
209 spin_lock(&mp->m_perag_lock);
210 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
211 XFS_ICI_RECLAIM_TAG);
212 spin_unlock(&mp->m_perag_lock);
213 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
214 }
215
216
217 /*
218 * We set the inode flag atomically with the radix tree tag.
219 * Once we get tag lookups on the radix tree, this inode flag
220 * can go away.
221 */
222 void
xfs_inode_set_reclaim_tag(struct xfs_inode * ip)223 xfs_inode_set_reclaim_tag(
224 struct xfs_inode *ip)
225 {
226 struct xfs_mount *mp = ip->i_mount;
227 struct xfs_perag *pag;
228
229 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
230 spin_lock(&pag->pag_ici_lock);
231 spin_lock(&ip->i_flags_lock);
232
233 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
234 XFS_ICI_RECLAIM_TAG);
235 xfs_perag_set_reclaim_tag(pag);
236 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
237
238 spin_unlock(&ip->i_flags_lock);
239 spin_unlock(&pag->pag_ici_lock);
240 xfs_perag_put(pag);
241 }
242
243 STATIC void
xfs_inode_clear_reclaim_tag(struct xfs_perag * pag,xfs_ino_t ino)244 xfs_inode_clear_reclaim_tag(
245 struct xfs_perag *pag,
246 xfs_ino_t ino)
247 {
248 radix_tree_tag_clear(&pag->pag_ici_root,
249 XFS_INO_TO_AGINO(pag->pag_mount, ino),
250 XFS_ICI_RECLAIM_TAG);
251 xfs_perag_clear_reclaim_tag(pag);
252 }
253
254 static void
xfs_inew_wait(struct xfs_inode * ip)255 xfs_inew_wait(
256 struct xfs_inode *ip)
257 {
258 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
259 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
260
261 do {
262 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
263 if (!xfs_iflags_test(ip, XFS_INEW))
264 break;
265 schedule();
266 } while (true);
267 finish_wait(wq, &wait.wq_entry);
268 }
269
270 /*
271 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
272 * part of the structure. This is made more complex by the fact we store
273 * information about the on-disk values in the VFS inode and so we can't just
274 * overwrite the values unconditionally. Hence we save the parameters we
275 * need to retain across reinitialisation, and rewrite them into the VFS inode
276 * after reinitialisation even if it fails.
277 */
278 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)279 xfs_reinit_inode(
280 struct xfs_mount *mp,
281 struct inode *inode)
282 {
283 int error;
284 uint32_t nlink = inode->i_nlink;
285 uint32_t generation = inode->i_generation;
286 uint64_t version = inode_peek_iversion(inode);
287 umode_t mode = inode->i_mode;
288 dev_t dev = inode->i_rdev;
289
290 error = inode_init_always(mp->m_super, inode);
291
292 set_nlink(inode, nlink);
293 inode->i_generation = generation;
294 inode_set_iversion_queried(inode, version);
295 inode->i_mode = mode;
296 inode->i_rdev = dev;
297 return error;
298 }
299
300 /*
301 * If we are allocating a new inode, then check what was returned is
302 * actually a free, empty inode. If we are not allocating an inode,
303 * then check we didn't find a free inode.
304 *
305 * Returns:
306 * 0 if the inode free state matches the lookup context
307 * -ENOENT if the inode is free and we are not allocating
308 * -EFSCORRUPTED if there is any state mismatch at all
309 */
310 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)311 xfs_iget_check_free_state(
312 struct xfs_inode *ip,
313 int flags)
314 {
315 if (flags & XFS_IGET_CREATE) {
316 /* should be a free inode */
317 if (VFS_I(ip)->i_mode != 0) {
318 xfs_warn(ip->i_mount,
319 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
320 ip->i_ino, VFS_I(ip)->i_mode);
321 return -EFSCORRUPTED;
322 }
323
324 if (ip->i_d.di_nblocks != 0) {
325 xfs_warn(ip->i_mount,
326 "Corruption detected! Free inode 0x%llx has blocks allocated!",
327 ip->i_ino);
328 return -EFSCORRUPTED;
329 }
330 return 0;
331 }
332
333 /* should be an allocated inode */
334 if (VFS_I(ip)->i_mode == 0)
335 return -ENOENT;
336
337 return 0;
338 }
339
340 /*
341 * Check the validity of the inode we just found it the cache
342 */
343 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)344 xfs_iget_cache_hit(
345 struct xfs_perag *pag,
346 struct xfs_inode *ip,
347 xfs_ino_t ino,
348 int flags,
349 int lock_flags) __releases(RCU)
350 {
351 struct inode *inode = VFS_I(ip);
352 struct xfs_mount *mp = ip->i_mount;
353 int error;
354
355 /*
356 * check for re-use of an inode within an RCU grace period due to the
357 * radix tree nodes not being updated yet. We monitor for this by
358 * setting the inode number to zero before freeing the inode structure.
359 * If the inode has been reallocated and set up, then the inode number
360 * will not match, so check for that, too.
361 */
362 spin_lock(&ip->i_flags_lock);
363 if (ip->i_ino != ino) {
364 trace_xfs_iget_skip(ip);
365 XFS_STATS_INC(mp, xs_ig_frecycle);
366 error = -EAGAIN;
367 goto out_error;
368 }
369
370
371 /*
372 * If we are racing with another cache hit that is currently
373 * instantiating this inode or currently recycling it out of
374 * reclaimabe state, wait for the initialisation to complete
375 * before continuing.
376 *
377 * XXX(hch): eventually we should do something equivalent to
378 * wait_on_inode to wait for these flags to be cleared
379 * instead of polling for it.
380 */
381 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
382 trace_xfs_iget_skip(ip);
383 XFS_STATS_INC(mp, xs_ig_frecycle);
384 error = -EAGAIN;
385 goto out_error;
386 }
387
388 /*
389 * Check the inode free state is valid. This also detects lookup
390 * racing with unlinks.
391 */
392 error = xfs_iget_check_free_state(ip, flags);
393 if (error)
394 goto out_error;
395
396 /*
397 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
398 * Need to carefully get it back into useable state.
399 */
400 if (ip->i_flags & XFS_IRECLAIMABLE) {
401 trace_xfs_iget_reclaim(ip);
402
403 if (flags & XFS_IGET_INCORE) {
404 error = -EAGAIN;
405 goto out_error;
406 }
407
408 /*
409 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
410 * from stomping over us while we recycle the inode. We can't
411 * clear the radix tree reclaimable tag yet as it requires
412 * pag_ici_lock to be held exclusive.
413 */
414 ip->i_flags |= XFS_IRECLAIM;
415
416 spin_unlock(&ip->i_flags_lock);
417 rcu_read_unlock();
418
419 error = xfs_reinit_inode(mp, inode);
420 if (error) {
421 bool wake;
422 /*
423 * Re-initializing the inode failed, and we are in deep
424 * trouble. Try to re-add it to the reclaim list.
425 */
426 rcu_read_lock();
427 spin_lock(&ip->i_flags_lock);
428 wake = !!__xfs_iflags_test(ip, XFS_INEW);
429 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
430 if (wake)
431 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
432 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
433 trace_xfs_iget_reclaim_fail(ip);
434 goto out_error;
435 }
436
437 spin_lock(&pag->pag_ici_lock);
438 spin_lock(&ip->i_flags_lock);
439
440 /*
441 * Clear the per-lifetime state in the inode as we are now
442 * effectively a new inode and need to return to the initial
443 * state before reuse occurs.
444 */
445 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
446 ip->i_flags |= XFS_INEW;
447 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
448 inode->i_state = I_NEW;
449
450 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
451 init_rwsem(&inode->i_rwsem);
452
453 spin_unlock(&ip->i_flags_lock);
454 spin_unlock(&pag->pag_ici_lock);
455 } else {
456 /* If the VFS inode is being torn down, pause and try again. */
457 if (!igrab(inode)) {
458 trace_xfs_iget_skip(ip);
459 error = -EAGAIN;
460 goto out_error;
461 }
462
463 /* We've got a live one. */
464 spin_unlock(&ip->i_flags_lock);
465 rcu_read_unlock();
466 trace_xfs_iget_hit(ip);
467 }
468
469 if (lock_flags != 0)
470 xfs_ilock(ip, lock_flags);
471
472 if (!(flags & XFS_IGET_INCORE))
473 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
474 XFS_STATS_INC(mp, xs_ig_found);
475
476 return 0;
477
478 out_error:
479 spin_unlock(&ip->i_flags_lock);
480 rcu_read_unlock();
481 return error;
482 }
483
484
485 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)486 xfs_iget_cache_miss(
487 struct xfs_mount *mp,
488 struct xfs_perag *pag,
489 xfs_trans_t *tp,
490 xfs_ino_t ino,
491 struct xfs_inode **ipp,
492 int flags,
493 int lock_flags)
494 {
495 struct xfs_inode *ip;
496 int error;
497 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
498 int iflags;
499
500 ip = xfs_inode_alloc(mp, ino);
501 if (!ip)
502 return -ENOMEM;
503
504 error = xfs_iread(mp, tp, ip, flags);
505 if (error)
506 goto out_destroy;
507
508 if (!xfs_inode_verify_forks(ip)) {
509 error = -EFSCORRUPTED;
510 goto out_destroy;
511 }
512
513 trace_xfs_iget_miss(ip);
514
515
516 /*
517 * Check the inode free state is valid. This also detects lookup
518 * racing with unlinks.
519 */
520 error = xfs_iget_check_free_state(ip, flags);
521 if (error)
522 goto out_destroy;
523
524 /*
525 * Preload the radix tree so we can insert safely under the
526 * write spinlock. Note that we cannot sleep inside the preload
527 * region. Since we can be called from transaction context, don't
528 * recurse into the file system.
529 */
530 if (radix_tree_preload(GFP_NOFS)) {
531 error = -EAGAIN;
532 goto out_destroy;
533 }
534
535 /*
536 * Because the inode hasn't been added to the radix-tree yet it can't
537 * be found by another thread, so we can do the non-sleeping lock here.
538 */
539 if (lock_flags) {
540 if (!xfs_ilock_nowait(ip, lock_flags))
541 BUG();
542 }
543
544 /*
545 * These values must be set before inserting the inode into the radix
546 * tree as the moment it is inserted a concurrent lookup (allowed by the
547 * RCU locking mechanism) can find it and that lookup must see that this
548 * is an inode currently under construction (i.e. that XFS_INEW is set).
549 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
550 * memory barrier that ensures this detection works correctly at lookup
551 * time.
552 */
553 iflags = XFS_INEW;
554 if (flags & XFS_IGET_DONTCACHE)
555 iflags |= XFS_IDONTCACHE;
556 ip->i_udquot = NULL;
557 ip->i_gdquot = NULL;
558 ip->i_pdquot = NULL;
559 xfs_iflags_set(ip, iflags);
560
561 /* insert the new inode */
562 spin_lock(&pag->pag_ici_lock);
563 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
564 if (unlikely(error)) {
565 WARN_ON(error != -EEXIST);
566 XFS_STATS_INC(mp, xs_ig_dup);
567 error = -EAGAIN;
568 goto out_preload_end;
569 }
570 spin_unlock(&pag->pag_ici_lock);
571 radix_tree_preload_end();
572
573 *ipp = ip;
574 return 0;
575
576 out_preload_end:
577 spin_unlock(&pag->pag_ici_lock);
578 radix_tree_preload_end();
579 if (lock_flags)
580 xfs_iunlock(ip, lock_flags);
581 out_destroy:
582 __destroy_inode(VFS_I(ip));
583 xfs_inode_free(ip);
584 return error;
585 }
586
587 /*
588 * Look up an inode by number in the given file system.
589 * The inode is looked up in the cache held in each AG.
590 * If the inode is found in the cache, initialise the vfs inode
591 * if necessary.
592 *
593 * If it is not in core, read it in from the file system's device,
594 * add it to the cache and initialise the vfs inode.
595 *
596 * The inode is locked according to the value of the lock_flags parameter.
597 * This flag parameter indicates how and if the inode's IO lock and inode lock
598 * should be taken.
599 *
600 * mp -- the mount point structure for the current file system. It points
601 * to the inode hash table.
602 * tp -- a pointer to the current transaction if there is one. This is
603 * simply passed through to the xfs_iread() call.
604 * ino -- the number of the inode desired. This is the unique identifier
605 * within the file system for the inode being requested.
606 * lock_flags -- flags indicating how to lock the inode. See the comment
607 * for xfs_ilock() for a list of valid values.
608 */
609 int
xfs_iget(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp)610 xfs_iget(
611 xfs_mount_t *mp,
612 xfs_trans_t *tp,
613 xfs_ino_t ino,
614 uint flags,
615 uint lock_flags,
616 xfs_inode_t **ipp)
617 {
618 xfs_inode_t *ip;
619 int error;
620 xfs_perag_t *pag;
621 xfs_agino_t agino;
622
623 /*
624 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
625 * doesn't get freed while it's being referenced during a
626 * radix tree traversal here. It assumes this function
627 * aqcuires only the ILOCK (and therefore it has no need to
628 * involve the IOLOCK in this synchronization).
629 */
630 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
631
632 /* reject inode numbers outside existing AGs */
633 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
634 return -EINVAL;
635
636 XFS_STATS_INC(mp, xs_ig_attempts);
637
638 /* get the perag structure and ensure that it's inode capable */
639 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
640 agino = XFS_INO_TO_AGINO(mp, ino);
641
642 again:
643 error = 0;
644 rcu_read_lock();
645 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
646
647 if (ip) {
648 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
649 if (error)
650 goto out_error_or_again;
651 } else {
652 rcu_read_unlock();
653 if (flags & XFS_IGET_INCORE) {
654 error = -ENODATA;
655 goto out_error_or_again;
656 }
657 XFS_STATS_INC(mp, xs_ig_missed);
658
659 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
660 flags, lock_flags);
661 if (error)
662 goto out_error_or_again;
663 }
664 xfs_perag_put(pag);
665
666 *ipp = ip;
667
668 /*
669 * If we have a real type for an on-disk inode, we can setup the inode
670 * now. If it's a new inode being created, xfs_ialloc will handle it.
671 */
672 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
673 xfs_setup_existing_inode(ip);
674 return 0;
675
676 out_error_or_again:
677 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
678 delay(1);
679 goto again;
680 }
681 xfs_perag_put(pag);
682 return error;
683 }
684
685 /*
686 * "Is this a cached inode that's also allocated?"
687 *
688 * Look up an inode by number in the given file system. If the inode is
689 * in cache and isn't in purgatory, return 1 if the inode is allocated
690 * and 0 if it is not. For all other cases (not in cache, being torn
691 * down, etc.), return a negative error code.
692 *
693 * The caller has to prevent inode allocation and freeing activity,
694 * presumably by locking the AGI buffer. This is to ensure that an
695 * inode cannot transition from allocated to freed until the caller is
696 * ready to allow that. If the inode is in an intermediate state (new,
697 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
698 * inode is not in the cache, -ENOENT will be returned. The caller must
699 * deal with these scenarios appropriately.
700 *
701 * This is a specialized use case for the online scrubber; if you're
702 * reading this, you probably want xfs_iget.
703 */
704 int
xfs_icache_inode_is_allocated(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,bool * inuse)705 xfs_icache_inode_is_allocated(
706 struct xfs_mount *mp,
707 struct xfs_trans *tp,
708 xfs_ino_t ino,
709 bool *inuse)
710 {
711 struct xfs_inode *ip;
712 int error;
713
714 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
715 if (error)
716 return error;
717
718 *inuse = !!(VFS_I(ip)->i_mode);
719 xfs_irele(ip);
720 return 0;
721 }
722
723 /*
724 * The inode lookup is done in batches to keep the amount of lock traffic and
725 * radix tree lookups to a minimum. The batch size is a trade off between
726 * lookup reduction and stack usage. This is in the reclaim path, so we can't
727 * be too greedy.
728 */
729 #define XFS_LOOKUP_BATCH 32
730
731 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip,int flags)732 xfs_inode_ag_walk_grab(
733 struct xfs_inode *ip,
734 int flags)
735 {
736 struct inode *inode = VFS_I(ip);
737 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
738
739 ASSERT(rcu_read_lock_held());
740
741 /*
742 * check for stale RCU freed inode
743 *
744 * If the inode has been reallocated, it doesn't matter if it's not in
745 * the AG we are walking - we are walking for writeback, so if it
746 * passes all the "valid inode" checks and is dirty, then we'll write
747 * it back anyway. If it has been reallocated and still being
748 * initialised, the XFS_INEW check below will catch it.
749 */
750 spin_lock(&ip->i_flags_lock);
751 if (!ip->i_ino)
752 goto out_unlock_noent;
753
754 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
755 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
756 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
757 goto out_unlock_noent;
758 spin_unlock(&ip->i_flags_lock);
759
760 /* nothing to sync during shutdown */
761 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
762 return -EFSCORRUPTED;
763
764 /* If we can't grab the inode, it must on it's way to reclaim. */
765 if (!igrab(inode))
766 return -ENOENT;
767
768 /* inode is valid */
769 return 0;
770
771 out_unlock_noent:
772 spin_unlock(&ip->i_flags_lock);
773 return -ENOENT;
774 }
775
776 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag,int iter_flags)777 xfs_inode_ag_walk(
778 struct xfs_mount *mp,
779 struct xfs_perag *pag,
780 int (*execute)(struct xfs_inode *ip, int flags,
781 void *args),
782 int flags,
783 void *args,
784 int tag,
785 int iter_flags)
786 {
787 uint32_t first_index;
788 int last_error = 0;
789 int skipped;
790 int done;
791 int nr_found;
792
793 restart:
794 done = 0;
795 skipped = 0;
796 first_index = 0;
797 nr_found = 0;
798 do {
799 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
800 int error = 0;
801 int i;
802
803 rcu_read_lock();
804
805 if (tag == -1)
806 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
807 (void **)batch, first_index,
808 XFS_LOOKUP_BATCH);
809 else
810 nr_found = radix_tree_gang_lookup_tag(
811 &pag->pag_ici_root,
812 (void **) batch, first_index,
813 XFS_LOOKUP_BATCH, tag);
814
815 if (!nr_found) {
816 rcu_read_unlock();
817 break;
818 }
819
820 /*
821 * Grab the inodes before we drop the lock. if we found
822 * nothing, nr == 0 and the loop will be skipped.
823 */
824 for (i = 0; i < nr_found; i++) {
825 struct xfs_inode *ip = batch[i];
826
827 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
828 batch[i] = NULL;
829
830 /*
831 * Update the index for the next lookup. Catch
832 * overflows into the next AG range which can occur if
833 * we have inodes in the last block of the AG and we
834 * are currently pointing to the last inode.
835 *
836 * Because we may see inodes that are from the wrong AG
837 * due to RCU freeing and reallocation, only update the
838 * index if it lies in this AG. It was a race that lead
839 * us to see this inode, so another lookup from the
840 * same index will not find it again.
841 */
842 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
843 continue;
844 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
845 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
846 done = 1;
847 }
848
849 /* unlock now we've grabbed the inodes. */
850 rcu_read_unlock();
851
852 for (i = 0; i < nr_found; i++) {
853 if (!batch[i])
854 continue;
855 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
856 xfs_iflags_test(batch[i], XFS_INEW))
857 xfs_inew_wait(batch[i]);
858 error = execute(batch[i], flags, args);
859 xfs_irele(batch[i]);
860 if (error == -EAGAIN) {
861 skipped++;
862 continue;
863 }
864 if (error && last_error != -EFSCORRUPTED)
865 last_error = error;
866 }
867
868 /* bail out if the filesystem is corrupted. */
869 if (error == -EFSCORRUPTED)
870 break;
871
872 cond_resched();
873
874 } while (nr_found && !done);
875
876 if (skipped) {
877 delay(1);
878 goto restart;
879 }
880 return last_error;
881 }
882
883 /*
884 * Background scanning to trim post-EOF preallocated space. This is queued
885 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
886 */
887 void
xfs_queue_eofblocks(struct xfs_mount * mp)888 xfs_queue_eofblocks(
889 struct xfs_mount *mp)
890 {
891 rcu_read_lock();
892 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
893 queue_delayed_work(mp->m_eofblocks_workqueue,
894 &mp->m_eofblocks_work,
895 msecs_to_jiffies(xfs_eofb_secs * 1000));
896 rcu_read_unlock();
897 }
898
899 void
xfs_eofblocks_worker(struct work_struct * work)900 xfs_eofblocks_worker(
901 struct work_struct *work)
902 {
903 struct xfs_mount *mp = container_of(to_delayed_work(work),
904 struct xfs_mount, m_eofblocks_work);
905
906 if (!sb_start_write_trylock(mp->m_super))
907 return;
908 xfs_icache_free_eofblocks(mp, NULL);
909 sb_end_write(mp->m_super);
910
911 xfs_queue_eofblocks(mp);
912 }
913
914 /*
915 * Background scanning to trim preallocated CoW space. This is queued
916 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
917 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
918 */
919 void
xfs_queue_cowblocks(struct xfs_mount * mp)920 xfs_queue_cowblocks(
921 struct xfs_mount *mp)
922 {
923 rcu_read_lock();
924 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
925 queue_delayed_work(mp->m_eofblocks_workqueue,
926 &mp->m_cowblocks_work,
927 msecs_to_jiffies(xfs_cowb_secs * 1000));
928 rcu_read_unlock();
929 }
930
931 void
xfs_cowblocks_worker(struct work_struct * work)932 xfs_cowblocks_worker(
933 struct work_struct *work)
934 {
935 struct xfs_mount *mp = container_of(to_delayed_work(work),
936 struct xfs_mount, m_cowblocks_work);
937
938 if (!sb_start_write_trylock(mp->m_super))
939 return;
940 xfs_icache_free_cowblocks(mp, NULL);
941 sb_end_write(mp->m_super);
942
943 xfs_queue_cowblocks(mp);
944 }
945
946 int
xfs_inode_ag_iterator_flags(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int iter_flags)947 xfs_inode_ag_iterator_flags(
948 struct xfs_mount *mp,
949 int (*execute)(struct xfs_inode *ip, int flags,
950 void *args),
951 int flags,
952 void *args,
953 int iter_flags)
954 {
955 struct xfs_perag *pag;
956 int error = 0;
957 int last_error = 0;
958 xfs_agnumber_t ag;
959
960 ag = 0;
961 while ((pag = xfs_perag_get(mp, ag))) {
962 ag = pag->pag_agno + 1;
963 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
964 iter_flags);
965 xfs_perag_put(pag);
966 if (error) {
967 last_error = error;
968 if (error == -EFSCORRUPTED)
969 break;
970 }
971 }
972 return last_error;
973 }
974
975 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args)976 xfs_inode_ag_iterator(
977 struct xfs_mount *mp,
978 int (*execute)(struct xfs_inode *ip, int flags,
979 void *args),
980 int flags,
981 void *args)
982 {
983 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
984 }
985
986 int
xfs_inode_ag_iterator_tag(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,int flags,void * args),int flags,void * args,int tag)987 xfs_inode_ag_iterator_tag(
988 struct xfs_mount *mp,
989 int (*execute)(struct xfs_inode *ip, int flags,
990 void *args),
991 int flags,
992 void *args,
993 int tag)
994 {
995 struct xfs_perag *pag;
996 int error = 0;
997 int last_error = 0;
998 xfs_agnumber_t ag;
999
1000 ag = 0;
1001 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1002 ag = pag->pag_agno + 1;
1003 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1004 0);
1005 xfs_perag_put(pag);
1006 if (error) {
1007 last_error = error;
1008 if (error == -EFSCORRUPTED)
1009 break;
1010 }
1011 }
1012 return last_error;
1013 }
1014
1015 /*
1016 * Grab the inode for reclaim exclusively.
1017 * Return 0 if we grabbed it, non-zero otherwise.
1018 */
1019 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)1020 xfs_reclaim_inode_grab(
1021 struct xfs_inode *ip,
1022 int flags)
1023 {
1024 ASSERT(rcu_read_lock_held());
1025
1026 /* quick check for stale RCU freed inode */
1027 if (!ip->i_ino)
1028 return 1;
1029
1030 /*
1031 * If we are asked for non-blocking operation, do unlocked checks to
1032 * see if the inode already is being flushed or in reclaim to avoid
1033 * lock traffic.
1034 */
1035 if ((flags & SYNC_TRYLOCK) &&
1036 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1037 return 1;
1038
1039 /*
1040 * The radix tree lock here protects a thread in xfs_iget from racing
1041 * with us starting reclaim on the inode. Once we have the
1042 * XFS_IRECLAIM flag set it will not touch us.
1043 *
1044 * Due to RCU lookup, we may find inodes that have been freed and only
1045 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1046 * aren't candidates for reclaim at all, so we must check the
1047 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1048 */
1049 spin_lock(&ip->i_flags_lock);
1050 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1051 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1052 /* not a reclaim candidate. */
1053 spin_unlock(&ip->i_flags_lock);
1054 return 1;
1055 }
1056 __xfs_iflags_set(ip, XFS_IRECLAIM);
1057 spin_unlock(&ip->i_flags_lock);
1058 return 0;
1059 }
1060
1061 /*
1062 * Inodes in different states need to be treated differently. The following
1063 * table lists the inode states and the reclaim actions necessary:
1064 *
1065 * inode state iflush ret required action
1066 * --------------- ---------- ---------------
1067 * bad - reclaim
1068 * shutdown EIO unpin and reclaim
1069 * clean, unpinned 0 reclaim
1070 * stale, unpinned 0 reclaim
1071 * clean, pinned(*) 0 requeue
1072 * stale, pinned EAGAIN requeue
1073 * dirty, async - requeue
1074 * dirty, sync 0 reclaim
1075 *
1076 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1077 * handled anyway given the order of checks implemented.
1078 *
1079 * Also, because we get the flush lock first, we know that any inode that has
1080 * been flushed delwri has had the flush completed by the time we check that
1081 * the inode is clean.
1082 *
1083 * Note that because the inode is flushed delayed write by AIL pushing, the
1084 * flush lock may already be held here and waiting on it can result in very
1085 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1086 * the caller should push the AIL first before trying to reclaim inodes to
1087 * minimise the amount of time spent waiting. For background relaim, we only
1088 * bother to reclaim clean inodes anyway.
1089 *
1090 * Hence the order of actions after gaining the locks should be:
1091 * bad => reclaim
1092 * shutdown => unpin and reclaim
1093 * pinned, async => requeue
1094 * pinned, sync => unpin
1095 * stale => reclaim
1096 * clean => reclaim
1097 * dirty, async => requeue
1098 * dirty, sync => flush, wait and reclaim
1099 */
1100 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)1101 xfs_reclaim_inode(
1102 struct xfs_inode *ip,
1103 struct xfs_perag *pag,
1104 int sync_mode)
1105 {
1106 struct xfs_buf *bp = NULL;
1107 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1108 int error;
1109
1110 restart:
1111 error = 0;
1112 xfs_ilock(ip, XFS_ILOCK_EXCL);
1113 if (!xfs_iflock_nowait(ip)) {
1114 if (!(sync_mode & SYNC_WAIT))
1115 goto out;
1116 xfs_iflock(ip);
1117 }
1118
1119 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1120 xfs_iunpin_wait(ip);
1121 /* xfs_iflush_abort() drops the flush lock */
1122 xfs_iflush_abort(ip, false);
1123 goto reclaim;
1124 }
1125 if (xfs_ipincount(ip)) {
1126 if (!(sync_mode & SYNC_WAIT))
1127 goto out_ifunlock;
1128 xfs_iunpin_wait(ip);
1129 }
1130 if (xfs_inode_clean(ip)) {
1131 xfs_ifunlock(ip);
1132 goto reclaim;
1133 }
1134
1135 /*
1136 * Never flush out dirty data during non-blocking reclaim, as it would
1137 * just contend with AIL pushing trying to do the same job.
1138 */
1139 if (!(sync_mode & SYNC_WAIT))
1140 goto out_ifunlock;
1141
1142 /*
1143 * Now we have an inode that needs flushing.
1144 *
1145 * Note that xfs_iflush will never block on the inode buffer lock, as
1146 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1147 * ip->i_lock, and we are doing the exact opposite here. As a result,
1148 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1149 * result in an ABBA deadlock with xfs_ifree_cluster().
1150 *
1151 * As xfs_ifree_cluser() must gather all inodes that are active in the
1152 * cache to mark them stale, if we hit this case we don't actually want
1153 * to do IO here - we want the inode marked stale so we can simply
1154 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1155 * inode, back off and try again. Hopefully the next pass through will
1156 * see the stale flag set on the inode.
1157 */
1158 error = xfs_iflush(ip, &bp);
1159 if (error == -EAGAIN) {
1160 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1161 /* backoff longer than in xfs_ifree_cluster */
1162 delay(2);
1163 goto restart;
1164 }
1165
1166 if (!error) {
1167 error = xfs_bwrite(bp);
1168 xfs_buf_relse(bp);
1169 }
1170
1171 reclaim:
1172 ASSERT(!xfs_isiflocked(ip));
1173
1174 /*
1175 * Because we use RCU freeing we need to ensure the inode always appears
1176 * to be reclaimed with an invalid inode number when in the free state.
1177 * We do this as early as possible under the ILOCK so that
1178 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1179 * detect races with us here. By doing this, we guarantee that once
1180 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1181 * it will see either a valid inode that will serialise correctly, or it
1182 * will see an invalid inode that it can skip.
1183 */
1184 spin_lock(&ip->i_flags_lock);
1185 ip->i_flags = XFS_IRECLAIM;
1186 ip->i_ino = 0;
1187 spin_unlock(&ip->i_flags_lock);
1188
1189 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1190
1191 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1192 /*
1193 * Remove the inode from the per-AG radix tree.
1194 *
1195 * Because radix_tree_delete won't complain even if the item was never
1196 * added to the tree assert that it's been there before to catch
1197 * problems with the inode life time early on.
1198 */
1199 spin_lock(&pag->pag_ici_lock);
1200 if (!radix_tree_delete(&pag->pag_ici_root,
1201 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1202 ASSERT(0);
1203 xfs_perag_clear_reclaim_tag(pag);
1204 spin_unlock(&pag->pag_ici_lock);
1205
1206 /*
1207 * Here we do an (almost) spurious inode lock in order to coordinate
1208 * with inode cache radix tree lookups. This is because the lookup
1209 * can reference the inodes in the cache without taking references.
1210 *
1211 * We make that OK here by ensuring that we wait until the inode is
1212 * unlocked after the lookup before we go ahead and free it.
1213 */
1214 xfs_ilock(ip, XFS_ILOCK_EXCL);
1215 xfs_qm_dqdetach(ip);
1216 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1217 ASSERT(xfs_inode_clean(ip));
1218
1219 __xfs_inode_free(ip);
1220 return error;
1221
1222 out_ifunlock:
1223 xfs_ifunlock(ip);
1224 out:
1225 xfs_iflags_clear(ip, XFS_IRECLAIM);
1226 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1227 /*
1228 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1229 * a short while. However, this just burns CPU time scanning the tree
1230 * waiting for IO to complete and the reclaim work never goes back to
1231 * the idle state. Instead, return 0 to let the next scheduled
1232 * background reclaim attempt to reclaim the inode again.
1233 */
1234 return 0;
1235 }
1236
1237 /*
1238 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1239 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1240 * then a shut down during filesystem unmount reclaim walk leak all the
1241 * unreclaimed inodes.
1242 */
1243 STATIC int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)1244 xfs_reclaim_inodes_ag(
1245 struct xfs_mount *mp,
1246 int flags,
1247 int *nr_to_scan)
1248 {
1249 struct xfs_perag *pag;
1250 int error = 0;
1251 int last_error = 0;
1252 xfs_agnumber_t ag;
1253 int trylock = flags & SYNC_TRYLOCK;
1254 int skipped;
1255
1256 restart:
1257 ag = 0;
1258 skipped = 0;
1259 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1260 unsigned long first_index = 0;
1261 int done = 0;
1262 int nr_found = 0;
1263
1264 ag = pag->pag_agno + 1;
1265
1266 if (trylock) {
1267 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1268 skipped++;
1269 xfs_perag_put(pag);
1270 continue;
1271 }
1272 first_index = pag->pag_ici_reclaim_cursor;
1273 } else
1274 mutex_lock(&pag->pag_ici_reclaim_lock);
1275
1276 do {
1277 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1278 int i;
1279
1280 rcu_read_lock();
1281 nr_found = radix_tree_gang_lookup_tag(
1282 &pag->pag_ici_root,
1283 (void **)batch, first_index,
1284 XFS_LOOKUP_BATCH,
1285 XFS_ICI_RECLAIM_TAG);
1286 if (!nr_found) {
1287 done = 1;
1288 rcu_read_unlock();
1289 break;
1290 }
1291
1292 /*
1293 * Grab the inodes before we drop the lock. if we found
1294 * nothing, nr == 0 and the loop will be skipped.
1295 */
1296 for (i = 0; i < nr_found; i++) {
1297 struct xfs_inode *ip = batch[i];
1298
1299 if (done || xfs_reclaim_inode_grab(ip, flags))
1300 batch[i] = NULL;
1301
1302 /*
1303 * Update the index for the next lookup. Catch
1304 * overflows into the next AG range which can
1305 * occur if we have inodes in the last block of
1306 * the AG and we are currently pointing to the
1307 * last inode.
1308 *
1309 * Because we may see inodes that are from the
1310 * wrong AG due to RCU freeing and
1311 * reallocation, only update the index if it
1312 * lies in this AG. It was a race that lead us
1313 * to see this inode, so another lookup from
1314 * the same index will not find it again.
1315 */
1316 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1317 pag->pag_agno)
1318 continue;
1319 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1320 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1321 done = 1;
1322 }
1323
1324 /* unlock now we've grabbed the inodes. */
1325 rcu_read_unlock();
1326
1327 for (i = 0; i < nr_found; i++) {
1328 if (!batch[i])
1329 continue;
1330 error = xfs_reclaim_inode(batch[i], pag, flags);
1331 if (error && last_error != -EFSCORRUPTED)
1332 last_error = error;
1333 }
1334
1335 *nr_to_scan -= XFS_LOOKUP_BATCH;
1336
1337 cond_resched();
1338
1339 } while (nr_found && !done && *nr_to_scan > 0);
1340
1341 if (trylock && !done)
1342 pag->pag_ici_reclaim_cursor = first_index;
1343 else
1344 pag->pag_ici_reclaim_cursor = 0;
1345 mutex_unlock(&pag->pag_ici_reclaim_lock);
1346 xfs_perag_put(pag);
1347 }
1348
1349 /*
1350 * if we skipped any AG, and we still have scan count remaining, do
1351 * another pass this time using blocking reclaim semantics (i.e
1352 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1353 * ensure that when we get more reclaimers than AGs we block rather
1354 * than spin trying to execute reclaim.
1355 */
1356 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1357 trylock = 0;
1358 goto restart;
1359 }
1360 return last_error;
1361 }
1362
1363 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1364 xfs_reclaim_inodes(
1365 xfs_mount_t *mp,
1366 int mode)
1367 {
1368 int nr_to_scan = INT_MAX;
1369
1370 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1371 }
1372
1373 /*
1374 * Scan a certain number of inodes for reclaim.
1375 *
1376 * When called we make sure that there is a background (fast) inode reclaim in
1377 * progress, while we will throttle the speed of reclaim via doing synchronous
1378 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1379 * them to be cleaned, which we hope will not be very long due to the
1380 * background walker having already kicked the IO off on those dirty inodes.
1381 */
1382 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,int nr_to_scan)1383 xfs_reclaim_inodes_nr(
1384 struct xfs_mount *mp,
1385 int nr_to_scan)
1386 {
1387 /* kick background reclaimer and push the AIL */
1388 xfs_reclaim_work_queue(mp);
1389 xfs_ail_push_all(mp->m_ail);
1390
1391 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1392 }
1393
1394 /*
1395 * Return the number of reclaimable inodes in the filesystem for
1396 * the shrinker to determine how much to reclaim.
1397 */
1398 int
xfs_reclaim_inodes_count(struct xfs_mount * mp)1399 xfs_reclaim_inodes_count(
1400 struct xfs_mount *mp)
1401 {
1402 struct xfs_perag *pag;
1403 xfs_agnumber_t ag = 0;
1404 int reclaimable = 0;
1405
1406 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1407 ag = pag->pag_agno + 1;
1408 reclaimable += pag->pag_ici_reclaimable;
1409 xfs_perag_put(pag);
1410 }
1411 return reclaimable;
1412 }
1413
1414 STATIC int
xfs_inode_match_id(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1415 xfs_inode_match_id(
1416 struct xfs_inode *ip,
1417 struct xfs_eofblocks *eofb)
1418 {
1419 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1420 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1421 return 0;
1422
1423 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1424 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1425 return 0;
1426
1427 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1428 xfs_get_projid(ip) != eofb->eof_prid)
1429 return 0;
1430
1431 return 1;
1432 }
1433
1434 /*
1435 * A union-based inode filtering algorithm. Process the inode if any of the
1436 * criteria match. This is for global/internal scans only.
1437 */
1438 STATIC int
xfs_inode_match_id_union(struct xfs_inode * ip,struct xfs_eofblocks * eofb)1439 xfs_inode_match_id_union(
1440 struct xfs_inode *ip,
1441 struct xfs_eofblocks *eofb)
1442 {
1443 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1444 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1445 return 1;
1446
1447 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1448 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1449 return 1;
1450
1451 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1452 xfs_get_projid(ip) == eofb->eof_prid)
1453 return 1;
1454
1455 return 0;
1456 }
1457
1458 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,int flags,void * args)1459 xfs_inode_free_eofblocks(
1460 struct xfs_inode *ip,
1461 int flags,
1462 void *args)
1463 {
1464 int ret = 0;
1465 struct xfs_eofblocks *eofb = args;
1466 int match;
1467
1468 if (!xfs_can_free_eofblocks(ip, false)) {
1469 /* inode could be preallocated or append-only */
1470 trace_xfs_inode_free_eofblocks_invalid(ip);
1471 xfs_inode_clear_eofblocks_tag(ip);
1472 return 0;
1473 }
1474
1475 /*
1476 * If the mapping is dirty the operation can block and wait for some
1477 * time. Unless we are waiting, skip it.
1478 */
1479 if (!(flags & SYNC_WAIT) &&
1480 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1481 return 0;
1482
1483 if (eofb) {
1484 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1485 match = xfs_inode_match_id_union(ip, eofb);
1486 else
1487 match = xfs_inode_match_id(ip, eofb);
1488 if (!match)
1489 return 0;
1490
1491 /* skip the inode if the file size is too small */
1492 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1493 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1494 return 0;
1495 }
1496
1497 /*
1498 * If the caller is waiting, return -EAGAIN to keep the background
1499 * scanner moving and revisit the inode in a subsequent pass.
1500 */
1501 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1502 if (flags & SYNC_WAIT)
1503 ret = -EAGAIN;
1504 return ret;
1505 }
1506 ret = xfs_free_eofblocks(ip);
1507 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1508
1509 return ret;
1510 }
1511
1512 static int
__xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb,int (* execute)(struct xfs_inode * ip,int flags,void * args),int tag)1513 __xfs_icache_free_eofblocks(
1514 struct xfs_mount *mp,
1515 struct xfs_eofblocks *eofb,
1516 int (*execute)(struct xfs_inode *ip, int flags,
1517 void *args),
1518 int tag)
1519 {
1520 int flags = SYNC_TRYLOCK;
1521
1522 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1523 flags = SYNC_WAIT;
1524
1525 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1526 eofb, tag);
1527 }
1528
1529 int
xfs_icache_free_eofblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1530 xfs_icache_free_eofblocks(
1531 struct xfs_mount *mp,
1532 struct xfs_eofblocks *eofb)
1533 {
1534 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1535 XFS_ICI_EOFBLOCKS_TAG);
1536 }
1537
1538 /*
1539 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1540 * multiple quotas, we don't know exactly which quota caused an allocation
1541 * failure. We make a best effort by including each quota under low free space
1542 * conditions (less than 1% free space) in the scan.
1543 */
1544 static int
__xfs_inode_free_quota_eofblocks(struct xfs_inode * ip,int (* execute)(struct xfs_mount * mp,struct xfs_eofblocks * eofb))1545 __xfs_inode_free_quota_eofblocks(
1546 struct xfs_inode *ip,
1547 int (*execute)(struct xfs_mount *mp,
1548 struct xfs_eofblocks *eofb))
1549 {
1550 int scan = 0;
1551 struct xfs_eofblocks eofb = {0};
1552 struct xfs_dquot *dq;
1553
1554 /*
1555 * Run a sync scan to increase effectiveness and use the union filter to
1556 * cover all applicable quotas in a single scan.
1557 */
1558 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1559
1560 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1561 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1562 if (dq && xfs_dquot_lowsp(dq)) {
1563 eofb.eof_uid = VFS_I(ip)->i_uid;
1564 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1565 scan = 1;
1566 }
1567 }
1568
1569 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1570 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1571 if (dq && xfs_dquot_lowsp(dq)) {
1572 eofb.eof_gid = VFS_I(ip)->i_gid;
1573 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1574 scan = 1;
1575 }
1576 }
1577
1578 if (scan)
1579 execute(ip->i_mount, &eofb);
1580
1581 return scan;
1582 }
1583
1584 int
xfs_inode_free_quota_eofblocks(struct xfs_inode * ip)1585 xfs_inode_free_quota_eofblocks(
1586 struct xfs_inode *ip)
1587 {
1588 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1589 }
1590
1591 static inline unsigned long
xfs_iflag_for_tag(int tag)1592 xfs_iflag_for_tag(
1593 int tag)
1594 {
1595 switch (tag) {
1596 case XFS_ICI_EOFBLOCKS_TAG:
1597 return XFS_IEOFBLOCKS;
1598 case XFS_ICI_COWBLOCKS_TAG:
1599 return XFS_ICOWBLOCKS;
1600 default:
1601 ASSERT(0);
1602 return 0;
1603 }
1604 }
1605
1606 static void
__xfs_inode_set_blocks_tag(xfs_inode_t * ip,void (* execute)(struct xfs_mount * mp),void (* set_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1607 __xfs_inode_set_blocks_tag(
1608 xfs_inode_t *ip,
1609 void (*execute)(struct xfs_mount *mp),
1610 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1611 int error, unsigned long caller_ip),
1612 int tag)
1613 {
1614 struct xfs_mount *mp = ip->i_mount;
1615 struct xfs_perag *pag;
1616 int tagged;
1617
1618 /*
1619 * Don't bother locking the AG and looking up in the radix trees
1620 * if we already know that we have the tag set.
1621 */
1622 if (ip->i_flags & xfs_iflag_for_tag(tag))
1623 return;
1624 spin_lock(&ip->i_flags_lock);
1625 ip->i_flags |= xfs_iflag_for_tag(tag);
1626 spin_unlock(&ip->i_flags_lock);
1627
1628 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1629 spin_lock(&pag->pag_ici_lock);
1630
1631 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1632 radix_tree_tag_set(&pag->pag_ici_root,
1633 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1634 if (!tagged) {
1635 /* propagate the eofblocks tag up into the perag radix tree */
1636 spin_lock(&ip->i_mount->m_perag_lock);
1637 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1638 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1639 tag);
1640 spin_unlock(&ip->i_mount->m_perag_lock);
1641
1642 /* kick off background trimming */
1643 execute(ip->i_mount);
1644
1645 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1646 }
1647
1648 spin_unlock(&pag->pag_ici_lock);
1649 xfs_perag_put(pag);
1650 }
1651
1652 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1653 xfs_inode_set_eofblocks_tag(
1654 xfs_inode_t *ip)
1655 {
1656 trace_xfs_inode_set_eofblocks_tag(ip);
1657 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1658 trace_xfs_perag_set_eofblocks,
1659 XFS_ICI_EOFBLOCKS_TAG);
1660 }
1661
1662 static void
__xfs_inode_clear_blocks_tag(xfs_inode_t * ip,void (* clear_tp)(struct xfs_mount * mp,xfs_agnumber_t agno,int error,unsigned long caller_ip),int tag)1663 __xfs_inode_clear_blocks_tag(
1664 xfs_inode_t *ip,
1665 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1666 int error, unsigned long caller_ip),
1667 int tag)
1668 {
1669 struct xfs_mount *mp = ip->i_mount;
1670 struct xfs_perag *pag;
1671
1672 spin_lock(&ip->i_flags_lock);
1673 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1674 spin_unlock(&ip->i_flags_lock);
1675
1676 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1677 spin_lock(&pag->pag_ici_lock);
1678
1679 radix_tree_tag_clear(&pag->pag_ici_root,
1680 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1681 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1682 /* clear the eofblocks tag from the perag radix tree */
1683 spin_lock(&ip->i_mount->m_perag_lock);
1684 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1685 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1686 tag);
1687 spin_unlock(&ip->i_mount->m_perag_lock);
1688 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1689 }
1690
1691 spin_unlock(&pag->pag_ici_lock);
1692 xfs_perag_put(pag);
1693 }
1694
1695 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1696 xfs_inode_clear_eofblocks_tag(
1697 xfs_inode_t *ip)
1698 {
1699 trace_xfs_inode_clear_eofblocks_tag(ip);
1700 return __xfs_inode_clear_blocks_tag(ip,
1701 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1702 }
1703
1704 /*
1705 * Set ourselves up to free CoW blocks from this file. If it's already clean
1706 * then we can bail out quickly, but otherwise we must back off if the file
1707 * is undergoing some kind of write.
1708 */
1709 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip)1710 xfs_prep_free_cowblocks(
1711 struct xfs_inode *ip)
1712 {
1713 /*
1714 * Just clear the tag if we have an empty cow fork or none at all. It's
1715 * possible the inode was fully unshared since it was originally tagged.
1716 */
1717 if (!xfs_inode_has_cow_data(ip)) {
1718 trace_xfs_inode_free_cowblocks_invalid(ip);
1719 xfs_inode_clear_cowblocks_tag(ip);
1720 return false;
1721 }
1722
1723 /*
1724 * If the mapping is dirty or under writeback we cannot touch the
1725 * CoW fork. Leave it alone if we're in the midst of a directio.
1726 */
1727 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1728 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1729 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1730 atomic_read(&VFS_I(ip)->i_dio_count))
1731 return false;
1732
1733 return true;
1734 }
1735
1736 /*
1737 * Automatic CoW Reservation Freeing
1738 *
1739 * These functions automatically garbage collect leftover CoW reservations
1740 * that were made on behalf of a cowextsize hint when we start to run out
1741 * of quota or when the reservations sit around for too long. If the file
1742 * has dirty pages or is undergoing writeback, its CoW reservations will
1743 * be retained.
1744 *
1745 * The actual garbage collection piggybacks off the same code that runs
1746 * the speculative EOF preallocation garbage collector.
1747 */
1748 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,int flags,void * args)1749 xfs_inode_free_cowblocks(
1750 struct xfs_inode *ip,
1751 int flags,
1752 void *args)
1753 {
1754 struct xfs_eofblocks *eofb = args;
1755 int match;
1756 int ret = 0;
1757
1758 if (!xfs_prep_free_cowblocks(ip))
1759 return 0;
1760
1761 if (eofb) {
1762 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1763 match = xfs_inode_match_id_union(ip, eofb);
1764 else
1765 match = xfs_inode_match_id(ip, eofb);
1766 if (!match)
1767 return 0;
1768
1769 /* skip the inode if the file size is too small */
1770 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1771 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1772 return 0;
1773 }
1774
1775 /* Free the CoW blocks */
1776 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1777 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1778
1779 /*
1780 * Check again, nobody else should be able to dirty blocks or change
1781 * the reflink iflag now that we have the first two locks held.
1782 */
1783 if (xfs_prep_free_cowblocks(ip))
1784 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1785
1786 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1787 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1788
1789 return ret;
1790 }
1791
1792 int
xfs_icache_free_cowblocks(struct xfs_mount * mp,struct xfs_eofblocks * eofb)1793 xfs_icache_free_cowblocks(
1794 struct xfs_mount *mp,
1795 struct xfs_eofblocks *eofb)
1796 {
1797 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1798 XFS_ICI_COWBLOCKS_TAG);
1799 }
1800
1801 int
xfs_inode_free_quota_cowblocks(struct xfs_inode * ip)1802 xfs_inode_free_quota_cowblocks(
1803 struct xfs_inode *ip)
1804 {
1805 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1806 }
1807
1808 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1809 xfs_inode_set_cowblocks_tag(
1810 xfs_inode_t *ip)
1811 {
1812 trace_xfs_inode_set_cowblocks_tag(ip);
1813 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1814 trace_xfs_perag_set_cowblocks,
1815 XFS_ICI_COWBLOCKS_TAG);
1816 }
1817
1818 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1819 xfs_inode_clear_cowblocks_tag(
1820 xfs_inode_t *ip)
1821 {
1822 trace_xfs_inode_clear_cowblocks_tag(ip);
1823 return __xfs_inode_clear_blocks_tag(ip,
1824 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1825 }
1826
1827 /* Disable post-EOF and CoW block auto-reclamation. */
1828 void
xfs_icache_disable_reclaim(struct xfs_mount * mp)1829 xfs_icache_disable_reclaim(
1830 struct xfs_mount *mp)
1831 {
1832 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1833 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1834 }
1835
1836 /* Enable post-EOF and CoW block auto-reclamation. */
1837 void
xfs_icache_enable_reclaim(struct xfs_mount * mp)1838 xfs_icache_enable_reclaim(
1839 struct xfs_mount *mp)
1840 {
1841 xfs_queue_eofblocks(mp);
1842 xfs_queue_cowblocks(mp);
1843 }
1844