1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
53 #define CRYPTO_ALG_TYPE_KPP		0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
62 
63 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
67 
68 #define CRYPTO_ALG_LARVAL		0x00000010
69 #define CRYPTO_ALG_DEAD			0x00000020
70 #define CRYPTO_ALG_DYING		0x00000040
71 #define CRYPTO_ALG_ASYNC		0x00000080
72 
73 /*
74  * Set this bit if and only if the algorithm requires another algorithm of
75  * the same type to handle corner cases.
76  */
77 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
78 
79 /*
80  * This bit is set for symmetric key ciphers that have already been wrapped
81  * with a generic IV generator to prevent them from being wrapped again.
82  */
83 #define CRYPTO_ALG_GENIV		0x00000200
84 
85 /*
86  * Set if the algorithm has passed automated run-time testing.  Note that
87  * if there is no run-time testing for a given algorithm it is considered
88  * to have passed.
89  */
90 
91 #define CRYPTO_ALG_TESTED		0x00000400
92 
93 /*
94  * Set if the algorithm is an instance that is built from templates.
95  */
96 #define CRYPTO_ALG_INSTANCE		0x00000800
97 
98 /* Set this bit if the algorithm provided is hardware accelerated but
99  * not available to userspace via instruction set or so.
100  */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
102 
103 /*
104  * Mark a cipher as a service implementation only usable by another
105  * cipher and never by a normal user of the kernel crypto API
106  */
107 #define CRYPTO_ALG_INTERNAL		0x00002000
108 
109 /*
110  * Set if the algorithm has a ->setkey() method but can be used without
111  * calling it first, i.e. there is a default key.
112  */
113 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
114 
115 /*
116  * Don't trigger module loading
117  */
118 #define CRYPTO_NOLOAD			0x00008000
119 
120 /*
121  * Transform masks and values (for crt_flags).
122  */
123 #define CRYPTO_TFM_NEED_KEY		0x00000001
124 
125 #define CRYPTO_TFM_REQ_MASK		0x000fff00
126 #define CRYPTO_TFM_RES_MASK		0xfff00000
127 
128 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
129 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
130 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
131 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
132 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
135 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
136 
137 /*
138  * Miscellaneous stuff.
139  */
140 #define CRYPTO_MAX_ALG_NAME		128
141 
142 /*
143  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144  * declaration) is used to ensure that the crypto_tfm context structure is
145  * aligned correctly for the given architecture so that there are no alignment
146  * faults for C data types.  In particular, this is required on platforms such
147  * as arm where pointers are 32-bit aligned but there are data types such as
148  * u64 which require 64-bit alignment.
149  */
150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
151 
152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
153 
154 struct scatterlist;
155 struct crypto_ablkcipher;
156 struct crypto_async_request;
157 struct crypto_blkcipher;
158 struct crypto_tfm;
159 struct crypto_type;
160 struct skcipher_givcrypt_request;
161 
162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163 
164 /**
165  * DOC: Block Cipher Context Data Structures
166  *
167  * These data structures define the operating context for each block cipher
168  * type.
169  */
170 
171 struct crypto_async_request {
172 	struct list_head list;
173 	crypto_completion_t complete;
174 	void *data;
175 	struct crypto_tfm *tfm;
176 
177 	u32 flags;
178 };
179 
180 struct ablkcipher_request {
181 	struct crypto_async_request base;
182 
183 	unsigned int nbytes;
184 
185 	void *info;
186 
187 	struct scatterlist *src;
188 	struct scatterlist *dst;
189 
190 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
191 };
192 
193 struct blkcipher_desc {
194 	struct crypto_blkcipher *tfm;
195 	void *info;
196 	u32 flags;
197 };
198 
199 struct cipher_desc {
200 	struct crypto_tfm *tfm;
201 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
202 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 			     const u8 *src, unsigned int nbytes);
204 	void *info;
205 };
206 
207 /**
208  * DOC: Block Cipher Algorithm Definitions
209  *
210  * These data structures define modular crypto algorithm implementations,
211  * managed via crypto_register_alg() and crypto_unregister_alg().
212  */
213 
214 /**
215  * struct ablkcipher_alg - asynchronous block cipher definition
216  * @min_keysize: Minimum key size supported by the transformation. This is the
217  *		 smallest key length supported by this transformation algorithm.
218  *		 This must be set to one of the pre-defined values as this is
219  *		 not hardware specific. Possible values for this field can be
220  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
221  * @max_keysize: Maximum key size supported by the transformation. This is the
222  *		 largest key length supported by this transformation algorithm.
223  *		 This must be set to one of the pre-defined values as this is
224  *		 not hardware specific. Possible values for this field can be
225  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
226  * @setkey: Set key for the transformation. This function is used to either
227  *	    program a supplied key into the hardware or store the key in the
228  *	    transformation context for programming it later. Note that this
229  *	    function does modify the transformation context. This function can
230  *	    be called multiple times during the existence of the transformation
231  *	    object, so one must make sure the key is properly reprogrammed into
232  *	    the hardware. This function is also responsible for checking the key
233  *	    length for validity. In case a software fallback was put in place in
234  *	    the @cra_init call, this function might need to use the fallback if
235  *	    the algorithm doesn't support all of the key sizes.
236  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237  *	     the supplied scatterlist containing the blocks of data. The crypto
238  *	     API consumer is responsible for aligning the entries of the
239  *	     scatterlist properly and making sure the chunks are correctly
240  *	     sized. In case a software fallback was put in place in the
241  *	     @cra_init call, this function might need to use the fallback if
242  *	     the algorithm doesn't support all of the key sizes. In case the
243  *	     key was stored in transformation context, the key might need to be
244  *	     re-programmed into the hardware in this function. This function
245  *	     shall not modify the transformation context, as this function may
246  *	     be called in parallel with the same transformation object.
247  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248  *	     and the conditions are exactly the same.
249  * @givencrypt: Update the IV for encryption. With this function, a cipher
250  *	        implementation may provide the function on how to update the IV
251  *	        for encryption.
252  * @givdecrypt: Update the IV for decryption. This is the reverse of
253  *	        @givencrypt .
254  * @geniv: The transformation implementation may use an "IV generator" provided
255  *	   by the kernel crypto API. Several use cases have a predefined
256  *	   approach how IVs are to be updated. For such use cases, the kernel
257  *	   crypto API provides ready-to-use implementations that can be
258  *	   referenced with this variable.
259  * @ivsize: IV size applicable for transformation. The consumer must provide an
260  *	    IV of exactly that size to perform the encrypt or decrypt operation.
261  *
262  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263  * mandatory and must be filled.
264  */
265 struct ablkcipher_alg {
266 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 	              unsigned int keylen);
268 	int (*encrypt)(struct ablkcipher_request *req);
269 	int (*decrypt)(struct ablkcipher_request *req);
270 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
272 
273 	const char *geniv;
274 
275 	unsigned int min_keysize;
276 	unsigned int max_keysize;
277 	unsigned int ivsize;
278 };
279 
280 /**
281  * struct blkcipher_alg - synchronous block cipher definition
282  * @min_keysize: see struct ablkcipher_alg
283  * @max_keysize: see struct ablkcipher_alg
284  * @setkey: see struct ablkcipher_alg
285  * @encrypt: see struct ablkcipher_alg
286  * @decrypt: see struct ablkcipher_alg
287  * @geniv: see struct ablkcipher_alg
288  * @ivsize: see struct ablkcipher_alg
289  *
290  * All fields except @geniv and @ivsize are mandatory and must be filled.
291  */
292 struct blkcipher_alg {
293 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 	              unsigned int keylen);
295 	int (*encrypt)(struct blkcipher_desc *desc,
296 		       struct scatterlist *dst, struct scatterlist *src,
297 		       unsigned int nbytes);
298 	int (*decrypt)(struct blkcipher_desc *desc,
299 		       struct scatterlist *dst, struct scatterlist *src,
300 		       unsigned int nbytes);
301 
302 	const char *geniv;
303 
304 	unsigned int min_keysize;
305 	unsigned int max_keysize;
306 	unsigned int ivsize;
307 };
308 
309 /**
310  * struct cipher_alg - single-block symmetric ciphers definition
311  * @cia_min_keysize: Minimum key size supported by the transformation. This is
312  *		     the smallest key length supported by this transformation
313  *		     algorithm. This must be set to one of the pre-defined
314  *		     values as this is not hardware specific. Possible values
315  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
316  *		     include/crypto/
317  * @cia_max_keysize: Maximum key size supported by the transformation. This is
318  *		    the largest key length supported by this transformation
319  *		    algorithm. This must be set to one of the pre-defined values
320  *		    as this is not hardware specific. Possible values for this
321  *		    field can be found via git grep "_MAX_KEY_SIZE"
322  *		    include/crypto/
323  * @cia_setkey: Set key for the transformation. This function is used to either
324  *	        program a supplied key into the hardware or store the key in the
325  *	        transformation context for programming it later. Note that this
326  *	        function does modify the transformation context. This function
327  *	        can be called multiple times during the existence of the
328  *	        transformation object, so one must make sure the key is properly
329  *	        reprogrammed into the hardware. This function is also
330  *	        responsible for checking the key length for validity.
331  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332  *		 single block of data, which must be @cra_blocksize big. This
333  *		 always operates on a full @cra_blocksize and it is not possible
334  *		 to encrypt a block of smaller size. The supplied buffers must
335  *		 therefore also be at least of @cra_blocksize size. Both the
336  *		 input and output buffers are always aligned to @cra_alignmask.
337  *		 In case either of the input or output buffer supplied by user
338  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
339  *		 API will re-align the buffers. The re-alignment means that a
340  *		 new buffer will be allocated, the data will be copied into the
341  *		 new buffer, then the processing will happen on the new buffer,
342  *		 then the data will be copied back into the original buffer and
343  *		 finally the new buffer will be freed. In case a software
344  *		 fallback was put in place in the @cra_init call, this function
345  *		 might need to use the fallback if the algorithm doesn't support
346  *		 all of the key sizes. In case the key was stored in
347  *		 transformation context, the key might need to be re-programmed
348  *		 into the hardware in this function. This function shall not
349  *		 modify the transformation context, as this function may be
350  *		 called in parallel with the same transformation object.
351  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352  *		 @cia_encrypt, and the conditions are exactly the same.
353  *
354  * All fields are mandatory and must be filled.
355  */
356 struct cipher_alg {
357 	unsigned int cia_min_keysize;
358 	unsigned int cia_max_keysize;
359 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
360 	                  unsigned int keylen);
361 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
363 };
364 
365 struct compress_alg {
366 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 			    unsigned int slen, u8 *dst, unsigned int *dlen);
368 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 			      unsigned int slen, u8 *dst, unsigned int *dlen);
370 };
371 
372 
373 #define cra_ablkcipher	cra_u.ablkcipher
374 #define cra_blkcipher	cra_u.blkcipher
375 #define cra_cipher	cra_u.cipher
376 #define cra_compress	cra_u.compress
377 
378 /**
379  * struct crypto_alg - definition of a cryptograpic cipher algorithm
380  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
381  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
382  *	       used for fine-tuning the description of the transformation
383  *	       algorithm.
384  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
385  *		   of the smallest possible unit which can be transformed with
386  *		   this algorithm. The users must respect this value.
387  *		   In case of HASH transformation, it is possible for a smaller
388  *		   block than @cra_blocksize to be passed to the crypto API for
389  *		   transformation, in case of any other transformation type, an
390  * 		   error will be returned upon any attempt to transform smaller
391  *		   than @cra_blocksize chunks.
392  * @cra_ctxsize: Size of the operational context of the transformation. This
393  *		 value informs the kernel crypto API about the memory size
394  *		 needed to be allocated for the transformation context.
395  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
396  *		   buffer containing the input data for the algorithm must be
397  *		   aligned to this alignment mask. The data buffer for the
398  *		   output data must be aligned to this alignment mask. Note that
399  *		   the Crypto API will do the re-alignment in software, but
400  *		   only under special conditions and there is a performance hit.
401  *		   The re-alignment happens at these occasions for different
402  *		   @cra_u types: cipher -- For both input data and output data
403  *		   buffer; ahash -- For output hash destination buf; shash --
404  *		   For output hash destination buf.
405  *		   This is needed on hardware which is flawed by design and
406  *		   cannot pick data from arbitrary addresses.
407  * @cra_priority: Priority of this transformation implementation. In case
408  *		  multiple transformations with same @cra_name are available to
409  *		  the Crypto API, the kernel will use the one with highest
410  *		  @cra_priority.
411  * @cra_name: Generic name (usable by multiple implementations) of the
412  *	      transformation algorithm. This is the name of the transformation
413  *	      itself. This field is used by the kernel when looking up the
414  *	      providers of particular transformation.
415  * @cra_driver_name: Unique name of the transformation provider. This is the
416  *		     name of the provider of the transformation. This can be any
417  *		     arbitrary value, but in the usual case, this contains the
418  *		     name of the chip or provider and the name of the
419  *		     transformation algorithm.
420  * @cra_type: Type of the cryptographic transformation. This is a pointer to
421  *	      struct crypto_type, which implements callbacks common for all
422  *	      transformation types. There are multiple options:
423  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
424  *	      &crypto_ahash_type, &crypto_rng_type.
425  *	      This field might be empty. In that case, there are no common
426  *	      callbacks. This is the case for: cipher, compress, shash.
427  * @cra_u: Callbacks implementing the transformation. This is a union of
428  *	   multiple structures. Depending on the type of transformation selected
429  *	   by @cra_type and @cra_flags above, the associated structure must be
430  *	   filled with callbacks. This field might be empty. This is the case
431  *	   for ahash, shash.
432  * @cra_init: Initialize the cryptographic transformation object. This function
433  *	      is used to initialize the cryptographic transformation object.
434  *	      This function is called only once at the instantiation time, right
435  *	      after the transformation context was allocated. In case the
436  *	      cryptographic hardware has some special requirements which need to
437  *	      be handled by software, this function shall check for the precise
438  *	      requirement of the transformation and put any software fallbacks
439  *	      in place.
440  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441  *	      counterpart to @cra_init, used to remove various changes set in
442  *	      @cra_init.
443  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
444  *		      definition. See @struct @ablkcipher_alg.
445  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
446  * 		     definition See @struct @blkcipher_alg.
447  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
448  *		  definition. See @struct @cipher_alg.
449  * @cra_u.compress: Union member which contains a (de)compression algorithm.
450  *		    See @struct @compress_alg.
451  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
452  * @cra_list: internally used
453  * @cra_users: internally used
454  * @cra_refcnt: internally used
455  * @cra_destroy: internally used
456  *
457  * The struct crypto_alg describes a generic Crypto API algorithm and is common
458  * for all of the transformations. Any variable not documented here shall not
459  * be used by a cipher implementation as it is internal to the Crypto API.
460  */
461 struct crypto_alg {
462 	struct list_head cra_list;
463 	struct list_head cra_users;
464 
465 	u32 cra_flags;
466 	unsigned int cra_blocksize;
467 	unsigned int cra_ctxsize;
468 	unsigned int cra_alignmask;
469 
470 	int cra_priority;
471 	refcount_t cra_refcnt;
472 
473 	char cra_name[CRYPTO_MAX_ALG_NAME];
474 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
475 
476 	const struct crypto_type *cra_type;
477 
478 	union {
479 		struct ablkcipher_alg ablkcipher;
480 		struct blkcipher_alg blkcipher;
481 		struct cipher_alg cipher;
482 		struct compress_alg compress;
483 	} cra_u;
484 
485 	int (*cra_init)(struct crypto_tfm *tfm);
486 	void (*cra_exit)(struct crypto_tfm *tfm);
487 	void (*cra_destroy)(struct crypto_alg *alg);
488 
489 	struct module *cra_module;
490 } CRYPTO_MINALIGN_ATTR;
491 
492 /*
493  * A helper struct for waiting for completion of async crypto ops
494  */
495 struct crypto_wait {
496 	struct completion completion;
497 	int err;
498 };
499 
500 /*
501  * Macro for declaring a crypto op async wait object on stack
502  */
503 #define DECLARE_CRYPTO_WAIT(_wait) \
504 	struct crypto_wait _wait = { \
505 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
506 
507 /*
508  * Async ops completion helper functioons
509  */
510 void crypto_req_done(struct crypto_async_request *req, int err);
511 
crypto_wait_req(int err,struct crypto_wait * wait)512 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
513 {
514 	switch (err) {
515 	case -EINPROGRESS:
516 	case -EBUSY:
517 		wait_for_completion(&wait->completion);
518 		reinit_completion(&wait->completion);
519 		err = wait->err;
520 		break;
521 	};
522 
523 	return err;
524 }
525 
crypto_init_wait(struct crypto_wait * wait)526 static inline void crypto_init_wait(struct crypto_wait *wait)
527 {
528 	init_completion(&wait->completion);
529 }
530 
531 /*
532  * Algorithm registration interface.
533  */
534 int crypto_register_alg(struct crypto_alg *alg);
535 int crypto_unregister_alg(struct crypto_alg *alg);
536 int crypto_register_algs(struct crypto_alg *algs, int count);
537 int crypto_unregister_algs(struct crypto_alg *algs, int count);
538 
539 /*
540  * Algorithm query interface.
541  */
542 int crypto_has_alg(const char *name, u32 type, u32 mask);
543 
544 /*
545  * Transforms: user-instantiated objects which encapsulate algorithms
546  * and core processing logic.  Managed via crypto_alloc_*() and
547  * crypto_free_*(), as well as the various helpers below.
548  */
549 
550 struct ablkcipher_tfm {
551 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
552 	              unsigned int keylen);
553 	int (*encrypt)(struct ablkcipher_request *req);
554 	int (*decrypt)(struct ablkcipher_request *req);
555 
556 	struct crypto_ablkcipher *base;
557 
558 	unsigned int ivsize;
559 	unsigned int reqsize;
560 };
561 
562 struct blkcipher_tfm {
563 	void *iv;
564 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
565 		      unsigned int keylen);
566 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
567 		       struct scatterlist *src, unsigned int nbytes);
568 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
569 		       struct scatterlist *src, unsigned int nbytes);
570 };
571 
572 struct cipher_tfm {
573 	int (*cit_setkey)(struct crypto_tfm *tfm,
574 	                  const u8 *key, unsigned int keylen);
575 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
576 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
577 };
578 
579 struct compress_tfm {
580 	int (*cot_compress)(struct crypto_tfm *tfm,
581 	                    const u8 *src, unsigned int slen,
582 	                    u8 *dst, unsigned int *dlen);
583 	int (*cot_decompress)(struct crypto_tfm *tfm,
584 	                      const u8 *src, unsigned int slen,
585 	                      u8 *dst, unsigned int *dlen);
586 };
587 
588 #define crt_ablkcipher	crt_u.ablkcipher
589 #define crt_blkcipher	crt_u.blkcipher
590 #define crt_cipher	crt_u.cipher
591 #define crt_compress	crt_u.compress
592 
593 struct crypto_tfm {
594 
595 	u32 crt_flags;
596 
597 	union {
598 		struct ablkcipher_tfm ablkcipher;
599 		struct blkcipher_tfm blkcipher;
600 		struct cipher_tfm cipher;
601 		struct compress_tfm compress;
602 	} crt_u;
603 
604 	void (*exit)(struct crypto_tfm *tfm);
605 
606 	struct crypto_alg *__crt_alg;
607 
608 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
609 };
610 
611 struct crypto_ablkcipher {
612 	struct crypto_tfm base;
613 };
614 
615 struct crypto_blkcipher {
616 	struct crypto_tfm base;
617 };
618 
619 struct crypto_cipher {
620 	struct crypto_tfm base;
621 };
622 
623 struct crypto_comp {
624 	struct crypto_tfm base;
625 };
626 
627 enum {
628 	CRYPTOA_UNSPEC,
629 	CRYPTOA_ALG,
630 	CRYPTOA_TYPE,
631 	CRYPTOA_U32,
632 	__CRYPTOA_MAX,
633 };
634 
635 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
636 
637 /* Maximum number of (rtattr) parameters for each template. */
638 #define CRYPTO_MAX_ATTRS 32
639 
640 struct crypto_attr_alg {
641 	char name[CRYPTO_MAX_ALG_NAME];
642 };
643 
644 struct crypto_attr_type {
645 	u32 type;
646 	u32 mask;
647 };
648 
649 struct crypto_attr_u32 {
650 	u32 num;
651 };
652 
653 /*
654  * Transform user interface.
655  */
656 
657 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
658 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
659 
crypto_free_tfm(struct crypto_tfm * tfm)660 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
661 {
662 	return crypto_destroy_tfm(tfm, tfm);
663 }
664 
665 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
666 
667 /*
668  * Transform helpers which query the underlying algorithm.
669  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)670 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
671 {
672 	return tfm->__crt_alg->cra_name;
673 }
674 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)675 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
676 {
677 	return tfm->__crt_alg->cra_driver_name;
678 }
679 
crypto_tfm_alg_priority(struct crypto_tfm * tfm)680 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
681 {
682 	return tfm->__crt_alg->cra_priority;
683 }
684 
crypto_tfm_alg_type(struct crypto_tfm * tfm)685 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
686 {
687 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
688 }
689 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)690 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
691 {
692 	return tfm->__crt_alg->cra_blocksize;
693 }
694 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)695 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
696 {
697 	return tfm->__crt_alg->cra_alignmask;
698 }
699 
crypto_tfm_get_flags(struct crypto_tfm * tfm)700 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
701 {
702 	return tfm->crt_flags;
703 }
704 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)705 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
706 {
707 	tfm->crt_flags |= flags;
708 }
709 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)710 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
711 {
712 	tfm->crt_flags &= ~flags;
713 }
714 
crypto_tfm_ctx(struct crypto_tfm * tfm)715 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
716 {
717 	return tfm->__crt_ctx;
718 }
719 
crypto_tfm_ctx_alignment(void)720 static inline unsigned int crypto_tfm_ctx_alignment(void)
721 {
722 	struct crypto_tfm *tfm;
723 	return __alignof__(tfm->__crt_ctx);
724 }
725 
726 /*
727  * API wrappers.
728  */
__crypto_ablkcipher_cast(struct crypto_tfm * tfm)729 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
730 	struct crypto_tfm *tfm)
731 {
732 	return (struct crypto_ablkcipher *)tfm;
733 }
734 
crypto_skcipher_type(u32 type)735 static inline u32 crypto_skcipher_type(u32 type)
736 {
737 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
738 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
739 	return type;
740 }
741 
crypto_skcipher_mask(u32 mask)742 static inline u32 crypto_skcipher_mask(u32 mask)
743 {
744 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
745 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
746 	return mask;
747 }
748 
749 /**
750  * DOC: Asynchronous Block Cipher API
751  *
752  * Asynchronous block cipher API is used with the ciphers of type
753  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
754  *
755  * Asynchronous cipher operations imply that the function invocation for a
756  * cipher request returns immediately before the completion of the operation.
757  * The cipher request is scheduled as a separate kernel thread and therefore
758  * load-balanced on the different CPUs via the process scheduler. To allow
759  * the kernel crypto API to inform the caller about the completion of a cipher
760  * request, the caller must provide a callback function. That function is
761  * invoked with the cipher handle when the request completes.
762  *
763  * To support the asynchronous operation, additional information than just the
764  * cipher handle must be supplied to the kernel crypto API. That additional
765  * information is given by filling in the ablkcipher_request data structure.
766  *
767  * For the asynchronous block cipher API, the state is maintained with the tfm
768  * cipher handle. A single tfm can be used across multiple calls and in
769  * parallel. For asynchronous block cipher calls, context data supplied and
770  * only used by the caller can be referenced the request data structure in
771  * addition to the IV used for the cipher request. The maintenance of such
772  * state information would be important for a crypto driver implementer to
773  * have, because when calling the callback function upon completion of the
774  * cipher operation, that callback function may need some information about
775  * which operation just finished if it invoked multiple in parallel. This
776  * state information is unused by the kernel crypto API.
777  */
778 
crypto_ablkcipher_tfm(struct crypto_ablkcipher * tfm)779 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
780 	struct crypto_ablkcipher *tfm)
781 {
782 	return &tfm->base;
783 }
784 
785 /**
786  * crypto_free_ablkcipher() - zeroize and free cipher handle
787  * @tfm: cipher handle to be freed
788  */
crypto_free_ablkcipher(struct crypto_ablkcipher * tfm)789 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
790 {
791 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
792 }
793 
794 /**
795  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
796  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
797  *	      ablkcipher
798  * @type: specifies the type of the cipher
799  * @mask: specifies the mask for the cipher
800  *
801  * Return: true when the ablkcipher is known to the kernel crypto API; false
802  *	   otherwise
803  */
crypto_has_ablkcipher(const char * alg_name,u32 type,u32 mask)804 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
805 					u32 mask)
806 {
807 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
808 			      crypto_skcipher_mask(mask));
809 }
810 
crypto_ablkcipher_crt(struct crypto_ablkcipher * tfm)811 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
812 	struct crypto_ablkcipher *tfm)
813 {
814 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
815 }
816 
817 /**
818  * crypto_ablkcipher_ivsize() - obtain IV size
819  * @tfm: cipher handle
820  *
821  * The size of the IV for the ablkcipher referenced by the cipher handle is
822  * returned. This IV size may be zero if the cipher does not need an IV.
823  *
824  * Return: IV size in bytes
825  */
crypto_ablkcipher_ivsize(struct crypto_ablkcipher * tfm)826 static inline unsigned int crypto_ablkcipher_ivsize(
827 	struct crypto_ablkcipher *tfm)
828 {
829 	return crypto_ablkcipher_crt(tfm)->ivsize;
830 }
831 
832 /**
833  * crypto_ablkcipher_blocksize() - obtain block size of cipher
834  * @tfm: cipher handle
835  *
836  * The block size for the ablkcipher referenced with the cipher handle is
837  * returned. The caller may use that information to allocate appropriate
838  * memory for the data returned by the encryption or decryption operation
839  *
840  * Return: block size of cipher
841  */
crypto_ablkcipher_blocksize(struct crypto_ablkcipher * tfm)842 static inline unsigned int crypto_ablkcipher_blocksize(
843 	struct crypto_ablkcipher *tfm)
844 {
845 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
846 }
847 
crypto_ablkcipher_alignmask(struct crypto_ablkcipher * tfm)848 static inline unsigned int crypto_ablkcipher_alignmask(
849 	struct crypto_ablkcipher *tfm)
850 {
851 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
852 }
853 
crypto_ablkcipher_get_flags(struct crypto_ablkcipher * tfm)854 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
855 {
856 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
857 }
858 
crypto_ablkcipher_set_flags(struct crypto_ablkcipher * tfm,u32 flags)859 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
860 					       u32 flags)
861 {
862 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
863 }
864 
crypto_ablkcipher_clear_flags(struct crypto_ablkcipher * tfm,u32 flags)865 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
866 						 u32 flags)
867 {
868 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
869 }
870 
871 /**
872  * crypto_ablkcipher_setkey() - set key for cipher
873  * @tfm: cipher handle
874  * @key: buffer holding the key
875  * @keylen: length of the key in bytes
876  *
877  * The caller provided key is set for the ablkcipher referenced by the cipher
878  * handle.
879  *
880  * Note, the key length determines the cipher type. Many block ciphers implement
881  * different cipher modes depending on the key size, such as AES-128 vs AES-192
882  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
883  * is performed.
884  *
885  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
886  */
crypto_ablkcipher_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)887 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
888 					   const u8 *key, unsigned int keylen)
889 {
890 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
891 
892 	return crt->setkey(crt->base, key, keylen);
893 }
894 
895 /**
896  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
897  * @req: ablkcipher_request out of which the cipher handle is to be obtained
898  *
899  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
900  * data structure.
901  *
902  * Return: crypto_ablkcipher handle
903  */
crypto_ablkcipher_reqtfm(struct ablkcipher_request * req)904 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
905 	struct ablkcipher_request *req)
906 {
907 	return __crypto_ablkcipher_cast(req->base.tfm);
908 }
909 
910 /**
911  * crypto_ablkcipher_encrypt() - encrypt plaintext
912  * @req: reference to the ablkcipher_request handle that holds all information
913  *	 needed to perform the cipher operation
914  *
915  * Encrypt plaintext data using the ablkcipher_request handle. That data
916  * structure and how it is filled with data is discussed with the
917  * ablkcipher_request_* functions.
918  *
919  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
920  */
crypto_ablkcipher_encrypt(struct ablkcipher_request * req)921 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
922 {
923 	struct ablkcipher_tfm *crt =
924 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
925 	return crt->encrypt(req);
926 }
927 
928 /**
929  * crypto_ablkcipher_decrypt() - decrypt ciphertext
930  * @req: reference to the ablkcipher_request handle that holds all information
931  *	 needed to perform the cipher operation
932  *
933  * Decrypt ciphertext data using the ablkcipher_request handle. That data
934  * structure and how it is filled with data is discussed with the
935  * ablkcipher_request_* functions.
936  *
937  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
938  */
crypto_ablkcipher_decrypt(struct ablkcipher_request * req)939 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
940 {
941 	struct ablkcipher_tfm *crt =
942 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
943 	return crt->decrypt(req);
944 }
945 
946 /**
947  * DOC: Asynchronous Cipher Request Handle
948  *
949  * The ablkcipher_request data structure contains all pointers to data
950  * required for the asynchronous cipher operation. This includes the cipher
951  * handle (which can be used by multiple ablkcipher_request instances), pointer
952  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
953  * as a handle to the ablkcipher_request_* API calls in a similar way as
954  * ablkcipher handle to the crypto_ablkcipher_* API calls.
955  */
956 
957 /**
958  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
959  * @tfm: cipher handle
960  *
961  * Return: number of bytes
962  */
crypto_ablkcipher_reqsize(struct crypto_ablkcipher * tfm)963 static inline unsigned int crypto_ablkcipher_reqsize(
964 	struct crypto_ablkcipher *tfm)
965 {
966 	return crypto_ablkcipher_crt(tfm)->reqsize;
967 }
968 
969 /**
970  * ablkcipher_request_set_tfm() - update cipher handle reference in request
971  * @req: request handle to be modified
972  * @tfm: cipher handle that shall be added to the request handle
973  *
974  * Allow the caller to replace the existing ablkcipher handle in the request
975  * data structure with a different one.
976  */
ablkcipher_request_set_tfm(struct ablkcipher_request * req,struct crypto_ablkcipher * tfm)977 static inline void ablkcipher_request_set_tfm(
978 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
979 {
980 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
981 }
982 
ablkcipher_request_cast(struct crypto_async_request * req)983 static inline struct ablkcipher_request *ablkcipher_request_cast(
984 	struct crypto_async_request *req)
985 {
986 	return container_of(req, struct ablkcipher_request, base);
987 }
988 
989 /**
990  * ablkcipher_request_alloc() - allocate request data structure
991  * @tfm: cipher handle to be registered with the request
992  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
993  *
994  * Allocate the request data structure that must be used with the ablkcipher
995  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
996  * handle is registered in the request data structure.
997  *
998  * Return: allocated request handle in case of success, or NULL if out of memory
999  */
ablkcipher_request_alloc(struct crypto_ablkcipher * tfm,gfp_t gfp)1000 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1001 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1002 {
1003 	struct ablkcipher_request *req;
1004 
1005 	req = kmalloc(sizeof(struct ablkcipher_request) +
1006 		      crypto_ablkcipher_reqsize(tfm), gfp);
1007 
1008 	if (likely(req))
1009 		ablkcipher_request_set_tfm(req, tfm);
1010 
1011 	return req;
1012 }
1013 
1014 /**
1015  * ablkcipher_request_free() - zeroize and free request data structure
1016  * @req: request data structure cipher handle to be freed
1017  */
ablkcipher_request_free(struct ablkcipher_request * req)1018 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1019 {
1020 	kzfree(req);
1021 }
1022 
1023 /**
1024  * ablkcipher_request_set_callback() - set asynchronous callback function
1025  * @req: request handle
1026  * @flags: specify zero or an ORing of the flags
1027  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1028  *	   increase the wait queue beyond the initial maximum size;
1029  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1030  * @compl: callback function pointer to be registered with the request handle
1031  * @data: The data pointer refers to memory that is not used by the kernel
1032  *	  crypto API, but provided to the callback function for it to use. Here,
1033  *	  the caller can provide a reference to memory the callback function can
1034  *	  operate on. As the callback function is invoked asynchronously to the
1035  *	  related functionality, it may need to access data structures of the
1036  *	  related functionality which can be referenced using this pointer. The
1037  *	  callback function can access the memory via the "data" field in the
1038  *	  crypto_async_request data structure provided to the callback function.
1039  *
1040  * This function allows setting the callback function that is triggered once the
1041  * cipher operation completes.
1042  *
1043  * The callback function is registered with the ablkcipher_request handle and
1044  * must comply with the following template::
1045  *
1046  *	void callback_function(struct crypto_async_request *req, int error)
1047  */
ablkcipher_request_set_callback(struct ablkcipher_request * req,u32 flags,crypto_completion_t compl,void * data)1048 static inline void ablkcipher_request_set_callback(
1049 	struct ablkcipher_request *req,
1050 	u32 flags, crypto_completion_t compl, void *data)
1051 {
1052 	req->base.complete = compl;
1053 	req->base.data = data;
1054 	req->base.flags = flags;
1055 }
1056 
1057 /**
1058  * ablkcipher_request_set_crypt() - set data buffers
1059  * @req: request handle
1060  * @src: source scatter / gather list
1061  * @dst: destination scatter / gather list
1062  * @nbytes: number of bytes to process from @src
1063  * @iv: IV for the cipher operation which must comply with the IV size defined
1064  *      by crypto_ablkcipher_ivsize
1065  *
1066  * This function allows setting of the source data and destination data
1067  * scatter / gather lists.
1068  *
1069  * For encryption, the source is treated as the plaintext and the
1070  * destination is the ciphertext. For a decryption operation, the use is
1071  * reversed - the source is the ciphertext and the destination is the plaintext.
1072  */
ablkcipher_request_set_crypt(struct ablkcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * iv)1073 static inline void ablkcipher_request_set_crypt(
1074 	struct ablkcipher_request *req,
1075 	struct scatterlist *src, struct scatterlist *dst,
1076 	unsigned int nbytes, void *iv)
1077 {
1078 	req->src = src;
1079 	req->dst = dst;
1080 	req->nbytes = nbytes;
1081 	req->info = iv;
1082 }
1083 
1084 /**
1085  * DOC: Synchronous Block Cipher API
1086  *
1087  * The synchronous block cipher API is used with the ciphers of type
1088  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1089  *
1090  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1091  * used in multiple calls and in parallel, this info should not be changeable
1092  * (unless a lock is used). This applies, for example, to the symmetric key.
1093  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1094  * structure for synchronous blkcipher api. So, its the only state info that can
1095  * be kept for synchronous calls without using a big lock across a tfm.
1096  *
1097  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1098  * consisting of a template (a block chaining mode) and a single block cipher
1099  * primitive (e.g. AES).
1100  *
1101  * The plaintext data buffer and the ciphertext data buffer are pointed to
1102  * by using scatter/gather lists. The cipher operation is performed
1103  * on all segments of the provided scatter/gather lists.
1104  *
1105  * The kernel crypto API supports a cipher operation "in-place" which means that
1106  * the caller may provide the same scatter/gather list for the plaintext and
1107  * cipher text. After the completion of the cipher operation, the plaintext
1108  * data is replaced with the ciphertext data in case of an encryption and vice
1109  * versa for a decryption. The caller must ensure that the scatter/gather lists
1110  * for the output data point to sufficiently large buffers, i.e. multiples of
1111  * the block size of the cipher.
1112  */
1113 
__crypto_blkcipher_cast(struct crypto_tfm * tfm)1114 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1115 	struct crypto_tfm *tfm)
1116 {
1117 	return (struct crypto_blkcipher *)tfm;
1118 }
1119 
crypto_blkcipher_cast(struct crypto_tfm * tfm)1120 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1121 	struct crypto_tfm *tfm)
1122 {
1123 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1124 	return __crypto_blkcipher_cast(tfm);
1125 }
1126 
1127 /**
1128  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1129  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1130  *	      blkcipher cipher
1131  * @type: specifies the type of the cipher
1132  * @mask: specifies the mask for the cipher
1133  *
1134  * Allocate a cipher handle for a block cipher. The returned struct
1135  * crypto_blkcipher is the cipher handle that is required for any subsequent
1136  * API invocation for that block cipher.
1137  *
1138  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1139  *	   of an error, PTR_ERR() returns the error code.
1140  */
crypto_alloc_blkcipher(const char * alg_name,u32 type,u32 mask)1141 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1142 	const char *alg_name, u32 type, u32 mask)
1143 {
1144 	type &= ~CRYPTO_ALG_TYPE_MASK;
1145 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1146 	mask |= CRYPTO_ALG_TYPE_MASK;
1147 
1148 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1149 }
1150 
crypto_blkcipher_tfm(struct crypto_blkcipher * tfm)1151 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1152 	struct crypto_blkcipher *tfm)
1153 {
1154 	return &tfm->base;
1155 }
1156 
1157 /**
1158  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1159  * @tfm: cipher handle to be freed
1160  */
crypto_free_blkcipher(struct crypto_blkcipher * tfm)1161 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1162 {
1163 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1164 }
1165 
1166 /**
1167  * crypto_has_blkcipher() - Search for the availability of a block cipher
1168  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1169  *	      block cipher
1170  * @type: specifies the type of the cipher
1171  * @mask: specifies the mask for the cipher
1172  *
1173  * Return: true when the block cipher is known to the kernel crypto API; false
1174  *	   otherwise
1175  */
crypto_has_blkcipher(const char * alg_name,u32 type,u32 mask)1176 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1177 {
1178 	type &= ~CRYPTO_ALG_TYPE_MASK;
1179 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1180 	mask |= CRYPTO_ALG_TYPE_MASK;
1181 
1182 	return crypto_has_alg(alg_name, type, mask);
1183 }
1184 
1185 /**
1186  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1187  * @tfm: cipher handle
1188  *
1189  * Return: The character string holding the name of the cipher
1190  */
crypto_blkcipher_name(struct crypto_blkcipher * tfm)1191 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1192 {
1193 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1194 }
1195 
crypto_blkcipher_crt(struct crypto_blkcipher * tfm)1196 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1197 	struct crypto_blkcipher *tfm)
1198 {
1199 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1200 }
1201 
crypto_blkcipher_alg(struct crypto_blkcipher * tfm)1202 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1203 	struct crypto_blkcipher *tfm)
1204 {
1205 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1206 }
1207 
1208 /**
1209  * crypto_blkcipher_ivsize() - obtain IV size
1210  * @tfm: cipher handle
1211  *
1212  * The size of the IV for the block cipher referenced by the cipher handle is
1213  * returned. This IV size may be zero if the cipher does not need an IV.
1214  *
1215  * Return: IV size in bytes
1216  */
crypto_blkcipher_ivsize(struct crypto_blkcipher * tfm)1217 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1218 {
1219 	return crypto_blkcipher_alg(tfm)->ivsize;
1220 }
1221 
1222 /**
1223  * crypto_blkcipher_blocksize() - obtain block size of cipher
1224  * @tfm: cipher handle
1225  *
1226  * The block size for the block cipher referenced with the cipher handle is
1227  * returned. The caller may use that information to allocate appropriate
1228  * memory for the data returned by the encryption or decryption operation.
1229  *
1230  * Return: block size of cipher
1231  */
crypto_blkcipher_blocksize(struct crypto_blkcipher * tfm)1232 static inline unsigned int crypto_blkcipher_blocksize(
1233 	struct crypto_blkcipher *tfm)
1234 {
1235 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1236 }
1237 
crypto_blkcipher_alignmask(struct crypto_blkcipher * tfm)1238 static inline unsigned int crypto_blkcipher_alignmask(
1239 	struct crypto_blkcipher *tfm)
1240 {
1241 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1242 }
1243 
crypto_blkcipher_get_flags(struct crypto_blkcipher * tfm)1244 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1245 {
1246 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1247 }
1248 
crypto_blkcipher_set_flags(struct crypto_blkcipher * tfm,u32 flags)1249 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1250 					      u32 flags)
1251 {
1252 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1253 }
1254 
crypto_blkcipher_clear_flags(struct crypto_blkcipher * tfm,u32 flags)1255 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1256 						u32 flags)
1257 {
1258 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1259 }
1260 
1261 /**
1262  * crypto_blkcipher_setkey() - set key for cipher
1263  * @tfm: cipher handle
1264  * @key: buffer holding the key
1265  * @keylen: length of the key in bytes
1266  *
1267  * The caller provided key is set for the block cipher referenced by the cipher
1268  * handle.
1269  *
1270  * Note, the key length determines the cipher type. Many block ciphers implement
1271  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1272  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1273  * is performed.
1274  *
1275  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1276  */
crypto_blkcipher_setkey(struct crypto_blkcipher * tfm,const u8 * key,unsigned int keylen)1277 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1278 					  const u8 *key, unsigned int keylen)
1279 {
1280 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1281 						 key, keylen);
1282 }
1283 
1284 /**
1285  * crypto_blkcipher_encrypt() - encrypt plaintext
1286  * @desc: reference to the block cipher handle with meta data
1287  * @dst: scatter/gather list that is filled by the cipher operation with the
1288  *	ciphertext
1289  * @src: scatter/gather list that holds the plaintext
1290  * @nbytes: number of bytes of the plaintext to encrypt.
1291  *
1292  * Encrypt plaintext data using the IV set by the caller with a preceding
1293  * call of crypto_blkcipher_set_iv.
1294  *
1295  * The blkcipher_desc data structure must be filled by the caller and can
1296  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1297  * with the block cipher handle; desc.flags is filled with either
1298  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1299  *
1300  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1301  */
crypto_blkcipher_encrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1302 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1303 					   struct scatterlist *dst,
1304 					   struct scatterlist *src,
1305 					   unsigned int nbytes)
1306 {
1307 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1308 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1309 }
1310 
1311 /**
1312  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1313  * @desc: reference to the block cipher handle with meta data
1314  * @dst: scatter/gather list that is filled by the cipher operation with the
1315  *	ciphertext
1316  * @src: scatter/gather list that holds the plaintext
1317  * @nbytes: number of bytes of the plaintext to encrypt.
1318  *
1319  * Encrypt plaintext data with the use of an IV that is solely used for this
1320  * cipher operation. Any previously set IV is not used.
1321  *
1322  * The blkcipher_desc data structure must be filled by the caller and can
1323  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1324  * with the block cipher handle; desc.info is filled with the IV to be used for
1325  * the current operation; desc.flags is filled with either
1326  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1327  *
1328  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1329  */
crypto_blkcipher_encrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1330 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1331 					      struct scatterlist *dst,
1332 					      struct scatterlist *src,
1333 					      unsigned int nbytes)
1334 {
1335 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1336 }
1337 
1338 /**
1339  * crypto_blkcipher_decrypt() - decrypt ciphertext
1340  * @desc: reference to the block cipher handle with meta data
1341  * @dst: scatter/gather list that is filled by the cipher operation with the
1342  *	plaintext
1343  * @src: scatter/gather list that holds the ciphertext
1344  * @nbytes: number of bytes of the ciphertext to decrypt.
1345  *
1346  * Decrypt ciphertext data using the IV set by the caller with a preceding
1347  * call of crypto_blkcipher_set_iv.
1348  *
1349  * The blkcipher_desc data structure must be filled by the caller as documented
1350  * for the crypto_blkcipher_encrypt call above.
1351  *
1352  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1353  *
1354  */
crypto_blkcipher_decrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1355 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1356 					   struct scatterlist *dst,
1357 					   struct scatterlist *src,
1358 					   unsigned int nbytes)
1359 {
1360 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1361 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1362 }
1363 
1364 /**
1365  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1366  * @desc: reference to the block cipher handle with meta data
1367  * @dst: scatter/gather list that is filled by the cipher operation with the
1368  *	plaintext
1369  * @src: scatter/gather list that holds the ciphertext
1370  * @nbytes: number of bytes of the ciphertext to decrypt.
1371  *
1372  * Decrypt ciphertext data with the use of an IV that is solely used for this
1373  * cipher operation. Any previously set IV is not used.
1374  *
1375  * The blkcipher_desc data structure must be filled by the caller as documented
1376  * for the crypto_blkcipher_encrypt_iv call above.
1377  *
1378  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1379  */
crypto_blkcipher_decrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1380 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1381 					      struct scatterlist *dst,
1382 					      struct scatterlist *src,
1383 					      unsigned int nbytes)
1384 {
1385 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1386 }
1387 
1388 /**
1389  * crypto_blkcipher_set_iv() - set IV for cipher
1390  * @tfm: cipher handle
1391  * @src: buffer holding the IV
1392  * @len: length of the IV in bytes
1393  *
1394  * The caller provided IV is set for the block cipher referenced by the cipher
1395  * handle.
1396  */
crypto_blkcipher_set_iv(struct crypto_blkcipher * tfm,const u8 * src,unsigned int len)1397 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1398 					   const u8 *src, unsigned int len)
1399 {
1400 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1401 }
1402 
1403 /**
1404  * crypto_blkcipher_get_iv() - obtain IV from cipher
1405  * @tfm: cipher handle
1406  * @dst: buffer filled with the IV
1407  * @len: length of the buffer dst
1408  *
1409  * The caller can obtain the IV set for the block cipher referenced by the
1410  * cipher handle and store it into the user-provided buffer. If the buffer
1411  * has an insufficient space, the IV is truncated to fit the buffer.
1412  */
crypto_blkcipher_get_iv(struct crypto_blkcipher * tfm,u8 * dst,unsigned int len)1413 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1414 					   u8 *dst, unsigned int len)
1415 {
1416 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1417 }
1418 
1419 /**
1420  * DOC: Single Block Cipher API
1421  *
1422  * The single block cipher API is used with the ciphers of type
1423  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1424  *
1425  * Using the single block cipher API calls, operations with the basic cipher
1426  * primitive can be implemented. These cipher primitives exclude any block
1427  * chaining operations including IV handling.
1428  *
1429  * The purpose of this single block cipher API is to support the implementation
1430  * of templates or other concepts that only need to perform the cipher operation
1431  * on one block at a time. Templates invoke the underlying cipher primitive
1432  * block-wise and process either the input or the output data of these cipher
1433  * operations.
1434  */
1435 
__crypto_cipher_cast(struct crypto_tfm * tfm)1436 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1437 {
1438 	return (struct crypto_cipher *)tfm;
1439 }
1440 
crypto_cipher_cast(struct crypto_tfm * tfm)1441 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1442 {
1443 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1444 	return __crypto_cipher_cast(tfm);
1445 }
1446 
1447 /**
1448  * crypto_alloc_cipher() - allocate single block cipher handle
1449  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1450  *	     single block cipher
1451  * @type: specifies the type of the cipher
1452  * @mask: specifies the mask for the cipher
1453  *
1454  * Allocate a cipher handle for a single block cipher. The returned struct
1455  * crypto_cipher is the cipher handle that is required for any subsequent API
1456  * invocation for that single block cipher.
1457  *
1458  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1459  *	   of an error, PTR_ERR() returns the error code.
1460  */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)1461 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1462 							u32 type, u32 mask)
1463 {
1464 	type &= ~CRYPTO_ALG_TYPE_MASK;
1465 	type |= CRYPTO_ALG_TYPE_CIPHER;
1466 	mask |= CRYPTO_ALG_TYPE_MASK;
1467 
1468 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1469 }
1470 
crypto_cipher_tfm(struct crypto_cipher * tfm)1471 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1472 {
1473 	return &tfm->base;
1474 }
1475 
1476 /**
1477  * crypto_free_cipher() - zeroize and free the single block cipher handle
1478  * @tfm: cipher handle to be freed
1479  */
crypto_free_cipher(struct crypto_cipher * tfm)1480 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1481 {
1482 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1483 }
1484 
1485 /**
1486  * crypto_has_cipher() - Search for the availability of a single block cipher
1487  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1488  *	     single block cipher
1489  * @type: specifies the type of the cipher
1490  * @mask: specifies the mask for the cipher
1491  *
1492  * Return: true when the single block cipher is known to the kernel crypto API;
1493  *	   false otherwise
1494  */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)1495 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1496 {
1497 	type &= ~CRYPTO_ALG_TYPE_MASK;
1498 	type |= CRYPTO_ALG_TYPE_CIPHER;
1499 	mask |= CRYPTO_ALG_TYPE_MASK;
1500 
1501 	return crypto_has_alg(alg_name, type, mask);
1502 }
1503 
crypto_cipher_crt(struct crypto_cipher * tfm)1504 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1505 {
1506 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1507 }
1508 
1509 /**
1510  * crypto_cipher_blocksize() - obtain block size for cipher
1511  * @tfm: cipher handle
1512  *
1513  * The block size for the single block cipher referenced with the cipher handle
1514  * tfm is returned. The caller may use that information to allocate appropriate
1515  * memory for the data returned by the encryption or decryption operation
1516  *
1517  * Return: block size of cipher
1518  */
crypto_cipher_blocksize(struct crypto_cipher * tfm)1519 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1520 {
1521 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1522 }
1523 
crypto_cipher_alignmask(struct crypto_cipher * tfm)1524 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1525 {
1526 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1527 }
1528 
crypto_cipher_get_flags(struct crypto_cipher * tfm)1529 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1530 {
1531 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1532 }
1533 
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)1534 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1535 					   u32 flags)
1536 {
1537 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1538 }
1539 
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)1540 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1541 					     u32 flags)
1542 {
1543 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1544 }
1545 
1546 /**
1547  * crypto_cipher_setkey() - set key for cipher
1548  * @tfm: cipher handle
1549  * @key: buffer holding the key
1550  * @keylen: length of the key in bytes
1551  *
1552  * The caller provided key is set for the single block cipher referenced by the
1553  * cipher handle.
1554  *
1555  * Note, the key length determines the cipher type. Many block ciphers implement
1556  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1557  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1558  * is performed.
1559  *
1560  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1561  */
crypto_cipher_setkey(struct crypto_cipher * tfm,const u8 * key,unsigned int keylen)1562 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1563                                        const u8 *key, unsigned int keylen)
1564 {
1565 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1566 						  key, keylen);
1567 }
1568 
1569 /**
1570  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1571  * @tfm: cipher handle
1572  * @dst: points to the buffer that will be filled with the ciphertext
1573  * @src: buffer holding the plaintext to be encrypted
1574  *
1575  * Invoke the encryption operation of one block. The caller must ensure that
1576  * the plaintext and ciphertext buffers are at least one block in size.
1577  */
crypto_cipher_encrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1578 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1579 					     u8 *dst, const u8 *src)
1580 {
1581 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1582 						dst, src);
1583 }
1584 
1585 /**
1586  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1587  * @tfm: cipher handle
1588  * @dst: points to the buffer that will be filled with the plaintext
1589  * @src: buffer holding the ciphertext to be decrypted
1590  *
1591  * Invoke the decryption operation of one block. The caller must ensure that
1592  * the plaintext and ciphertext buffers are at least one block in size.
1593  */
crypto_cipher_decrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1594 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1595 					     u8 *dst, const u8 *src)
1596 {
1597 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1598 						dst, src);
1599 }
1600 
__crypto_comp_cast(struct crypto_tfm * tfm)1601 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1602 {
1603 	return (struct crypto_comp *)tfm;
1604 }
1605 
crypto_comp_cast(struct crypto_tfm * tfm)1606 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1607 {
1608 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1609 	       CRYPTO_ALG_TYPE_MASK);
1610 	return __crypto_comp_cast(tfm);
1611 }
1612 
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)1613 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1614 						    u32 type, u32 mask)
1615 {
1616 	type &= ~CRYPTO_ALG_TYPE_MASK;
1617 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1618 	mask |= CRYPTO_ALG_TYPE_MASK;
1619 
1620 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1621 }
1622 
crypto_comp_tfm(struct crypto_comp * tfm)1623 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1624 {
1625 	return &tfm->base;
1626 }
1627 
crypto_free_comp(struct crypto_comp * tfm)1628 static inline void crypto_free_comp(struct crypto_comp *tfm)
1629 {
1630 	crypto_free_tfm(crypto_comp_tfm(tfm));
1631 }
1632 
crypto_has_comp(const char * alg_name,u32 type,u32 mask)1633 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1634 {
1635 	type &= ~CRYPTO_ALG_TYPE_MASK;
1636 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1637 	mask |= CRYPTO_ALG_TYPE_MASK;
1638 
1639 	return crypto_has_alg(alg_name, type, mask);
1640 }
1641 
crypto_comp_name(struct crypto_comp * tfm)1642 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1643 {
1644 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1645 }
1646 
crypto_comp_crt(struct crypto_comp * tfm)1647 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1648 {
1649 	return &crypto_comp_tfm(tfm)->crt_compress;
1650 }
1651 
crypto_comp_compress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1652 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1653                                        const u8 *src, unsigned int slen,
1654                                        u8 *dst, unsigned int *dlen)
1655 {
1656 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1657 						  src, slen, dst, dlen);
1658 }
1659 
crypto_comp_decompress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1660 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1661                                          const u8 *src, unsigned int slen,
1662                                          u8 *dst, unsigned int *dlen)
1663 {
1664 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1665 						    src, slen, dst, dlen);
1666 }
1667 
1668 #endif	/* _LINUX_CRYPTO_H */
1669 
1670