1 /*
2 * Symmetric key ciphers.
3 *
4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19
20 /**
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
28 */
29 struct skcipher_request {
30 unsigned int cryptlen;
31
32 u8 *iv;
33
34 struct scatterlist *src;
35 struct scatterlist *dst;
36
37 struct crypto_async_request base;
38
39 void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41
42 /**
43 * struct skcipher_givcrypt_request - Crypto request with IV generation
44 * @seq: Sequence number for IV generation
45 * @giv: Space for generated IV
46 * @creq: The crypto request itself
47 */
48 struct skcipher_givcrypt_request {
49 u64 seq;
50 u8 *giv;
51
52 struct ablkcipher_request creq;
53 };
54
55 struct crypto_skcipher {
56 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 unsigned int keylen);
58 int (*encrypt)(struct skcipher_request *req);
59 int (*decrypt)(struct skcipher_request *req);
60
61 unsigned int ivsize;
62 unsigned int reqsize;
63 unsigned int keysize;
64
65 struct crypto_tfm base;
66 };
67
68 /**
69 * struct skcipher_alg - symmetric key cipher definition
70 * @min_keysize: Minimum key size supported by the transformation. This is the
71 * smallest key length supported by this transformation algorithm.
72 * This must be set to one of the pre-defined values as this is
73 * not hardware specific. Possible values for this field can be
74 * found via git grep "_MIN_KEY_SIZE" include/crypto/
75 * @max_keysize: Maximum key size supported by the transformation. This is the
76 * largest key length supported by this transformation algorithm.
77 * This must be set to one of the pre-defined values as this is
78 * not hardware specific. Possible values for this field can be
79 * found via git grep "_MAX_KEY_SIZE" include/crypto/
80 * @setkey: Set key for the transformation. This function is used to either
81 * program a supplied key into the hardware or store the key in the
82 * transformation context for programming it later. Note that this
83 * function does modify the transformation context. This function can
84 * be called multiple times during the existence of the transformation
85 * object, so one must make sure the key is properly reprogrammed into
86 * the hardware. This function is also responsible for checking the key
87 * length for validity. In case a software fallback was put in place in
88 * the @cra_init call, this function might need to use the fallback if
89 * the algorithm doesn't support all of the key sizes.
90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91 * the supplied scatterlist containing the blocks of data. The crypto
92 * API consumer is responsible for aligning the entries of the
93 * scatterlist properly and making sure the chunks are correctly
94 * sized. In case a software fallback was put in place in the
95 * @cra_init call, this function might need to use the fallback if
96 * the algorithm doesn't support all of the key sizes. In case the
97 * key was stored in transformation context, the key might need to be
98 * re-programmed into the hardware in this function. This function
99 * shall not modify the transformation context, as this function may
100 * be called in parallel with the same transformation object.
101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102 * and the conditions are exactly the same.
103 * @init: Initialize the cryptographic transformation object. This function
104 * is used to initialize the cryptographic transformation object.
105 * This function is called only once at the instantiation time, right
106 * after the transformation context was allocated. In case the
107 * cryptographic hardware has some special requirements which need to
108 * be handled by software, this function shall check for the precise
109 * requirement of the transformation and put any software fallbacks
110 * in place.
111 * @exit: Deinitialize the cryptographic transformation object. This is a
112 * counterpart to @init, used to remove various changes set in
113 * @init.
114 * @ivsize: IV size applicable for transformation. The consumer must provide an
115 * IV of exactly that size to perform the encrypt or decrypt operation.
116 * @chunksize: Equal to the block size except for stream ciphers such as
117 * CTR where it is set to the underlying block size.
118 * @walksize: Equal to the chunk size except in cases where the algorithm is
119 * considerably more efficient if it can operate on multiple chunks
120 * in parallel. Should be a multiple of chunksize.
121 * @base: Definition of a generic crypto algorithm.
122 *
123 * All fields except @ivsize are mandatory and must be filled.
124 */
125 struct skcipher_alg {
126 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
127 unsigned int keylen);
128 int (*encrypt)(struct skcipher_request *req);
129 int (*decrypt)(struct skcipher_request *req);
130 int (*init)(struct crypto_skcipher *tfm);
131 void (*exit)(struct crypto_skcipher *tfm);
132
133 unsigned int min_keysize;
134 unsigned int max_keysize;
135 unsigned int ivsize;
136 unsigned int chunksize;
137 unsigned int walksize;
138
139 struct crypto_alg base;
140 };
141
142 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
143 char __##name##_desc[sizeof(struct skcipher_request) + \
144 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
145 struct skcipher_request *name = (void *)__##name##_desc
146
147 /**
148 * DOC: Symmetric Key Cipher API
149 *
150 * Symmetric key cipher API is used with the ciphers of type
151 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
152 *
153 * Asynchronous cipher operations imply that the function invocation for a
154 * cipher request returns immediately before the completion of the operation.
155 * The cipher request is scheduled as a separate kernel thread and therefore
156 * load-balanced on the different CPUs via the process scheduler. To allow
157 * the kernel crypto API to inform the caller about the completion of a cipher
158 * request, the caller must provide a callback function. That function is
159 * invoked with the cipher handle when the request completes.
160 *
161 * To support the asynchronous operation, additional information than just the
162 * cipher handle must be supplied to the kernel crypto API. That additional
163 * information is given by filling in the skcipher_request data structure.
164 *
165 * For the symmetric key cipher API, the state is maintained with the tfm
166 * cipher handle. A single tfm can be used across multiple calls and in
167 * parallel. For asynchronous block cipher calls, context data supplied and
168 * only used by the caller can be referenced the request data structure in
169 * addition to the IV used for the cipher request. The maintenance of such
170 * state information would be important for a crypto driver implementer to
171 * have, because when calling the callback function upon completion of the
172 * cipher operation, that callback function may need some information about
173 * which operation just finished if it invoked multiple in parallel. This
174 * state information is unused by the kernel crypto API.
175 */
176
__crypto_skcipher_cast(struct crypto_tfm * tfm)177 static inline struct crypto_skcipher *__crypto_skcipher_cast(
178 struct crypto_tfm *tfm)
179 {
180 return container_of(tfm, struct crypto_skcipher, base);
181 }
182
183 /**
184 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
185 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
186 * skcipher cipher
187 * @type: specifies the type of the cipher
188 * @mask: specifies the mask for the cipher
189 *
190 * Allocate a cipher handle for an skcipher. The returned struct
191 * crypto_skcipher is the cipher handle that is required for any subsequent
192 * API invocation for that skcipher.
193 *
194 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
195 * of an error, PTR_ERR() returns the error code.
196 */
197 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
198 u32 type, u32 mask);
199
crypto_skcipher_tfm(struct crypto_skcipher * tfm)200 static inline struct crypto_tfm *crypto_skcipher_tfm(
201 struct crypto_skcipher *tfm)
202 {
203 return &tfm->base;
204 }
205
206 /**
207 * crypto_free_skcipher() - zeroize and free cipher handle
208 * @tfm: cipher handle to be freed
209 *
210 * If @tfm is a NULL or error pointer, this function does nothing.
211 */
crypto_free_skcipher(struct crypto_skcipher * tfm)212 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
213 {
214 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
215 }
216
217 /**
218 * crypto_has_skcipher() - Search for the availability of an skcipher.
219 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
220 * skcipher
221 * @type: specifies the type of the cipher
222 * @mask: specifies the mask for the cipher
223 *
224 * Return: true when the skcipher is known to the kernel crypto API; false
225 * otherwise
226 */
crypto_has_skcipher(const char * alg_name,u32 type,u32 mask)227 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
228 u32 mask)
229 {
230 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
231 crypto_skcipher_mask(mask));
232 }
233
234 /**
235 * crypto_has_skcipher2() - Search for the availability of an skcipher.
236 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
237 * skcipher
238 * @type: specifies the type of the skcipher
239 * @mask: specifies the mask for the skcipher
240 *
241 * Return: true when the skcipher is known to the kernel crypto API; false
242 * otherwise
243 */
244 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
245
crypto_skcipher_driver_name(struct crypto_skcipher * tfm)246 static inline const char *crypto_skcipher_driver_name(
247 struct crypto_skcipher *tfm)
248 {
249 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
250 }
251
crypto_skcipher_alg(struct crypto_skcipher * tfm)252 static inline struct skcipher_alg *crypto_skcipher_alg(
253 struct crypto_skcipher *tfm)
254 {
255 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
256 struct skcipher_alg, base);
257 }
258
crypto_skcipher_alg_ivsize(struct skcipher_alg * alg)259 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
260 {
261 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
262 CRYPTO_ALG_TYPE_BLKCIPHER)
263 return alg->base.cra_blkcipher.ivsize;
264
265 if (alg->base.cra_ablkcipher.encrypt)
266 return alg->base.cra_ablkcipher.ivsize;
267
268 return alg->ivsize;
269 }
270
271 /**
272 * crypto_skcipher_ivsize() - obtain IV size
273 * @tfm: cipher handle
274 *
275 * The size of the IV for the skcipher referenced by the cipher handle is
276 * returned. This IV size may be zero if the cipher does not need an IV.
277 *
278 * Return: IV size in bytes
279 */
crypto_skcipher_ivsize(struct crypto_skcipher * tfm)280 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
281 {
282 return tfm->ivsize;
283 }
284
crypto_skcipher_alg_chunksize(struct skcipher_alg * alg)285 static inline unsigned int crypto_skcipher_alg_chunksize(
286 struct skcipher_alg *alg)
287 {
288 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
289 CRYPTO_ALG_TYPE_BLKCIPHER)
290 return alg->base.cra_blocksize;
291
292 if (alg->base.cra_ablkcipher.encrypt)
293 return alg->base.cra_blocksize;
294
295 return alg->chunksize;
296 }
297
crypto_skcipher_alg_walksize(struct skcipher_alg * alg)298 static inline unsigned int crypto_skcipher_alg_walksize(
299 struct skcipher_alg *alg)
300 {
301 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
302 CRYPTO_ALG_TYPE_BLKCIPHER)
303 return alg->base.cra_blocksize;
304
305 if (alg->base.cra_ablkcipher.encrypt)
306 return alg->base.cra_blocksize;
307
308 return alg->walksize;
309 }
310
311 /**
312 * crypto_skcipher_chunksize() - obtain chunk size
313 * @tfm: cipher handle
314 *
315 * The block size is set to one for ciphers such as CTR. However,
316 * you still need to provide incremental updates in multiples of
317 * the underlying block size as the IV does not have sub-block
318 * granularity. This is known in this API as the chunk size.
319 *
320 * Return: chunk size in bytes
321 */
crypto_skcipher_chunksize(struct crypto_skcipher * tfm)322 static inline unsigned int crypto_skcipher_chunksize(
323 struct crypto_skcipher *tfm)
324 {
325 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
326 }
327
328 /**
329 * crypto_skcipher_walksize() - obtain walk size
330 * @tfm: cipher handle
331 *
332 * In some cases, algorithms can only perform optimally when operating on
333 * multiple blocks in parallel. This is reflected by the walksize, which
334 * must be a multiple of the chunksize (or equal if the concern does not
335 * apply)
336 *
337 * Return: walk size in bytes
338 */
crypto_skcipher_walksize(struct crypto_skcipher * tfm)339 static inline unsigned int crypto_skcipher_walksize(
340 struct crypto_skcipher *tfm)
341 {
342 return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
343 }
344
345 /**
346 * crypto_skcipher_blocksize() - obtain block size of cipher
347 * @tfm: cipher handle
348 *
349 * The block size for the skcipher referenced with the cipher handle is
350 * returned. The caller may use that information to allocate appropriate
351 * memory for the data returned by the encryption or decryption operation
352 *
353 * Return: block size of cipher
354 */
crypto_skcipher_blocksize(struct crypto_skcipher * tfm)355 static inline unsigned int crypto_skcipher_blocksize(
356 struct crypto_skcipher *tfm)
357 {
358 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
359 }
360
crypto_skcipher_alignmask(struct crypto_skcipher * tfm)361 static inline unsigned int crypto_skcipher_alignmask(
362 struct crypto_skcipher *tfm)
363 {
364 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
365 }
366
crypto_skcipher_get_flags(struct crypto_skcipher * tfm)367 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
368 {
369 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
370 }
371
crypto_skcipher_set_flags(struct crypto_skcipher * tfm,u32 flags)372 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
373 u32 flags)
374 {
375 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
376 }
377
crypto_skcipher_clear_flags(struct crypto_skcipher * tfm,u32 flags)378 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
379 u32 flags)
380 {
381 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
382 }
383
384 /**
385 * crypto_skcipher_setkey() - set key for cipher
386 * @tfm: cipher handle
387 * @key: buffer holding the key
388 * @keylen: length of the key in bytes
389 *
390 * The caller provided key is set for the skcipher referenced by the cipher
391 * handle.
392 *
393 * Note, the key length determines the cipher type. Many block ciphers implement
394 * different cipher modes depending on the key size, such as AES-128 vs AES-192
395 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
396 * is performed.
397 *
398 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
399 */
crypto_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)400 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
401 const u8 *key, unsigned int keylen)
402 {
403 return tfm->setkey(tfm, key, keylen);
404 }
405
crypto_skcipher_default_keysize(struct crypto_skcipher * tfm)406 static inline unsigned int crypto_skcipher_default_keysize(
407 struct crypto_skcipher *tfm)
408 {
409 return tfm->keysize;
410 }
411
412 /**
413 * crypto_skcipher_reqtfm() - obtain cipher handle from request
414 * @req: skcipher_request out of which the cipher handle is to be obtained
415 *
416 * Return the crypto_skcipher handle when furnishing an skcipher_request
417 * data structure.
418 *
419 * Return: crypto_skcipher handle
420 */
crypto_skcipher_reqtfm(struct skcipher_request * req)421 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
422 struct skcipher_request *req)
423 {
424 return __crypto_skcipher_cast(req->base.tfm);
425 }
426
427 /**
428 * crypto_skcipher_encrypt() - encrypt plaintext
429 * @req: reference to the skcipher_request handle that holds all information
430 * needed to perform the cipher operation
431 *
432 * Encrypt plaintext data using the skcipher_request handle. That data
433 * structure and how it is filled with data is discussed with the
434 * skcipher_request_* functions.
435 *
436 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
437 */
crypto_skcipher_encrypt(struct skcipher_request * req)438 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
439 {
440 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
441
442 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
443 return -ENOKEY;
444
445 return tfm->encrypt(req);
446 }
447
448 /**
449 * crypto_skcipher_decrypt() - decrypt ciphertext
450 * @req: reference to the skcipher_request handle that holds all information
451 * needed to perform the cipher operation
452 *
453 * Decrypt ciphertext data using the skcipher_request handle. That data
454 * structure and how it is filled with data is discussed with the
455 * skcipher_request_* functions.
456 *
457 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
458 */
crypto_skcipher_decrypt(struct skcipher_request * req)459 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
460 {
461 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
462
463 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
464 return -ENOKEY;
465
466 return tfm->decrypt(req);
467 }
468
469 /**
470 * DOC: Symmetric Key Cipher Request Handle
471 *
472 * The skcipher_request data structure contains all pointers to data
473 * required for the symmetric key cipher operation. This includes the cipher
474 * handle (which can be used by multiple skcipher_request instances), pointer
475 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
476 * as a handle to the skcipher_request_* API calls in a similar way as
477 * skcipher handle to the crypto_skcipher_* API calls.
478 */
479
480 /**
481 * crypto_skcipher_reqsize() - obtain size of the request data structure
482 * @tfm: cipher handle
483 *
484 * Return: number of bytes
485 */
crypto_skcipher_reqsize(struct crypto_skcipher * tfm)486 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
487 {
488 return tfm->reqsize;
489 }
490
491 /**
492 * skcipher_request_set_tfm() - update cipher handle reference in request
493 * @req: request handle to be modified
494 * @tfm: cipher handle that shall be added to the request handle
495 *
496 * Allow the caller to replace the existing skcipher handle in the request
497 * data structure with a different one.
498 */
skcipher_request_set_tfm(struct skcipher_request * req,struct crypto_skcipher * tfm)499 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
500 struct crypto_skcipher *tfm)
501 {
502 req->base.tfm = crypto_skcipher_tfm(tfm);
503 }
504
skcipher_request_cast(struct crypto_async_request * req)505 static inline struct skcipher_request *skcipher_request_cast(
506 struct crypto_async_request *req)
507 {
508 return container_of(req, struct skcipher_request, base);
509 }
510
511 /**
512 * skcipher_request_alloc() - allocate request data structure
513 * @tfm: cipher handle to be registered with the request
514 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
515 *
516 * Allocate the request data structure that must be used with the skcipher
517 * encrypt and decrypt API calls. During the allocation, the provided skcipher
518 * handle is registered in the request data structure.
519 *
520 * Return: allocated request handle in case of success, or NULL if out of memory
521 */
skcipher_request_alloc(struct crypto_skcipher * tfm,gfp_t gfp)522 static inline struct skcipher_request *skcipher_request_alloc(
523 struct crypto_skcipher *tfm, gfp_t gfp)
524 {
525 struct skcipher_request *req;
526
527 req = kmalloc(sizeof(struct skcipher_request) +
528 crypto_skcipher_reqsize(tfm), gfp);
529
530 if (likely(req))
531 skcipher_request_set_tfm(req, tfm);
532
533 return req;
534 }
535
536 /**
537 * skcipher_request_free() - zeroize and free request data structure
538 * @req: request data structure cipher handle to be freed
539 */
skcipher_request_free(struct skcipher_request * req)540 static inline void skcipher_request_free(struct skcipher_request *req)
541 {
542 kzfree(req);
543 }
544
skcipher_request_zero(struct skcipher_request * req)545 static inline void skcipher_request_zero(struct skcipher_request *req)
546 {
547 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
548
549 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
550 }
551
552 /**
553 * skcipher_request_set_callback() - set asynchronous callback function
554 * @req: request handle
555 * @flags: specify zero or an ORing of the flags
556 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
557 * increase the wait queue beyond the initial maximum size;
558 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
559 * @compl: callback function pointer to be registered with the request handle
560 * @data: The data pointer refers to memory that is not used by the kernel
561 * crypto API, but provided to the callback function for it to use. Here,
562 * the caller can provide a reference to memory the callback function can
563 * operate on. As the callback function is invoked asynchronously to the
564 * related functionality, it may need to access data structures of the
565 * related functionality which can be referenced using this pointer. The
566 * callback function can access the memory via the "data" field in the
567 * crypto_async_request data structure provided to the callback function.
568 *
569 * This function allows setting the callback function that is triggered once the
570 * cipher operation completes.
571 *
572 * The callback function is registered with the skcipher_request handle and
573 * must comply with the following template::
574 *
575 * void callback_function(struct crypto_async_request *req, int error)
576 */
skcipher_request_set_callback(struct skcipher_request * req,u32 flags,crypto_completion_t compl,void * data)577 static inline void skcipher_request_set_callback(struct skcipher_request *req,
578 u32 flags,
579 crypto_completion_t compl,
580 void *data)
581 {
582 req->base.complete = compl;
583 req->base.data = data;
584 req->base.flags = flags;
585 }
586
587 /**
588 * skcipher_request_set_crypt() - set data buffers
589 * @req: request handle
590 * @src: source scatter / gather list
591 * @dst: destination scatter / gather list
592 * @cryptlen: number of bytes to process from @src
593 * @iv: IV for the cipher operation which must comply with the IV size defined
594 * by crypto_skcipher_ivsize
595 *
596 * This function allows setting of the source data and destination data
597 * scatter / gather lists.
598 *
599 * For encryption, the source is treated as the plaintext and the
600 * destination is the ciphertext. For a decryption operation, the use is
601 * reversed - the source is the ciphertext and the destination is the plaintext.
602 */
skcipher_request_set_crypt(struct skcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,void * iv)603 static inline void skcipher_request_set_crypt(
604 struct skcipher_request *req,
605 struct scatterlist *src, struct scatterlist *dst,
606 unsigned int cryptlen, void *iv)
607 {
608 req->src = src;
609 req->dst = dst;
610 req->cryptlen = cryptlen;
611 req->iv = iv;
612 }
613
614 #endif /* _CRYPTO_SKCIPHER_H */
615
616