1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52 };
53
54 struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point. Driver code
78 * implementation must not use req->result.
79 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
80 * function actually pushes blocks of data from upper layers into the
81 * driver, which then passes those to the hardware as seen fit. This
82 * function must not finalize the HASH transformation by calculating the
83 * final message digest as this only adds more data into the
84 * transformation. This function shall not modify the transformation
85 * context, as this function may be called in parallel with the same
86 * transformation object. Data processing can happen synchronously
87 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
88 * req->result.
89 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
90 * transformation and retrieves the resulting hash from the driver and
91 * pushes it back to upper layers. No data processing happens at this
92 * point unless hardware requires it to finish the transformation
93 * (then the data buffered by the device driver is processed).
94 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
95 * combination of @update and @final calls issued in sequence. As some
96 * hardware cannot do @update and @final separately, this callback was
97 * added to allow such hardware to be used at least by IPsec. Data
98 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
99 * at this point.
100 * @digest: Combination of @init and @update and @final. This function
101 * effectively behaves as the entire chain of operations, @init,
102 * @update and @final issued in sequence. Just like @finup, this was
103 * added for hardware which cannot do even the @finup, but can only do
104 * the whole transformation in one run. Data processing can happen
105 * synchronously [SHASH] or asynchronously [AHASH] at this point.
106 * @setkey: Set optional key used by the hashing algorithm. Intended to push
107 * optional key used by the hashing algorithm from upper layers into
108 * the driver. This function can store the key in the transformation
109 * context or can outright program it into the hardware. In the former
110 * case, one must be careful to program the key into the hardware at
111 * appropriate time and one must be careful that .setkey() can be
112 * called multiple times during the existence of the transformation
113 * object. Not all hashing algorithms do implement this function as it
114 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116 * this function. This function must be called before any other of the
117 * @init, @update, @final, @finup, @digest is called. No data
118 * processing happens at this point.
119 * @export: Export partial state of the transformation. This function dumps the
120 * entire state of the ongoing transformation into a provided block of
121 * data so it can be @import 'ed back later on. This is useful in case
122 * you want to save partial result of the transformation after
123 * processing certain amount of data and reload this partial result
124 * multiple times later on for multiple re-use. No data processing
125 * happens at this point. Driver must not use req->result.
126 * @import: Import partial state of the transformation. This function loads the
127 * entire state of the ongoing transformation from a provided block of
128 * data so the transformation can continue from this point onward. No
129 * data processing happens at this point. Driver must not use
130 * req->result.
131 * @halg: see struct hash_alg_common
132 */
133 struct ahash_alg {
134 int (*init)(struct ahash_request *req);
135 int (*update)(struct ahash_request *req);
136 int (*final)(struct ahash_request *req);
137 int (*finup)(struct ahash_request *req);
138 int (*digest)(struct ahash_request *req);
139 int (*export)(struct ahash_request *req, void *out);
140 int (*import)(struct ahash_request *req, const void *in);
141 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142 unsigned int keylen);
143
144 struct hash_alg_common halg;
145 };
146
147 struct shash_desc {
148 struct crypto_shash *tfm;
149 u32 flags;
150
151 void *__ctx[] CRYPTO_MINALIGN_ATTR;
152 };
153
154 #define SHASH_DESC_ON_STACK(shash, ctx) \
155 char __##shash##_desc[sizeof(struct shash_desc) + \
156 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
157 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
158
159 /**
160 * struct shash_alg - synchronous message digest definition
161 * @init: see struct ahash_alg
162 * @update: see struct ahash_alg
163 * @final: see struct ahash_alg
164 * @finup: see struct ahash_alg
165 * @digest: see struct ahash_alg
166 * @export: see struct ahash_alg
167 * @import: see struct ahash_alg
168 * @setkey: see struct ahash_alg
169 * @digestsize: see struct ahash_alg
170 * @statesize: see struct ahash_alg
171 * @descsize: Size of the operational state for the message digest. This state
172 * size is the memory size that needs to be allocated for
173 * shash_desc.__ctx
174 * @base: internally used
175 */
176 struct shash_alg {
177 int (*init)(struct shash_desc *desc);
178 int (*update)(struct shash_desc *desc, const u8 *data,
179 unsigned int len);
180 int (*final)(struct shash_desc *desc, u8 *out);
181 int (*finup)(struct shash_desc *desc, const u8 *data,
182 unsigned int len, u8 *out);
183 int (*digest)(struct shash_desc *desc, const u8 *data,
184 unsigned int len, u8 *out);
185 int (*export)(struct shash_desc *desc, void *out);
186 int (*import)(struct shash_desc *desc, const void *in);
187 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
188 unsigned int keylen);
189
190 unsigned int descsize;
191
192 /* These fields must match hash_alg_common. */
193 unsigned int digestsize
194 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
195 unsigned int statesize;
196
197 struct crypto_alg base;
198 };
199
200 struct crypto_ahash {
201 int (*init)(struct ahash_request *req);
202 int (*update)(struct ahash_request *req);
203 int (*final)(struct ahash_request *req);
204 int (*finup)(struct ahash_request *req);
205 int (*digest)(struct ahash_request *req);
206 int (*export)(struct ahash_request *req, void *out);
207 int (*import)(struct ahash_request *req, const void *in);
208 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
209 unsigned int keylen);
210
211 unsigned int reqsize;
212 struct crypto_tfm base;
213 };
214
215 struct crypto_shash {
216 unsigned int descsize;
217 struct crypto_tfm base;
218 };
219
220 /**
221 * DOC: Asynchronous Message Digest API
222 *
223 * The asynchronous message digest API is used with the ciphers of type
224 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
225 *
226 * The asynchronous cipher operation discussion provided for the
227 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
228 */
229
__crypto_ahash_cast(struct crypto_tfm * tfm)230 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
231 {
232 return container_of(tfm, struct crypto_ahash, base);
233 }
234
235 /**
236 * crypto_alloc_ahash() - allocate ahash cipher handle
237 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
238 * ahash cipher
239 * @type: specifies the type of the cipher
240 * @mask: specifies the mask for the cipher
241 *
242 * Allocate a cipher handle for an ahash. The returned struct
243 * crypto_ahash is the cipher handle that is required for any subsequent
244 * API invocation for that ahash.
245 *
246 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
247 * of an error, PTR_ERR() returns the error code.
248 */
249 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
250 u32 mask);
251
crypto_ahash_tfm(struct crypto_ahash * tfm)252 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
253 {
254 return &tfm->base;
255 }
256
257 /**
258 * crypto_free_ahash() - zeroize and free the ahash handle
259 * @tfm: cipher handle to be freed
260 *
261 * If @tfm is a NULL or error pointer, this function does nothing.
262 */
crypto_free_ahash(struct crypto_ahash * tfm)263 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
264 {
265 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
266 }
267
268 /**
269 * crypto_has_ahash() - Search for the availability of an ahash.
270 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
271 * ahash
272 * @type: specifies the type of the ahash
273 * @mask: specifies the mask for the ahash
274 *
275 * Return: true when the ahash is known to the kernel crypto API; false
276 * otherwise
277 */
278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
279
crypto_ahash_alg_name(struct crypto_ahash * tfm)280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
281 {
282 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
283 }
284
crypto_ahash_driver_name(struct crypto_ahash * tfm)285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
286 {
287 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
288 }
289
crypto_ahash_alignmask(struct crypto_ahash * tfm)290 static inline unsigned int crypto_ahash_alignmask(
291 struct crypto_ahash *tfm)
292 {
293 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
294 }
295
296 /**
297 * crypto_ahash_blocksize() - obtain block size for cipher
298 * @tfm: cipher handle
299 *
300 * The block size for the message digest cipher referenced with the cipher
301 * handle is returned.
302 *
303 * Return: block size of cipher
304 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
306 {
307 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
308 }
309
__crypto_hash_alg_common(struct crypto_alg * alg)310 static inline struct hash_alg_common *__crypto_hash_alg_common(
311 struct crypto_alg *alg)
312 {
313 return container_of(alg, struct hash_alg_common, base);
314 }
315
crypto_hash_alg_common(struct crypto_ahash * tfm)316 static inline struct hash_alg_common *crypto_hash_alg_common(
317 struct crypto_ahash *tfm)
318 {
319 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
320 }
321
322 /**
323 * crypto_ahash_digestsize() - obtain message digest size
324 * @tfm: cipher handle
325 *
326 * The size for the message digest created by the message digest cipher
327 * referenced with the cipher handle is returned.
328 *
329 *
330 * Return: message digest size of cipher
331 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
333 {
334 return crypto_hash_alg_common(tfm)->digestsize;
335 }
336
337 /**
338 * crypto_ahash_statesize() - obtain size of the ahash state
339 * @tfm: cipher handle
340 *
341 * Return the size of the ahash state. With the crypto_ahash_export()
342 * function, the caller can export the state into a buffer whose size is
343 * defined with this function.
344 *
345 * Return: size of the ahash state
346 */
crypto_ahash_statesize(struct crypto_ahash * tfm)347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
348 {
349 return crypto_hash_alg_common(tfm)->statesize;
350 }
351
crypto_ahash_get_flags(struct crypto_ahash * tfm)352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
353 {
354 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
355 }
356
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
358 {
359 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
360 }
361
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
363 {
364 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
365 }
366
367 /**
368 * crypto_ahash_reqtfm() - obtain cipher handle from request
369 * @req: asynchronous request handle that contains the reference to the ahash
370 * cipher handle
371 *
372 * Return the ahash cipher handle that is registered with the asynchronous
373 * request handle ahash_request.
374 *
375 * Return: ahash cipher handle
376 */
crypto_ahash_reqtfm(struct ahash_request * req)377 static inline struct crypto_ahash *crypto_ahash_reqtfm(
378 struct ahash_request *req)
379 {
380 return __crypto_ahash_cast(req->base.tfm);
381 }
382
383 /**
384 * crypto_ahash_reqsize() - obtain size of the request data structure
385 * @tfm: cipher handle
386 *
387 * Return: size of the request data
388 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
390 {
391 return tfm->reqsize;
392 }
393
ahash_request_ctx(struct ahash_request * req)394 static inline void *ahash_request_ctx(struct ahash_request *req)
395 {
396 return req->__ctx;
397 }
398
399 /**
400 * crypto_ahash_setkey - set key for cipher handle
401 * @tfm: cipher handle
402 * @key: buffer holding the key
403 * @keylen: length of the key in bytes
404 *
405 * The caller provided key is set for the ahash cipher. The cipher
406 * handle must point to a keyed hash in order for this function to succeed.
407 *
408 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
409 */
410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
411 unsigned int keylen);
412
413 /**
414 * crypto_ahash_finup() - update and finalize message digest
415 * @req: reference to the ahash_request handle that holds all information
416 * needed to perform the cipher operation
417 *
418 * This function is a "short-hand" for the function calls of
419 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
420 * meaning as discussed for those separate functions.
421 *
422 * Return: see crypto_ahash_final()
423 */
424 int crypto_ahash_finup(struct ahash_request *req);
425
426 /**
427 * crypto_ahash_final() - calculate message digest
428 * @req: reference to the ahash_request handle that holds all information
429 * needed to perform the cipher operation
430 *
431 * Finalize the message digest operation and create the message digest
432 * based on all data added to the cipher handle. The message digest is placed
433 * into the output buffer registered with the ahash_request handle.
434 *
435 * Return:
436 * 0 if the message digest was successfully calculated;
437 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
438 * -EBUSY if queue is full and request should be resubmitted later;
439 * other < 0 if an error occurred
440 */
441 int crypto_ahash_final(struct ahash_request *req);
442
443 /**
444 * crypto_ahash_digest() - calculate message digest for a buffer
445 * @req: reference to the ahash_request handle that holds all information
446 * needed to perform the cipher operation
447 *
448 * This function is a "short-hand" for the function calls of crypto_ahash_init,
449 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
450 * meaning as discussed for those separate three functions.
451 *
452 * Return: see crypto_ahash_final()
453 */
454 int crypto_ahash_digest(struct ahash_request *req);
455
456 /**
457 * crypto_ahash_export() - extract current message digest state
458 * @req: reference to the ahash_request handle whose state is exported
459 * @out: output buffer of sufficient size that can hold the hash state
460 *
461 * This function exports the hash state of the ahash_request handle into the
462 * caller-allocated output buffer out which must have sufficient size (e.g. by
463 * calling crypto_ahash_statesize()).
464 *
465 * Return: 0 if the export was successful; < 0 if an error occurred
466 */
crypto_ahash_export(struct ahash_request * req,void * out)467 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
468 {
469 return crypto_ahash_reqtfm(req)->export(req, out);
470 }
471
472 /**
473 * crypto_ahash_import() - import message digest state
474 * @req: reference to ahash_request handle the state is imported into
475 * @in: buffer holding the state
476 *
477 * This function imports the hash state into the ahash_request handle from the
478 * input buffer. That buffer should have been generated with the
479 * crypto_ahash_export function.
480 *
481 * Return: 0 if the import was successful; < 0 if an error occurred
482 */
crypto_ahash_import(struct ahash_request * req,const void * in)483 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
484 {
485 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
486
487 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
488 return -ENOKEY;
489
490 return tfm->import(req, in);
491 }
492
493 /**
494 * crypto_ahash_init() - (re)initialize message digest handle
495 * @req: ahash_request handle that already is initialized with all necessary
496 * data using the ahash_request_* API functions
497 *
498 * The call (re-)initializes the message digest referenced by the ahash_request
499 * handle. Any potentially existing state created by previous operations is
500 * discarded.
501 *
502 * Return: see crypto_ahash_final()
503 */
crypto_ahash_init(struct ahash_request * req)504 static inline int crypto_ahash_init(struct ahash_request *req)
505 {
506 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
507
508 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
509 return -ENOKEY;
510
511 return tfm->init(req);
512 }
513
514 /**
515 * crypto_ahash_update() - add data to message digest for processing
516 * @req: ahash_request handle that was previously initialized with the
517 * crypto_ahash_init call.
518 *
519 * Updates the message digest state of the &ahash_request handle. The input data
520 * is pointed to by the scatter/gather list registered in the &ahash_request
521 * handle
522 *
523 * Return: see crypto_ahash_final()
524 */
crypto_ahash_update(struct ahash_request * req)525 static inline int crypto_ahash_update(struct ahash_request *req)
526 {
527 return crypto_ahash_reqtfm(req)->update(req);
528 }
529
530 /**
531 * DOC: Asynchronous Hash Request Handle
532 *
533 * The &ahash_request data structure contains all pointers to data
534 * required for the asynchronous cipher operation. This includes the cipher
535 * handle (which can be used by multiple &ahash_request instances), pointer
536 * to plaintext and the message digest output buffer, asynchronous callback
537 * function, etc. It acts as a handle to the ahash_request_* API calls in a
538 * similar way as ahash handle to the crypto_ahash_* API calls.
539 */
540
541 /**
542 * ahash_request_set_tfm() - update cipher handle reference in request
543 * @req: request handle to be modified
544 * @tfm: cipher handle that shall be added to the request handle
545 *
546 * Allow the caller to replace the existing ahash handle in the request
547 * data structure with a different one.
548 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)549 static inline void ahash_request_set_tfm(struct ahash_request *req,
550 struct crypto_ahash *tfm)
551 {
552 req->base.tfm = crypto_ahash_tfm(tfm);
553 }
554
555 /**
556 * ahash_request_alloc() - allocate request data structure
557 * @tfm: cipher handle to be registered with the request
558 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
559 *
560 * Allocate the request data structure that must be used with the ahash
561 * message digest API calls. During
562 * the allocation, the provided ahash handle
563 * is registered in the request data structure.
564 *
565 * Return: allocated request handle in case of success, or NULL if out of memory
566 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)567 static inline struct ahash_request *ahash_request_alloc(
568 struct crypto_ahash *tfm, gfp_t gfp)
569 {
570 struct ahash_request *req;
571
572 req = kmalloc(sizeof(struct ahash_request) +
573 crypto_ahash_reqsize(tfm), gfp);
574
575 if (likely(req))
576 ahash_request_set_tfm(req, tfm);
577
578 return req;
579 }
580
581 /**
582 * ahash_request_free() - zeroize and free the request data structure
583 * @req: request data structure cipher handle to be freed
584 */
ahash_request_free(struct ahash_request * req)585 static inline void ahash_request_free(struct ahash_request *req)
586 {
587 kzfree(req);
588 }
589
ahash_request_zero(struct ahash_request * req)590 static inline void ahash_request_zero(struct ahash_request *req)
591 {
592 memzero_explicit(req, sizeof(*req) +
593 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
594 }
595
ahash_request_cast(struct crypto_async_request * req)596 static inline struct ahash_request *ahash_request_cast(
597 struct crypto_async_request *req)
598 {
599 return container_of(req, struct ahash_request, base);
600 }
601
602 /**
603 * ahash_request_set_callback() - set asynchronous callback function
604 * @req: request handle
605 * @flags: specify zero or an ORing of the flags
606 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
607 * increase the wait queue beyond the initial maximum size;
608 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
609 * @compl: callback function pointer to be registered with the request handle
610 * @data: The data pointer refers to memory that is not used by the kernel
611 * crypto API, but provided to the callback function for it to use. Here,
612 * the caller can provide a reference to memory the callback function can
613 * operate on. As the callback function is invoked asynchronously to the
614 * related functionality, it may need to access data structures of the
615 * related functionality which can be referenced using this pointer. The
616 * callback function can access the memory via the "data" field in the
617 * &crypto_async_request data structure provided to the callback function.
618 *
619 * This function allows setting the callback function that is triggered once
620 * the cipher operation completes.
621 *
622 * The callback function is registered with the &ahash_request handle and
623 * must comply with the following template::
624 *
625 * void callback_function(struct crypto_async_request *req, int error)
626 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)627 static inline void ahash_request_set_callback(struct ahash_request *req,
628 u32 flags,
629 crypto_completion_t compl,
630 void *data)
631 {
632 req->base.complete = compl;
633 req->base.data = data;
634 req->base.flags = flags;
635 }
636
637 /**
638 * ahash_request_set_crypt() - set data buffers
639 * @req: ahash_request handle to be updated
640 * @src: source scatter/gather list
641 * @result: buffer that is filled with the message digest -- the caller must
642 * ensure that the buffer has sufficient space by, for example, calling
643 * crypto_ahash_digestsize()
644 * @nbytes: number of bytes to process from the source scatter/gather list
645 *
646 * By using this call, the caller references the source scatter/gather list.
647 * The source scatter/gather list points to the data the message digest is to
648 * be calculated for.
649 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)650 static inline void ahash_request_set_crypt(struct ahash_request *req,
651 struct scatterlist *src, u8 *result,
652 unsigned int nbytes)
653 {
654 req->src = src;
655 req->nbytes = nbytes;
656 req->result = result;
657 }
658
659 /**
660 * DOC: Synchronous Message Digest API
661 *
662 * The synchronous message digest API is used with the ciphers of type
663 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
664 *
665 * The message digest API is able to maintain state information for the
666 * caller.
667 *
668 * The synchronous message digest API can store user-related context in in its
669 * shash_desc request data structure.
670 */
671
672 /**
673 * crypto_alloc_shash() - allocate message digest handle
674 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
675 * message digest cipher
676 * @type: specifies the type of the cipher
677 * @mask: specifies the mask for the cipher
678 *
679 * Allocate a cipher handle for a message digest. The returned &struct
680 * crypto_shash is the cipher handle that is required for any subsequent
681 * API invocation for that message digest.
682 *
683 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
684 * of an error, PTR_ERR() returns the error code.
685 */
686 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
687 u32 mask);
688
crypto_shash_tfm(struct crypto_shash * tfm)689 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
690 {
691 return &tfm->base;
692 }
693
694 /**
695 * crypto_free_shash() - zeroize and free the message digest handle
696 * @tfm: cipher handle to be freed
697 *
698 * If @tfm is a NULL or error pointer, this function does nothing.
699 */
crypto_free_shash(struct crypto_shash * tfm)700 static inline void crypto_free_shash(struct crypto_shash *tfm)
701 {
702 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
703 }
704
crypto_shash_alg_name(struct crypto_shash * tfm)705 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
706 {
707 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
708 }
709
crypto_shash_driver_name(struct crypto_shash * tfm)710 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
711 {
712 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
713 }
714
crypto_shash_alignmask(struct crypto_shash * tfm)715 static inline unsigned int crypto_shash_alignmask(
716 struct crypto_shash *tfm)
717 {
718 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
719 }
720
721 /**
722 * crypto_shash_blocksize() - obtain block size for cipher
723 * @tfm: cipher handle
724 *
725 * The block size for the message digest cipher referenced with the cipher
726 * handle is returned.
727 *
728 * Return: block size of cipher
729 */
crypto_shash_blocksize(struct crypto_shash * tfm)730 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
731 {
732 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
733 }
734
__crypto_shash_alg(struct crypto_alg * alg)735 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
736 {
737 return container_of(alg, struct shash_alg, base);
738 }
739
crypto_shash_alg(struct crypto_shash * tfm)740 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
741 {
742 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
743 }
744
745 /**
746 * crypto_shash_digestsize() - obtain message digest size
747 * @tfm: cipher handle
748 *
749 * The size for the message digest created by the message digest cipher
750 * referenced with the cipher handle is returned.
751 *
752 * Return: digest size of cipher
753 */
crypto_shash_digestsize(struct crypto_shash * tfm)754 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
755 {
756 return crypto_shash_alg(tfm)->digestsize;
757 }
758
crypto_shash_statesize(struct crypto_shash * tfm)759 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
760 {
761 return crypto_shash_alg(tfm)->statesize;
762 }
763
crypto_shash_get_flags(struct crypto_shash * tfm)764 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
765 {
766 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
767 }
768
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)769 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
770 {
771 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
772 }
773
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)774 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
775 {
776 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
777 }
778
779 /**
780 * crypto_shash_descsize() - obtain the operational state size
781 * @tfm: cipher handle
782 *
783 * The size of the operational state the cipher needs during operation is
784 * returned for the hash referenced with the cipher handle. This size is
785 * required to calculate the memory requirements to allow the caller allocating
786 * sufficient memory for operational state.
787 *
788 * The operational state is defined with struct shash_desc where the size of
789 * that data structure is to be calculated as
790 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
791 *
792 * Return: size of the operational state
793 */
crypto_shash_descsize(struct crypto_shash * tfm)794 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
795 {
796 return tfm->descsize;
797 }
798
shash_desc_ctx(struct shash_desc * desc)799 static inline void *shash_desc_ctx(struct shash_desc *desc)
800 {
801 return desc->__ctx;
802 }
803
804 /**
805 * crypto_shash_setkey() - set key for message digest
806 * @tfm: cipher handle
807 * @key: buffer holding the key
808 * @keylen: length of the key in bytes
809 *
810 * The caller provided key is set for the keyed message digest cipher. The
811 * cipher handle must point to a keyed message digest cipher in order for this
812 * function to succeed.
813 *
814 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
815 */
816 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
817 unsigned int keylen);
818
819 /**
820 * crypto_shash_digest() - calculate message digest for buffer
821 * @desc: see crypto_shash_final()
822 * @data: see crypto_shash_update()
823 * @len: see crypto_shash_update()
824 * @out: see crypto_shash_final()
825 *
826 * This function is a "short-hand" for the function calls of crypto_shash_init,
827 * crypto_shash_update and crypto_shash_final. The parameters have the same
828 * meaning as discussed for those separate three functions.
829 *
830 * Return: 0 if the message digest creation was successful; < 0 if an error
831 * occurred
832 */
833 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
834 unsigned int len, u8 *out);
835
836 /**
837 * crypto_shash_export() - extract operational state for message digest
838 * @desc: reference to the operational state handle whose state is exported
839 * @out: output buffer of sufficient size that can hold the hash state
840 *
841 * This function exports the hash state of the operational state handle into the
842 * caller-allocated output buffer out which must have sufficient size (e.g. by
843 * calling crypto_shash_descsize).
844 *
845 * Return: 0 if the export creation was successful; < 0 if an error occurred
846 */
crypto_shash_export(struct shash_desc * desc,void * out)847 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
848 {
849 return crypto_shash_alg(desc->tfm)->export(desc, out);
850 }
851
852 /**
853 * crypto_shash_import() - import operational state
854 * @desc: reference to the operational state handle the state imported into
855 * @in: buffer holding the state
856 *
857 * This function imports the hash state into the operational state handle from
858 * the input buffer. That buffer should have been generated with the
859 * crypto_ahash_export function.
860 *
861 * Return: 0 if the import was successful; < 0 if an error occurred
862 */
crypto_shash_import(struct shash_desc * desc,const void * in)863 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
864 {
865 struct crypto_shash *tfm = desc->tfm;
866
867 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
868 return -ENOKEY;
869
870 return crypto_shash_alg(tfm)->import(desc, in);
871 }
872
873 /**
874 * crypto_shash_init() - (re)initialize message digest
875 * @desc: operational state handle that is already filled
876 *
877 * The call (re-)initializes the message digest referenced by the
878 * operational state handle. Any potentially existing state created by
879 * previous operations is discarded.
880 *
881 * Return: 0 if the message digest initialization was successful; < 0 if an
882 * error occurred
883 */
crypto_shash_init(struct shash_desc * desc)884 static inline int crypto_shash_init(struct shash_desc *desc)
885 {
886 struct crypto_shash *tfm = desc->tfm;
887
888 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
889 return -ENOKEY;
890
891 return crypto_shash_alg(tfm)->init(desc);
892 }
893
894 /**
895 * crypto_shash_update() - add data to message digest for processing
896 * @desc: operational state handle that is already initialized
897 * @data: input data to be added to the message digest
898 * @len: length of the input data
899 *
900 * Updates the message digest state of the operational state handle.
901 *
902 * Return: 0 if the message digest update was successful; < 0 if an error
903 * occurred
904 */
905 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
906 unsigned int len);
907
908 /**
909 * crypto_shash_final() - calculate message digest
910 * @desc: operational state handle that is already filled with data
911 * @out: output buffer filled with the message digest
912 *
913 * Finalize the message digest operation and create the message digest
914 * based on all data added to the cipher handle. The message digest is placed
915 * into the output buffer. The caller must ensure that the output buffer is
916 * large enough by using crypto_shash_digestsize.
917 *
918 * Return: 0 if the message digest creation was successful; < 0 if an error
919 * occurred
920 */
921 int crypto_shash_final(struct shash_desc *desc, u8 *out);
922
923 /**
924 * crypto_shash_finup() - calculate message digest of buffer
925 * @desc: see crypto_shash_final()
926 * @data: see crypto_shash_update()
927 * @len: see crypto_shash_update()
928 * @out: see crypto_shash_final()
929 *
930 * This function is a "short-hand" for the function calls of
931 * crypto_shash_update and crypto_shash_final. The parameters have the same
932 * meaning as discussed for those separate functions.
933 *
934 * Return: 0 if the message digest creation was successful; < 0 if an error
935 * occurred
936 */
937 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
938 unsigned int len, u8 *out);
939
shash_desc_zero(struct shash_desc * desc)940 static inline void shash_desc_zero(struct shash_desc *desc)
941 {
942 memzero_explicit(desc,
943 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
944 }
945
946 #endif /* _CRYPTO_HASH_H */
947