1 /*
2 * sha512_base.h - core logic for SHA-512 implementations
3 *
4 * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <crypto/internal/hash.h>
12 #include <crypto/sha.h>
13 #include <linux/crypto.h>
14 #include <linux/module.h>
15
16 #include <asm/unaligned.h>
17
18 typedef void (sha512_block_fn)(struct sha512_state *sst, u8 const *src,
19 int blocks);
20
sha384_base_init(struct shash_desc * desc)21 static inline int sha384_base_init(struct shash_desc *desc)
22 {
23 struct sha512_state *sctx = shash_desc_ctx(desc);
24
25 sctx->state[0] = SHA384_H0;
26 sctx->state[1] = SHA384_H1;
27 sctx->state[2] = SHA384_H2;
28 sctx->state[3] = SHA384_H3;
29 sctx->state[4] = SHA384_H4;
30 sctx->state[5] = SHA384_H5;
31 sctx->state[6] = SHA384_H6;
32 sctx->state[7] = SHA384_H7;
33 sctx->count[0] = sctx->count[1] = 0;
34
35 return 0;
36 }
37
sha512_base_init(struct shash_desc * desc)38 static inline int sha512_base_init(struct shash_desc *desc)
39 {
40 struct sha512_state *sctx = shash_desc_ctx(desc);
41
42 sctx->state[0] = SHA512_H0;
43 sctx->state[1] = SHA512_H1;
44 sctx->state[2] = SHA512_H2;
45 sctx->state[3] = SHA512_H3;
46 sctx->state[4] = SHA512_H4;
47 sctx->state[5] = SHA512_H5;
48 sctx->state[6] = SHA512_H6;
49 sctx->state[7] = SHA512_H7;
50 sctx->count[0] = sctx->count[1] = 0;
51
52 return 0;
53 }
54
sha512_base_do_update(struct shash_desc * desc,const u8 * data,unsigned int len,sha512_block_fn * block_fn)55 static inline int sha512_base_do_update(struct shash_desc *desc,
56 const u8 *data,
57 unsigned int len,
58 sha512_block_fn *block_fn)
59 {
60 struct sha512_state *sctx = shash_desc_ctx(desc);
61 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
62
63 sctx->count[0] += len;
64 if (sctx->count[0] < len)
65 sctx->count[1]++;
66
67 if (unlikely((partial + len) >= SHA512_BLOCK_SIZE)) {
68 int blocks;
69
70 if (partial) {
71 int p = SHA512_BLOCK_SIZE - partial;
72
73 memcpy(sctx->buf + partial, data, p);
74 data += p;
75 len -= p;
76
77 block_fn(sctx, sctx->buf, 1);
78 }
79
80 blocks = len / SHA512_BLOCK_SIZE;
81 len %= SHA512_BLOCK_SIZE;
82
83 if (blocks) {
84 block_fn(sctx, data, blocks);
85 data += blocks * SHA512_BLOCK_SIZE;
86 }
87 partial = 0;
88 }
89 if (len)
90 memcpy(sctx->buf + partial, data, len);
91
92 return 0;
93 }
94
sha512_base_do_finalize(struct shash_desc * desc,sha512_block_fn * block_fn)95 static inline int sha512_base_do_finalize(struct shash_desc *desc,
96 sha512_block_fn *block_fn)
97 {
98 const int bit_offset = SHA512_BLOCK_SIZE - sizeof(__be64[2]);
99 struct sha512_state *sctx = shash_desc_ctx(desc);
100 __be64 *bits = (__be64 *)(sctx->buf + bit_offset);
101 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
102
103 sctx->buf[partial++] = 0x80;
104 if (partial > bit_offset) {
105 memset(sctx->buf + partial, 0x0, SHA512_BLOCK_SIZE - partial);
106 partial = 0;
107
108 block_fn(sctx, sctx->buf, 1);
109 }
110
111 memset(sctx->buf + partial, 0x0, bit_offset - partial);
112 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
113 bits[1] = cpu_to_be64(sctx->count[0] << 3);
114 block_fn(sctx, sctx->buf, 1);
115
116 return 0;
117 }
118
sha512_base_finish(struct shash_desc * desc,u8 * out)119 static inline int sha512_base_finish(struct shash_desc *desc, u8 *out)
120 {
121 unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
122 struct sha512_state *sctx = shash_desc_ctx(desc);
123 __be64 *digest = (__be64 *)out;
124 int i;
125
126 for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be64))
127 put_unaligned_be64(sctx->state[i], digest++);
128
129 *sctx = (struct sha512_state){};
130 return 0;
131 }
132