1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30 #include <linux/rseq.h>
31
32 /* task_struct member predeclarations (sorted alphabetically): */
33 struct audit_context;
34 struct backing_dev_info;
35 struct bio_list;
36 struct blk_plug;
37 struct cfs_rq;
38 struct fs_struct;
39 struct futex_pi_state;
40 struct io_context;
41 struct mempolicy;
42 struct nameidata;
43 struct nsproxy;
44 struct perf_event_context;
45 struct pid_namespace;
46 struct pipe_inode_info;
47 struct rcu_node;
48 struct reclaim_state;
49 struct robust_list_head;
50 struct sched_attr;
51 struct sched_param;
52 struct seq_file;
53 struct sighand_struct;
54 struct signal_struct;
55 struct task_delay_info;
56 struct task_group;
57
58 /*
59 * Task state bitmask. NOTE! These bits are also
60 * encoded in fs/proc/array.c: get_task_state().
61 *
62 * We have two separate sets of flags: task->state
63 * is about runnability, while task->exit_state are
64 * about the task exiting. Confusing, but this way
65 * modifying one set can't modify the other one by
66 * mistake.
67 */
68
69 /* Used in tsk->state: */
70 #define TASK_RUNNING 0x0000
71 #define TASK_INTERRUPTIBLE 0x0001
72 #define TASK_UNINTERRUPTIBLE 0x0002
73 #define __TASK_STOPPED 0x0004
74 #define __TASK_TRACED 0x0008
75 /* Used in tsk->exit_state: */
76 #define EXIT_DEAD 0x0010
77 #define EXIT_ZOMBIE 0x0020
78 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
79 /* Used in tsk->state again: */
80 #define TASK_PARKED 0x0040
81 #define TASK_DEAD 0x0080
82 #define TASK_WAKEKILL 0x0100
83 #define TASK_WAKING 0x0200
84 #define TASK_NOLOAD 0x0400
85 #define TASK_NEW 0x0800
86 #define TASK_STATE_MAX 0x1000
87
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * where wake_up_state() executes a full memory barrier before accessing the
171 * task state.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 extern void scheduler_tick(void);
210
211 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213 extern long schedule_timeout(long timeout);
214 extern long schedule_timeout_interruptible(long timeout);
215 extern long schedule_timeout_killable(long timeout);
216 extern long schedule_timeout_uninterruptible(long timeout);
217 extern long schedule_timeout_idle(long timeout);
218 asmlinkage void schedule(void);
219 extern void schedule_preempt_disabled(void);
220
221 extern int __must_check io_schedule_prepare(void);
222 extern void io_schedule_finish(int token);
223 extern long io_schedule_timeout(long timeout);
224 extern void io_schedule(void);
225
226 /**
227 * struct prev_cputime - snapshot of system and user cputime
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
230 * @lock: protects the above two fields
231 *
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
234 */
235 struct prev_cputime {
236 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
240 #endif
241 };
242
243 /**
244 * struct task_cputime - collected CPU time counts
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 *
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
252 */
253 struct task_cputime {
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
257 };
258
259 /* Alternate field names when used on cache expirations: */
260 #define virt_exp utime
261 #define prof_exp stime
262 #define sched_exp sum_exec_runtime
263
264 enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271 };
272
273 struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
277 u64 utime;
278 u64 stime;
279 u64 gtime;
280 };
281
282 struct sched_info {
283 #ifdef CONFIG_SCHED_INFO
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
299
300 #endif /* CONFIG_SCHED_INFO */
301 };
302
303 /*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
310 # define SCHED_FIXEDPOINT_SHIFT 10
311 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
312
313 struct load_weight {
314 unsigned long weight;
315 u32 inv_weight;
316 };
317
318 /**
319 * struct util_est - Estimation utilization of FAIR tasks
320 * @enqueued: instantaneous estimated utilization of a task/cpu
321 * @ewma: the Exponential Weighted Moving Average (EWMA)
322 * utilization of a task
323 *
324 * Support data structure to track an Exponential Weighted Moving Average
325 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
326 * average each time a task completes an activation. Sample's weight is chosen
327 * so that the EWMA will be relatively insensitive to transient changes to the
328 * task's workload.
329 *
330 * The enqueued attribute has a slightly different meaning for tasks and cpus:
331 * - task: the task's util_avg at last task dequeue time
332 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
333 * Thus, the util_est.enqueued of a task represents the contribution on the
334 * estimated utilization of the CPU where that task is currently enqueued.
335 *
336 * Only for tasks we track a moving average of the past instantaneous
337 * estimated utilization. This allows to absorb sporadic drops in utilization
338 * of an otherwise almost periodic task.
339 */
340 struct util_est {
341 unsigned int enqueued;
342 unsigned int ewma;
343 #define UTIL_EST_WEIGHT_SHIFT 2
344 } __attribute__((__aligned__(sizeof(u64))));
345
346 /*
347 * The load_avg/util_avg accumulates an infinite geometric series
348 * (see __update_load_avg() in kernel/sched/fair.c).
349 *
350 * [load_avg definition]
351 *
352 * load_avg = runnable% * scale_load_down(load)
353 *
354 * where runnable% is the time ratio that a sched_entity is runnable.
355 * For cfs_rq, it is the aggregated load_avg of all runnable and
356 * blocked sched_entities.
357 *
358 * load_avg may also take frequency scaling into account:
359 *
360 * load_avg = runnable% * scale_load_down(load) * freq%
361 *
362 * where freq% is the CPU frequency normalized to the highest frequency.
363 *
364 * [util_avg definition]
365 *
366 * util_avg = running% * SCHED_CAPACITY_SCALE
367 *
368 * where running% is the time ratio that a sched_entity is running on
369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
370 * and blocked sched_entities.
371 *
372 * util_avg may also factor frequency scaling and CPU capacity scaling:
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
375 *
376 * where freq% is the same as above, and capacity% is the CPU capacity
377 * normalized to the greatest capacity (due to uarch differences, etc).
378 *
379 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
380 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
381 * we therefore scale them to as large a range as necessary. This is for
382 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
383 *
384 * [Overflow issue]
385 *
386 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
387 * with the highest load (=88761), always runnable on a single cfs_rq,
388 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 *
390 * For all other cases (including 32-bit kernels), struct load_weight's
391 * weight will overflow first before we do, because:
392 *
393 * Max(load_avg) <= Max(load.weight)
394 *
395 * Then it is the load_weight's responsibility to consider overflow
396 * issues.
397 */
398 struct sched_avg {
399 u64 last_update_time;
400 u64 load_sum;
401 u64 runnable_load_sum;
402 u32 util_sum;
403 u32 period_contrib;
404 unsigned long load_avg;
405 unsigned long runnable_load_avg;
406 unsigned long util_avg;
407 struct util_est util_est;
408 } ____cacheline_aligned;
409
410 struct sched_statistics {
411 #ifdef CONFIG_SCHEDSTATS
412 u64 wait_start;
413 u64 wait_max;
414 u64 wait_count;
415 u64 wait_sum;
416 u64 iowait_count;
417 u64 iowait_sum;
418
419 u64 sleep_start;
420 u64 sleep_max;
421 s64 sum_sleep_runtime;
422
423 u64 block_start;
424 u64 block_max;
425 u64 exec_max;
426 u64 slice_max;
427
428 u64 nr_migrations_cold;
429 u64 nr_failed_migrations_affine;
430 u64 nr_failed_migrations_running;
431 u64 nr_failed_migrations_hot;
432 u64 nr_forced_migrations;
433
434 u64 nr_wakeups;
435 u64 nr_wakeups_sync;
436 u64 nr_wakeups_migrate;
437 u64 nr_wakeups_local;
438 u64 nr_wakeups_remote;
439 u64 nr_wakeups_affine;
440 u64 nr_wakeups_affine_attempts;
441 u64 nr_wakeups_passive;
442 u64 nr_wakeups_idle;
443 #endif
444 };
445
446 struct sched_entity {
447 /* For load-balancing: */
448 struct load_weight load;
449 unsigned long runnable_weight;
450 struct rb_node run_node;
451 struct list_head group_node;
452 unsigned int on_rq;
453
454 u64 exec_start;
455 u64 sum_exec_runtime;
456 u64 vruntime;
457 u64 prev_sum_exec_runtime;
458
459 u64 nr_migrations;
460
461 struct sched_statistics statistics;
462
463 #ifdef CONFIG_FAIR_GROUP_SCHED
464 int depth;
465 struct sched_entity *parent;
466 /* rq on which this entity is (to be) queued: */
467 struct cfs_rq *cfs_rq;
468 /* rq "owned" by this entity/group: */
469 struct cfs_rq *my_q;
470 #endif
471
472 #ifdef CONFIG_SMP
473 /*
474 * Per entity load average tracking.
475 *
476 * Put into separate cache line so it does not
477 * collide with read-mostly values above.
478 */
479 struct sched_avg avg;
480 #endif
481 };
482
483 struct sched_rt_entity {
484 struct list_head run_list;
485 unsigned long timeout;
486 unsigned long watchdog_stamp;
487 unsigned int time_slice;
488 unsigned short on_rq;
489 unsigned short on_list;
490
491 struct sched_rt_entity *back;
492 #ifdef CONFIG_RT_GROUP_SCHED
493 struct sched_rt_entity *parent;
494 /* rq on which this entity is (to be) queued: */
495 struct rt_rq *rt_rq;
496 /* rq "owned" by this entity/group: */
497 struct rt_rq *my_q;
498 #endif
499 } __randomize_layout;
500
501 struct sched_dl_entity {
502 struct rb_node rb_node;
503
504 /*
505 * Original scheduling parameters. Copied here from sched_attr
506 * during sched_setattr(), they will remain the same until
507 * the next sched_setattr().
508 */
509 u64 dl_runtime; /* Maximum runtime for each instance */
510 u64 dl_deadline; /* Relative deadline of each instance */
511 u64 dl_period; /* Separation of two instances (period) */
512 u64 dl_bw; /* dl_runtime / dl_period */
513 u64 dl_density; /* dl_runtime / dl_deadline */
514
515 /*
516 * Actual scheduling parameters. Initialized with the values above,
517 * they are continously updated during task execution. Note that
518 * the remaining runtime could be < 0 in case we are in overrun.
519 */
520 s64 runtime; /* Remaining runtime for this instance */
521 u64 deadline; /* Absolute deadline for this instance */
522 unsigned int flags; /* Specifying the scheduler behaviour */
523
524 /*
525 * Some bool flags:
526 *
527 * @dl_throttled tells if we exhausted the runtime. If so, the
528 * task has to wait for a replenishment to be performed at the
529 * next firing of dl_timer.
530 *
531 * @dl_yielded tells if task gave up the CPU before consuming
532 * all its available runtime during the last job.
533 *
534 * @dl_non_contending tells if the task is inactive while still
535 * contributing to the active utilization. In other words, it
536 * indicates if the inactive timer has been armed and its handler
537 * has not been executed yet. This flag is useful to avoid race
538 * conditions between the inactive timer handler and the wakeup
539 * code.
540 *
541 * @dl_overrun tells if the task asked to be informed about runtime
542 * overruns.
543 */
544 unsigned int dl_throttled : 1;
545 unsigned int dl_yielded : 1;
546 unsigned int dl_non_contending : 1;
547 unsigned int dl_overrun : 1;
548
549 /*
550 * Bandwidth enforcement timer. Each -deadline task has its
551 * own bandwidth to be enforced, thus we need one timer per task.
552 */
553 struct hrtimer dl_timer;
554
555 /*
556 * Inactive timer, responsible for decreasing the active utilization
557 * at the "0-lag time". When a -deadline task blocks, it contributes
558 * to GRUB's active utilization until the "0-lag time", hence a
559 * timer is needed to decrease the active utilization at the correct
560 * time.
561 */
562 struct hrtimer inactive_timer;
563
564 #ifdef CONFIG_RT_MUTEXES
565 /*
566 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
567 * pi_se points to the donor, otherwise points to the dl_se it belongs
568 * to (the original one/itself).
569 */
570 struct sched_dl_entity *pi_se;
571 #endif
572 };
573
574 union rcu_special {
575 struct {
576 u8 blocked;
577 u8 need_qs;
578 u8 exp_need_qs;
579
580 /* Otherwise the compiler can store garbage here: */
581 u8 pad;
582 } b; /* Bits. */
583 u32 s; /* Set of bits. */
584 };
585
586 enum perf_event_task_context {
587 perf_invalid_context = -1,
588 perf_hw_context = 0,
589 perf_sw_context,
590 perf_nr_task_contexts,
591 };
592
593 struct wake_q_node {
594 struct wake_q_node *next;
595 };
596
597 struct task_struct {
598 #ifdef CONFIG_THREAD_INFO_IN_TASK
599 /*
600 * For reasons of header soup (see current_thread_info()), this
601 * must be the first element of task_struct.
602 */
603 struct thread_info thread_info;
604 #endif
605 /* -1 unrunnable, 0 runnable, >0 stopped: */
606 volatile long state;
607
608 /*
609 * This begins the randomizable portion of task_struct. Only
610 * scheduling-critical items should be added above here.
611 */
612 randomized_struct_fields_start
613
614 void *stack;
615 atomic_t usage;
616 /* Per task flags (PF_*), defined further below: */
617 unsigned int flags;
618 unsigned int ptrace;
619
620 #ifdef CONFIG_SMP
621 struct llist_node wake_entry;
622 int on_cpu;
623 #ifdef CONFIG_THREAD_INFO_IN_TASK
624 /* Current CPU: */
625 unsigned int cpu;
626 #endif
627 unsigned int wakee_flips;
628 unsigned long wakee_flip_decay_ts;
629 struct task_struct *last_wakee;
630
631 /*
632 * recent_used_cpu is initially set as the last CPU used by a task
633 * that wakes affine another task. Waker/wakee relationships can
634 * push tasks around a CPU where each wakeup moves to the next one.
635 * Tracking a recently used CPU allows a quick search for a recently
636 * used CPU that may be idle.
637 */
638 int recent_used_cpu;
639 int wake_cpu;
640 #endif
641 int on_rq;
642
643 int prio;
644 int static_prio;
645 int normal_prio;
646 unsigned int rt_priority;
647
648 const struct sched_class *sched_class;
649 struct sched_entity se;
650 struct sched_rt_entity rt;
651 #ifdef CONFIG_CGROUP_SCHED
652 struct task_group *sched_task_group;
653 #endif
654 struct sched_dl_entity dl;
655
656 #ifdef CONFIG_PREEMPT_NOTIFIERS
657 /* List of struct preempt_notifier: */
658 struct hlist_head preempt_notifiers;
659 #endif
660
661 #ifdef CONFIG_BLK_DEV_IO_TRACE
662 unsigned int btrace_seq;
663 #endif
664
665 unsigned int policy;
666 int nr_cpus_allowed;
667 cpumask_t cpus_allowed;
668
669 #ifdef CONFIG_PREEMPT_RCU
670 int rcu_read_lock_nesting;
671 union rcu_special rcu_read_unlock_special;
672 struct list_head rcu_node_entry;
673 struct rcu_node *rcu_blocked_node;
674 #endif /* #ifdef CONFIG_PREEMPT_RCU */
675
676 #ifdef CONFIG_TASKS_RCU
677 unsigned long rcu_tasks_nvcsw;
678 u8 rcu_tasks_holdout;
679 u8 rcu_tasks_idx;
680 int rcu_tasks_idle_cpu;
681 struct list_head rcu_tasks_holdout_list;
682 #endif /* #ifdef CONFIG_TASKS_RCU */
683
684 struct sched_info sched_info;
685
686 struct list_head tasks;
687 #ifdef CONFIG_SMP
688 struct plist_node pushable_tasks;
689 struct rb_node pushable_dl_tasks;
690 #endif
691
692 struct mm_struct *mm;
693 struct mm_struct *active_mm;
694
695 /* Per-thread vma caching: */
696 struct vmacache vmacache;
697
698 #ifdef SPLIT_RSS_COUNTING
699 struct task_rss_stat rss_stat;
700 #endif
701 int exit_state;
702 int exit_code;
703 int exit_signal;
704 /* The signal sent when the parent dies: */
705 int pdeath_signal;
706 /* JOBCTL_*, siglock protected: */
707 unsigned long jobctl;
708
709 /* Used for emulating ABI behavior of previous Linux versions: */
710 unsigned int personality;
711
712 /* Scheduler bits, serialized by scheduler locks: */
713 unsigned sched_reset_on_fork:1;
714 unsigned sched_contributes_to_load:1;
715 unsigned sched_migrated:1;
716 unsigned sched_remote_wakeup:1;
717 /* Force alignment to the next boundary: */
718 unsigned :0;
719
720 /* Unserialized, strictly 'current' */
721
722 /* Bit to tell LSMs we're in execve(): */
723 unsigned in_execve:1;
724 unsigned in_iowait:1;
725 #ifndef TIF_RESTORE_SIGMASK
726 unsigned restore_sigmask:1;
727 #endif
728 #ifdef CONFIG_MEMCG
729 unsigned in_user_fault:1;
730 #ifdef CONFIG_MEMCG_KMEM
731 unsigned memcg_kmem_skip_account:1;
732 #endif
733 #endif
734 #ifdef CONFIG_COMPAT_BRK
735 unsigned brk_randomized:1;
736 #endif
737 #ifdef CONFIG_CGROUPS
738 /* disallow userland-initiated cgroup migration */
739 unsigned no_cgroup_migration:1;
740 #endif
741 #ifdef CONFIG_BLK_CGROUP
742 /* to be used once the psi infrastructure lands upstream. */
743 unsigned use_memdelay:1;
744 #endif
745
746 unsigned long atomic_flags; /* Flags requiring atomic access. */
747
748 struct restart_block restart_block;
749
750 pid_t pid;
751 pid_t tgid;
752
753 #ifdef CONFIG_STACKPROTECTOR
754 /* Canary value for the -fstack-protector GCC feature: */
755 unsigned long stack_canary;
756 #endif
757 /*
758 * Pointers to the (original) parent process, youngest child, younger sibling,
759 * older sibling, respectively. (p->father can be replaced with
760 * p->real_parent->pid)
761 */
762
763 /* Real parent process: */
764 struct task_struct __rcu *real_parent;
765
766 /* Recipient of SIGCHLD, wait4() reports: */
767 struct task_struct __rcu *parent;
768
769 /*
770 * Children/sibling form the list of natural children:
771 */
772 struct list_head children;
773 struct list_head sibling;
774 struct task_struct *group_leader;
775
776 /*
777 * 'ptraced' is the list of tasks this task is using ptrace() on.
778 *
779 * This includes both natural children and PTRACE_ATTACH targets.
780 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
781 */
782 struct list_head ptraced;
783 struct list_head ptrace_entry;
784
785 /* PID/PID hash table linkage. */
786 struct pid *thread_pid;
787 struct hlist_node pid_links[PIDTYPE_MAX];
788 struct list_head thread_group;
789 struct list_head thread_node;
790
791 struct completion *vfork_done;
792
793 /* CLONE_CHILD_SETTID: */
794 int __user *set_child_tid;
795
796 /* CLONE_CHILD_CLEARTID: */
797 int __user *clear_child_tid;
798
799 u64 utime;
800 u64 stime;
801 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
802 u64 utimescaled;
803 u64 stimescaled;
804 #endif
805 u64 gtime;
806 struct prev_cputime prev_cputime;
807 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
808 struct vtime vtime;
809 #endif
810
811 #ifdef CONFIG_NO_HZ_FULL
812 atomic_t tick_dep_mask;
813 #endif
814 /* Context switch counts: */
815 unsigned long nvcsw;
816 unsigned long nivcsw;
817
818 /* Monotonic time in nsecs: */
819 u64 start_time;
820
821 /* Boot based time in nsecs: */
822 u64 real_start_time;
823
824 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
825 unsigned long min_flt;
826 unsigned long maj_flt;
827
828 #ifdef CONFIG_POSIX_TIMERS
829 struct task_cputime cputime_expires;
830 struct list_head cpu_timers[3];
831 #endif
832
833 /* Process credentials: */
834
835 /* Tracer's credentials at attach: */
836 const struct cred __rcu *ptracer_cred;
837
838 /* Objective and real subjective task credentials (COW): */
839 const struct cred __rcu *real_cred;
840
841 /* Effective (overridable) subjective task credentials (COW): */
842 const struct cred __rcu *cred;
843
844 /*
845 * executable name, excluding path.
846 *
847 * - normally initialized setup_new_exec()
848 * - access it with [gs]et_task_comm()
849 * - lock it with task_lock()
850 */
851 char comm[TASK_COMM_LEN];
852
853 struct nameidata *nameidata;
854
855 #ifdef CONFIG_SYSVIPC
856 struct sysv_sem sysvsem;
857 struct sysv_shm sysvshm;
858 #endif
859 #ifdef CONFIG_DETECT_HUNG_TASK
860 unsigned long last_switch_count;
861 unsigned long last_switch_time;
862 #endif
863 /* Filesystem information: */
864 struct fs_struct *fs;
865
866 /* Open file information: */
867 struct files_struct *files;
868
869 /* Namespaces: */
870 struct nsproxy *nsproxy;
871
872 /* Signal handlers: */
873 struct signal_struct *signal;
874 struct sighand_struct *sighand;
875 sigset_t blocked;
876 sigset_t real_blocked;
877 /* Restored if set_restore_sigmask() was used: */
878 sigset_t saved_sigmask;
879 struct sigpending pending;
880 unsigned long sas_ss_sp;
881 size_t sas_ss_size;
882 unsigned int sas_ss_flags;
883
884 struct callback_head *task_works;
885
886 struct audit_context *audit_context;
887 #ifdef CONFIG_AUDITSYSCALL
888 kuid_t loginuid;
889 unsigned int sessionid;
890 #endif
891 struct seccomp seccomp;
892
893 /* Thread group tracking: */
894 u64 parent_exec_id;
895 u64 self_exec_id;
896
897 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
898 spinlock_t alloc_lock;
899
900 /* Protection of the PI data structures: */
901 raw_spinlock_t pi_lock;
902
903 struct wake_q_node wake_q;
904
905 #ifdef CONFIG_RT_MUTEXES
906 /* PI waiters blocked on a rt_mutex held by this task: */
907 struct rb_root_cached pi_waiters;
908 /* Updated under owner's pi_lock and rq lock */
909 struct task_struct *pi_top_task;
910 /* Deadlock detection and priority inheritance handling: */
911 struct rt_mutex_waiter *pi_blocked_on;
912 #endif
913
914 #ifdef CONFIG_DEBUG_MUTEXES
915 /* Mutex deadlock detection: */
916 struct mutex_waiter *blocked_on;
917 #endif
918
919 #ifdef CONFIG_TRACE_IRQFLAGS
920 unsigned int irq_events;
921 unsigned long hardirq_enable_ip;
922 unsigned long hardirq_disable_ip;
923 unsigned int hardirq_enable_event;
924 unsigned int hardirq_disable_event;
925 int hardirqs_enabled;
926 int hardirq_context;
927 unsigned long softirq_disable_ip;
928 unsigned long softirq_enable_ip;
929 unsigned int softirq_disable_event;
930 unsigned int softirq_enable_event;
931 int softirqs_enabled;
932 int softirq_context;
933 #endif
934
935 #ifdef CONFIG_LOCKDEP
936 # define MAX_LOCK_DEPTH 48UL
937 u64 curr_chain_key;
938 int lockdep_depth;
939 unsigned int lockdep_recursion;
940 struct held_lock held_locks[MAX_LOCK_DEPTH];
941 #endif
942
943 #ifdef CONFIG_UBSAN
944 unsigned int in_ubsan;
945 #endif
946
947 /* Journalling filesystem info: */
948 void *journal_info;
949
950 /* Stacked block device info: */
951 struct bio_list *bio_list;
952
953 #ifdef CONFIG_BLOCK
954 /* Stack plugging: */
955 struct blk_plug *plug;
956 #endif
957
958 /* VM state: */
959 struct reclaim_state *reclaim_state;
960
961 struct backing_dev_info *backing_dev_info;
962
963 struct io_context *io_context;
964
965 /* Ptrace state: */
966 unsigned long ptrace_message;
967 siginfo_t *last_siginfo;
968
969 struct task_io_accounting ioac;
970 #ifdef CONFIG_TASK_XACCT
971 /* Accumulated RSS usage: */
972 u64 acct_rss_mem1;
973 /* Accumulated virtual memory usage: */
974 u64 acct_vm_mem1;
975 /* stime + utime since last update: */
976 u64 acct_timexpd;
977 #endif
978 #ifdef CONFIG_CPUSETS
979 /* Protected by ->alloc_lock: */
980 nodemask_t mems_allowed;
981 /* Seqence number to catch updates: */
982 seqcount_t mems_allowed_seq;
983 int cpuset_mem_spread_rotor;
984 int cpuset_slab_spread_rotor;
985 #endif
986 #ifdef CONFIG_CGROUPS
987 /* Control Group info protected by css_set_lock: */
988 struct css_set __rcu *cgroups;
989 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
990 struct list_head cg_list;
991 #endif
992 #ifdef CONFIG_INTEL_RDT
993 u32 closid;
994 u32 rmid;
995 #endif
996 #ifdef CONFIG_FUTEX
997 struct robust_list_head __user *robust_list;
998 #ifdef CONFIG_COMPAT
999 struct compat_robust_list_head __user *compat_robust_list;
1000 #endif
1001 struct list_head pi_state_list;
1002 struct futex_pi_state *pi_state_cache;
1003 struct mutex futex_exit_mutex;
1004 unsigned int futex_state;
1005 #endif
1006 #ifdef CONFIG_PERF_EVENTS
1007 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1008 struct mutex perf_event_mutex;
1009 struct list_head perf_event_list;
1010 #endif
1011 #ifdef CONFIG_DEBUG_PREEMPT
1012 unsigned long preempt_disable_ip;
1013 #endif
1014 #ifdef CONFIG_NUMA
1015 /* Protected by alloc_lock: */
1016 struct mempolicy *mempolicy;
1017 short il_prev;
1018 short pref_node_fork;
1019 #endif
1020 #ifdef CONFIG_NUMA_BALANCING
1021 int numa_scan_seq;
1022 unsigned int numa_scan_period;
1023 unsigned int numa_scan_period_max;
1024 int numa_preferred_nid;
1025 unsigned long numa_migrate_retry;
1026 /* Migration stamp: */
1027 u64 node_stamp;
1028 u64 last_task_numa_placement;
1029 u64 last_sum_exec_runtime;
1030 struct callback_head numa_work;
1031
1032 /*
1033 * This pointer is only modified for current in syscall and
1034 * pagefault context (and for tasks being destroyed), so it can be read
1035 * from any of the following contexts:
1036 * - RCU read-side critical section
1037 * - current->numa_group from everywhere
1038 * - task's runqueue locked, task not running
1039 */
1040 struct numa_group __rcu *numa_group;
1041
1042 /*
1043 * numa_faults is an array split into four regions:
1044 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1045 * in this precise order.
1046 *
1047 * faults_memory: Exponential decaying average of faults on a per-node
1048 * basis. Scheduling placement decisions are made based on these
1049 * counts. The values remain static for the duration of a PTE scan.
1050 * faults_cpu: Track the nodes the process was running on when a NUMA
1051 * hinting fault was incurred.
1052 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1053 * during the current scan window. When the scan completes, the counts
1054 * in faults_memory and faults_cpu decay and these values are copied.
1055 */
1056 unsigned long *numa_faults;
1057 unsigned long total_numa_faults;
1058
1059 /*
1060 * numa_faults_locality tracks if faults recorded during the last
1061 * scan window were remote/local or failed to migrate. The task scan
1062 * period is adapted based on the locality of the faults with different
1063 * weights depending on whether they were shared or private faults
1064 */
1065 unsigned long numa_faults_locality[3];
1066
1067 unsigned long numa_pages_migrated;
1068 #endif /* CONFIG_NUMA_BALANCING */
1069
1070 #ifdef CONFIG_RSEQ
1071 struct rseq __user *rseq;
1072 u32 rseq_len;
1073 u32 rseq_sig;
1074 /*
1075 * RmW on rseq_event_mask must be performed atomically
1076 * with respect to preemption.
1077 */
1078 unsigned long rseq_event_mask;
1079 #endif
1080
1081 struct tlbflush_unmap_batch tlb_ubc;
1082
1083 struct rcu_head rcu;
1084
1085 /* Cache last used pipe for splice(): */
1086 struct pipe_inode_info *splice_pipe;
1087
1088 struct page_frag task_frag;
1089
1090 #ifdef CONFIG_TASK_DELAY_ACCT
1091 struct task_delay_info *delays;
1092 #endif
1093
1094 #ifdef CONFIG_FAULT_INJECTION
1095 int make_it_fail;
1096 unsigned int fail_nth;
1097 #endif
1098 /*
1099 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1100 * balance_dirty_pages() for a dirty throttling pause:
1101 */
1102 int nr_dirtied;
1103 int nr_dirtied_pause;
1104 /* Start of a write-and-pause period: */
1105 unsigned long dirty_paused_when;
1106
1107 #ifdef CONFIG_LATENCYTOP
1108 int latency_record_count;
1109 struct latency_record latency_record[LT_SAVECOUNT];
1110 #endif
1111 /*
1112 * Time slack values; these are used to round up poll() and
1113 * select() etc timeout values. These are in nanoseconds.
1114 */
1115 u64 timer_slack_ns;
1116 u64 default_timer_slack_ns;
1117
1118 #ifdef CONFIG_KASAN
1119 unsigned int kasan_depth;
1120 #endif
1121
1122 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1123 /* Index of current stored address in ret_stack: */
1124 int curr_ret_stack;
1125 int curr_ret_depth;
1126
1127 /* Stack of return addresses for return function tracing: */
1128 struct ftrace_ret_stack *ret_stack;
1129
1130 /* Timestamp for last schedule: */
1131 unsigned long long ftrace_timestamp;
1132
1133 /*
1134 * Number of functions that haven't been traced
1135 * because of depth overrun:
1136 */
1137 atomic_t trace_overrun;
1138
1139 /* Pause tracing: */
1140 atomic_t tracing_graph_pause;
1141 #endif
1142
1143 #ifdef CONFIG_TRACING
1144 /* State flags for use by tracers: */
1145 unsigned long trace;
1146
1147 /* Bitmask and counter of trace recursion: */
1148 unsigned long trace_recursion;
1149 #endif /* CONFIG_TRACING */
1150
1151 #ifdef CONFIG_KCOV
1152 /* Coverage collection mode enabled for this task (0 if disabled): */
1153 unsigned int kcov_mode;
1154
1155 /* Size of the kcov_area: */
1156 unsigned int kcov_size;
1157
1158 /* Buffer for coverage collection: */
1159 void *kcov_area;
1160
1161 /* KCOV descriptor wired with this task or NULL: */
1162 struct kcov *kcov;
1163 #endif
1164
1165 #ifdef CONFIG_MEMCG
1166 struct mem_cgroup *memcg_in_oom;
1167 gfp_t memcg_oom_gfp_mask;
1168 int memcg_oom_order;
1169
1170 /* Number of pages to reclaim on returning to userland: */
1171 unsigned int memcg_nr_pages_over_high;
1172
1173 /* Used by memcontrol for targeted memcg charge: */
1174 struct mem_cgroup *active_memcg;
1175 #endif
1176
1177 #ifdef CONFIG_BLK_CGROUP
1178 struct request_queue *throttle_queue;
1179 #endif
1180
1181 #ifdef CONFIG_UPROBES
1182 struct uprobe_task *utask;
1183 #endif
1184 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1185 unsigned int sequential_io;
1186 unsigned int sequential_io_avg;
1187 #endif
1188 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1189 unsigned long task_state_change;
1190 #endif
1191 int pagefault_disabled;
1192 #ifdef CONFIG_MMU
1193 struct task_struct *oom_reaper_list;
1194 #endif
1195 #ifdef CONFIG_VMAP_STACK
1196 struct vm_struct *stack_vm_area;
1197 #endif
1198 #ifdef CONFIG_THREAD_INFO_IN_TASK
1199 /* A live task holds one reference: */
1200 atomic_t stack_refcount;
1201 #endif
1202 #ifdef CONFIG_LIVEPATCH
1203 int patch_state;
1204 #endif
1205 #ifdef CONFIG_SECURITY
1206 /* Used by LSM modules for access restriction: */
1207 void *security;
1208 #endif
1209
1210 /*
1211 * New fields for task_struct should be added above here, so that
1212 * they are included in the randomized portion of task_struct.
1213 */
1214 randomized_struct_fields_end
1215
1216 /* CPU-specific state of this task: */
1217 struct thread_struct thread;
1218
1219 /*
1220 * WARNING: on x86, 'thread_struct' contains a variable-sized
1221 * structure. It *MUST* be at the end of 'task_struct'.
1222 *
1223 * Do not put anything below here!
1224 */
1225 };
1226
task_pid(struct task_struct * task)1227 static inline struct pid *task_pid(struct task_struct *task)
1228 {
1229 return task->thread_pid;
1230 }
1231
1232 /*
1233 * the helpers to get the task's different pids as they are seen
1234 * from various namespaces
1235 *
1236 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1237 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1238 * current.
1239 * task_xid_nr_ns() : id seen from the ns specified;
1240 *
1241 * see also pid_nr() etc in include/linux/pid.h
1242 */
1243 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1244
task_pid_nr(struct task_struct * tsk)1245 static inline pid_t task_pid_nr(struct task_struct *tsk)
1246 {
1247 return tsk->pid;
1248 }
1249
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1250 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1251 {
1252 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1253 }
1254
task_pid_vnr(struct task_struct * tsk)1255 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1256 {
1257 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1258 }
1259
1260
task_tgid_nr(struct task_struct * tsk)1261 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1262 {
1263 return tsk->tgid;
1264 }
1265
1266 /**
1267 * pid_alive - check that a task structure is not stale
1268 * @p: Task structure to be checked.
1269 *
1270 * Test if a process is not yet dead (at most zombie state)
1271 * If pid_alive fails, then pointers within the task structure
1272 * can be stale and must not be dereferenced.
1273 *
1274 * Return: 1 if the process is alive. 0 otherwise.
1275 */
pid_alive(const struct task_struct * p)1276 static inline int pid_alive(const struct task_struct *p)
1277 {
1278 return p->thread_pid != NULL;
1279 }
1280
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1281 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1282 {
1283 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1284 }
1285
task_pgrp_vnr(struct task_struct * tsk)1286 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1287 {
1288 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1289 }
1290
1291
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1292 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1293 {
1294 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1295 }
1296
task_session_vnr(struct task_struct * tsk)1297 static inline pid_t task_session_vnr(struct task_struct *tsk)
1298 {
1299 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1300 }
1301
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1302 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1303 {
1304 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1305 }
1306
task_tgid_vnr(struct task_struct * tsk)1307 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1308 {
1309 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1310 }
1311
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1312 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1313 {
1314 pid_t pid = 0;
1315
1316 rcu_read_lock();
1317 if (pid_alive(tsk))
1318 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1319 rcu_read_unlock();
1320
1321 return pid;
1322 }
1323
task_ppid_nr(const struct task_struct * tsk)1324 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1325 {
1326 return task_ppid_nr_ns(tsk, &init_pid_ns);
1327 }
1328
1329 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1330 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1331 {
1332 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1333 }
1334
1335 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1336 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1337
task_state_index(struct task_struct * tsk)1338 static inline unsigned int task_state_index(struct task_struct *tsk)
1339 {
1340 unsigned int tsk_state = READ_ONCE(tsk->state);
1341 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1342
1343 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1344
1345 if (tsk_state == TASK_IDLE)
1346 state = TASK_REPORT_IDLE;
1347
1348 return fls(state);
1349 }
1350
task_index_to_char(unsigned int state)1351 static inline char task_index_to_char(unsigned int state)
1352 {
1353 static const char state_char[] = "RSDTtXZPI";
1354
1355 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1356
1357 return state_char[state];
1358 }
1359
task_state_to_char(struct task_struct * tsk)1360 static inline char task_state_to_char(struct task_struct *tsk)
1361 {
1362 return task_index_to_char(task_state_index(tsk));
1363 }
1364
1365 /**
1366 * is_global_init - check if a task structure is init. Since init
1367 * is free to have sub-threads we need to check tgid.
1368 * @tsk: Task structure to be checked.
1369 *
1370 * Check if a task structure is the first user space task the kernel created.
1371 *
1372 * Return: 1 if the task structure is init. 0 otherwise.
1373 */
is_global_init(struct task_struct * tsk)1374 static inline int is_global_init(struct task_struct *tsk)
1375 {
1376 return task_tgid_nr(tsk) == 1;
1377 }
1378
1379 extern struct pid *cad_pid;
1380
1381 /*
1382 * Per process flags
1383 */
1384 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1385 #define PF_EXITING 0x00000004 /* Getting shut down */
1386 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1387 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1388 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1389 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1390 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1391 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1392 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1393 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1394 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1395 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1396 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1397 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1398 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1399 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1400 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1401 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1402 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1403 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1404 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1405 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1406 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1407 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1408 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1409 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1410
1411 /*
1412 * Only the _current_ task can read/write to tsk->flags, but other
1413 * tasks can access tsk->flags in readonly mode for example
1414 * with tsk_used_math (like during threaded core dumping).
1415 * There is however an exception to this rule during ptrace
1416 * or during fork: the ptracer task is allowed to write to the
1417 * child->flags of its traced child (same goes for fork, the parent
1418 * can write to the child->flags), because we're guaranteed the
1419 * child is not running and in turn not changing child->flags
1420 * at the same time the parent does it.
1421 */
1422 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1423 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1424 #define clear_used_math() clear_stopped_child_used_math(current)
1425 #define set_used_math() set_stopped_child_used_math(current)
1426
1427 #define conditional_stopped_child_used_math(condition, child) \
1428 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1429
1430 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1431
1432 #define copy_to_stopped_child_used_math(child) \
1433 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1434
1435 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1436 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1437 #define used_math() tsk_used_math(current)
1438
is_percpu_thread(void)1439 static __always_inline bool is_percpu_thread(void)
1440 {
1441 #ifdef CONFIG_SMP
1442 return (current->flags & PF_NO_SETAFFINITY) &&
1443 (current->nr_cpus_allowed == 1);
1444 #else
1445 return true;
1446 #endif
1447 }
1448
1449 /* Per-process atomic flags. */
1450 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1451 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1452 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1453 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1454 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1455 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1456 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1457
1458 #define TASK_PFA_TEST(name, func) \
1459 static inline bool task_##func(struct task_struct *p) \
1460 { return test_bit(PFA_##name, &p->atomic_flags); }
1461
1462 #define TASK_PFA_SET(name, func) \
1463 static inline void task_set_##func(struct task_struct *p) \
1464 { set_bit(PFA_##name, &p->atomic_flags); }
1465
1466 #define TASK_PFA_CLEAR(name, func) \
1467 static inline void task_clear_##func(struct task_struct *p) \
1468 { clear_bit(PFA_##name, &p->atomic_flags); }
1469
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1470 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1471 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1472
1473 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1474 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1475 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1476
1477 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1478 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1479 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1480
1481 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1482 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1483 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1484
1485 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1486 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1487
1488 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1489 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1490 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1491
1492 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1493 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1494
1495 static inline void
1496 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1497 {
1498 current->flags &= ~flags;
1499 current->flags |= orig_flags & flags;
1500 }
1501
1502 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1503 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1504 #ifdef CONFIG_SMP
1505 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1506 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1507 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1508 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1509 {
1510 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1511 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1512 {
1513 if (!cpumask_test_cpu(0, new_mask))
1514 return -EINVAL;
1515 return 0;
1516 }
1517 #endif
1518
1519 #ifndef cpu_relax_yield
1520 #define cpu_relax_yield() cpu_relax()
1521 #endif
1522
1523 extern int yield_to(struct task_struct *p, bool preempt);
1524 extern void set_user_nice(struct task_struct *p, long nice);
1525 extern int task_prio(const struct task_struct *p);
1526
1527 /**
1528 * task_nice - return the nice value of a given task.
1529 * @p: the task in question.
1530 *
1531 * Return: The nice value [ -20 ... 0 ... 19 ].
1532 */
task_nice(const struct task_struct * p)1533 static inline int task_nice(const struct task_struct *p)
1534 {
1535 return PRIO_TO_NICE((p)->static_prio);
1536 }
1537
1538 extern int can_nice(const struct task_struct *p, const int nice);
1539 extern int task_curr(const struct task_struct *p);
1540 extern int idle_cpu(int cpu);
1541 extern int available_idle_cpu(int cpu);
1542 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1543 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1544 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1545 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1546 extern struct task_struct *idle_task(int cpu);
1547
1548 /**
1549 * is_idle_task - is the specified task an idle task?
1550 * @p: the task in question.
1551 *
1552 * Return: 1 if @p is an idle task. 0 otherwise.
1553 */
is_idle_task(const struct task_struct * p)1554 static inline bool is_idle_task(const struct task_struct *p)
1555 {
1556 return !!(p->flags & PF_IDLE);
1557 }
1558
1559 extern struct task_struct *curr_task(int cpu);
1560 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1561
1562 void yield(void);
1563
1564 union thread_union {
1565 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1566 struct task_struct task;
1567 #endif
1568 #ifndef CONFIG_THREAD_INFO_IN_TASK
1569 struct thread_info thread_info;
1570 #endif
1571 unsigned long stack[THREAD_SIZE/sizeof(long)];
1572 };
1573
1574 #ifndef CONFIG_THREAD_INFO_IN_TASK
1575 extern struct thread_info init_thread_info;
1576 #endif
1577
1578 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1579
1580 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1581 static inline struct thread_info *task_thread_info(struct task_struct *task)
1582 {
1583 return &task->thread_info;
1584 }
1585 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1586 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1587 #endif
1588
1589 /*
1590 * find a task by one of its numerical ids
1591 *
1592 * find_task_by_pid_ns():
1593 * finds a task by its pid in the specified namespace
1594 * find_task_by_vpid():
1595 * finds a task by its virtual pid
1596 *
1597 * see also find_vpid() etc in include/linux/pid.h
1598 */
1599
1600 extern struct task_struct *find_task_by_vpid(pid_t nr);
1601 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1602
1603 /*
1604 * find a task by its virtual pid and get the task struct
1605 */
1606 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1607
1608 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1609 extern int wake_up_process(struct task_struct *tsk);
1610 extern void wake_up_new_task(struct task_struct *tsk);
1611
1612 #ifdef CONFIG_SMP
1613 extern void kick_process(struct task_struct *tsk);
1614 #else
kick_process(struct task_struct * tsk)1615 static inline void kick_process(struct task_struct *tsk) { }
1616 #endif
1617
1618 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1619
set_task_comm(struct task_struct * tsk,const char * from)1620 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1621 {
1622 __set_task_comm(tsk, from, false);
1623 }
1624
1625 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1626 #define get_task_comm(buf, tsk) ({ \
1627 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1628 __get_task_comm(buf, sizeof(buf), tsk); \
1629 })
1630
1631 #ifdef CONFIG_SMP
1632 void scheduler_ipi(void);
1633 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1634 #else
scheduler_ipi(void)1635 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)1636 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1637 {
1638 return 1;
1639 }
1640 #endif
1641
1642 /*
1643 * Set thread flags in other task's structures.
1644 * See asm/thread_info.h for TIF_xxxx flags available:
1645 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1646 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1647 {
1648 set_ti_thread_flag(task_thread_info(tsk), flag);
1649 }
1650
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1651 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1652 {
1653 clear_ti_thread_flag(task_thread_info(tsk), flag);
1654 }
1655
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1656 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1657 bool value)
1658 {
1659 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1660 }
1661
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1662 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1663 {
1664 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1665 }
1666
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1667 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1668 {
1669 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1670 }
1671
test_tsk_thread_flag(struct task_struct * tsk,int flag)1672 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1673 {
1674 return test_ti_thread_flag(task_thread_info(tsk), flag);
1675 }
1676
set_tsk_need_resched(struct task_struct * tsk)1677 static inline void set_tsk_need_resched(struct task_struct *tsk)
1678 {
1679 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1680 }
1681
clear_tsk_need_resched(struct task_struct * tsk)1682 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1683 {
1684 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1685 }
1686
test_tsk_need_resched(struct task_struct * tsk)1687 static inline int test_tsk_need_resched(struct task_struct *tsk)
1688 {
1689 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1690 }
1691
1692 /*
1693 * cond_resched() and cond_resched_lock(): latency reduction via
1694 * explicit rescheduling in places that are safe. The return
1695 * value indicates whether a reschedule was done in fact.
1696 * cond_resched_lock() will drop the spinlock before scheduling,
1697 */
1698 #ifndef CONFIG_PREEMPT
1699 extern int _cond_resched(void);
1700 #else
_cond_resched(void)1701 static inline int _cond_resched(void) { return 0; }
1702 #endif
1703
1704 #define cond_resched() ({ \
1705 ___might_sleep(__FILE__, __LINE__, 0); \
1706 _cond_resched(); \
1707 })
1708
1709 extern int __cond_resched_lock(spinlock_t *lock);
1710
1711 #define cond_resched_lock(lock) ({ \
1712 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1713 __cond_resched_lock(lock); \
1714 })
1715
cond_resched_rcu(void)1716 static inline void cond_resched_rcu(void)
1717 {
1718 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1719 rcu_read_unlock();
1720 cond_resched();
1721 rcu_read_lock();
1722 #endif
1723 }
1724
1725 /*
1726 * Does a critical section need to be broken due to another
1727 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1728 * but a general need for low latency)
1729 */
spin_needbreak(spinlock_t * lock)1730 static inline int spin_needbreak(spinlock_t *lock)
1731 {
1732 #ifdef CONFIG_PREEMPT
1733 return spin_is_contended(lock);
1734 #else
1735 return 0;
1736 #endif
1737 }
1738
need_resched(void)1739 static __always_inline bool need_resched(void)
1740 {
1741 return unlikely(tif_need_resched());
1742 }
1743
1744 /*
1745 * Wrappers for p->thread_info->cpu access. No-op on UP.
1746 */
1747 #ifdef CONFIG_SMP
1748
task_cpu(const struct task_struct * p)1749 static inline unsigned int task_cpu(const struct task_struct *p)
1750 {
1751 #ifdef CONFIG_THREAD_INFO_IN_TASK
1752 return READ_ONCE(p->cpu);
1753 #else
1754 return READ_ONCE(task_thread_info(p)->cpu);
1755 #endif
1756 }
1757
1758 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1759
1760 #else
1761
task_cpu(const struct task_struct * p)1762 static inline unsigned int task_cpu(const struct task_struct *p)
1763 {
1764 return 0;
1765 }
1766
set_task_cpu(struct task_struct * p,unsigned int cpu)1767 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1768 {
1769 }
1770
1771 #endif /* CONFIG_SMP */
1772
1773 /*
1774 * In order to reduce various lock holder preemption latencies provide an
1775 * interface to see if a vCPU is currently running or not.
1776 *
1777 * This allows us to terminate optimistic spin loops and block, analogous to
1778 * the native optimistic spin heuristic of testing if the lock owner task is
1779 * running or not.
1780 */
1781 #ifndef vcpu_is_preempted
1782 # define vcpu_is_preempted(cpu) false
1783 #endif
1784
1785 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1786 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1787
1788 #ifndef TASK_SIZE_OF
1789 #define TASK_SIZE_OF(tsk) TASK_SIZE
1790 #endif
1791
1792 #ifdef CONFIG_RSEQ
1793
1794 /*
1795 * Map the event mask on the user-space ABI enum rseq_cs_flags
1796 * for direct mask checks.
1797 */
1798 enum rseq_event_mask_bits {
1799 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1800 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1801 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1802 };
1803
1804 enum rseq_event_mask {
1805 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1806 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1807 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1808 };
1809
rseq_set_notify_resume(struct task_struct * t)1810 static inline void rseq_set_notify_resume(struct task_struct *t)
1811 {
1812 if (t->rseq)
1813 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1814 }
1815
1816 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1817
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1818 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1819 struct pt_regs *regs)
1820 {
1821 if (current->rseq)
1822 __rseq_handle_notify_resume(ksig, regs);
1823 }
1824
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1825 static inline void rseq_signal_deliver(struct ksignal *ksig,
1826 struct pt_regs *regs)
1827 {
1828 preempt_disable();
1829 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1830 preempt_enable();
1831 rseq_handle_notify_resume(ksig, regs);
1832 }
1833
1834 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)1835 static inline void rseq_preempt(struct task_struct *t)
1836 {
1837 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1838 rseq_set_notify_resume(t);
1839 }
1840
1841 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)1842 static inline void rseq_migrate(struct task_struct *t)
1843 {
1844 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1845 rseq_set_notify_resume(t);
1846 }
1847
1848 /*
1849 * If parent process has a registered restartable sequences area, the
1850 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1851 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)1852 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1853 {
1854 if (clone_flags & CLONE_VM) {
1855 t->rseq = NULL;
1856 t->rseq_len = 0;
1857 t->rseq_sig = 0;
1858 t->rseq_event_mask = 0;
1859 } else {
1860 t->rseq = current->rseq;
1861 t->rseq_len = current->rseq_len;
1862 t->rseq_sig = current->rseq_sig;
1863 t->rseq_event_mask = current->rseq_event_mask;
1864 }
1865 }
1866
rseq_execve(struct task_struct * t)1867 static inline void rseq_execve(struct task_struct *t)
1868 {
1869 t->rseq = NULL;
1870 t->rseq_len = 0;
1871 t->rseq_sig = 0;
1872 t->rseq_event_mask = 0;
1873 }
1874
1875 #else
1876
rseq_set_notify_resume(struct task_struct * t)1877 static inline void rseq_set_notify_resume(struct task_struct *t)
1878 {
1879 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1880 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1881 struct pt_regs *regs)
1882 {
1883 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1884 static inline void rseq_signal_deliver(struct ksignal *ksig,
1885 struct pt_regs *regs)
1886 {
1887 }
rseq_preempt(struct task_struct * t)1888 static inline void rseq_preempt(struct task_struct *t)
1889 {
1890 }
rseq_migrate(struct task_struct * t)1891 static inline void rseq_migrate(struct task_struct *t)
1892 {
1893 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)1894 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1895 {
1896 }
rseq_execve(struct task_struct * t)1897 static inline void rseq_execve(struct task_struct *t)
1898 {
1899 }
1900
1901 #endif
1902
1903 #ifdef CONFIG_DEBUG_RSEQ
1904
1905 void rseq_syscall(struct pt_regs *regs);
1906
1907 #else
1908
rseq_syscall(struct pt_regs * regs)1909 static inline void rseq_syscall(struct pt_regs *regs)
1910 {
1911 }
1912
1913 #endif
1914
1915 #endif
1916