1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
43 
44 /*
45  * Copy on Write of Shared Blocks
46  *
47  * XFS must preserve "the usual" file semantics even when two files share
48  * the same physical blocks.  This means that a write to one file must not
49  * alter the blocks in a different file; the way that we'll do that is
50  * through the use of a copy-on-write mechanism.  At a high level, that
51  * means that when we want to write to a shared block, we allocate a new
52  * block, write the data to the new block, and if that succeeds we map the
53  * new block into the file.
54  *
55  * XFS provides a "delayed allocation" mechanism that defers the allocation
56  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57  * possible.  This reduces fragmentation by enabling the filesystem to ask
58  * for bigger chunks less often, which is exactly what we want for CoW.
59  *
60  * The delalloc mechanism begins when the kernel wants to make a block
61  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
62  * create a delalloc mapping, which is a regular in-core extent, but without
63  * a real startblock.  (For delalloc mappings, the startblock encodes both
64  * a flag that this is a delalloc mapping, and a worst-case estimate of how
65  * many blocks might be required to put the mapping into the BMBT.)  delalloc
66  * mappings are a reservation against the free space in the filesystem;
67  * adjacent mappings can also be combined into fewer larger mappings.
68  *
69  * As an optimization, the CoW extent size hint (cowextsz) creates
70  * outsized aligned delalloc reservations in the hope of landing out of
71  * order nearby CoW writes in a single extent on disk, thereby reducing
72  * fragmentation and improving future performance.
73  *
74  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75  * C: ------DDDDDDD--------- (CoW fork)
76  *
77  * When dirty pages are being written out (typically in writepage), the
78  * delalloc reservations are converted into unwritten mappings by
79  * allocating blocks and replacing the delalloc mapping with real ones.
80  * A delalloc mapping can be replaced by several unwritten ones if the
81  * free space is fragmented.
82  *
83  * D: --RRRRRRSSSRRRRRRRR---
84  * C: ------UUUUUUU---------
85  *
86  * We want to adapt the delalloc mechanism for copy-on-write, since the
87  * write paths are similar.  The first two steps (creating the reservation
88  * and allocating the blocks) are exactly the same as delalloc except that
89  * the mappings must be stored in a separate CoW fork because we do not want
90  * to disturb the mapping in the data fork until we're sure that the write
91  * succeeded.  IO completion in this case is the process of removing the old
92  * mapping from the data fork and moving the new mapping from the CoW fork to
93  * the data fork.  This will be discussed shortly.
94  *
95  * For now, unaligned directio writes will be bounced back to the page cache.
96  * Block-aligned directio writes will use the same mechanism as buffered
97  * writes.
98  *
99  * Just prior to submitting the actual disk write requests, we convert
100  * the extents representing the range of the file actually being written
101  * (as opposed to extra pieces created for the cowextsize hint) to real
102  * extents.  This will become important in the next step:
103  *
104  * D: --RRRRRRSSSRRRRRRRR---
105  * C: ------UUrrUUU---------
106  *
107  * CoW remapping must be done after the data block write completes,
108  * because we don't want to destroy the old data fork map until we're sure
109  * the new block has been written.  Since the new mappings are kept in a
110  * separate fork, we can simply iterate these mappings to find the ones
111  * that cover the file blocks that we just CoW'd.  For each extent, simply
112  * unmap the corresponding range in the data fork, map the new range into
113  * the data fork, and remove the extent from the CoW fork.  Because of
114  * the presence of the cowextsize hint, however, we must be careful
115  * only to remap the blocks that we've actually written out --  we must
116  * never remap delalloc reservations nor CoW staging blocks that have
117  * yet to be written.  This corresponds exactly to the real extents in
118  * the CoW fork:
119  *
120  * D: --RRRRRRrrSRRRRRRRR---
121  * C: ------UU--UUU---------
122  *
123  * Since the remapping operation can be applied to an arbitrary file
124  * range, we record the need for the remap step as a flag in the ioend
125  * instead of declaring a new IO type.  This is required for direct io
126  * because we only have ioend for the whole dio, and we have to be able to
127  * remember the presence of unwritten blocks and CoW blocks with a single
128  * ioend structure.  Better yet, the more ground we can cover with one
129  * ioend, the better.
130  */
131 
132 /*
133  * Given an AG extent, find the lowest-numbered run of shared blocks
134  * within that range and return the range in fbno/flen.  If
135  * find_end_of_shared is true, return the longest contiguous extent of
136  * shared blocks.  If there are no shared extents, fbno and flen will
137  * be set to NULLAGBLOCK and 0, respectively.
138  */
139 int
xfs_reflink_find_shared(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t aglen,xfs_agblock_t * fbno,xfs_extlen_t * flen,bool find_end_of_shared)140 xfs_reflink_find_shared(
141 	struct xfs_mount	*mp,
142 	struct xfs_trans	*tp,
143 	xfs_agnumber_t		agno,
144 	xfs_agblock_t		agbno,
145 	xfs_extlen_t		aglen,
146 	xfs_agblock_t		*fbno,
147 	xfs_extlen_t		*flen,
148 	bool			find_end_of_shared)
149 {
150 	struct xfs_buf		*agbp;
151 	struct xfs_btree_cur	*cur;
152 	int			error;
153 
154 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 	if (error)
156 		return error;
157 	if (!agbp)
158 		return -ENOMEM;
159 
160 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 
162 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 			find_end_of_shared);
164 
165 	xfs_btree_del_cursor(cur, error);
166 
167 	xfs_trans_brelse(tp, agbp);
168 	return error;
169 }
170 
171 /*
172  * Trim the mapping to the next block where there's a change in the
173  * shared/unshared status.  More specifically, this means that we
174  * find the lowest-numbered extent of shared blocks that coincides with
175  * the given block mapping.  If the shared extent overlaps the start of
176  * the mapping, trim the mapping to the end of the shared extent.  If
177  * the shared region intersects the mapping, trim the mapping to the
178  * start of the shared extent.  If there are no shared regions that
179  * overlap, just return the original extent.
180  */
181 int
xfs_reflink_trim_around_shared(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,bool * shared,bool * trimmed)182 xfs_reflink_trim_around_shared(
183 	struct xfs_inode	*ip,
184 	struct xfs_bmbt_irec	*irec,
185 	bool			*shared,
186 	bool			*trimmed)
187 {
188 	xfs_agnumber_t		agno;
189 	xfs_agblock_t		agbno;
190 	xfs_extlen_t		aglen;
191 	xfs_agblock_t		fbno;
192 	xfs_extlen_t		flen;
193 	int			error = 0;
194 
195 	/* Holes, unwritten, and delalloc extents cannot be shared */
196 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 		*shared = false;
198 		return 0;
199 	}
200 
201 	trace_xfs_reflink_trim_around_shared(ip, irec);
202 
203 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
204 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
205 	aglen = irec->br_blockcount;
206 
207 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 			aglen, &fbno, &flen, true);
209 	if (error)
210 		return error;
211 
212 	*shared = *trimmed = false;
213 	if (fbno == NULLAGBLOCK) {
214 		/* No shared blocks at all. */
215 		return 0;
216 	} else if (fbno == agbno) {
217 		/*
218 		 * The start of this extent is shared.  Truncate the
219 		 * mapping at the end of the shared region so that a
220 		 * subsequent iteration starts at the start of the
221 		 * unshared region.
222 		 */
223 		irec->br_blockcount = flen;
224 		*shared = true;
225 		if (flen != aglen)
226 			*trimmed = true;
227 		return 0;
228 	} else {
229 		/*
230 		 * There's a shared extent midway through this extent.
231 		 * Truncate the mapping at the start of the shared
232 		 * extent so that a subsequent iteration starts at the
233 		 * start of the shared region.
234 		 */
235 		irec->br_blockcount = fbno - agbno;
236 		*trimmed = true;
237 		return 0;
238 	}
239 }
240 
241 /*
242  * Trim the passed in imap to the next shared/unshared extent boundary, and
243  * if imap->br_startoff points to a shared extent reserve space for it in the
244  * COW fork.  In this case *shared is set to true, else to false.
245  *
246  * Note that imap will always contain the block numbers for the existing blocks
247  * in the data fork, as the upper layers need them for read-modify-write
248  * operations.
249  */
250 int
xfs_reflink_reserve_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared)251 xfs_reflink_reserve_cow(
252 	struct xfs_inode	*ip,
253 	struct xfs_bmbt_irec	*imap,
254 	bool			*shared)
255 {
256 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
257 	struct xfs_bmbt_irec	got;
258 	int			error = 0;
259 	bool			eof = false, trimmed;
260 	struct xfs_iext_cursor	icur;
261 
262 	/*
263 	 * Search the COW fork extent list first.  This serves two purposes:
264 	 * first this implement the speculative preallocation using cowextisze,
265 	 * so that we also unshared block adjacent to shared blocks instead
266 	 * of just the shared blocks themselves.  Second the lookup in the
267 	 * extent list is generally faster than going out to the shared extent
268 	 * tree.
269 	 */
270 
271 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272 		eof = true;
273 	if (!eof && got.br_startoff <= imap->br_startoff) {
274 		trace_xfs_reflink_cow_found(ip, imap);
275 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276 
277 		*shared = true;
278 		return 0;
279 	}
280 
281 	/* Trim the mapping to the nearest shared extent boundary. */
282 	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283 	if (error)
284 		return error;
285 
286 	/* Not shared?  Just report the (potentially capped) extent. */
287 	if (!*shared)
288 		return 0;
289 
290 	/*
291 	 * Fork all the shared blocks from our write offset until the end of
292 	 * the extent.
293 	 */
294 	error = xfs_qm_dqattach_locked(ip, false);
295 	if (error)
296 		return error;
297 
298 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299 			imap->br_blockcount, 0, &got, &icur, eof);
300 	if (error == -ENOSPC || error == -EDQUOT)
301 		trace_xfs_reflink_cow_enospc(ip, imap);
302 	if (error)
303 		return error;
304 
305 	xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
306 	trace_xfs_reflink_cow_alloc(ip, &got);
307 	return 0;
308 }
309 
310 /* Convert part of an unwritten CoW extent to a real one. */
311 STATIC int
xfs_reflink_convert_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb)312 xfs_reflink_convert_cow_extent(
313 	struct xfs_inode		*ip,
314 	struct xfs_bmbt_irec		*imap,
315 	xfs_fileoff_t			offset_fsb,
316 	xfs_filblks_t			count_fsb)
317 {
318 	int				nimaps = 1;
319 
320 	if (imap->br_state == XFS_EXT_NORM)
321 		return 0;
322 
323 	xfs_trim_extent(imap, offset_fsb, count_fsb);
324 	trace_xfs_reflink_convert_cow(ip, imap);
325 	if (imap->br_blockcount == 0)
326 		return 0;
327 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
328 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
329 			&nimaps);
330 }
331 
332 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
333 int
xfs_reflink_convert_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)334 xfs_reflink_convert_cow(
335 	struct xfs_inode	*ip,
336 	xfs_off_t		offset,
337 	xfs_off_t		count)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
341 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
342 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
343 	struct xfs_bmbt_irec	imap;
344 	int			nimaps = 1, error = 0;
345 
346 	ASSERT(count != 0);
347 
348 	xfs_ilock(ip, XFS_ILOCK_EXCL);
349 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
350 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
351 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
352 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
353 	return error;
354 }
355 
356 /*
357  * Find the extent that maps the given range in the COW fork. Even if the extent
358  * is not shared we might have a preallocation for it in the COW fork. If so we
359  * use it that rather than trigger a new allocation.
360  */
361 static int
xfs_find_trim_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared,bool * found)362 xfs_find_trim_cow_extent(
363 	struct xfs_inode	*ip,
364 	struct xfs_bmbt_irec	*imap,
365 	bool			*shared,
366 	bool			*found)
367 {
368 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
369 	xfs_filblks_t		count_fsb = imap->br_blockcount;
370 	struct xfs_iext_cursor	icur;
371 	struct xfs_bmbt_irec	got;
372 	bool			trimmed;
373 
374 	*found = false;
375 
376 	/*
377 	 * If we don't find an overlapping extent, trim the range we need to
378 	 * allocate to fit the hole we found.
379 	 */
380 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) ||
381 	    got.br_startoff > offset_fsb)
382 		return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
383 
384 	*shared = true;
385 	if (isnullstartblock(got.br_startblock)) {
386 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
387 		return 0;
388 	}
389 
390 	/* real extent found - no need to allocate */
391 	xfs_trim_extent(&got, offset_fsb, count_fsb);
392 	*imap = got;
393 	*found = true;
394 	return 0;
395 }
396 
397 /* Allocate all CoW reservations covering a range of blocks in a file. */
398 int
xfs_reflink_allocate_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared,uint * lockmode)399 xfs_reflink_allocate_cow(
400 	struct xfs_inode	*ip,
401 	struct xfs_bmbt_irec	*imap,
402 	bool			*shared,
403 	uint			*lockmode)
404 {
405 	struct xfs_mount	*mp = ip->i_mount;
406 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
407 	xfs_filblks_t		count_fsb = imap->br_blockcount;
408 	struct xfs_trans	*tp;
409 	int			nimaps, error = 0;
410 	bool			found;
411 	xfs_filblks_t		resaligned;
412 	xfs_extlen_t		resblks = 0;
413 
414 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
415 	ASSERT(xfs_is_reflink_inode(ip));
416 
417 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
418 	if (error || !*shared)
419 		return error;
420 	if (found)
421 		goto convert;
422 
423 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
424 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
425 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
426 
427 	xfs_iunlock(ip, *lockmode);
428 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
429 	*lockmode = XFS_ILOCK_EXCL;
430 	xfs_ilock(ip, *lockmode);
431 
432 	if (error)
433 		return error;
434 
435 	error = xfs_qm_dqattach_locked(ip, false);
436 	if (error)
437 		goto out_trans_cancel;
438 
439 	/*
440 	 * Check for an overlapping extent again now that we dropped the ilock.
441 	 */
442 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
443 	if (error || !*shared)
444 		goto out_trans_cancel;
445 	if (found) {
446 		xfs_trans_cancel(tp);
447 		goto convert;
448 	}
449 
450 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
451 			XFS_QMOPT_RES_REGBLKS);
452 	if (error)
453 		goto out_trans_cancel;
454 
455 	xfs_trans_ijoin(tp, ip, 0);
456 
457 	/* Allocate the entire reservation as unwritten blocks. */
458 	nimaps = 1;
459 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
460 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
461 			resblks, imap, &nimaps);
462 	if (error)
463 		goto out_unreserve;
464 
465 	xfs_inode_set_cowblocks_tag(ip);
466 	error = xfs_trans_commit(tp);
467 	if (error)
468 		return error;
469 
470 	/*
471 	 * Allocation succeeded but the requested range was not even partially
472 	 * satisfied?  Bail out!
473 	 */
474 	if (nimaps == 0)
475 		return -ENOSPC;
476 convert:
477 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
478 
479 out_unreserve:
480 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
481 			XFS_QMOPT_RES_REGBLKS);
482 out_trans_cancel:
483 	xfs_trans_cancel(tp);
484 	return error;
485 }
486 
487 /*
488  * Cancel CoW reservations for some block range of an inode.
489  *
490  * If cancel_real is true this function cancels all COW fork extents for the
491  * inode; if cancel_real is false, real extents are not cleared.
492  *
493  * Caller must have already joined the inode to the current transaction. The
494  * inode will be joined to the transaction returned to the caller.
495  */
496 int
xfs_reflink_cancel_cow_blocks(struct xfs_inode * ip,struct xfs_trans ** tpp,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb,bool cancel_real)497 xfs_reflink_cancel_cow_blocks(
498 	struct xfs_inode		*ip,
499 	struct xfs_trans		**tpp,
500 	xfs_fileoff_t			offset_fsb,
501 	xfs_fileoff_t			end_fsb,
502 	bool				cancel_real)
503 {
504 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
505 	struct xfs_bmbt_irec		got, del;
506 	struct xfs_iext_cursor		icur;
507 	int				error = 0;
508 
509 	if (!xfs_inode_has_cow_data(ip))
510 		return 0;
511 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
512 		return 0;
513 
514 	/* Walk backwards until we're out of the I/O range... */
515 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
516 		del = got;
517 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
518 
519 		/* Extent delete may have bumped ext forward */
520 		if (!del.br_blockcount) {
521 			xfs_iext_prev(ifp, &icur);
522 			goto next_extent;
523 		}
524 
525 		trace_xfs_reflink_cancel_cow(ip, &del);
526 
527 		if (isnullstartblock(del.br_startblock)) {
528 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
529 					&icur, &got, &del);
530 			if (error)
531 				break;
532 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
533 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
534 
535 			/* Free the CoW orphan record. */
536 			error = xfs_refcount_free_cow_extent(*tpp,
537 					del.br_startblock, del.br_blockcount);
538 			if (error)
539 				break;
540 
541 			xfs_bmap_add_free(*tpp, del.br_startblock,
542 					  del.br_blockcount, NULL);
543 
544 			/* Roll the transaction */
545 			error = xfs_defer_finish(tpp);
546 			if (error)
547 				break;
548 
549 			/* Remove the mapping from the CoW fork. */
550 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
551 
552 			/* Remove the quota reservation */
553 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
554 					-(long)del.br_blockcount, 0,
555 					XFS_QMOPT_RES_REGBLKS);
556 			if (error)
557 				break;
558 		} else {
559 			/* Didn't do anything, push cursor back. */
560 			xfs_iext_prev(ifp, &icur);
561 		}
562 next_extent:
563 		if (!xfs_iext_get_extent(ifp, &icur, &got))
564 			break;
565 	}
566 
567 	/* clear tag if cow fork is emptied */
568 	if (!ifp->if_bytes)
569 		xfs_inode_clear_cowblocks_tag(ip);
570 	return error;
571 }
572 
573 /*
574  * Cancel CoW reservations for some byte range of an inode.
575  *
576  * If cancel_real is true this function cancels all COW fork extents for the
577  * inode; if cancel_real is false, real extents are not cleared.
578  */
579 int
xfs_reflink_cancel_cow_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,bool cancel_real)580 xfs_reflink_cancel_cow_range(
581 	struct xfs_inode	*ip,
582 	xfs_off_t		offset,
583 	xfs_off_t		count,
584 	bool			cancel_real)
585 {
586 	struct xfs_trans	*tp;
587 	xfs_fileoff_t		offset_fsb;
588 	xfs_fileoff_t		end_fsb;
589 	int			error;
590 
591 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
592 	ASSERT(xfs_is_reflink_inode(ip));
593 
594 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
595 	if (count == NULLFILEOFF)
596 		end_fsb = NULLFILEOFF;
597 	else
598 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
599 
600 	/* Start a rolling transaction to remove the mappings */
601 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
602 			0, 0, XFS_TRANS_NOFS, &tp);
603 	if (error)
604 		goto out;
605 
606 	xfs_ilock(ip, XFS_ILOCK_EXCL);
607 	xfs_trans_ijoin(tp, ip, 0);
608 
609 	/* Scrape out the old CoW reservations */
610 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
611 			cancel_real);
612 	if (error)
613 		goto out_cancel;
614 
615 	error = xfs_trans_commit(tp);
616 
617 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
618 	return error;
619 
620 out_cancel:
621 	xfs_trans_cancel(tp);
622 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
623 out:
624 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
625 	return error;
626 }
627 
628 /*
629  * Remap parts of a file's data fork after a successful CoW.
630  */
631 int
xfs_reflink_end_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)632 xfs_reflink_end_cow(
633 	struct xfs_inode		*ip,
634 	xfs_off_t			offset,
635 	xfs_off_t			count)
636 {
637 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
638 	struct xfs_bmbt_irec		got, del;
639 	struct xfs_trans		*tp;
640 	xfs_fileoff_t			offset_fsb;
641 	xfs_fileoff_t			end_fsb;
642 	int				error;
643 	unsigned int			resblks;
644 	xfs_filblks_t			rlen;
645 	struct xfs_iext_cursor		icur;
646 
647 	trace_xfs_reflink_end_cow(ip, offset, count);
648 
649 	/* No COW extents?  That's easy! */
650 	if (ifp->if_bytes == 0)
651 		return 0;
652 
653 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
654 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
655 
656 	/*
657 	 * Start a rolling transaction to switch the mappings.  We're
658 	 * unlikely ever to have to remap 16T worth of single-block
659 	 * extents, so just cap the worst case extent count to 2^32-1.
660 	 * Stick a warning in just in case, and avoid 64-bit division.
661 	 */
662 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
663 	if (end_fsb - offset_fsb > UINT_MAX) {
664 		error = -EFSCORRUPTED;
665 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
666 		ASSERT(0);
667 		goto out;
668 	}
669 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
670 			(unsigned int)(end_fsb - offset_fsb),
671 			XFS_DATA_FORK);
672 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
673 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
674 	if (error)
675 		goto out;
676 
677 	xfs_ilock(ip, XFS_ILOCK_EXCL);
678 	xfs_trans_ijoin(tp, ip, 0);
679 
680 	/*
681 	 * In case of racing, overlapping AIO writes no COW extents might be
682 	 * left by the time I/O completes for the loser of the race.  In that
683 	 * case we are done.
684 	 */
685 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
686 		goto out_cancel;
687 
688 	/* Walk backwards until we're out of the I/O range... */
689 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
690 		del = got;
691 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
692 
693 		/* Extent delete may have bumped ext forward */
694 		if (!del.br_blockcount)
695 			goto prev_extent;
696 
697 		/*
698 		 * Only remap real extent that contain data.  With AIO
699 		 * speculatively preallocations can leak into the range we
700 		 * are called upon, and we need to skip them.
701 		 */
702 		if (!xfs_bmap_is_real_extent(&got))
703 			goto prev_extent;
704 
705 		/* Unmap the old blocks in the data fork. */
706 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
707 		rlen = del.br_blockcount;
708 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
709 		if (error)
710 			goto out_cancel;
711 
712 		/* Trim the extent to whatever got unmapped. */
713 		if (rlen) {
714 			xfs_trim_extent(&del, del.br_startoff + rlen,
715 				del.br_blockcount - rlen);
716 		}
717 		trace_xfs_reflink_cow_remap(ip, &del);
718 
719 		/* Free the CoW orphan record. */
720 		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
721 				del.br_blockcount);
722 		if (error)
723 			goto out_cancel;
724 
725 		/* Map the new blocks into the data fork. */
726 		error = xfs_bmap_map_extent(tp, ip, &del);
727 		if (error)
728 			goto out_cancel;
729 
730 		/* Charge this new data fork mapping to the on-disk quota. */
731 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
732 				(long)del.br_blockcount);
733 
734 		/* Remove the mapping from the CoW fork. */
735 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
736 
737 		error = xfs_defer_finish(&tp);
738 		if (error)
739 			goto out_cancel;
740 		if (!xfs_iext_get_extent(ifp, &icur, &got))
741 			break;
742 		continue;
743 prev_extent:
744 		if (!xfs_iext_prev_extent(ifp, &icur, &got))
745 			break;
746 	}
747 
748 	error = xfs_trans_commit(tp);
749 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
750 	if (error)
751 		goto out;
752 	return 0;
753 
754 out_cancel:
755 	xfs_trans_cancel(tp);
756 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
757 out:
758 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
759 	return error;
760 }
761 
762 /*
763  * Free leftover CoW reservations that didn't get cleaned out.
764  */
765 int
xfs_reflink_recover_cow(struct xfs_mount * mp)766 xfs_reflink_recover_cow(
767 	struct xfs_mount	*mp)
768 {
769 	xfs_agnumber_t		agno;
770 	int			error = 0;
771 
772 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
773 		return 0;
774 
775 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
776 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
777 		if (error)
778 			break;
779 	}
780 
781 	return error;
782 }
783 
784 /*
785  * Reflinking (Block) Ranges of Two Files Together
786  *
787  * First, ensure that the reflink flag is set on both inodes.  The flag is an
788  * optimization to avoid unnecessary refcount btree lookups in the write path.
789  *
790  * Now we can iteratively remap the range of extents (and holes) in src to the
791  * corresponding ranges in dest.  Let drange and srange denote the ranges of
792  * logical blocks in dest and src touched by the reflink operation.
793  *
794  * While the length of drange is greater than zero,
795  *    - Read src's bmbt at the start of srange ("imap")
796  *    - If imap doesn't exist, make imap appear to start at the end of srange
797  *      with zero length.
798  *    - If imap starts before srange, advance imap to start at srange.
799  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
800  *    - Punch (imap start - srange start + imap len) blocks from dest at
801  *      offset (drange start).
802  *    - If imap points to a real range of pblks,
803  *         > Increase the refcount of the imap's pblks
804  *         > Map imap's pblks into dest at the offset
805  *           (drange start + imap start - srange start)
806  *    - Advance drange and srange by (imap start - srange start + imap len)
807  *
808  * Finally, if the reflink made dest longer, update both the in-core and
809  * on-disk file sizes.
810  *
811  * ASCII Art Demonstration:
812  *
813  * Let's say we want to reflink this source file:
814  *
815  * ----SSSSSSS-SSSSS----SSSSSS (src file)
816  *   <-------------------->
817  *
818  * into this destination file:
819  *
820  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
821  *        <-------------------->
822  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
823  * Observe that the range has different logical offsets in either file.
824  *
825  * Consider that the first extent in the source file doesn't line up with our
826  * reflink range.  Unmapping  and remapping are separate operations, so we can
827  * unmap more blocks from the destination file than we remap.
828  *
829  * ----SSSSSSS-SSSSS----SSSSSS
830  *   <------->
831  * --DDDDD---------DDDDD--DDD
832  *        <------->
833  *
834  * Now remap the source extent into the destination file:
835  *
836  * ----SSSSSSS-SSSSS----SSSSSS
837  *   <------->
838  * --DDDDD--SSSSSSSDDDDD--DDD
839  *        <------->
840  *
841  * Do likewise with the second hole and extent in our range.  Holes in the
842  * unmap range don't affect our operation.
843  *
844  * ----SSSSSSS-SSSSS----SSSSSS
845  *            <---->
846  * --DDDDD--SSSSSSS-SSSSS-DDD
847  *                 <---->
848  *
849  * Finally, unmap and remap part of the third extent.  This will increase the
850  * size of the destination file.
851  *
852  * ----SSSSSSS-SSSSS----SSSSSS
853  *                  <----->
854  * --DDDDD--SSSSSSS-SSSSS----SSS
855  *                       <----->
856  *
857  * Once we update the destination file's i_size, we're done.
858  */
859 
860 /*
861  * Ensure the reflink bit is set in both inodes.
862  */
863 STATIC int
xfs_reflink_set_inode_flag(struct xfs_inode * src,struct xfs_inode * dest)864 xfs_reflink_set_inode_flag(
865 	struct xfs_inode	*src,
866 	struct xfs_inode	*dest)
867 {
868 	struct xfs_mount	*mp = src->i_mount;
869 	int			error;
870 	struct xfs_trans	*tp;
871 
872 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
873 		return 0;
874 
875 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
876 	if (error)
877 		goto out_error;
878 
879 	/* Lock both files against IO */
880 	if (src->i_ino == dest->i_ino)
881 		xfs_ilock(src, XFS_ILOCK_EXCL);
882 	else
883 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
884 
885 	if (!xfs_is_reflink_inode(src)) {
886 		trace_xfs_reflink_set_inode_flag(src);
887 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
888 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
889 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
890 		xfs_ifork_init_cow(src);
891 	} else
892 		xfs_iunlock(src, XFS_ILOCK_EXCL);
893 
894 	if (src->i_ino == dest->i_ino)
895 		goto commit_flags;
896 
897 	if (!xfs_is_reflink_inode(dest)) {
898 		trace_xfs_reflink_set_inode_flag(dest);
899 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
900 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
901 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
902 		xfs_ifork_init_cow(dest);
903 	} else
904 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
905 
906 commit_flags:
907 	error = xfs_trans_commit(tp);
908 	if (error)
909 		goto out_error;
910 	return error;
911 
912 out_error:
913 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
914 	return error;
915 }
916 
917 /*
918  * Update destination inode size & cowextsize hint, if necessary.
919  */
920 STATIC int
xfs_reflink_update_dest(struct xfs_inode * dest,xfs_off_t newlen,xfs_extlen_t cowextsize,bool is_dedupe)921 xfs_reflink_update_dest(
922 	struct xfs_inode	*dest,
923 	xfs_off_t		newlen,
924 	xfs_extlen_t		cowextsize,
925 	bool			is_dedupe)
926 {
927 	struct xfs_mount	*mp = dest->i_mount;
928 	struct xfs_trans	*tp;
929 	int			error;
930 
931 	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
932 		return 0;
933 
934 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
935 	if (error)
936 		goto out_error;
937 
938 	xfs_ilock(dest, XFS_ILOCK_EXCL);
939 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
940 
941 	if (newlen > i_size_read(VFS_I(dest))) {
942 		trace_xfs_reflink_update_inode_size(dest, newlen);
943 		i_size_write(VFS_I(dest), newlen);
944 		dest->i_d.di_size = newlen;
945 	}
946 
947 	if (cowextsize) {
948 		dest->i_d.di_cowextsize = cowextsize;
949 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
950 	}
951 
952 	if (!is_dedupe) {
953 		xfs_trans_ichgtime(tp, dest,
954 				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
955 	}
956 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
957 
958 	error = xfs_trans_commit(tp);
959 	if (error)
960 		goto out_error;
961 	return error;
962 
963 out_error:
964 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
965 	return error;
966 }
967 
968 /*
969  * Do we have enough reserve in this AG to handle a reflink?  The refcount
970  * btree already reserved all the space it needs, but the rmap btree can grow
971  * infinitely, so we won't allow more reflinks when the AG is down to the
972  * btree reserves.
973  */
974 static int
xfs_reflink_ag_has_free_space(struct xfs_mount * mp,xfs_agnumber_t agno)975 xfs_reflink_ag_has_free_space(
976 	struct xfs_mount	*mp,
977 	xfs_agnumber_t		agno)
978 {
979 	struct xfs_perag	*pag;
980 	int			error = 0;
981 
982 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
983 		return 0;
984 
985 	pag = xfs_perag_get(mp, agno);
986 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
987 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
988 		error = -ENOSPC;
989 	xfs_perag_put(pag);
990 	return error;
991 }
992 
993 /*
994  * Unmap a range of blocks from a file, then map other blocks into the hole.
995  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
996  * The extent irec is mapped into dest at irec->br_startoff.
997  */
998 STATIC int
xfs_reflink_remap_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,xfs_fileoff_t destoff,xfs_off_t new_isize)999 xfs_reflink_remap_extent(
1000 	struct xfs_inode	*ip,
1001 	struct xfs_bmbt_irec	*irec,
1002 	xfs_fileoff_t		destoff,
1003 	xfs_off_t		new_isize)
1004 {
1005 	struct xfs_mount	*mp = ip->i_mount;
1006 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1007 	struct xfs_trans	*tp;
1008 	unsigned int		resblks;
1009 	struct xfs_bmbt_irec	uirec;
1010 	xfs_filblks_t		rlen;
1011 	xfs_filblks_t		unmap_len;
1012 	xfs_off_t		newlen;
1013 	int64_t			qres;
1014 	int			error;
1015 
1016 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1017 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1018 
1019 	/* No reflinking if we're low on space */
1020 	if (real_extent) {
1021 		error = xfs_reflink_ag_has_free_space(mp,
1022 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1023 		if (error)
1024 			goto out;
1025 	}
1026 
1027 	/* Start a rolling transaction to switch the mappings */
1028 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1029 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1030 	if (error)
1031 		goto out;
1032 
1033 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1034 	xfs_trans_ijoin(tp, ip, 0);
1035 
1036 	/*
1037 	 * Reserve quota for this operation.  We don't know if the first unmap
1038 	 * in the dest file will cause a bmap btree split, so we always reserve
1039 	 * at least enough blocks for that split.  If the extent being mapped
1040 	 * in is written, we need to reserve quota for that too.
1041 	 */
1042 	qres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1043 	if (real_extent)
1044 		qres += irec->br_blockcount;
1045 	error = xfs_trans_reserve_quota_nblks(tp, ip, qres, 0,
1046 			XFS_QMOPT_RES_REGBLKS);
1047 	if (error)
1048 		goto out_cancel;
1049 
1050 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1051 				irec->br_blockcount, irec->br_startblock);
1052 
1053 	/* Unmap the old blocks in the data fork. */
1054 	rlen = unmap_len;
1055 	while (rlen) {
1056 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1057 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1058 		if (error)
1059 			goto out_cancel;
1060 
1061 		/*
1062 		 * Trim the extent to whatever got unmapped.
1063 		 * Remember, bunmapi works backwards.
1064 		 */
1065 		uirec.br_startblock = irec->br_startblock + rlen;
1066 		uirec.br_startoff = irec->br_startoff + rlen;
1067 		uirec.br_blockcount = unmap_len - rlen;
1068 		uirec.br_state = irec->br_state;
1069 		unmap_len = rlen;
1070 
1071 		/* If this isn't a real mapping, we're done. */
1072 		if (!real_extent || uirec.br_blockcount == 0)
1073 			goto next_extent;
1074 
1075 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1076 				uirec.br_blockcount, uirec.br_startblock);
1077 
1078 		/* Update the refcount tree */
1079 		error = xfs_refcount_increase_extent(tp, &uirec);
1080 		if (error)
1081 			goto out_cancel;
1082 
1083 		/* Map the new blocks into the data fork. */
1084 		error = xfs_bmap_map_extent(tp, ip, &uirec);
1085 		if (error)
1086 			goto out_cancel;
1087 
1088 		/* Update quota accounting. */
1089 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1090 				uirec.br_blockcount);
1091 
1092 		/* Update dest isize if needed. */
1093 		newlen = XFS_FSB_TO_B(mp,
1094 				uirec.br_startoff + uirec.br_blockcount);
1095 		newlen = min_t(xfs_off_t, newlen, new_isize);
1096 		if (newlen > i_size_read(VFS_I(ip))) {
1097 			trace_xfs_reflink_update_inode_size(ip, newlen);
1098 			i_size_write(VFS_I(ip), newlen);
1099 			ip->i_d.di_size = newlen;
1100 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1101 		}
1102 
1103 next_extent:
1104 		/* Process all the deferred stuff. */
1105 		error = xfs_defer_finish(&tp);
1106 		if (error)
1107 			goto out_cancel;
1108 	}
1109 
1110 	error = xfs_trans_commit(tp);
1111 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1112 	if (error)
1113 		goto out;
1114 	return 0;
1115 
1116 out_cancel:
1117 	xfs_trans_cancel(tp);
1118 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1119 out:
1120 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1121 	return error;
1122 }
1123 
1124 /*
1125  * Iteratively remap one file's extents (and holes) to another's.
1126  */
1127 STATIC int
xfs_reflink_remap_blocks(struct xfs_inode * src,xfs_fileoff_t srcoff,struct xfs_inode * dest,xfs_fileoff_t destoff,xfs_filblks_t len,xfs_off_t new_isize)1128 xfs_reflink_remap_blocks(
1129 	struct xfs_inode	*src,
1130 	xfs_fileoff_t		srcoff,
1131 	struct xfs_inode	*dest,
1132 	xfs_fileoff_t		destoff,
1133 	xfs_filblks_t		len,
1134 	xfs_off_t		new_isize)
1135 {
1136 	struct xfs_bmbt_irec	imap;
1137 	int			nimaps;
1138 	int			error = 0;
1139 	xfs_filblks_t		range_len;
1140 
1141 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1142 	while (len) {
1143 		uint		lock_mode;
1144 
1145 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1146 				dest, destoff);
1147 
1148 		/* Read extent from the source file */
1149 		nimaps = 1;
1150 		lock_mode = xfs_ilock_data_map_shared(src);
1151 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1152 		xfs_iunlock(src, lock_mode);
1153 		if (error)
1154 			goto err;
1155 		ASSERT(nimaps == 1);
1156 
1157 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1158 				&imap);
1159 
1160 		/* Translate imap into the destination file. */
1161 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1162 		imap.br_startoff += destoff - srcoff;
1163 
1164 		/* Clear dest from destoff to the end of imap and map it in. */
1165 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1166 				new_isize);
1167 		if (error)
1168 			goto err;
1169 
1170 		if (fatal_signal_pending(current)) {
1171 			error = -EINTR;
1172 			goto err;
1173 		}
1174 
1175 		/* Advance drange/srange */
1176 		srcoff += range_len;
1177 		destoff += range_len;
1178 		len -= range_len;
1179 	}
1180 
1181 	return 0;
1182 
1183 err:
1184 	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1185 	return error;
1186 }
1187 
1188 /*
1189  * Grab the exclusive iolock for a data copy from src to dest, making
1190  * sure to abide vfs locking order (lowest pointer value goes first) and
1191  * breaking the pnfs layout leases on dest before proceeding.  The loop
1192  * is needed because we cannot call the blocking break_layout() with the
1193  * src iolock held, and therefore have to back out both locks.
1194  */
1195 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)1196 xfs_iolock_two_inodes_and_break_layout(
1197 	struct inode		*src,
1198 	struct inode		*dest)
1199 {
1200 	int			error;
1201 
1202 retry:
1203 	if (src < dest) {
1204 		inode_lock_shared(src);
1205 		inode_lock_nested(dest, I_MUTEX_NONDIR2);
1206 	} else {
1207 		/* src >= dest */
1208 		inode_lock(dest);
1209 	}
1210 
1211 	error = break_layout(dest, false);
1212 	if (error == -EWOULDBLOCK) {
1213 		inode_unlock(dest);
1214 		if (src < dest)
1215 			inode_unlock_shared(src);
1216 		error = break_layout(dest, true);
1217 		if (error)
1218 			return error;
1219 		goto retry;
1220 	}
1221 	if (error) {
1222 		inode_unlock(dest);
1223 		if (src < dest)
1224 			inode_unlock_shared(src);
1225 		return error;
1226 	}
1227 	if (src > dest)
1228 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1229 	return 0;
1230 }
1231 
1232 /* Unlock both inodes after they've been prepped for a range clone. */
1233 STATIC void
xfs_reflink_remap_unlock(struct file * file_in,struct file * file_out)1234 xfs_reflink_remap_unlock(
1235 	struct file		*file_in,
1236 	struct file		*file_out)
1237 {
1238 	struct inode		*inode_in = file_inode(file_in);
1239 	struct xfs_inode	*src = XFS_I(inode_in);
1240 	struct inode		*inode_out = file_inode(file_out);
1241 	struct xfs_inode	*dest = XFS_I(inode_out);
1242 	bool			same_inode = (inode_in == inode_out);
1243 
1244 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1245 	if (!same_inode)
1246 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1247 	inode_unlock(inode_out);
1248 	if (!same_inode)
1249 		inode_unlock_shared(inode_in);
1250 }
1251 
1252 /*
1253  * If we're reflinking to a point past the destination file's EOF, we must
1254  * zero any speculative post-EOF preallocations that sit between the old EOF
1255  * and the destination file offset.
1256  */
1257 static int
xfs_reflink_zero_posteof(struct xfs_inode * ip,loff_t pos)1258 xfs_reflink_zero_posteof(
1259 	struct xfs_inode	*ip,
1260 	loff_t			pos)
1261 {
1262 	loff_t			isize = i_size_read(VFS_I(ip));
1263 
1264 	if (pos <= isize)
1265 		return 0;
1266 
1267 	trace_xfs_zero_eof(ip, isize, pos - isize);
1268 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1269 			&xfs_iomap_ops);
1270 }
1271 
1272 /*
1273  * Prepare two files for range cloning.  Upon a successful return both inodes
1274  * will have the iolock and mmaplock held, the page cache of the out file will
1275  * be truncated, and any leases on the out file will have been broken.  This
1276  * function borrows heavily from xfs_file_aio_write_checks.
1277  *
1278  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1279  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1280  * EOF block in the source dedupe range because it's not a complete block match,
1281  * hence can introduce a corruption into the file that has it's block replaced.
1282  *
1283  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1284  * "block aligned" for the purposes of cloning entire files.  However, if the
1285  * source file range includes the EOF block and it lands within the existing EOF
1286  * of the destination file, then we can expose stale data from beyond the source
1287  * file EOF in the destination file.
1288  *
1289  * XFS doesn't support partial block sharing, so in both cases we have check
1290  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1291  * down to the previous whole block and ignore the partial EOF block. While this
1292  * means we can't dedupe the last block of a file, this is an acceptible
1293  * tradeoff for simplicity on implementation.
1294  *
1295  * For cloning, we want to share the partial EOF block if it is also the new EOF
1296  * block of the destination file. If the partial EOF block lies inside the
1297  * existing destination EOF, then we have to abort the clone to avoid exposing
1298  * stale data in the destination file. Hence we reject these clone attempts with
1299  * -EINVAL in this case.
1300  */
1301 STATIC int
xfs_reflink_remap_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 * len,bool is_dedupe)1302 xfs_reflink_remap_prep(
1303 	struct file		*file_in,
1304 	loff_t			pos_in,
1305 	struct file		*file_out,
1306 	loff_t			pos_out,
1307 	u64			*len,
1308 	bool			is_dedupe)
1309 {
1310 	struct inode		*inode_in = file_inode(file_in);
1311 	struct xfs_inode	*src = XFS_I(inode_in);
1312 	struct inode		*inode_out = file_inode(file_out);
1313 	struct xfs_inode	*dest = XFS_I(inode_out);
1314 	bool			same_inode = (inode_in == inode_out);
1315 	u64			blkmask = i_blocksize(inode_in) - 1;
1316 	ssize_t			ret;
1317 
1318 	/* Lock both files against IO */
1319 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1320 	if (ret)
1321 		return ret;
1322 	if (same_inode)
1323 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1324 	else
1325 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1326 				XFS_MMAPLOCK_EXCL);
1327 
1328 	/* Check file eligibility and prepare for block sharing. */
1329 	ret = -EINVAL;
1330 	/* Don't reflink realtime inodes */
1331 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1332 		goto out_unlock;
1333 
1334 	/* Don't share DAX file data for now. */
1335 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1336 		goto out_unlock;
1337 
1338 	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1339 			len, is_dedupe);
1340 	if (ret <= 0)
1341 		goto out_unlock;
1342 
1343 	/*
1344 	 * If the dedupe data matches, chop off the partial EOF block
1345 	 * from the source file so we don't try to dedupe the partial
1346 	 * EOF block.
1347 	 */
1348 	if (is_dedupe) {
1349 		*len &= ~blkmask;
1350 	} else if (*len & blkmask) {
1351 		/*
1352 		 * The user is attempting to share a partial EOF block,
1353 		 * if it's inside the destination EOF then reject it.
1354 		 */
1355 		if (pos_out + *len < i_size_read(inode_out)) {
1356 			ret = -EINVAL;
1357 			goto out_unlock;
1358 		}
1359 	}
1360 
1361 	/* Attach dquots to dest inode before changing block map */
1362 	ret = xfs_qm_dqattach(dest);
1363 	if (ret)
1364 		goto out_unlock;
1365 
1366 	/*
1367 	 * Zero existing post-eof speculative preallocations in the destination
1368 	 * file.
1369 	 */
1370 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1371 	if (ret)
1372 		goto out_unlock;
1373 
1374 	/* Set flags and remap blocks. */
1375 	ret = xfs_reflink_set_inode_flag(src, dest);
1376 	if (ret)
1377 		goto out_unlock;
1378 
1379 	/*
1380 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1381 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1382 	 * from EOF to the end of the copy length.
1383 	 */
1384 	if (pos_out > XFS_ISIZE(dest)) {
1385 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1386 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1387 	} else {
1388 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1389 	}
1390 	if (ret)
1391 		goto out_unlock;
1392 
1393 	/* If we're altering the file contents... */
1394 	if (!is_dedupe) {
1395 		/*
1396 		 * ...update the timestamps (which will grab the ilock again
1397 		 * from xfs_fs_dirty_inode, so we have to call it before we
1398 		 * take the ilock).
1399 		 */
1400 		if (!(file_out->f_mode & FMODE_NOCMTIME)) {
1401 			ret = file_update_time(file_out);
1402 			if (ret)
1403 				goto out_unlock;
1404 		}
1405 
1406 		/*
1407 		 * ...clear the security bits if the process is not being run
1408 		 * by root.  This keeps people from modifying setuid and setgid
1409 		 * binaries.
1410 		 */
1411 		ret = file_remove_privs(file_out);
1412 		if (ret)
1413 			goto out_unlock;
1414 	}
1415 
1416 	return 1;
1417 out_unlock:
1418 	xfs_reflink_remap_unlock(file_in, file_out);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Link a range of blocks from one file to another.
1424  */
1425 int
xfs_reflink_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len,bool is_dedupe)1426 xfs_reflink_remap_range(
1427 	struct file		*file_in,
1428 	loff_t			pos_in,
1429 	struct file		*file_out,
1430 	loff_t			pos_out,
1431 	u64			len,
1432 	bool			is_dedupe)
1433 {
1434 	struct inode		*inode_in = file_inode(file_in);
1435 	struct xfs_inode	*src = XFS_I(inode_in);
1436 	struct inode		*inode_out = file_inode(file_out);
1437 	struct xfs_inode	*dest = XFS_I(inode_out);
1438 	struct xfs_mount	*mp = src->i_mount;
1439 	xfs_fileoff_t		sfsbno, dfsbno;
1440 	xfs_filblks_t		fsblen;
1441 	xfs_extlen_t		cowextsize;
1442 	ssize_t			ret;
1443 
1444 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1445 		return -EOPNOTSUPP;
1446 
1447 	if (XFS_FORCED_SHUTDOWN(mp))
1448 		return -EIO;
1449 
1450 	/* Prepare and then clone file data. */
1451 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1452 			&len, is_dedupe);
1453 	if (ret <= 0)
1454 		return ret;
1455 
1456 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1457 
1458 	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1459 	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1460 	fsblen = XFS_B_TO_FSB(mp, len);
1461 	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1462 			pos_out + len);
1463 	if (ret)
1464 		goto out_unlock;
1465 
1466 	/*
1467 	 * Carry the cowextsize hint from src to dest if we're sharing the
1468 	 * entire source file to the entire destination file, the source file
1469 	 * has a cowextsize hint, and the destination file does not.
1470 	 */
1471 	cowextsize = 0;
1472 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1473 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1474 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1475 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1476 		cowextsize = src->i_d.di_cowextsize;
1477 
1478 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1479 			is_dedupe);
1480 
1481 out_unlock:
1482 	xfs_reflink_remap_unlock(file_in, file_out);
1483 	if (ret)
1484 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1485 	return ret;
1486 }
1487 
1488 /*
1489  * The user wants to preemptively CoW all shared blocks in this file,
1490  * which enables us to turn off the reflink flag.  Iterate all
1491  * extents which are not prealloc/delalloc to see which ranges are
1492  * mentioned in the refcount tree, then read those blocks into the
1493  * pagecache, dirty them, fsync them back out, and then we can update
1494  * the inode flag.  What happens if we run out of memory? :)
1495  */
1496 STATIC int
xfs_reflink_dirty_extents(struct xfs_inode * ip,xfs_fileoff_t fbno,xfs_filblks_t end,xfs_off_t isize)1497 xfs_reflink_dirty_extents(
1498 	struct xfs_inode	*ip,
1499 	xfs_fileoff_t		fbno,
1500 	xfs_filblks_t		end,
1501 	xfs_off_t		isize)
1502 {
1503 	struct xfs_mount	*mp = ip->i_mount;
1504 	xfs_agnumber_t		agno;
1505 	xfs_agblock_t		agbno;
1506 	xfs_extlen_t		aglen;
1507 	xfs_agblock_t		rbno;
1508 	xfs_extlen_t		rlen;
1509 	xfs_off_t		fpos;
1510 	xfs_off_t		flen;
1511 	struct xfs_bmbt_irec	map[2];
1512 	int			nmaps;
1513 	int			error = 0;
1514 
1515 	while (end - fbno > 0) {
1516 		nmaps = 1;
1517 		/*
1518 		 * Look for extents in the file.  Skip holes, delalloc, or
1519 		 * unwritten extents; they can't be reflinked.
1520 		 */
1521 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1522 		if (error)
1523 			goto out;
1524 		if (nmaps == 0)
1525 			break;
1526 		if (!xfs_bmap_is_real_extent(&map[0]))
1527 			goto next;
1528 
1529 		map[1] = map[0];
1530 		while (map[1].br_blockcount) {
1531 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1532 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1533 			aglen = map[1].br_blockcount;
1534 
1535 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1536 					aglen, &rbno, &rlen, true);
1537 			if (error)
1538 				goto out;
1539 			if (rbno == NULLAGBLOCK)
1540 				break;
1541 
1542 			/* Dirty the pages */
1543 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
1544 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1545 					(rbno - agbno));
1546 			flen = XFS_FSB_TO_B(mp, rlen);
1547 			if (fpos + flen > isize)
1548 				flen = isize - fpos;
1549 			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1550 					&xfs_iomap_ops);
1551 			xfs_ilock(ip, XFS_ILOCK_EXCL);
1552 			if (error)
1553 				goto out;
1554 
1555 			map[1].br_blockcount -= (rbno - agbno + rlen);
1556 			map[1].br_startoff += (rbno - agbno + rlen);
1557 			map[1].br_startblock += (rbno - agbno + rlen);
1558 		}
1559 
1560 next:
1561 		fbno = map[0].br_startoff + map[0].br_blockcount;
1562 	}
1563 out:
1564 	return error;
1565 }
1566 
1567 /* Does this inode need the reflink flag? */
1568 int
xfs_reflink_inode_has_shared_extents(struct xfs_trans * tp,struct xfs_inode * ip,bool * has_shared)1569 xfs_reflink_inode_has_shared_extents(
1570 	struct xfs_trans		*tp,
1571 	struct xfs_inode		*ip,
1572 	bool				*has_shared)
1573 {
1574 	struct xfs_bmbt_irec		got;
1575 	struct xfs_mount		*mp = ip->i_mount;
1576 	struct xfs_ifork		*ifp;
1577 	xfs_agnumber_t			agno;
1578 	xfs_agblock_t			agbno;
1579 	xfs_extlen_t			aglen;
1580 	xfs_agblock_t			rbno;
1581 	xfs_extlen_t			rlen;
1582 	struct xfs_iext_cursor		icur;
1583 	bool				found;
1584 	int				error;
1585 
1586 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1587 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1588 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1589 		if (error)
1590 			return error;
1591 	}
1592 
1593 	*has_shared = false;
1594 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1595 	while (found) {
1596 		if (isnullstartblock(got.br_startblock) ||
1597 		    got.br_state != XFS_EXT_NORM)
1598 			goto next;
1599 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1600 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1601 		aglen = got.br_blockcount;
1602 
1603 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1604 				&rbno, &rlen, false);
1605 		if (error)
1606 			return error;
1607 		/* Is there still a shared block here? */
1608 		if (rbno != NULLAGBLOCK) {
1609 			*has_shared = true;
1610 			return 0;
1611 		}
1612 next:
1613 		found = xfs_iext_next_extent(ifp, &icur, &got);
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 /*
1620  * Clear the inode reflink flag if there are no shared extents.
1621  *
1622  * The caller is responsible for joining the inode to the transaction passed in.
1623  * The inode will be joined to the transaction that is returned to the caller.
1624  */
1625 int
xfs_reflink_clear_inode_flag(struct xfs_inode * ip,struct xfs_trans ** tpp)1626 xfs_reflink_clear_inode_flag(
1627 	struct xfs_inode	*ip,
1628 	struct xfs_trans	**tpp)
1629 {
1630 	bool			needs_flag;
1631 	int			error = 0;
1632 
1633 	ASSERT(xfs_is_reflink_inode(ip));
1634 
1635 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1636 	if (error || needs_flag)
1637 		return error;
1638 
1639 	/*
1640 	 * We didn't find any shared blocks so turn off the reflink flag.
1641 	 * First, get rid of any leftover CoW mappings.
1642 	 */
1643 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1644 	if (error)
1645 		return error;
1646 
1647 	/* Clear the inode flag. */
1648 	trace_xfs_reflink_unset_inode_flag(ip);
1649 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1650 	xfs_inode_clear_cowblocks_tag(ip);
1651 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1652 
1653 	return error;
1654 }
1655 
1656 /*
1657  * Clear the inode reflink flag if there are no shared extents and the size
1658  * hasn't changed.
1659  */
1660 STATIC int
xfs_reflink_try_clear_inode_flag(struct xfs_inode * ip)1661 xfs_reflink_try_clear_inode_flag(
1662 	struct xfs_inode	*ip)
1663 {
1664 	struct xfs_mount	*mp = ip->i_mount;
1665 	struct xfs_trans	*tp;
1666 	int			error = 0;
1667 
1668 	/* Start a rolling transaction to remove the mappings */
1669 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1670 	if (error)
1671 		return error;
1672 
1673 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1674 	xfs_trans_ijoin(tp, ip, 0);
1675 
1676 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1677 	if (error)
1678 		goto cancel;
1679 
1680 	error = xfs_trans_commit(tp);
1681 	if (error)
1682 		goto out;
1683 
1684 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1685 	return 0;
1686 cancel:
1687 	xfs_trans_cancel(tp);
1688 out:
1689 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1690 	return error;
1691 }
1692 
1693 /*
1694  * Pre-COW all shared blocks within a given byte range of a file and turn off
1695  * the reflink flag if we unshare all of the file's blocks.
1696  */
1697 int
xfs_reflink_unshare(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1698 xfs_reflink_unshare(
1699 	struct xfs_inode	*ip,
1700 	xfs_off_t		offset,
1701 	xfs_off_t		len)
1702 {
1703 	struct xfs_mount	*mp = ip->i_mount;
1704 	xfs_fileoff_t		fbno;
1705 	xfs_filblks_t		end;
1706 	xfs_off_t		isize;
1707 	int			error;
1708 
1709 	if (!xfs_is_reflink_inode(ip))
1710 		return 0;
1711 
1712 	trace_xfs_reflink_unshare(ip, offset, len);
1713 
1714 	inode_dio_wait(VFS_I(ip));
1715 
1716 	/* Try to CoW the selected ranges */
1717 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1718 	fbno = XFS_B_TO_FSBT(mp, offset);
1719 	isize = i_size_read(VFS_I(ip));
1720 	end = XFS_B_TO_FSB(mp, offset + len);
1721 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1722 	if (error)
1723 		goto out_unlock;
1724 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1725 
1726 	/* Wait for the IO to finish */
1727 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1728 	if (error)
1729 		goto out;
1730 
1731 	/* Turn off the reflink flag if possible. */
1732 	error = xfs_reflink_try_clear_inode_flag(ip);
1733 	if (error)
1734 		goto out;
1735 
1736 	return 0;
1737 
1738 out_unlock:
1739 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1740 out:
1741 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1742 	return error;
1743 }
1744