1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_da_format.h"
14 #include "xfs_inode.h"
15 #include "xfs_bmap.h"
16 #include "xfs_bmap_util.h"
17 #include "xfs_acl.h"
18 #include "xfs_quota.h"
19 #include "xfs_error.h"
20 #include "xfs_attr.h"
21 #include "xfs_trans.h"
22 #include "xfs_trace.h"
23 #include "xfs_icache.h"
24 #include "xfs_symlink.h"
25 #include "xfs_da_btree.h"
26 #include "xfs_dir2.h"
27 #include "xfs_trans_space.h"
28 #include "xfs_iomap.h"
29 #include "xfs_defer.h"
30
31 #include <linux/capability.h>
32 #include <linux/xattr.h>
33 #include <linux/posix_acl.h>
34 #include <linux/security.h>
35 #include <linux/iomap.h>
36 #include <linux/slab.h>
37 #include <linux/iversion.h>
38
39 /*
40 * Directories have different lock order w.r.t. mmap_sem compared to regular
41 * files. This is due to readdir potentially triggering page faults on a user
42 * buffer inside filldir(), and this happens with the ilock on the directory
43 * held. For regular files, the lock order is the other way around - the
44 * mmap_sem is taken during the page fault, and then we lock the ilock to do
45 * block mapping. Hence we need a different class for the directory ilock so
46 * that lockdep can tell them apart.
47 */
48 static struct lock_class_key xfs_nondir_ilock_class;
49 static struct lock_class_key xfs_dir_ilock_class;
50
51 static int
xfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)52 xfs_initxattrs(
53 struct inode *inode,
54 const struct xattr *xattr_array,
55 void *fs_info)
56 {
57 const struct xattr *xattr;
58 struct xfs_inode *ip = XFS_I(inode);
59 int error = 0;
60
61 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
62 error = xfs_attr_set(ip, xattr->name, xattr->value,
63 xattr->value_len, ATTR_SECURE);
64 if (error < 0)
65 break;
66 }
67 return error;
68 }
69
70 /*
71 * Hook in SELinux. This is not quite correct yet, what we really need
72 * here (as we do for default ACLs) is a mechanism by which creation of
73 * these attrs can be journalled at inode creation time (along with the
74 * inode, of course, such that log replay can't cause these to be lost).
75 */
76
77 STATIC int
xfs_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr)78 xfs_init_security(
79 struct inode *inode,
80 struct inode *dir,
81 const struct qstr *qstr)
82 {
83 return security_inode_init_security(inode, dir, qstr,
84 &xfs_initxattrs, NULL);
85 }
86
87 static void
xfs_dentry_to_name(struct xfs_name * namep,struct dentry * dentry)88 xfs_dentry_to_name(
89 struct xfs_name *namep,
90 struct dentry *dentry)
91 {
92 namep->name = dentry->d_name.name;
93 namep->len = dentry->d_name.len;
94 namep->type = XFS_DIR3_FT_UNKNOWN;
95 }
96
97 static int
xfs_dentry_mode_to_name(struct xfs_name * namep,struct dentry * dentry,int mode)98 xfs_dentry_mode_to_name(
99 struct xfs_name *namep,
100 struct dentry *dentry,
101 int mode)
102 {
103 namep->name = dentry->d_name.name;
104 namep->len = dentry->d_name.len;
105 namep->type = xfs_mode_to_ftype(mode);
106
107 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
108 return -EFSCORRUPTED;
109
110 return 0;
111 }
112
113 STATIC void
xfs_cleanup_inode(struct inode * dir,struct inode * inode,struct dentry * dentry)114 xfs_cleanup_inode(
115 struct inode *dir,
116 struct inode *inode,
117 struct dentry *dentry)
118 {
119 struct xfs_name teardown;
120
121 /* Oh, the horror.
122 * If we can't add the ACL or we fail in
123 * xfs_init_security we must back out.
124 * ENOSPC can hit here, among other things.
125 */
126 xfs_dentry_to_name(&teardown, dentry);
127
128 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
129 }
130
131 STATIC int
xfs_generic_create(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev,bool tmpfile)132 xfs_generic_create(
133 struct inode *dir,
134 struct dentry *dentry,
135 umode_t mode,
136 dev_t rdev,
137 bool tmpfile) /* unnamed file */
138 {
139 struct inode *inode;
140 struct xfs_inode *ip = NULL;
141 struct posix_acl *default_acl, *acl;
142 struct xfs_name name;
143 int error;
144
145 /*
146 * Irix uses Missed'em'V split, but doesn't want to see
147 * the upper 5 bits of (14bit) major.
148 */
149 if (S_ISCHR(mode) || S_ISBLK(mode)) {
150 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
151 return -EINVAL;
152 } else {
153 rdev = 0;
154 }
155
156 error = posix_acl_create(dir, &mode, &default_acl, &acl);
157 if (error)
158 return error;
159
160 /* Verify mode is valid also for tmpfile case */
161 error = xfs_dentry_mode_to_name(&name, dentry, mode);
162 if (unlikely(error))
163 goto out_free_acl;
164
165 if (!tmpfile) {
166 error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
167 } else {
168 error = xfs_create_tmpfile(XFS_I(dir), mode, &ip);
169 }
170 if (unlikely(error))
171 goto out_free_acl;
172
173 inode = VFS_I(ip);
174
175 error = xfs_init_security(inode, dir, &dentry->d_name);
176 if (unlikely(error))
177 goto out_cleanup_inode;
178
179 #ifdef CONFIG_XFS_POSIX_ACL
180 if (default_acl) {
181 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
182 if (error)
183 goto out_cleanup_inode;
184 }
185 if (acl) {
186 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
187 if (error)
188 goto out_cleanup_inode;
189 }
190 #endif
191
192 xfs_setup_iops(ip);
193
194 if (tmpfile) {
195 /*
196 * The VFS requires that any inode fed to d_tmpfile must have
197 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
198 * However, we created the temp file with nlink == 0 because
199 * we're not allowed to put an inode with nlink > 0 on the
200 * unlinked list. Therefore we have to set nlink to 1 so that
201 * d_tmpfile can immediately set it back to zero.
202 */
203 set_nlink(inode, 1);
204 d_tmpfile(dentry, inode);
205 } else
206 d_instantiate(dentry, inode);
207
208 xfs_finish_inode_setup(ip);
209
210 out_free_acl:
211 if (default_acl)
212 posix_acl_release(default_acl);
213 if (acl)
214 posix_acl_release(acl);
215 return error;
216
217 out_cleanup_inode:
218 xfs_finish_inode_setup(ip);
219 if (!tmpfile)
220 xfs_cleanup_inode(dir, inode, dentry);
221 xfs_irele(ip);
222 goto out_free_acl;
223 }
224
225 STATIC int
xfs_vn_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)226 xfs_vn_mknod(
227 struct inode *dir,
228 struct dentry *dentry,
229 umode_t mode,
230 dev_t rdev)
231 {
232 return xfs_generic_create(dir, dentry, mode, rdev, false);
233 }
234
235 STATIC int
xfs_vn_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool flags)236 xfs_vn_create(
237 struct inode *dir,
238 struct dentry *dentry,
239 umode_t mode,
240 bool flags)
241 {
242 return xfs_vn_mknod(dir, dentry, mode, 0);
243 }
244
245 STATIC int
xfs_vn_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)246 xfs_vn_mkdir(
247 struct inode *dir,
248 struct dentry *dentry,
249 umode_t mode)
250 {
251 return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0);
252 }
253
254 STATIC struct dentry *
xfs_vn_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)255 xfs_vn_lookup(
256 struct inode *dir,
257 struct dentry *dentry,
258 unsigned int flags)
259 {
260 struct inode *inode;
261 struct xfs_inode *cip;
262 struct xfs_name name;
263 int error;
264
265 if (dentry->d_name.len >= MAXNAMELEN)
266 return ERR_PTR(-ENAMETOOLONG);
267
268 xfs_dentry_to_name(&name, dentry);
269 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
270 if (likely(!error))
271 inode = VFS_I(cip);
272 else if (likely(error == -ENOENT))
273 inode = NULL;
274 else
275 inode = ERR_PTR(error);
276 return d_splice_alias(inode, dentry);
277 }
278
279 STATIC struct dentry *
xfs_vn_ci_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)280 xfs_vn_ci_lookup(
281 struct inode *dir,
282 struct dentry *dentry,
283 unsigned int flags)
284 {
285 struct xfs_inode *ip;
286 struct xfs_name xname;
287 struct xfs_name ci_name;
288 struct qstr dname;
289 int error;
290
291 if (dentry->d_name.len >= MAXNAMELEN)
292 return ERR_PTR(-ENAMETOOLONG);
293
294 xfs_dentry_to_name(&xname, dentry);
295 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
296 if (unlikely(error)) {
297 if (unlikely(error != -ENOENT))
298 return ERR_PTR(error);
299 /*
300 * call d_add(dentry, NULL) here when d_drop_negative_children
301 * is called in xfs_vn_mknod (ie. allow negative dentries
302 * with CI filesystems).
303 */
304 return NULL;
305 }
306
307 /* if exact match, just splice and exit */
308 if (!ci_name.name)
309 return d_splice_alias(VFS_I(ip), dentry);
310
311 /* else case-insensitive match... */
312 dname.name = ci_name.name;
313 dname.len = ci_name.len;
314 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
315 kmem_free(ci_name.name);
316 return dentry;
317 }
318
319 STATIC int
xfs_vn_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)320 xfs_vn_link(
321 struct dentry *old_dentry,
322 struct inode *dir,
323 struct dentry *dentry)
324 {
325 struct inode *inode = d_inode(old_dentry);
326 struct xfs_name name;
327 int error;
328
329 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
330 if (unlikely(error))
331 return error;
332
333 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
334 if (unlikely(error))
335 return error;
336
337 ihold(inode);
338 d_instantiate(dentry, inode);
339 return 0;
340 }
341
342 STATIC int
xfs_vn_unlink(struct inode * dir,struct dentry * dentry)343 xfs_vn_unlink(
344 struct inode *dir,
345 struct dentry *dentry)
346 {
347 struct xfs_name name;
348 int error;
349
350 xfs_dentry_to_name(&name, dentry);
351
352 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
353 if (error)
354 return error;
355
356 /*
357 * With unlink, the VFS makes the dentry "negative": no inode,
358 * but still hashed. This is incompatible with case-insensitive
359 * mode, so invalidate (unhash) the dentry in CI-mode.
360 */
361 if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb))
362 d_invalidate(dentry);
363 return 0;
364 }
365
366 STATIC int
xfs_vn_symlink(struct inode * dir,struct dentry * dentry,const char * symname)367 xfs_vn_symlink(
368 struct inode *dir,
369 struct dentry *dentry,
370 const char *symname)
371 {
372 struct inode *inode;
373 struct xfs_inode *cip = NULL;
374 struct xfs_name name;
375 int error;
376 umode_t mode;
377
378 mode = S_IFLNK |
379 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
380 error = xfs_dentry_mode_to_name(&name, dentry, mode);
381 if (unlikely(error))
382 goto out;
383
384 error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip);
385 if (unlikely(error))
386 goto out;
387
388 inode = VFS_I(cip);
389
390 error = xfs_init_security(inode, dir, &dentry->d_name);
391 if (unlikely(error))
392 goto out_cleanup_inode;
393
394 xfs_setup_iops(cip);
395
396 d_instantiate(dentry, inode);
397 xfs_finish_inode_setup(cip);
398 return 0;
399
400 out_cleanup_inode:
401 xfs_finish_inode_setup(cip);
402 xfs_cleanup_inode(dir, inode, dentry);
403 xfs_irele(cip);
404 out:
405 return error;
406 }
407
408 STATIC int
xfs_vn_rename(struct inode * odir,struct dentry * odentry,struct inode * ndir,struct dentry * ndentry,unsigned int flags)409 xfs_vn_rename(
410 struct inode *odir,
411 struct dentry *odentry,
412 struct inode *ndir,
413 struct dentry *ndentry,
414 unsigned int flags)
415 {
416 struct inode *new_inode = d_inode(ndentry);
417 int omode = 0;
418 int error;
419 struct xfs_name oname;
420 struct xfs_name nname;
421
422 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
423 return -EINVAL;
424
425 /* if we are exchanging files, we need to set i_mode of both files */
426 if (flags & RENAME_EXCHANGE)
427 omode = d_inode(ndentry)->i_mode;
428
429 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
430 if (omode && unlikely(error))
431 return error;
432
433 error = xfs_dentry_mode_to_name(&nname, ndentry,
434 d_inode(odentry)->i_mode);
435 if (unlikely(error))
436 return error;
437
438 return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)),
439 XFS_I(ndir), &nname,
440 new_inode ? XFS_I(new_inode) : NULL, flags);
441 }
442
443 /*
444 * careful here - this function can get called recursively, so
445 * we need to be very careful about how much stack we use.
446 * uio is kmalloced for this reason...
447 */
448 STATIC const char *
xfs_vn_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)449 xfs_vn_get_link(
450 struct dentry *dentry,
451 struct inode *inode,
452 struct delayed_call *done)
453 {
454 char *link;
455 int error = -ENOMEM;
456
457 if (!dentry)
458 return ERR_PTR(-ECHILD);
459
460 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
461 if (!link)
462 goto out_err;
463
464 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
465 if (unlikely(error))
466 goto out_kfree;
467
468 set_delayed_call(done, kfree_link, link);
469 return link;
470
471 out_kfree:
472 kfree(link);
473 out_err:
474 return ERR_PTR(error);
475 }
476
477 STATIC const char *
xfs_vn_get_link_inline(struct dentry * dentry,struct inode * inode,struct delayed_call * done)478 xfs_vn_get_link_inline(
479 struct dentry *dentry,
480 struct inode *inode,
481 struct delayed_call *done)
482 {
483 char *link;
484
485 ASSERT(XFS_I(inode)->i_df.if_flags & XFS_IFINLINE);
486
487 /*
488 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if
489 * if_data is junk.
490 */
491 link = XFS_I(inode)->i_df.if_u1.if_data;
492 if (!link)
493 return ERR_PTR(-EFSCORRUPTED);
494 return link;
495 }
496
497 STATIC int
xfs_vn_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)498 xfs_vn_getattr(
499 const struct path *path,
500 struct kstat *stat,
501 u32 request_mask,
502 unsigned int query_flags)
503 {
504 struct inode *inode = d_inode(path->dentry);
505 struct xfs_inode *ip = XFS_I(inode);
506 struct xfs_mount *mp = ip->i_mount;
507
508 trace_xfs_getattr(ip);
509
510 if (XFS_FORCED_SHUTDOWN(mp))
511 return -EIO;
512
513 stat->size = XFS_ISIZE(ip);
514 stat->dev = inode->i_sb->s_dev;
515 stat->mode = inode->i_mode;
516 stat->nlink = inode->i_nlink;
517 stat->uid = inode->i_uid;
518 stat->gid = inode->i_gid;
519 stat->ino = ip->i_ino;
520 stat->atime = inode->i_atime;
521 stat->mtime = inode->i_mtime;
522 stat->ctime = inode->i_ctime;
523 stat->blocks =
524 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
525
526 if (ip->i_d.di_version == 3) {
527 if (request_mask & STATX_BTIME) {
528 stat->result_mask |= STATX_BTIME;
529 stat->btime.tv_sec = ip->i_d.di_crtime.t_sec;
530 stat->btime.tv_nsec = ip->i_d.di_crtime.t_nsec;
531 }
532 }
533
534 /*
535 * Note: If you add another clause to set an attribute flag, please
536 * update attributes_mask below.
537 */
538 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
539 stat->attributes |= STATX_ATTR_IMMUTABLE;
540 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
541 stat->attributes |= STATX_ATTR_APPEND;
542 if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP)
543 stat->attributes |= STATX_ATTR_NODUMP;
544
545 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
546 STATX_ATTR_APPEND |
547 STATX_ATTR_NODUMP);
548
549 switch (inode->i_mode & S_IFMT) {
550 case S_IFBLK:
551 case S_IFCHR:
552 stat->blksize = BLKDEV_IOSIZE;
553 stat->rdev = inode->i_rdev;
554 break;
555 default:
556 if (XFS_IS_REALTIME_INODE(ip)) {
557 /*
558 * If the file blocks are being allocated from a
559 * realtime volume, then return the inode's realtime
560 * extent size or the realtime volume's extent size.
561 */
562 stat->blksize =
563 xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog;
564 } else
565 stat->blksize = xfs_preferred_iosize(mp);
566 stat->rdev = 0;
567 break;
568 }
569
570 return 0;
571 }
572
573 static void
xfs_setattr_mode(struct xfs_inode * ip,struct iattr * iattr)574 xfs_setattr_mode(
575 struct xfs_inode *ip,
576 struct iattr *iattr)
577 {
578 struct inode *inode = VFS_I(ip);
579 umode_t mode = iattr->ia_mode;
580
581 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
582
583 inode->i_mode &= S_IFMT;
584 inode->i_mode |= mode & ~S_IFMT;
585 }
586
587 void
xfs_setattr_time(struct xfs_inode * ip,struct iattr * iattr)588 xfs_setattr_time(
589 struct xfs_inode *ip,
590 struct iattr *iattr)
591 {
592 struct inode *inode = VFS_I(ip);
593
594 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
595
596 if (iattr->ia_valid & ATTR_ATIME)
597 inode->i_atime = iattr->ia_atime;
598 if (iattr->ia_valid & ATTR_CTIME)
599 inode->i_ctime = iattr->ia_ctime;
600 if (iattr->ia_valid & ATTR_MTIME)
601 inode->i_mtime = iattr->ia_mtime;
602 }
603
604 static int
xfs_vn_change_ok(struct dentry * dentry,struct iattr * iattr)605 xfs_vn_change_ok(
606 struct dentry *dentry,
607 struct iattr *iattr)
608 {
609 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
610
611 if (mp->m_flags & XFS_MOUNT_RDONLY)
612 return -EROFS;
613
614 if (XFS_FORCED_SHUTDOWN(mp))
615 return -EIO;
616
617 return setattr_prepare(dentry, iattr);
618 }
619
620 /*
621 * Set non-size attributes of an inode.
622 *
623 * Caution: The caller of this function is responsible for calling
624 * setattr_prepare() or otherwise verifying the change is fine.
625 */
626 int
xfs_setattr_nonsize(struct xfs_inode * ip,struct iattr * iattr,int flags)627 xfs_setattr_nonsize(
628 struct xfs_inode *ip,
629 struct iattr *iattr,
630 int flags)
631 {
632 xfs_mount_t *mp = ip->i_mount;
633 struct inode *inode = VFS_I(ip);
634 int mask = iattr->ia_valid;
635 xfs_trans_t *tp;
636 int error;
637 kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
638 kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
639 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
640 struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL;
641
642 ASSERT((mask & ATTR_SIZE) == 0);
643
644 /*
645 * If disk quotas is on, we make sure that the dquots do exist on disk,
646 * before we start any other transactions. Trying to do this later
647 * is messy. We don't care to take a readlock to look at the ids
648 * in inode here, because we can't hold it across the trans_reserve.
649 * If the IDs do change before we take the ilock, we're covered
650 * because the i_*dquot fields will get updated anyway.
651 */
652 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
653 uint qflags = 0;
654
655 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
656 uid = iattr->ia_uid;
657 qflags |= XFS_QMOPT_UQUOTA;
658 } else {
659 uid = inode->i_uid;
660 }
661 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
662 gid = iattr->ia_gid;
663 qflags |= XFS_QMOPT_GQUOTA;
664 } else {
665 gid = inode->i_gid;
666 }
667
668 /*
669 * We take a reference when we initialize udqp and gdqp,
670 * so it is important that we never blindly double trip on
671 * the same variable. See xfs_create() for an example.
672 */
673 ASSERT(udqp == NULL);
674 ASSERT(gdqp == NULL);
675 error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid),
676 xfs_kgid_to_gid(gid),
677 xfs_get_projid(ip),
678 qflags, &udqp, &gdqp, NULL);
679 if (error)
680 return error;
681 }
682
683 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
684 if (error)
685 goto out_dqrele;
686
687 xfs_ilock(ip, XFS_ILOCK_EXCL);
688 xfs_trans_ijoin(tp, ip, 0);
689
690 /*
691 * Change file ownership. Must be the owner or privileged.
692 */
693 if (mask & (ATTR_UID|ATTR_GID)) {
694 /*
695 * These IDs could have changed since we last looked at them.
696 * But, we're assured that if the ownership did change
697 * while we didn't have the inode locked, inode's dquot(s)
698 * would have changed also.
699 */
700 iuid = inode->i_uid;
701 igid = inode->i_gid;
702 gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
703 uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
704
705 /*
706 * Do a quota reservation only if uid/gid is actually
707 * going to change.
708 */
709 if (XFS_IS_QUOTA_RUNNING(mp) &&
710 ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) ||
711 (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) {
712 ASSERT(tp);
713 error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
714 NULL, capable(CAP_FOWNER) ?
715 XFS_QMOPT_FORCE_RES : 0);
716 if (error) /* out of quota */
717 goto out_cancel;
718 }
719 }
720
721 /*
722 * Change file ownership. Must be the owner or privileged.
723 */
724 if (mask & (ATTR_UID|ATTR_GID)) {
725 /*
726 * CAP_FSETID overrides the following restrictions:
727 *
728 * The set-user-ID and set-group-ID bits of a file will be
729 * cleared upon successful return from chown()
730 */
731 if ((inode->i_mode & (S_ISUID|S_ISGID)) &&
732 !capable(CAP_FSETID))
733 inode->i_mode &= ~(S_ISUID|S_ISGID);
734
735 /*
736 * Change the ownerships and register quota modifications
737 * in the transaction.
738 */
739 if (!uid_eq(iuid, uid)) {
740 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
741 ASSERT(mask & ATTR_UID);
742 ASSERT(udqp);
743 olddquot1 = xfs_qm_vop_chown(tp, ip,
744 &ip->i_udquot, udqp);
745 }
746 ip->i_d.di_uid = xfs_kuid_to_uid(uid);
747 inode->i_uid = uid;
748 }
749 if (!gid_eq(igid, gid)) {
750 if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
751 ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
752 !XFS_IS_PQUOTA_ON(mp));
753 ASSERT(mask & ATTR_GID);
754 ASSERT(gdqp);
755 olddquot2 = xfs_qm_vop_chown(tp, ip,
756 &ip->i_gdquot, gdqp);
757 }
758 ip->i_d.di_gid = xfs_kgid_to_gid(gid);
759 inode->i_gid = gid;
760 }
761 }
762
763 if (mask & ATTR_MODE)
764 xfs_setattr_mode(ip, iattr);
765 if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
766 xfs_setattr_time(ip, iattr);
767
768 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
769
770 XFS_STATS_INC(mp, xs_ig_attrchg);
771
772 if (mp->m_flags & XFS_MOUNT_WSYNC)
773 xfs_trans_set_sync(tp);
774 error = xfs_trans_commit(tp);
775
776 xfs_iunlock(ip, XFS_ILOCK_EXCL);
777
778 /*
779 * Release any dquot(s) the inode had kept before chown.
780 */
781 xfs_qm_dqrele(olddquot1);
782 xfs_qm_dqrele(olddquot2);
783 xfs_qm_dqrele(udqp);
784 xfs_qm_dqrele(gdqp);
785
786 if (error)
787 return error;
788
789 /*
790 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
791 * update. We could avoid this with linked transactions
792 * and passing down the transaction pointer all the way
793 * to attr_set. No previous user of the generic
794 * Posix ACL code seems to care about this issue either.
795 */
796 if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) {
797 error = posix_acl_chmod(inode, inode->i_mode);
798 if (error)
799 return error;
800 }
801
802 return 0;
803
804 out_cancel:
805 xfs_trans_cancel(tp);
806 xfs_iunlock(ip, XFS_ILOCK_EXCL);
807 out_dqrele:
808 xfs_qm_dqrele(udqp);
809 xfs_qm_dqrele(gdqp);
810 return error;
811 }
812
813 int
xfs_vn_setattr_nonsize(struct dentry * dentry,struct iattr * iattr)814 xfs_vn_setattr_nonsize(
815 struct dentry *dentry,
816 struct iattr *iattr)
817 {
818 struct xfs_inode *ip = XFS_I(d_inode(dentry));
819 int error;
820
821 trace_xfs_setattr(ip);
822
823 error = xfs_vn_change_ok(dentry, iattr);
824 if (error)
825 return error;
826 return xfs_setattr_nonsize(ip, iattr, 0);
827 }
828
829 /*
830 * Truncate file. Must have write permission and not be a directory.
831 *
832 * Caution: The caller of this function is responsible for calling
833 * setattr_prepare() or otherwise verifying the change is fine.
834 */
835 STATIC int
xfs_setattr_size(struct xfs_inode * ip,struct iattr * iattr)836 xfs_setattr_size(
837 struct xfs_inode *ip,
838 struct iattr *iattr)
839 {
840 struct xfs_mount *mp = ip->i_mount;
841 struct inode *inode = VFS_I(ip);
842 xfs_off_t oldsize, newsize;
843 struct xfs_trans *tp;
844 int error;
845 uint lock_flags = 0;
846 bool did_zeroing = false;
847
848 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
849 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
850 ASSERT(S_ISREG(inode->i_mode));
851 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
852 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
853
854 oldsize = inode->i_size;
855 newsize = iattr->ia_size;
856
857 /*
858 * Short circuit the truncate case for zero length files.
859 */
860 if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) {
861 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
862 return 0;
863
864 /*
865 * Use the regular setattr path to update the timestamps.
866 */
867 iattr->ia_valid &= ~ATTR_SIZE;
868 return xfs_setattr_nonsize(ip, iattr, 0);
869 }
870
871 /*
872 * Make sure that the dquots are attached to the inode.
873 */
874 error = xfs_qm_dqattach(ip);
875 if (error)
876 return error;
877
878 /*
879 * Wait for all direct I/O to complete.
880 */
881 inode_dio_wait(inode);
882
883 /*
884 * File data changes must be complete before we start the transaction to
885 * modify the inode. This needs to be done before joining the inode to
886 * the transaction because the inode cannot be unlocked once it is a
887 * part of the transaction.
888 *
889 * Start with zeroing any data beyond EOF that we may expose on file
890 * extension, or zeroing out the rest of the block on a downward
891 * truncate.
892 */
893 if (newsize > oldsize) {
894 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
895 error = iomap_zero_range(inode, oldsize, newsize - oldsize,
896 &did_zeroing, &xfs_iomap_ops);
897 } else {
898 /*
899 * iomap won't detect a dirty page over an unwritten block (or a
900 * cow block over a hole) and subsequently skips zeroing the
901 * newly post-EOF portion of the page. Flush the new EOF to
902 * convert the block before the pagecache truncate.
903 */
904 error = filemap_write_and_wait_range(inode->i_mapping, newsize,
905 newsize);
906 if (error)
907 return error;
908 error = iomap_truncate_page(inode, newsize, &did_zeroing,
909 &xfs_iomap_ops);
910 }
911
912 if (error)
913 return error;
914
915 /*
916 * We've already locked out new page faults, so now we can safely remove
917 * pages from the page cache knowing they won't get refaulted until we
918 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
919 * complete. The truncate_setsize() call also cleans partial EOF page
920 * PTEs on extending truncates and hence ensures sub-page block size
921 * filesystems are correctly handled, too.
922 *
923 * We have to do all the page cache truncate work outside the
924 * transaction context as the "lock" order is page lock->log space
925 * reservation as defined by extent allocation in the writeback path.
926 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
927 * having already truncated the in-memory version of the file (i.e. made
928 * user visible changes). There's not much we can do about this, except
929 * to hope that the caller sees ENOMEM and retries the truncate
930 * operation.
931 *
932 * And we update in-core i_size and truncate page cache beyond newsize
933 * before writeback the [di_size, newsize] range, so we're guaranteed
934 * not to write stale data past the new EOF on truncate down.
935 */
936 truncate_setsize(inode, newsize);
937
938 /*
939 * We are going to log the inode size change in this transaction so
940 * any previous writes that are beyond the on disk EOF and the new
941 * EOF that have not been written out need to be written here. If we
942 * do not write the data out, we expose ourselves to the null files
943 * problem. Note that this includes any block zeroing we did above;
944 * otherwise those blocks may not be zeroed after a crash.
945 */
946 if (did_zeroing ||
947 (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) {
948 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
949 ip->i_d.di_size, newsize - 1);
950 if (error)
951 return error;
952 }
953
954 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
955 if (error)
956 return error;
957
958 lock_flags |= XFS_ILOCK_EXCL;
959 xfs_ilock(ip, XFS_ILOCK_EXCL);
960 xfs_trans_ijoin(tp, ip, 0);
961
962 /*
963 * Only change the c/mtime if we are changing the size or we are
964 * explicitly asked to change it. This handles the semantic difference
965 * between truncate() and ftruncate() as implemented in the VFS.
966 *
967 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
968 * special case where we need to update the times despite not having
969 * these flags set. For all other operations the VFS set these flags
970 * explicitly if it wants a timestamp update.
971 */
972 if (newsize != oldsize &&
973 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
974 iattr->ia_ctime = iattr->ia_mtime =
975 current_time(inode);
976 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
977 }
978
979 /*
980 * The first thing we do is set the size to new_size permanently on
981 * disk. This way we don't have to worry about anyone ever being able
982 * to look at the data being freed even in the face of a crash.
983 * What we're getting around here is the case where we free a block, it
984 * is allocated to another file, it is written to, and then we crash.
985 * If the new data gets written to the file but the log buffers
986 * containing the free and reallocation don't, then we'd end up with
987 * garbage in the blocks being freed. As long as we make the new size
988 * permanent before actually freeing any blocks it doesn't matter if
989 * they get written to.
990 */
991 ip->i_d.di_size = newsize;
992 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
993
994 if (newsize <= oldsize) {
995 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
996 if (error)
997 goto out_trans_cancel;
998
999 /*
1000 * Truncated "down", so we're removing references to old data
1001 * here - if we delay flushing for a long time, we expose
1002 * ourselves unduly to the notorious NULL files problem. So,
1003 * we mark this inode and flush it when the file is closed,
1004 * and do not wait the usual (long) time for writeout.
1005 */
1006 xfs_iflags_set(ip, XFS_ITRUNCATED);
1007
1008 /* A truncate down always removes post-EOF blocks. */
1009 xfs_inode_clear_eofblocks_tag(ip);
1010 }
1011
1012 if (iattr->ia_valid & ATTR_MODE)
1013 xfs_setattr_mode(ip, iattr);
1014 if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
1015 xfs_setattr_time(ip, iattr);
1016
1017 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1018
1019 XFS_STATS_INC(mp, xs_ig_attrchg);
1020
1021 if (mp->m_flags & XFS_MOUNT_WSYNC)
1022 xfs_trans_set_sync(tp);
1023
1024 error = xfs_trans_commit(tp);
1025 out_unlock:
1026 if (lock_flags)
1027 xfs_iunlock(ip, lock_flags);
1028 return error;
1029
1030 out_trans_cancel:
1031 xfs_trans_cancel(tp);
1032 goto out_unlock;
1033 }
1034
1035 int
xfs_vn_setattr_size(struct dentry * dentry,struct iattr * iattr)1036 xfs_vn_setattr_size(
1037 struct dentry *dentry,
1038 struct iattr *iattr)
1039 {
1040 struct xfs_inode *ip = XFS_I(d_inode(dentry));
1041 int error;
1042
1043 trace_xfs_setattr(ip);
1044
1045 error = xfs_vn_change_ok(dentry, iattr);
1046 if (error)
1047 return error;
1048 return xfs_setattr_size(ip, iattr);
1049 }
1050
1051 STATIC int
xfs_vn_setattr(struct dentry * dentry,struct iattr * iattr)1052 xfs_vn_setattr(
1053 struct dentry *dentry,
1054 struct iattr *iattr)
1055 {
1056 int error;
1057
1058 if (iattr->ia_valid & ATTR_SIZE) {
1059 struct inode *inode = d_inode(dentry);
1060 struct xfs_inode *ip = XFS_I(inode);
1061 uint iolock;
1062
1063 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1064 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1065
1066 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1067 if (error) {
1068 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1069 return error;
1070 }
1071
1072 error = xfs_vn_setattr_size(dentry, iattr);
1073 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1074 } else {
1075 error = xfs_vn_setattr_nonsize(dentry, iattr);
1076 }
1077
1078 return error;
1079 }
1080
1081 STATIC int
xfs_vn_update_time(struct inode * inode,struct timespec64 * now,int flags)1082 xfs_vn_update_time(
1083 struct inode *inode,
1084 struct timespec64 *now,
1085 int flags)
1086 {
1087 struct xfs_inode *ip = XFS_I(inode);
1088 struct xfs_mount *mp = ip->i_mount;
1089 int log_flags = XFS_ILOG_TIMESTAMP;
1090 struct xfs_trans *tp;
1091 int error;
1092
1093 trace_xfs_update_time(ip);
1094
1095 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1096 if (!((flags & S_VERSION) &&
1097 inode_maybe_inc_iversion(inode, false)))
1098 return generic_update_time(inode, now, flags);
1099
1100 /* Capture the iversion update that just occurred */
1101 log_flags |= XFS_ILOG_CORE;
1102 }
1103
1104 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1105 if (error)
1106 return error;
1107
1108 xfs_ilock(ip, XFS_ILOCK_EXCL);
1109 if (flags & S_CTIME)
1110 inode->i_ctime = *now;
1111 if (flags & S_MTIME)
1112 inode->i_mtime = *now;
1113 if (flags & S_ATIME)
1114 inode->i_atime = *now;
1115
1116 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1117 xfs_trans_log_inode(tp, ip, log_flags);
1118 return xfs_trans_commit(tp);
1119 }
1120
1121 STATIC int
xfs_vn_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 length)1122 xfs_vn_fiemap(
1123 struct inode *inode,
1124 struct fiemap_extent_info *fieinfo,
1125 u64 start,
1126 u64 length)
1127 {
1128 int error;
1129
1130 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1131 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1132 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1133 error = iomap_fiemap(inode, fieinfo, start, length,
1134 &xfs_xattr_iomap_ops);
1135 } else {
1136 error = iomap_fiemap(inode, fieinfo, start, length,
1137 &xfs_iomap_ops);
1138 }
1139 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1140
1141 return error;
1142 }
1143
1144 STATIC int
xfs_vn_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)1145 xfs_vn_tmpfile(
1146 struct inode *dir,
1147 struct dentry *dentry,
1148 umode_t mode)
1149 {
1150 return xfs_generic_create(dir, dentry, mode, 0, true);
1151 }
1152
1153 static const struct inode_operations xfs_inode_operations = {
1154 .get_acl = xfs_get_acl,
1155 .set_acl = xfs_set_acl,
1156 .getattr = xfs_vn_getattr,
1157 .setattr = xfs_vn_setattr,
1158 .listxattr = xfs_vn_listxattr,
1159 .fiemap = xfs_vn_fiemap,
1160 .update_time = xfs_vn_update_time,
1161 };
1162
1163 static const struct inode_operations xfs_dir_inode_operations = {
1164 .create = xfs_vn_create,
1165 .lookup = xfs_vn_lookup,
1166 .link = xfs_vn_link,
1167 .unlink = xfs_vn_unlink,
1168 .symlink = xfs_vn_symlink,
1169 .mkdir = xfs_vn_mkdir,
1170 /*
1171 * Yes, XFS uses the same method for rmdir and unlink.
1172 *
1173 * There are some subtile differences deeper in the code,
1174 * but we use S_ISDIR to check for those.
1175 */
1176 .rmdir = xfs_vn_unlink,
1177 .mknod = xfs_vn_mknod,
1178 .rename = xfs_vn_rename,
1179 .get_acl = xfs_get_acl,
1180 .set_acl = xfs_set_acl,
1181 .getattr = xfs_vn_getattr,
1182 .setattr = xfs_vn_setattr,
1183 .listxattr = xfs_vn_listxattr,
1184 .update_time = xfs_vn_update_time,
1185 .tmpfile = xfs_vn_tmpfile,
1186 };
1187
1188 static const struct inode_operations xfs_dir_ci_inode_operations = {
1189 .create = xfs_vn_create,
1190 .lookup = xfs_vn_ci_lookup,
1191 .link = xfs_vn_link,
1192 .unlink = xfs_vn_unlink,
1193 .symlink = xfs_vn_symlink,
1194 .mkdir = xfs_vn_mkdir,
1195 /*
1196 * Yes, XFS uses the same method for rmdir and unlink.
1197 *
1198 * There are some subtile differences deeper in the code,
1199 * but we use S_ISDIR to check for those.
1200 */
1201 .rmdir = xfs_vn_unlink,
1202 .mknod = xfs_vn_mknod,
1203 .rename = xfs_vn_rename,
1204 .get_acl = xfs_get_acl,
1205 .set_acl = xfs_set_acl,
1206 .getattr = xfs_vn_getattr,
1207 .setattr = xfs_vn_setattr,
1208 .listxattr = xfs_vn_listxattr,
1209 .update_time = xfs_vn_update_time,
1210 .tmpfile = xfs_vn_tmpfile,
1211 };
1212
1213 static const struct inode_operations xfs_symlink_inode_operations = {
1214 .get_link = xfs_vn_get_link,
1215 .getattr = xfs_vn_getattr,
1216 .setattr = xfs_vn_setattr,
1217 .listxattr = xfs_vn_listxattr,
1218 .update_time = xfs_vn_update_time,
1219 };
1220
1221 static const struct inode_operations xfs_inline_symlink_inode_operations = {
1222 .get_link = xfs_vn_get_link_inline,
1223 .getattr = xfs_vn_getattr,
1224 .setattr = xfs_vn_setattr,
1225 .listxattr = xfs_vn_listxattr,
1226 .update_time = xfs_vn_update_time,
1227 };
1228
1229 /* Figure out if this file actually supports DAX. */
1230 static bool
xfs_inode_supports_dax(struct xfs_inode * ip)1231 xfs_inode_supports_dax(
1232 struct xfs_inode *ip)
1233 {
1234 struct xfs_mount *mp = ip->i_mount;
1235
1236 /* Only supported on non-reflinked files. */
1237 if (!S_ISREG(VFS_I(ip)->i_mode) || xfs_is_reflink_inode(ip))
1238 return false;
1239
1240 /* DAX mount option or DAX iflag must be set. */
1241 if (!(mp->m_flags & XFS_MOUNT_DAX) &&
1242 !(ip->i_d.di_flags2 & XFS_DIFLAG2_DAX))
1243 return false;
1244
1245 /* Block size must match page size */
1246 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1247 return false;
1248
1249 /* Device has to support DAX too. */
1250 return xfs_find_daxdev_for_inode(VFS_I(ip)) != NULL;
1251 }
1252
1253 STATIC void
xfs_diflags_to_iflags(struct inode * inode,struct xfs_inode * ip)1254 xfs_diflags_to_iflags(
1255 struct inode *inode,
1256 struct xfs_inode *ip)
1257 {
1258 uint16_t flags = ip->i_d.di_flags;
1259
1260 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC |
1261 S_NOATIME | S_DAX);
1262
1263 if (flags & XFS_DIFLAG_IMMUTABLE)
1264 inode->i_flags |= S_IMMUTABLE;
1265 if (flags & XFS_DIFLAG_APPEND)
1266 inode->i_flags |= S_APPEND;
1267 if (flags & XFS_DIFLAG_SYNC)
1268 inode->i_flags |= S_SYNC;
1269 if (flags & XFS_DIFLAG_NOATIME)
1270 inode->i_flags |= S_NOATIME;
1271 if (xfs_inode_supports_dax(ip))
1272 inode->i_flags |= S_DAX;
1273 }
1274
1275 /*
1276 * Initialize the Linux inode.
1277 *
1278 * When reading existing inodes from disk this is called directly from xfs_iget,
1279 * when creating a new inode it is called from xfs_ialloc after setting up the
1280 * inode. These callers have different criteria for clearing XFS_INEW, so leave
1281 * it up to the caller to deal with unlocking the inode appropriately.
1282 */
1283 void
xfs_setup_inode(struct xfs_inode * ip)1284 xfs_setup_inode(
1285 struct xfs_inode *ip)
1286 {
1287 struct inode *inode = &ip->i_vnode;
1288 gfp_t gfp_mask;
1289
1290 inode->i_ino = ip->i_ino;
1291 inode->i_state = I_NEW;
1292
1293 inode_sb_list_add(inode);
1294 /* make the inode look hashed for the writeback code */
1295 inode_fake_hash(inode);
1296
1297 inode->i_uid = xfs_uid_to_kuid(ip->i_d.di_uid);
1298 inode->i_gid = xfs_gid_to_kgid(ip->i_d.di_gid);
1299
1300 i_size_write(inode, ip->i_d.di_size);
1301 xfs_diflags_to_iflags(inode, ip);
1302
1303 if (S_ISDIR(inode->i_mode)) {
1304 /*
1305 * We set the i_rwsem class here to avoid potential races with
1306 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1307 * after a filehandle lookup has already found the inode in
1308 * cache before it has been unlocked via unlock_new_inode().
1309 */
1310 lockdep_set_class(&inode->i_rwsem,
1311 &inode->i_sb->s_type->i_mutex_dir_key);
1312 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1313 ip->d_ops = ip->i_mount->m_dir_inode_ops;
1314 } else {
1315 ip->d_ops = ip->i_mount->m_nondir_inode_ops;
1316 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1317 }
1318
1319 /*
1320 * Ensure all page cache allocations are done from GFP_NOFS context to
1321 * prevent direct reclaim recursion back into the filesystem and blowing
1322 * stacks or deadlocking.
1323 */
1324 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1325 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1326
1327 /*
1328 * If there is no attribute fork no ACL can exist on this inode,
1329 * and it can't have any file capabilities attached to it either.
1330 */
1331 if (!XFS_IFORK_Q(ip)) {
1332 inode_has_no_xattr(inode);
1333 cache_no_acl(inode);
1334 }
1335 }
1336
1337 void
xfs_setup_iops(struct xfs_inode * ip)1338 xfs_setup_iops(
1339 struct xfs_inode *ip)
1340 {
1341 struct inode *inode = &ip->i_vnode;
1342
1343 switch (inode->i_mode & S_IFMT) {
1344 case S_IFREG:
1345 inode->i_op = &xfs_inode_operations;
1346 inode->i_fop = &xfs_file_operations;
1347 if (IS_DAX(inode))
1348 inode->i_mapping->a_ops = &xfs_dax_aops;
1349 else
1350 inode->i_mapping->a_ops = &xfs_address_space_operations;
1351 break;
1352 case S_IFDIR:
1353 if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
1354 inode->i_op = &xfs_dir_ci_inode_operations;
1355 else
1356 inode->i_op = &xfs_dir_inode_operations;
1357 inode->i_fop = &xfs_dir_file_operations;
1358 break;
1359 case S_IFLNK:
1360 if (ip->i_df.if_flags & XFS_IFINLINE)
1361 inode->i_op = &xfs_inline_symlink_inode_operations;
1362 else
1363 inode->i_op = &xfs_symlink_inode_operations;
1364 break;
1365 default:
1366 inode->i_op = &xfs_inode_operations;
1367 init_special_inode(inode, inode->i_mode, inode->i_rdev);
1368 break;
1369 }
1370 }
1371