1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28
29 /*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38 #define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
42 /*
43 * Algorithm masks and types.
44 */
45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
53 #define CRYPTO_ALG_TYPE_KPP 0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
62
63 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
67
68 #define CRYPTO_ALG_LARVAL 0x00000010
69 #define CRYPTO_ALG_DEAD 0x00000020
70 #define CRYPTO_ALG_DYING 0x00000040
71 #define CRYPTO_ALG_ASYNC 0x00000080
72
73 /*
74 * Set this bit if and only if the algorithm requires another algorithm of
75 * the same type to handle corner cases.
76 */
77 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
78
79 /*
80 * This bit is set for symmetric key ciphers that have already been wrapped
81 * with a generic IV generator to prevent them from being wrapped again.
82 */
83 #define CRYPTO_ALG_GENIV 0x00000200
84
85 /*
86 * Set if the algorithm has passed automated run-time testing. Note that
87 * if there is no run-time testing for a given algorithm it is considered
88 * to have passed.
89 */
90
91 #define CRYPTO_ALG_TESTED 0x00000400
92
93 /*
94 * Set if the algorithm is an instance that is built from templates.
95 */
96 #define CRYPTO_ALG_INSTANCE 0x00000800
97
98 /* Set this bit if the algorithm provided is hardware accelerated but
99 * not available to userspace via instruction set or so.
100 */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
102
103 /*
104 * Mark a cipher as a service implementation only usable by another
105 * cipher and never by a normal user of the kernel crypto API
106 */
107 #define CRYPTO_ALG_INTERNAL 0x00002000
108
109 /*
110 * Set if the algorithm has a ->setkey() method but can be used without
111 * calling it first, i.e. there is a default key.
112 */
113 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
114
115 /*
116 * Don't trigger module loading
117 */
118 #define CRYPTO_NOLOAD 0x00008000
119
120 /*
121 * Transform masks and values (for crt_flags).
122 */
123 #define CRYPTO_TFM_NEED_KEY 0x00000001
124
125 #define CRYPTO_TFM_REQ_MASK 0x000fff00
126 #define CRYPTO_TFM_RES_MASK 0xfff00000
127
128 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
129 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
130 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
131 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
132 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
135 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
136
137 /*
138 * Miscellaneous stuff.
139 */
140 #define CRYPTO_MAX_ALG_NAME 128
141
142 /*
143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144 * declaration) is used to ensure that the crypto_tfm context structure is
145 * aligned correctly for the given architecture so that there are no alignment
146 * faults for C data types. In particular, this is required on platforms such
147 * as arm where pointers are 32-bit aligned but there are data types such as
148 * u64 which require 64-bit alignment.
149 */
150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
151
152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
153
154 struct scatterlist;
155 struct crypto_ablkcipher;
156 struct crypto_async_request;
157 struct crypto_blkcipher;
158 struct crypto_tfm;
159 struct crypto_type;
160 struct skcipher_givcrypt_request;
161
162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163
164 /**
165 * DOC: Block Cipher Context Data Structures
166 *
167 * These data structures define the operating context for each block cipher
168 * type.
169 */
170
171 struct crypto_async_request {
172 struct list_head list;
173 crypto_completion_t complete;
174 void *data;
175 struct crypto_tfm *tfm;
176
177 u32 flags;
178 };
179
180 struct ablkcipher_request {
181 struct crypto_async_request base;
182
183 unsigned int nbytes;
184
185 void *info;
186
187 struct scatterlist *src;
188 struct scatterlist *dst;
189
190 void *__ctx[] CRYPTO_MINALIGN_ATTR;
191 };
192
193 struct blkcipher_desc {
194 struct crypto_blkcipher *tfm;
195 void *info;
196 u32 flags;
197 };
198
199 struct cipher_desc {
200 struct crypto_tfm *tfm;
201 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
202 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 const u8 *src, unsigned int nbytes);
204 void *info;
205 };
206
207 /**
208 * DOC: Block Cipher Algorithm Definitions
209 *
210 * These data structures define modular crypto algorithm implementations,
211 * managed via crypto_register_alg() and crypto_unregister_alg().
212 */
213
214 /**
215 * struct ablkcipher_alg - asynchronous block cipher definition
216 * @min_keysize: Minimum key size supported by the transformation. This is the
217 * smallest key length supported by this transformation algorithm.
218 * This must be set to one of the pre-defined values as this is
219 * not hardware specific. Possible values for this field can be
220 * found via git grep "_MIN_KEY_SIZE" include/crypto/
221 * @max_keysize: Maximum key size supported by the transformation. This is the
222 * largest key length supported by this transformation algorithm.
223 * This must be set to one of the pre-defined values as this is
224 * not hardware specific. Possible values for this field can be
225 * found via git grep "_MAX_KEY_SIZE" include/crypto/
226 * @setkey: Set key for the transformation. This function is used to either
227 * program a supplied key into the hardware or store the key in the
228 * transformation context for programming it later. Note that this
229 * function does modify the transformation context. This function can
230 * be called multiple times during the existence of the transformation
231 * object, so one must make sure the key is properly reprogrammed into
232 * the hardware. This function is also responsible for checking the key
233 * length for validity. In case a software fallback was put in place in
234 * the @cra_init call, this function might need to use the fallback if
235 * the algorithm doesn't support all of the key sizes.
236 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237 * the supplied scatterlist containing the blocks of data. The crypto
238 * API consumer is responsible for aligning the entries of the
239 * scatterlist properly and making sure the chunks are correctly
240 * sized. In case a software fallback was put in place in the
241 * @cra_init call, this function might need to use the fallback if
242 * the algorithm doesn't support all of the key sizes. In case the
243 * key was stored in transformation context, the key might need to be
244 * re-programmed into the hardware in this function. This function
245 * shall not modify the transformation context, as this function may
246 * be called in parallel with the same transformation object.
247 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248 * and the conditions are exactly the same.
249 * @givencrypt: Update the IV for encryption. With this function, a cipher
250 * implementation may provide the function on how to update the IV
251 * for encryption.
252 * @givdecrypt: Update the IV for decryption. This is the reverse of
253 * @givencrypt .
254 * @geniv: The transformation implementation may use an "IV generator" provided
255 * by the kernel crypto API. Several use cases have a predefined
256 * approach how IVs are to be updated. For such use cases, the kernel
257 * crypto API provides ready-to-use implementations that can be
258 * referenced with this variable.
259 * @ivsize: IV size applicable for transformation. The consumer must provide an
260 * IV of exactly that size to perform the encrypt or decrypt operation.
261 *
262 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263 * mandatory and must be filled.
264 */
265 struct ablkcipher_alg {
266 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 unsigned int keylen);
268 int (*encrypt)(struct ablkcipher_request *req);
269 int (*decrypt)(struct ablkcipher_request *req);
270 int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
272
273 const char *geniv;
274
275 unsigned int min_keysize;
276 unsigned int max_keysize;
277 unsigned int ivsize;
278 };
279
280 /**
281 * struct blkcipher_alg - synchronous block cipher definition
282 * @min_keysize: see struct ablkcipher_alg
283 * @max_keysize: see struct ablkcipher_alg
284 * @setkey: see struct ablkcipher_alg
285 * @encrypt: see struct ablkcipher_alg
286 * @decrypt: see struct ablkcipher_alg
287 * @geniv: see struct ablkcipher_alg
288 * @ivsize: see struct ablkcipher_alg
289 *
290 * All fields except @geniv and @ivsize are mandatory and must be filled.
291 */
292 struct blkcipher_alg {
293 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 unsigned int keylen);
295 int (*encrypt)(struct blkcipher_desc *desc,
296 struct scatterlist *dst, struct scatterlist *src,
297 unsigned int nbytes);
298 int (*decrypt)(struct blkcipher_desc *desc,
299 struct scatterlist *dst, struct scatterlist *src,
300 unsigned int nbytes);
301
302 const char *geniv;
303
304 unsigned int min_keysize;
305 unsigned int max_keysize;
306 unsigned int ivsize;
307 };
308
309 /**
310 * struct cipher_alg - single-block symmetric ciphers definition
311 * @cia_min_keysize: Minimum key size supported by the transformation. This is
312 * the smallest key length supported by this transformation
313 * algorithm. This must be set to one of the pre-defined
314 * values as this is not hardware specific. Possible values
315 * for this field can be found via git grep "_MIN_KEY_SIZE"
316 * include/crypto/
317 * @cia_max_keysize: Maximum key size supported by the transformation. This is
318 * the largest key length supported by this transformation
319 * algorithm. This must be set to one of the pre-defined values
320 * as this is not hardware specific. Possible values for this
321 * field can be found via git grep "_MAX_KEY_SIZE"
322 * include/crypto/
323 * @cia_setkey: Set key for the transformation. This function is used to either
324 * program a supplied key into the hardware or store the key in the
325 * transformation context for programming it later. Note that this
326 * function does modify the transformation context. This function
327 * can be called multiple times during the existence of the
328 * transformation object, so one must make sure the key is properly
329 * reprogrammed into the hardware. This function is also
330 * responsible for checking the key length for validity.
331 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332 * single block of data, which must be @cra_blocksize big. This
333 * always operates on a full @cra_blocksize and it is not possible
334 * to encrypt a block of smaller size. The supplied buffers must
335 * therefore also be at least of @cra_blocksize size. Both the
336 * input and output buffers are always aligned to @cra_alignmask.
337 * In case either of the input or output buffer supplied by user
338 * of the crypto API is not aligned to @cra_alignmask, the crypto
339 * API will re-align the buffers. The re-alignment means that a
340 * new buffer will be allocated, the data will be copied into the
341 * new buffer, then the processing will happen on the new buffer,
342 * then the data will be copied back into the original buffer and
343 * finally the new buffer will be freed. In case a software
344 * fallback was put in place in the @cra_init call, this function
345 * might need to use the fallback if the algorithm doesn't support
346 * all of the key sizes. In case the key was stored in
347 * transformation context, the key might need to be re-programmed
348 * into the hardware in this function. This function shall not
349 * modify the transformation context, as this function may be
350 * called in parallel with the same transformation object.
351 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352 * @cia_encrypt, and the conditions are exactly the same.
353 *
354 * All fields are mandatory and must be filled.
355 */
356 struct cipher_alg {
357 unsigned int cia_min_keysize;
358 unsigned int cia_max_keysize;
359 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
360 unsigned int keylen);
361 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
363 };
364
365 struct compress_alg {
366 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 unsigned int slen, u8 *dst, unsigned int *dlen);
368 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 unsigned int slen, u8 *dst, unsigned int *dlen);
370 };
371
372
373 #define cra_ablkcipher cra_u.ablkcipher
374 #define cra_blkcipher cra_u.blkcipher
375 #define cra_cipher cra_u.cipher
376 #define cra_compress cra_u.compress
377
378 /**
379 * struct crypto_alg - definition of a cryptograpic cipher algorithm
380 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
381 * CRYPTO_ALG_* flags for the flags which go in here. Those are
382 * used for fine-tuning the description of the transformation
383 * algorithm.
384 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
385 * of the smallest possible unit which can be transformed with
386 * this algorithm. The users must respect this value.
387 * In case of HASH transformation, it is possible for a smaller
388 * block than @cra_blocksize to be passed to the crypto API for
389 * transformation, in case of any other transformation type, an
390 * error will be returned upon any attempt to transform smaller
391 * than @cra_blocksize chunks.
392 * @cra_ctxsize: Size of the operational context of the transformation. This
393 * value informs the kernel crypto API about the memory size
394 * needed to be allocated for the transformation context.
395 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
396 * buffer containing the input data for the algorithm must be
397 * aligned to this alignment mask. The data buffer for the
398 * output data must be aligned to this alignment mask. Note that
399 * the Crypto API will do the re-alignment in software, but
400 * only under special conditions and there is a performance hit.
401 * The re-alignment happens at these occasions for different
402 * @cra_u types: cipher -- For both input data and output data
403 * buffer; ahash -- For output hash destination buf; shash --
404 * For output hash destination buf.
405 * This is needed on hardware which is flawed by design and
406 * cannot pick data from arbitrary addresses.
407 * @cra_priority: Priority of this transformation implementation. In case
408 * multiple transformations with same @cra_name are available to
409 * the Crypto API, the kernel will use the one with highest
410 * @cra_priority.
411 * @cra_name: Generic name (usable by multiple implementations) of the
412 * transformation algorithm. This is the name of the transformation
413 * itself. This field is used by the kernel when looking up the
414 * providers of particular transformation.
415 * @cra_driver_name: Unique name of the transformation provider. This is the
416 * name of the provider of the transformation. This can be any
417 * arbitrary value, but in the usual case, this contains the
418 * name of the chip or provider and the name of the
419 * transformation algorithm.
420 * @cra_type: Type of the cryptographic transformation. This is a pointer to
421 * struct crypto_type, which implements callbacks common for all
422 * transformation types. There are multiple options:
423 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
424 * &crypto_ahash_type, &crypto_rng_type.
425 * This field might be empty. In that case, there are no common
426 * callbacks. This is the case for: cipher, compress, shash.
427 * @cra_u: Callbacks implementing the transformation. This is a union of
428 * multiple structures. Depending on the type of transformation selected
429 * by @cra_type and @cra_flags above, the associated structure must be
430 * filled with callbacks. This field might be empty. This is the case
431 * for ahash, shash.
432 * @cra_init: Initialize the cryptographic transformation object. This function
433 * is used to initialize the cryptographic transformation object.
434 * This function is called only once at the instantiation time, right
435 * after the transformation context was allocated. In case the
436 * cryptographic hardware has some special requirements which need to
437 * be handled by software, this function shall check for the precise
438 * requirement of the transformation and put any software fallbacks
439 * in place.
440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441 * counterpart to @cra_init, used to remove various changes set in
442 * @cra_init.
443 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
444 * definition. See @struct @ablkcipher_alg.
445 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
446 * definition See @struct @blkcipher_alg.
447 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
448 * definition. See @struct @cipher_alg.
449 * @cra_u.compress: Union member which contains a (de)compression algorithm.
450 * See @struct @compress_alg.
451 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
452 * @cra_list: internally used
453 * @cra_users: internally used
454 * @cra_refcnt: internally used
455 * @cra_destroy: internally used
456 *
457 * The struct crypto_alg describes a generic Crypto API algorithm and is common
458 * for all of the transformations. Any variable not documented here shall not
459 * be used by a cipher implementation as it is internal to the Crypto API.
460 */
461 struct crypto_alg {
462 struct list_head cra_list;
463 struct list_head cra_users;
464
465 u32 cra_flags;
466 unsigned int cra_blocksize;
467 unsigned int cra_ctxsize;
468 unsigned int cra_alignmask;
469
470 int cra_priority;
471 refcount_t cra_refcnt;
472
473 char cra_name[CRYPTO_MAX_ALG_NAME];
474 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
475
476 const struct crypto_type *cra_type;
477
478 union {
479 struct ablkcipher_alg ablkcipher;
480 struct blkcipher_alg blkcipher;
481 struct cipher_alg cipher;
482 struct compress_alg compress;
483 } cra_u;
484
485 int (*cra_init)(struct crypto_tfm *tfm);
486 void (*cra_exit)(struct crypto_tfm *tfm);
487 void (*cra_destroy)(struct crypto_alg *alg);
488
489 struct module *cra_module;
490 } CRYPTO_MINALIGN_ATTR;
491
492 /*
493 * A helper struct for waiting for completion of async crypto ops
494 */
495 struct crypto_wait {
496 struct completion completion;
497 int err;
498 };
499
500 /*
501 * Macro for declaring a crypto op async wait object on stack
502 */
503 #define DECLARE_CRYPTO_WAIT(_wait) \
504 struct crypto_wait _wait = { \
505 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
506
507 /*
508 * Async ops completion helper functioons
509 */
510 void crypto_req_done(struct crypto_async_request *req, int err);
511
crypto_wait_req(int err,struct crypto_wait * wait)512 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
513 {
514 switch (err) {
515 case -EINPROGRESS:
516 case -EBUSY:
517 wait_for_completion(&wait->completion);
518 reinit_completion(&wait->completion);
519 err = wait->err;
520 break;
521 };
522
523 return err;
524 }
525
crypto_init_wait(struct crypto_wait * wait)526 static inline void crypto_init_wait(struct crypto_wait *wait)
527 {
528 init_completion(&wait->completion);
529 }
530
531 /*
532 * Algorithm registration interface.
533 */
534 int crypto_register_alg(struct crypto_alg *alg);
535 int crypto_unregister_alg(struct crypto_alg *alg);
536 int crypto_register_algs(struct crypto_alg *algs, int count);
537 int crypto_unregister_algs(struct crypto_alg *algs, int count);
538
539 /*
540 * Algorithm query interface.
541 */
542 int crypto_has_alg(const char *name, u32 type, u32 mask);
543
544 /*
545 * Transforms: user-instantiated objects which encapsulate algorithms
546 * and core processing logic. Managed via crypto_alloc_*() and
547 * crypto_free_*(), as well as the various helpers below.
548 */
549
550 struct ablkcipher_tfm {
551 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
552 unsigned int keylen);
553 int (*encrypt)(struct ablkcipher_request *req);
554 int (*decrypt)(struct ablkcipher_request *req);
555
556 struct crypto_ablkcipher *base;
557
558 unsigned int ivsize;
559 unsigned int reqsize;
560 };
561
562 struct blkcipher_tfm {
563 void *iv;
564 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
565 unsigned int keylen);
566 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
567 struct scatterlist *src, unsigned int nbytes);
568 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
569 struct scatterlist *src, unsigned int nbytes);
570 };
571
572 struct cipher_tfm {
573 int (*cit_setkey)(struct crypto_tfm *tfm,
574 const u8 *key, unsigned int keylen);
575 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
576 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
577 };
578
579 struct compress_tfm {
580 int (*cot_compress)(struct crypto_tfm *tfm,
581 const u8 *src, unsigned int slen,
582 u8 *dst, unsigned int *dlen);
583 int (*cot_decompress)(struct crypto_tfm *tfm,
584 const u8 *src, unsigned int slen,
585 u8 *dst, unsigned int *dlen);
586 };
587
588 #define crt_ablkcipher crt_u.ablkcipher
589 #define crt_blkcipher crt_u.blkcipher
590 #define crt_cipher crt_u.cipher
591 #define crt_compress crt_u.compress
592
593 struct crypto_tfm {
594
595 u32 crt_flags;
596
597 union {
598 struct ablkcipher_tfm ablkcipher;
599 struct blkcipher_tfm blkcipher;
600 struct cipher_tfm cipher;
601 struct compress_tfm compress;
602 } crt_u;
603
604 void (*exit)(struct crypto_tfm *tfm);
605
606 struct crypto_alg *__crt_alg;
607
608 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
609 };
610
611 struct crypto_ablkcipher {
612 struct crypto_tfm base;
613 };
614
615 struct crypto_blkcipher {
616 struct crypto_tfm base;
617 };
618
619 struct crypto_cipher {
620 struct crypto_tfm base;
621 };
622
623 struct crypto_comp {
624 struct crypto_tfm base;
625 };
626
627 enum {
628 CRYPTOA_UNSPEC,
629 CRYPTOA_ALG,
630 CRYPTOA_TYPE,
631 CRYPTOA_U32,
632 __CRYPTOA_MAX,
633 };
634
635 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
636
637 /* Maximum number of (rtattr) parameters for each template. */
638 #define CRYPTO_MAX_ATTRS 32
639
640 struct crypto_attr_alg {
641 char name[CRYPTO_MAX_ALG_NAME];
642 };
643
644 struct crypto_attr_type {
645 u32 type;
646 u32 mask;
647 };
648
649 struct crypto_attr_u32 {
650 u32 num;
651 };
652
653 /*
654 * Transform user interface.
655 */
656
657 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
658 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
659
crypto_free_tfm(struct crypto_tfm * tfm)660 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
661 {
662 return crypto_destroy_tfm(tfm, tfm);
663 }
664
665 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
666
667 /*
668 * Transform helpers which query the underlying algorithm.
669 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)670 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
671 {
672 return tfm->__crt_alg->cra_name;
673 }
674
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)675 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
676 {
677 return tfm->__crt_alg->cra_driver_name;
678 }
679
crypto_tfm_alg_priority(struct crypto_tfm * tfm)680 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
681 {
682 return tfm->__crt_alg->cra_priority;
683 }
684
crypto_tfm_alg_type(struct crypto_tfm * tfm)685 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
686 {
687 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
688 }
689
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)690 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
691 {
692 return tfm->__crt_alg->cra_blocksize;
693 }
694
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)695 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
696 {
697 return tfm->__crt_alg->cra_alignmask;
698 }
699
crypto_tfm_get_flags(struct crypto_tfm * tfm)700 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
701 {
702 return tfm->crt_flags;
703 }
704
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)705 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
706 {
707 tfm->crt_flags |= flags;
708 }
709
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)710 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
711 {
712 tfm->crt_flags &= ~flags;
713 }
714
crypto_tfm_ctx(struct crypto_tfm * tfm)715 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
716 {
717 return tfm->__crt_ctx;
718 }
719
crypto_tfm_ctx_alignment(void)720 static inline unsigned int crypto_tfm_ctx_alignment(void)
721 {
722 struct crypto_tfm *tfm;
723 return __alignof__(tfm->__crt_ctx);
724 }
725
726 /*
727 * API wrappers.
728 */
__crypto_ablkcipher_cast(struct crypto_tfm * tfm)729 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
730 struct crypto_tfm *tfm)
731 {
732 return (struct crypto_ablkcipher *)tfm;
733 }
734
crypto_skcipher_type(u32 type)735 static inline u32 crypto_skcipher_type(u32 type)
736 {
737 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
738 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
739 return type;
740 }
741
crypto_skcipher_mask(u32 mask)742 static inline u32 crypto_skcipher_mask(u32 mask)
743 {
744 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
745 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
746 return mask;
747 }
748
749 /**
750 * DOC: Asynchronous Block Cipher API
751 *
752 * Asynchronous block cipher API is used with the ciphers of type
753 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
754 *
755 * Asynchronous cipher operations imply that the function invocation for a
756 * cipher request returns immediately before the completion of the operation.
757 * The cipher request is scheduled as a separate kernel thread and therefore
758 * load-balanced on the different CPUs via the process scheduler. To allow
759 * the kernel crypto API to inform the caller about the completion of a cipher
760 * request, the caller must provide a callback function. That function is
761 * invoked with the cipher handle when the request completes.
762 *
763 * To support the asynchronous operation, additional information than just the
764 * cipher handle must be supplied to the kernel crypto API. That additional
765 * information is given by filling in the ablkcipher_request data structure.
766 *
767 * For the asynchronous block cipher API, the state is maintained with the tfm
768 * cipher handle. A single tfm can be used across multiple calls and in
769 * parallel. For asynchronous block cipher calls, context data supplied and
770 * only used by the caller can be referenced the request data structure in
771 * addition to the IV used for the cipher request. The maintenance of such
772 * state information would be important for a crypto driver implementer to
773 * have, because when calling the callback function upon completion of the
774 * cipher operation, that callback function may need some information about
775 * which operation just finished if it invoked multiple in parallel. This
776 * state information is unused by the kernel crypto API.
777 */
778
crypto_ablkcipher_tfm(struct crypto_ablkcipher * tfm)779 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
780 struct crypto_ablkcipher *tfm)
781 {
782 return &tfm->base;
783 }
784
785 /**
786 * crypto_free_ablkcipher() - zeroize and free cipher handle
787 * @tfm: cipher handle to be freed
788 */
crypto_free_ablkcipher(struct crypto_ablkcipher * tfm)789 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
790 {
791 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
792 }
793
794 /**
795 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
796 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
797 * ablkcipher
798 * @type: specifies the type of the cipher
799 * @mask: specifies the mask for the cipher
800 *
801 * Return: true when the ablkcipher is known to the kernel crypto API; false
802 * otherwise
803 */
crypto_has_ablkcipher(const char * alg_name,u32 type,u32 mask)804 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
805 u32 mask)
806 {
807 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
808 crypto_skcipher_mask(mask));
809 }
810
crypto_ablkcipher_crt(struct crypto_ablkcipher * tfm)811 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
812 struct crypto_ablkcipher *tfm)
813 {
814 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
815 }
816
817 /**
818 * crypto_ablkcipher_ivsize() - obtain IV size
819 * @tfm: cipher handle
820 *
821 * The size of the IV for the ablkcipher referenced by the cipher handle is
822 * returned. This IV size may be zero if the cipher does not need an IV.
823 *
824 * Return: IV size in bytes
825 */
crypto_ablkcipher_ivsize(struct crypto_ablkcipher * tfm)826 static inline unsigned int crypto_ablkcipher_ivsize(
827 struct crypto_ablkcipher *tfm)
828 {
829 return crypto_ablkcipher_crt(tfm)->ivsize;
830 }
831
832 /**
833 * crypto_ablkcipher_blocksize() - obtain block size of cipher
834 * @tfm: cipher handle
835 *
836 * The block size for the ablkcipher referenced with the cipher handle is
837 * returned. The caller may use that information to allocate appropriate
838 * memory for the data returned by the encryption or decryption operation
839 *
840 * Return: block size of cipher
841 */
crypto_ablkcipher_blocksize(struct crypto_ablkcipher * tfm)842 static inline unsigned int crypto_ablkcipher_blocksize(
843 struct crypto_ablkcipher *tfm)
844 {
845 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
846 }
847
crypto_ablkcipher_alignmask(struct crypto_ablkcipher * tfm)848 static inline unsigned int crypto_ablkcipher_alignmask(
849 struct crypto_ablkcipher *tfm)
850 {
851 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
852 }
853
crypto_ablkcipher_get_flags(struct crypto_ablkcipher * tfm)854 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
855 {
856 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
857 }
858
crypto_ablkcipher_set_flags(struct crypto_ablkcipher * tfm,u32 flags)859 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
860 u32 flags)
861 {
862 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
863 }
864
crypto_ablkcipher_clear_flags(struct crypto_ablkcipher * tfm,u32 flags)865 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
866 u32 flags)
867 {
868 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
869 }
870
871 /**
872 * crypto_ablkcipher_setkey() - set key for cipher
873 * @tfm: cipher handle
874 * @key: buffer holding the key
875 * @keylen: length of the key in bytes
876 *
877 * The caller provided key is set for the ablkcipher referenced by the cipher
878 * handle.
879 *
880 * Note, the key length determines the cipher type. Many block ciphers implement
881 * different cipher modes depending on the key size, such as AES-128 vs AES-192
882 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
883 * is performed.
884 *
885 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
886 */
crypto_ablkcipher_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)887 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
888 const u8 *key, unsigned int keylen)
889 {
890 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
891
892 return crt->setkey(crt->base, key, keylen);
893 }
894
895 /**
896 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
897 * @req: ablkcipher_request out of which the cipher handle is to be obtained
898 *
899 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
900 * data structure.
901 *
902 * Return: crypto_ablkcipher handle
903 */
crypto_ablkcipher_reqtfm(struct ablkcipher_request * req)904 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
905 struct ablkcipher_request *req)
906 {
907 return __crypto_ablkcipher_cast(req->base.tfm);
908 }
909
910 /**
911 * crypto_ablkcipher_encrypt() - encrypt plaintext
912 * @req: reference to the ablkcipher_request handle that holds all information
913 * needed to perform the cipher operation
914 *
915 * Encrypt plaintext data using the ablkcipher_request handle. That data
916 * structure and how it is filled with data is discussed with the
917 * ablkcipher_request_* functions.
918 *
919 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
920 */
crypto_ablkcipher_encrypt(struct ablkcipher_request * req)921 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
922 {
923 struct ablkcipher_tfm *crt =
924 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
925 return crt->encrypt(req);
926 }
927
928 /**
929 * crypto_ablkcipher_decrypt() - decrypt ciphertext
930 * @req: reference to the ablkcipher_request handle that holds all information
931 * needed to perform the cipher operation
932 *
933 * Decrypt ciphertext data using the ablkcipher_request handle. That data
934 * structure and how it is filled with data is discussed with the
935 * ablkcipher_request_* functions.
936 *
937 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
938 */
crypto_ablkcipher_decrypt(struct ablkcipher_request * req)939 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
940 {
941 struct ablkcipher_tfm *crt =
942 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
943 return crt->decrypt(req);
944 }
945
946 /**
947 * DOC: Asynchronous Cipher Request Handle
948 *
949 * The ablkcipher_request data structure contains all pointers to data
950 * required for the asynchronous cipher operation. This includes the cipher
951 * handle (which can be used by multiple ablkcipher_request instances), pointer
952 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
953 * as a handle to the ablkcipher_request_* API calls in a similar way as
954 * ablkcipher handle to the crypto_ablkcipher_* API calls.
955 */
956
957 /**
958 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
959 * @tfm: cipher handle
960 *
961 * Return: number of bytes
962 */
crypto_ablkcipher_reqsize(struct crypto_ablkcipher * tfm)963 static inline unsigned int crypto_ablkcipher_reqsize(
964 struct crypto_ablkcipher *tfm)
965 {
966 return crypto_ablkcipher_crt(tfm)->reqsize;
967 }
968
969 /**
970 * ablkcipher_request_set_tfm() - update cipher handle reference in request
971 * @req: request handle to be modified
972 * @tfm: cipher handle that shall be added to the request handle
973 *
974 * Allow the caller to replace the existing ablkcipher handle in the request
975 * data structure with a different one.
976 */
ablkcipher_request_set_tfm(struct ablkcipher_request * req,struct crypto_ablkcipher * tfm)977 static inline void ablkcipher_request_set_tfm(
978 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
979 {
980 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
981 }
982
ablkcipher_request_cast(struct crypto_async_request * req)983 static inline struct ablkcipher_request *ablkcipher_request_cast(
984 struct crypto_async_request *req)
985 {
986 return container_of(req, struct ablkcipher_request, base);
987 }
988
989 /**
990 * ablkcipher_request_alloc() - allocate request data structure
991 * @tfm: cipher handle to be registered with the request
992 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
993 *
994 * Allocate the request data structure that must be used with the ablkcipher
995 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
996 * handle is registered in the request data structure.
997 *
998 * Return: allocated request handle in case of success, or NULL if out of memory
999 */
ablkcipher_request_alloc(struct crypto_ablkcipher * tfm,gfp_t gfp)1000 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1001 struct crypto_ablkcipher *tfm, gfp_t gfp)
1002 {
1003 struct ablkcipher_request *req;
1004
1005 req = kmalloc(sizeof(struct ablkcipher_request) +
1006 crypto_ablkcipher_reqsize(tfm), gfp);
1007
1008 if (likely(req))
1009 ablkcipher_request_set_tfm(req, tfm);
1010
1011 return req;
1012 }
1013
1014 /**
1015 * ablkcipher_request_free() - zeroize and free request data structure
1016 * @req: request data structure cipher handle to be freed
1017 */
ablkcipher_request_free(struct ablkcipher_request * req)1018 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1019 {
1020 kzfree(req);
1021 }
1022
1023 /**
1024 * ablkcipher_request_set_callback() - set asynchronous callback function
1025 * @req: request handle
1026 * @flags: specify zero or an ORing of the flags
1027 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1028 * increase the wait queue beyond the initial maximum size;
1029 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1030 * @compl: callback function pointer to be registered with the request handle
1031 * @data: The data pointer refers to memory that is not used by the kernel
1032 * crypto API, but provided to the callback function for it to use. Here,
1033 * the caller can provide a reference to memory the callback function can
1034 * operate on. As the callback function is invoked asynchronously to the
1035 * related functionality, it may need to access data structures of the
1036 * related functionality which can be referenced using this pointer. The
1037 * callback function can access the memory via the "data" field in the
1038 * crypto_async_request data structure provided to the callback function.
1039 *
1040 * This function allows setting the callback function that is triggered once the
1041 * cipher operation completes.
1042 *
1043 * The callback function is registered with the ablkcipher_request handle and
1044 * must comply with the following template::
1045 *
1046 * void callback_function(struct crypto_async_request *req, int error)
1047 */
ablkcipher_request_set_callback(struct ablkcipher_request * req,u32 flags,crypto_completion_t compl,void * data)1048 static inline void ablkcipher_request_set_callback(
1049 struct ablkcipher_request *req,
1050 u32 flags, crypto_completion_t compl, void *data)
1051 {
1052 req->base.complete = compl;
1053 req->base.data = data;
1054 req->base.flags = flags;
1055 }
1056
1057 /**
1058 * ablkcipher_request_set_crypt() - set data buffers
1059 * @req: request handle
1060 * @src: source scatter / gather list
1061 * @dst: destination scatter / gather list
1062 * @nbytes: number of bytes to process from @src
1063 * @iv: IV for the cipher operation which must comply with the IV size defined
1064 * by crypto_ablkcipher_ivsize
1065 *
1066 * This function allows setting of the source data and destination data
1067 * scatter / gather lists.
1068 *
1069 * For encryption, the source is treated as the plaintext and the
1070 * destination is the ciphertext. For a decryption operation, the use is
1071 * reversed - the source is the ciphertext and the destination is the plaintext.
1072 */
ablkcipher_request_set_crypt(struct ablkcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * iv)1073 static inline void ablkcipher_request_set_crypt(
1074 struct ablkcipher_request *req,
1075 struct scatterlist *src, struct scatterlist *dst,
1076 unsigned int nbytes, void *iv)
1077 {
1078 req->src = src;
1079 req->dst = dst;
1080 req->nbytes = nbytes;
1081 req->info = iv;
1082 }
1083
1084 /**
1085 * DOC: Synchronous Block Cipher API
1086 *
1087 * The synchronous block cipher API is used with the ciphers of type
1088 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1089 *
1090 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1091 * used in multiple calls and in parallel, this info should not be changeable
1092 * (unless a lock is used). This applies, for example, to the symmetric key.
1093 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1094 * structure for synchronous blkcipher api. So, its the only state info that can
1095 * be kept for synchronous calls without using a big lock across a tfm.
1096 *
1097 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1098 * consisting of a template (a block chaining mode) and a single block cipher
1099 * primitive (e.g. AES).
1100 *
1101 * The plaintext data buffer and the ciphertext data buffer are pointed to
1102 * by using scatter/gather lists. The cipher operation is performed
1103 * on all segments of the provided scatter/gather lists.
1104 *
1105 * The kernel crypto API supports a cipher operation "in-place" which means that
1106 * the caller may provide the same scatter/gather list for the plaintext and
1107 * cipher text. After the completion of the cipher operation, the plaintext
1108 * data is replaced with the ciphertext data in case of an encryption and vice
1109 * versa for a decryption. The caller must ensure that the scatter/gather lists
1110 * for the output data point to sufficiently large buffers, i.e. multiples of
1111 * the block size of the cipher.
1112 */
1113
__crypto_blkcipher_cast(struct crypto_tfm * tfm)1114 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1115 struct crypto_tfm *tfm)
1116 {
1117 return (struct crypto_blkcipher *)tfm;
1118 }
1119
crypto_blkcipher_cast(struct crypto_tfm * tfm)1120 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1121 struct crypto_tfm *tfm)
1122 {
1123 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1124 return __crypto_blkcipher_cast(tfm);
1125 }
1126
1127 /**
1128 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1129 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1130 * blkcipher cipher
1131 * @type: specifies the type of the cipher
1132 * @mask: specifies the mask for the cipher
1133 *
1134 * Allocate a cipher handle for a block cipher. The returned struct
1135 * crypto_blkcipher is the cipher handle that is required for any subsequent
1136 * API invocation for that block cipher.
1137 *
1138 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1139 * of an error, PTR_ERR() returns the error code.
1140 */
crypto_alloc_blkcipher(const char * alg_name,u32 type,u32 mask)1141 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1142 const char *alg_name, u32 type, u32 mask)
1143 {
1144 type &= ~CRYPTO_ALG_TYPE_MASK;
1145 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1146 mask |= CRYPTO_ALG_TYPE_MASK;
1147
1148 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1149 }
1150
crypto_blkcipher_tfm(struct crypto_blkcipher * tfm)1151 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1152 struct crypto_blkcipher *tfm)
1153 {
1154 return &tfm->base;
1155 }
1156
1157 /**
1158 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1159 * @tfm: cipher handle to be freed
1160 */
crypto_free_blkcipher(struct crypto_blkcipher * tfm)1161 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1162 {
1163 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1164 }
1165
1166 /**
1167 * crypto_has_blkcipher() - Search for the availability of a block cipher
1168 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1169 * block cipher
1170 * @type: specifies the type of the cipher
1171 * @mask: specifies the mask for the cipher
1172 *
1173 * Return: true when the block cipher is known to the kernel crypto API; false
1174 * otherwise
1175 */
crypto_has_blkcipher(const char * alg_name,u32 type,u32 mask)1176 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1177 {
1178 type &= ~CRYPTO_ALG_TYPE_MASK;
1179 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1180 mask |= CRYPTO_ALG_TYPE_MASK;
1181
1182 return crypto_has_alg(alg_name, type, mask);
1183 }
1184
1185 /**
1186 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1187 * @tfm: cipher handle
1188 *
1189 * Return: The character string holding the name of the cipher
1190 */
crypto_blkcipher_name(struct crypto_blkcipher * tfm)1191 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1192 {
1193 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1194 }
1195
crypto_blkcipher_crt(struct crypto_blkcipher * tfm)1196 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1197 struct crypto_blkcipher *tfm)
1198 {
1199 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1200 }
1201
crypto_blkcipher_alg(struct crypto_blkcipher * tfm)1202 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1203 struct crypto_blkcipher *tfm)
1204 {
1205 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1206 }
1207
1208 /**
1209 * crypto_blkcipher_ivsize() - obtain IV size
1210 * @tfm: cipher handle
1211 *
1212 * The size of the IV for the block cipher referenced by the cipher handle is
1213 * returned. This IV size may be zero if the cipher does not need an IV.
1214 *
1215 * Return: IV size in bytes
1216 */
crypto_blkcipher_ivsize(struct crypto_blkcipher * tfm)1217 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1218 {
1219 return crypto_blkcipher_alg(tfm)->ivsize;
1220 }
1221
1222 /**
1223 * crypto_blkcipher_blocksize() - obtain block size of cipher
1224 * @tfm: cipher handle
1225 *
1226 * The block size for the block cipher referenced with the cipher handle is
1227 * returned. The caller may use that information to allocate appropriate
1228 * memory for the data returned by the encryption or decryption operation.
1229 *
1230 * Return: block size of cipher
1231 */
crypto_blkcipher_blocksize(struct crypto_blkcipher * tfm)1232 static inline unsigned int crypto_blkcipher_blocksize(
1233 struct crypto_blkcipher *tfm)
1234 {
1235 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1236 }
1237
crypto_blkcipher_alignmask(struct crypto_blkcipher * tfm)1238 static inline unsigned int crypto_blkcipher_alignmask(
1239 struct crypto_blkcipher *tfm)
1240 {
1241 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1242 }
1243
crypto_blkcipher_get_flags(struct crypto_blkcipher * tfm)1244 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1245 {
1246 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1247 }
1248
crypto_blkcipher_set_flags(struct crypto_blkcipher * tfm,u32 flags)1249 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1250 u32 flags)
1251 {
1252 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1253 }
1254
crypto_blkcipher_clear_flags(struct crypto_blkcipher * tfm,u32 flags)1255 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1256 u32 flags)
1257 {
1258 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1259 }
1260
1261 /**
1262 * crypto_blkcipher_setkey() - set key for cipher
1263 * @tfm: cipher handle
1264 * @key: buffer holding the key
1265 * @keylen: length of the key in bytes
1266 *
1267 * The caller provided key is set for the block cipher referenced by the cipher
1268 * handle.
1269 *
1270 * Note, the key length determines the cipher type. Many block ciphers implement
1271 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1272 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1273 * is performed.
1274 *
1275 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1276 */
crypto_blkcipher_setkey(struct crypto_blkcipher * tfm,const u8 * key,unsigned int keylen)1277 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1278 const u8 *key, unsigned int keylen)
1279 {
1280 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1281 key, keylen);
1282 }
1283
1284 /**
1285 * crypto_blkcipher_encrypt() - encrypt plaintext
1286 * @desc: reference to the block cipher handle with meta data
1287 * @dst: scatter/gather list that is filled by the cipher operation with the
1288 * ciphertext
1289 * @src: scatter/gather list that holds the plaintext
1290 * @nbytes: number of bytes of the plaintext to encrypt.
1291 *
1292 * Encrypt plaintext data using the IV set by the caller with a preceding
1293 * call of crypto_blkcipher_set_iv.
1294 *
1295 * The blkcipher_desc data structure must be filled by the caller and can
1296 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1297 * with the block cipher handle; desc.flags is filled with either
1298 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1299 *
1300 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1301 */
crypto_blkcipher_encrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1302 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1303 struct scatterlist *dst,
1304 struct scatterlist *src,
1305 unsigned int nbytes)
1306 {
1307 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1308 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1309 }
1310
1311 /**
1312 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1313 * @desc: reference to the block cipher handle with meta data
1314 * @dst: scatter/gather list that is filled by the cipher operation with the
1315 * ciphertext
1316 * @src: scatter/gather list that holds the plaintext
1317 * @nbytes: number of bytes of the plaintext to encrypt.
1318 *
1319 * Encrypt plaintext data with the use of an IV that is solely used for this
1320 * cipher operation. Any previously set IV is not used.
1321 *
1322 * The blkcipher_desc data structure must be filled by the caller and can
1323 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1324 * with the block cipher handle; desc.info is filled with the IV to be used for
1325 * the current operation; desc.flags is filled with either
1326 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1327 *
1328 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1329 */
crypto_blkcipher_encrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1330 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1331 struct scatterlist *dst,
1332 struct scatterlist *src,
1333 unsigned int nbytes)
1334 {
1335 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1336 }
1337
1338 /**
1339 * crypto_blkcipher_decrypt() - decrypt ciphertext
1340 * @desc: reference to the block cipher handle with meta data
1341 * @dst: scatter/gather list that is filled by the cipher operation with the
1342 * plaintext
1343 * @src: scatter/gather list that holds the ciphertext
1344 * @nbytes: number of bytes of the ciphertext to decrypt.
1345 *
1346 * Decrypt ciphertext data using the IV set by the caller with a preceding
1347 * call of crypto_blkcipher_set_iv.
1348 *
1349 * The blkcipher_desc data structure must be filled by the caller as documented
1350 * for the crypto_blkcipher_encrypt call above.
1351 *
1352 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1353 *
1354 */
crypto_blkcipher_decrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1355 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1356 struct scatterlist *dst,
1357 struct scatterlist *src,
1358 unsigned int nbytes)
1359 {
1360 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1361 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1362 }
1363
1364 /**
1365 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1366 * @desc: reference to the block cipher handle with meta data
1367 * @dst: scatter/gather list that is filled by the cipher operation with the
1368 * plaintext
1369 * @src: scatter/gather list that holds the ciphertext
1370 * @nbytes: number of bytes of the ciphertext to decrypt.
1371 *
1372 * Decrypt ciphertext data with the use of an IV that is solely used for this
1373 * cipher operation. Any previously set IV is not used.
1374 *
1375 * The blkcipher_desc data structure must be filled by the caller as documented
1376 * for the crypto_blkcipher_encrypt_iv call above.
1377 *
1378 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1379 */
crypto_blkcipher_decrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1380 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1381 struct scatterlist *dst,
1382 struct scatterlist *src,
1383 unsigned int nbytes)
1384 {
1385 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1386 }
1387
1388 /**
1389 * crypto_blkcipher_set_iv() - set IV for cipher
1390 * @tfm: cipher handle
1391 * @src: buffer holding the IV
1392 * @len: length of the IV in bytes
1393 *
1394 * The caller provided IV is set for the block cipher referenced by the cipher
1395 * handle.
1396 */
crypto_blkcipher_set_iv(struct crypto_blkcipher * tfm,const u8 * src,unsigned int len)1397 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1398 const u8 *src, unsigned int len)
1399 {
1400 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1401 }
1402
1403 /**
1404 * crypto_blkcipher_get_iv() - obtain IV from cipher
1405 * @tfm: cipher handle
1406 * @dst: buffer filled with the IV
1407 * @len: length of the buffer dst
1408 *
1409 * The caller can obtain the IV set for the block cipher referenced by the
1410 * cipher handle and store it into the user-provided buffer. If the buffer
1411 * has an insufficient space, the IV is truncated to fit the buffer.
1412 */
crypto_blkcipher_get_iv(struct crypto_blkcipher * tfm,u8 * dst,unsigned int len)1413 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1414 u8 *dst, unsigned int len)
1415 {
1416 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1417 }
1418
1419 /**
1420 * DOC: Single Block Cipher API
1421 *
1422 * The single block cipher API is used with the ciphers of type
1423 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1424 *
1425 * Using the single block cipher API calls, operations with the basic cipher
1426 * primitive can be implemented. These cipher primitives exclude any block
1427 * chaining operations including IV handling.
1428 *
1429 * The purpose of this single block cipher API is to support the implementation
1430 * of templates or other concepts that only need to perform the cipher operation
1431 * on one block at a time. Templates invoke the underlying cipher primitive
1432 * block-wise and process either the input or the output data of these cipher
1433 * operations.
1434 */
1435
__crypto_cipher_cast(struct crypto_tfm * tfm)1436 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1437 {
1438 return (struct crypto_cipher *)tfm;
1439 }
1440
crypto_cipher_cast(struct crypto_tfm * tfm)1441 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1442 {
1443 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1444 return __crypto_cipher_cast(tfm);
1445 }
1446
1447 /**
1448 * crypto_alloc_cipher() - allocate single block cipher handle
1449 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1450 * single block cipher
1451 * @type: specifies the type of the cipher
1452 * @mask: specifies the mask for the cipher
1453 *
1454 * Allocate a cipher handle for a single block cipher. The returned struct
1455 * crypto_cipher is the cipher handle that is required for any subsequent API
1456 * invocation for that single block cipher.
1457 *
1458 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1459 * of an error, PTR_ERR() returns the error code.
1460 */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)1461 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1462 u32 type, u32 mask)
1463 {
1464 type &= ~CRYPTO_ALG_TYPE_MASK;
1465 type |= CRYPTO_ALG_TYPE_CIPHER;
1466 mask |= CRYPTO_ALG_TYPE_MASK;
1467
1468 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1469 }
1470
crypto_cipher_tfm(struct crypto_cipher * tfm)1471 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1472 {
1473 return &tfm->base;
1474 }
1475
1476 /**
1477 * crypto_free_cipher() - zeroize and free the single block cipher handle
1478 * @tfm: cipher handle to be freed
1479 */
crypto_free_cipher(struct crypto_cipher * tfm)1480 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1481 {
1482 crypto_free_tfm(crypto_cipher_tfm(tfm));
1483 }
1484
1485 /**
1486 * crypto_has_cipher() - Search for the availability of a single block cipher
1487 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1488 * single block cipher
1489 * @type: specifies the type of the cipher
1490 * @mask: specifies the mask for the cipher
1491 *
1492 * Return: true when the single block cipher is known to the kernel crypto API;
1493 * false otherwise
1494 */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)1495 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1496 {
1497 type &= ~CRYPTO_ALG_TYPE_MASK;
1498 type |= CRYPTO_ALG_TYPE_CIPHER;
1499 mask |= CRYPTO_ALG_TYPE_MASK;
1500
1501 return crypto_has_alg(alg_name, type, mask);
1502 }
1503
crypto_cipher_crt(struct crypto_cipher * tfm)1504 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1505 {
1506 return &crypto_cipher_tfm(tfm)->crt_cipher;
1507 }
1508
1509 /**
1510 * crypto_cipher_blocksize() - obtain block size for cipher
1511 * @tfm: cipher handle
1512 *
1513 * The block size for the single block cipher referenced with the cipher handle
1514 * tfm is returned. The caller may use that information to allocate appropriate
1515 * memory for the data returned by the encryption or decryption operation
1516 *
1517 * Return: block size of cipher
1518 */
crypto_cipher_blocksize(struct crypto_cipher * tfm)1519 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1520 {
1521 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1522 }
1523
crypto_cipher_alignmask(struct crypto_cipher * tfm)1524 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1525 {
1526 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1527 }
1528
crypto_cipher_get_flags(struct crypto_cipher * tfm)1529 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1530 {
1531 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1532 }
1533
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)1534 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1535 u32 flags)
1536 {
1537 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1538 }
1539
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)1540 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1541 u32 flags)
1542 {
1543 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1544 }
1545
1546 /**
1547 * crypto_cipher_setkey() - set key for cipher
1548 * @tfm: cipher handle
1549 * @key: buffer holding the key
1550 * @keylen: length of the key in bytes
1551 *
1552 * The caller provided key is set for the single block cipher referenced by the
1553 * cipher handle.
1554 *
1555 * Note, the key length determines the cipher type. Many block ciphers implement
1556 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1557 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1558 * is performed.
1559 *
1560 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1561 */
crypto_cipher_setkey(struct crypto_cipher * tfm,const u8 * key,unsigned int keylen)1562 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1563 const u8 *key, unsigned int keylen)
1564 {
1565 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1566 key, keylen);
1567 }
1568
1569 /**
1570 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1571 * @tfm: cipher handle
1572 * @dst: points to the buffer that will be filled with the ciphertext
1573 * @src: buffer holding the plaintext to be encrypted
1574 *
1575 * Invoke the encryption operation of one block. The caller must ensure that
1576 * the plaintext and ciphertext buffers are at least one block in size.
1577 */
crypto_cipher_encrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1578 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1579 u8 *dst, const u8 *src)
1580 {
1581 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1582 dst, src);
1583 }
1584
1585 /**
1586 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1587 * @tfm: cipher handle
1588 * @dst: points to the buffer that will be filled with the plaintext
1589 * @src: buffer holding the ciphertext to be decrypted
1590 *
1591 * Invoke the decryption operation of one block. The caller must ensure that
1592 * the plaintext and ciphertext buffers are at least one block in size.
1593 */
crypto_cipher_decrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1594 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1595 u8 *dst, const u8 *src)
1596 {
1597 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1598 dst, src);
1599 }
1600
__crypto_comp_cast(struct crypto_tfm * tfm)1601 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1602 {
1603 return (struct crypto_comp *)tfm;
1604 }
1605
crypto_comp_cast(struct crypto_tfm * tfm)1606 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1607 {
1608 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1609 CRYPTO_ALG_TYPE_MASK);
1610 return __crypto_comp_cast(tfm);
1611 }
1612
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)1613 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1614 u32 type, u32 mask)
1615 {
1616 type &= ~CRYPTO_ALG_TYPE_MASK;
1617 type |= CRYPTO_ALG_TYPE_COMPRESS;
1618 mask |= CRYPTO_ALG_TYPE_MASK;
1619
1620 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1621 }
1622
crypto_comp_tfm(struct crypto_comp * tfm)1623 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1624 {
1625 return &tfm->base;
1626 }
1627
crypto_free_comp(struct crypto_comp * tfm)1628 static inline void crypto_free_comp(struct crypto_comp *tfm)
1629 {
1630 crypto_free_tfm(crypto_comp_tfm(tfm));
1631 }
1632
crypto_has_comp(const char * alg_name,u32 type,u32 mask)1633 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1634 {
1635 type &= ~CRYPTO_ALG_TYPE_MASK;
1636 type |= CRYPTO_ALG_TYPE_COMPRESS;
1637 mask |= CRYPTO_ALG_TYPE_MASK;
1638
1639 return crypto_has_alg(alg_name, type, mask);
1640 }
1641
crypto_comp_name(struct crypto_comp * tfm)1642 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1643 {
1644 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1645 }
1646
crypto_comp_crt(struct crypto_comp * tfm)1647 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1648 {
1649 return &crypto_comp_tfm(tfm)->crt_compress;
1650 }
1651
crypto_comp_compress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1652 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1653 const u8 *src, unsigned int slen,
1654 u8 *dst, unsigned int *dlen)
1655 {
1656 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1657 src, slen, dst, dlen);
1658 }
1659
crypto_comp_decompress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1660 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1661 const u8 *src, unsigned int slen,
1662 u8 *dst, unsigned int *dlen)
1663 {
1664 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1665 src, slen, dst, dlen);
1666 }
1667
1668 #endif /* _LINUX_CRYPTO_H */
1669
1670