1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * <linux/usb/gadget.h>
4 *
5 * We call the USB code inside a Linux-based peripheral device a "gadget"
6 * driver, except for the hardware-specific bus glue. One USB host can
7 * master many USB gadgets, but the gadgets are only slaved to one host.
8 *
9 *
10 * (C) Copyright 2002-2004 by David Brownell
11 * All Rights Reserved.
12 *
13 * This software is licensed under the GNU GPL version 2.
14 */
15
16 #ifndef __LINUX_USB_GADGET_H
17 #define __LINUX_USB_GADGET_H
18
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/scatterlist.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 #include <linux/usb/ch9.h>
28
29 #define UDC_TRACE_STR_MAX 512
30
31 struct usb_ep;
32
33 /**
34 * struct usb_request - describes one i/o request
35 * @buf: Buffer used for data. Always provide this; some controllers
36 * only use PIO, or don't use DMA for some endpoints.
37 * @dma: DMA address corresponding to 'buf'. If you don't set this
38 * field, and the usb controller needs one, it is responsible
39 * for mapping and unmapping the buffer.
40 * @sg: a scatterlist for SG-capable controllers.
41 * @num_sgs: number of SG entries
42 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
43 * @length: Length of that data
44 * @stream_id: The stream id, when USB3.0 bulk streams are being used
45 * @no_interrupt: If true, hints that no completion irq is needed.
46 * Helpful sometimes with deep request queues that are handled
47 * directly by DMA controllers.
48 * @zero: If true, when writing data, makes the last packet be "short"
49 * by adding a zero length packet as needed;
50 * @short_not_ok: When reading data, makes short packets be
51 * treated as errors (queue stops advancing till cleanup).
52 * @dma_mapped: Indicates if request has been mapped to DMA (internal)
53 * @complete: Function called when request completes, so this request and
54 * its buffer may be re-used. The function will always be called with
55 * interrupts disabled, and it must not sleep.
56 * Reads terminate with a short packet, or when the buffer fills,
57 * whichever comes first. When writes terminate, some data bytes
58 * will usually still be in flight (often in a hardware fifo).
59 * Errors (for reads or writes) stop the queue from advancing
60 * until the completion function returns, so that any transfers
61 * invalidated by the error may first be dequeued.
62 * @context: For use by the completion callback
63 * @list: For use by the gadget driver.
64 * @status: Reports completion code, zero or a negative errno.
65 * Normally, faults block the transfer queue from advancing until
66 * the completion callback returns.
67 * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
68 * or when the driver disabled the endpoint.
69 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
70 * transfers) this may be less than the requested length. If the
71 * short_not_ok flag is set, short reads are treated as errors
72 * even when status otherwise indicates successful completion.
73 * Note that for writes (IN transfers) some data bytes may still
74 * reside in a device-side FIFO when the request is reported as
75 * complete.
76 *
77 * These are allocated/freed through the endpoint they're used with. The
78 * hardware's driver can add extra per-request data to the memory it returns,
79 * which often avoids separate memory allocations (potential failures),
80 * later when the request is queued.
81 *
82 * Request flags affect request handling, such as whether a zero length
83 * packet is written (the "zero" flag), whether a short read should be
84 * treated as an error (blocking request queue advance, the "short_not_ok"
85 * flag), or hinting that an interrupt is not required (the "no_interrupt"
86 * flag, for use with deep request queues).
87 *
88 * Bulk endpoints can use any size buffers, and can also be used for interrupt
89 * transfers. interrupt-only endpoints can be much less functional.
90 *
91 * NOTE: this is analogous to 'struct urb' on the host side, except that
92 * it's thinner and promotes more pre-allocation.
93 */
94
95 struct usb_request {
96 void *buf;
97 unsigned length;
98 dma_addr_t dma;
99
100 struct scatterlist *sg;
101 unsigned num_sgs;
102 unsigned num_mapped_sgs;
103
104 unsigned stream_id:16;
105 unsigned no_interrupt:1;
106 unsigned zero:1;
107 unsigned short_not_ok:1;
108 unsigned dma_mapped:1;
109
110 void (*complete)(struct usb_ep *ep,
111 struct usb_request *req);
112 void *context;
113 struct list_head list;
114
115 int status;
116 unsigned actual;
117 };
118
119 /*-------------------------------------------------------------------------*/
120
121 /* endpoint-specific parts of the api to the usb controller hardware.
122 * unlike the urb model, (de)multiplexing layers are not required.
123 * (so this api could slash overhead if used on the host side...)
124 *
125 * note that device side usb controllers commonly differ in how many
126 * endpoints they support, as well as their capabilities.
127 */
128 struct usb_ep_ops {
129 int (*enable) (struct usb_ep *ep,
130 const struct usb_endpoint_descriptor *desc);
131 int (*disable) (struct usb_ep *ep);
132 void (*dispose) (struct usb_ep *ep);
133
134 struct usb_request *(*alloc_request) (struct usb_ep *ep,
135 gfp_t gfp_flags);
136 void (*free_request) (struct usb_ep *ep, struct usb_request *req);
137
138 int (*queue) (struct usb_ep *ep, struct usb_request *req,
139 gfp_t gfp_flags);
140 int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
141
142 int (*set_halt) (struct usb_ep *ep, int value);
143 int (*set_wedge) (struct usb_ep *ep);
144
145 int (*fifo_status) (struct usb_ep *ep);
146 void (*fifo_flush) (struct usb_ep *ep);
147 };
148
149 /**
150 * struct usb_ep_caps - endpoint capabilities description
151 * @type_control:Endpoint supports control type (reserved for ep0).
152 * @type_iso:Endpoint supports isochronous transfers.
153 * @type_bulk:Endpoint supports bulk transfers.
154 * @type_int:Endpoint supports interrupt transfers.
155 * @dir_in:Endpoint supports IN direction.
156 * @dir_out:Endpoint supports OUT direction.
157 */
158 struct usb_ep_caps {
159 unsigned type_control:1;
160 unsigned type_iso:1;
161 unsigned type_bulk:1;
162 unsigned type_int:1;
163 unsigned dir_in:1;
164 unsigned dir_out:1;
165 };
166
167 #define USB_EP_CAPS_TYPE_CONTROL 0x01
168 #define USB_EP_CAPS_TYPE_ISO 0x02
169 #define USB_EP_CAPS_TYPE_BULK 0x04
170 #define USB_EP_CAPS_TYPE_INT 0x08
171 #define USB_EP_CAPS_TYPE_ALL \
172 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
173 #define USB_EP_CAPS_DIR_IN 0x01
174 #define USB_EP_CAPS_DIR_OUT 0x02
175 #define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
176
177 #define USB_EP_CAPS(_type, _dir) \
178 { \
179 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
180 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
181 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
182 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
183 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
184 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
185 }
186
187 /**
188 * struct usb_ep - device side representation of USB endpoint
189 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
190 * @ops: Function pointers used to access hardware-specific operations.
191 * @ep_list:the gadget's ep_list holds all of its endpoints
192 * @caps:The structure describing types and directions supported by endoint.
193 * @enabled: The current endpoint enabled/disabled state.
194 * @claimed: True if this endpoint is claimed by a function.
195 * @maxpacket:The maximum packet size used on this endpoint. The initial
196 * value can sometimes be reduced (hardware allowing), according to
197 * the endpoint descriptor used to configure the endpoint.
198 * @maxpacket_limit:The maximum packet size value which can be handled by this
199 * endpoint. It's set once by UDC driver when endpoint is initialized, and
200 * should not be changed. Should not be confused with maxpacket.
201 * @max_streams: The maximum number of streams supported
202 * by this EP (0 - 16, actual number is 2^n)
203 * @mult: multiplier, 'mult' value for SS Isoc EPs
204 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
205 * @driver_data:for use by the gadget driver.
206 * @address: used to identify the endpoint when finding descriptor that
207 * matches connection speed
208 * @desc: endpoint descriptor. This pointer is set before the endpoint is
209 * enabled and remains valid until the endpoint is disabled.
210 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
211 * descriptor that is used to configure the endpoint
212 *
213 * the bus controller driver lists all the general purpose endpoints in
214 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
215 * and is accessed only in response to a driver setup() callback.
216 */
217
218 struct usb_ep {
219 void *driver_data;
220
221 const char *name;
222 const struct usb_ep_ops *ops;
223 struct list_head ep_list;
224 struct usb_ep_caps caps;
225 bool claimed;
226 bool enabled;
227 unsigned maxpacket:16;
228 unsigned maxpacket_limit:16;
229 unsigned max_streams:16;
230 unsigned mult:2;
231 unsigned maxburst:5;
232 u8 address;
233 const struct usb_endpoint_descriptor *desc;
234 const struct usb_ss_ep_comp_descriptor *comp_desc;
235 };
236
237 /*-------------------------------------------------------------------------*/
238
239 #if IS_ENABLED(CONFIG_USB_GADGET)
240 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
241 int usb_ep_enable(struct usb_ep *ep);
242 int usb_ep_disable(struct usb_ep *ep);
243 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
244 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
245 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
246 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
247 int usb_ep_set_halt(struct usb_ep *ep);
248 int usb_ep_clear_halt(struct usb_ep *ep);
249 int usb_ep_set_wedge(struct usb_ep *ep);
250 int usb_ep_fifo_status(struct usb_ep *ep);
251 void usb_ep_fifo_flush(struct usb_ep *ep);
252 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)253 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
254 unsigned maxpacket_limit)
255 { }
usb_ep_enable(struct usb_ep * ep)256 static inline int usb_ep_enable(struct usb_ep *ep)
257 { return 0; }
usb_ep_disable(struct usb_ep * ep)258 static inline int usb_ep_disable(struct usb_ep *ep)
259 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)260 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
261 gfp_t gfp_flags)
262 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)263 static inline void usb_ep_free_request(struct usb_ep *ep,
264 struct usb_request *req)
265 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)266 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
267 gfp_t gfp_flags)
268 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)269 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
270 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)271 static inline int usb_ep_set_halt(struct usb_ep *ep)
272 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)273 static inline int usb_ep_clear_halt(struct usb_ep *ep)
274 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)275 static inline int usb_ep_set_wedge(struct usb_ep *ep)
276 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)277 static inline int usb_ep_fifo_status(struct usb_ep *ep)
278 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)279 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
280 { }
281 #endif /* USB_GADGET */
282
283 /*-------------------------------------------------------------------------*/
284
285 struct usb_dcd_config_params {
286 __u8 bU1devExitLat; /* U1 Device exit Latency */
287 #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
288 __le16 bU2DevExitLat; /* U2 Device exit Latency */
289 #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
290 };
291
292
293 struct usb_gadget;
294 struct usb_gadget_driver;
295 struct usb_udc;
296
297 /* the rest of the api to the controller hardware: device operations,
298 * which don't involve endpoints (or i/o).
299 */
300 struct usb_gadget_ops {
301 int (*get_frame)(struct usb_gadget *);
302 int (*wakeup)(struct usb_gadget *);
303 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
304 int (*vbus_session) (struct usb_gadget *, int is_active);
305 int (*vbus_draw) (struct usb_gadget *, unsigned mA);
306 int (*pullup) (struct usb_gadget *, int is_on);
307 int (*ioctl)(struct usb_gadget *,
308 unsigned code, unsigned long param);
309 void (*get_config_params)(struct usb_dcd_config_params *);
310 int (*udc_start)(struct usb_gadget *,
311 struct usb_gadget_driver *);
312 int (*udc_stop)(struct usb_gadget *);
313 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
314 struct usb_ep *(*match_ep)(struct usb_gadget *,
315 struct usb_endpoint_descriptor *,
316 struct usb_ss_ep_comp_descriptor *);
317 };
318
319 /**
320 * struct usb_gadget - represents a usb slave device
321 * @work: (internal use) Workqueue to be used for sysfs_notify()
322 * @udc: struct usb_udc pointer for this gadget
323 * @ops: Function pointers used to access hardware-specific operations.
324 * @ep0: Endpoint zero, used when reading or writing responses to
325 * driver setup() requests
326 * @ep_list: List of other endpoints supported by the device.
327 * @speed: Speed of current connection to USB host.
328 * @max_speed: Maximal speed the UDC can handle. UDC must support this
329 * and all slower speeds.
330 * @state: the state we are now (attached, suspended, configured, etc)
331 * @name: Identifies the controller hardware type. Used in diagnostics
332 * and sometimes configuration.
333 * @dev: Driver model state for this abstract device.
334 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
335 * @out_epnum: last used out ep number
336 * @in_epnum: last used in ep number
337 * @mA: last set mA value
338 * @otg_caps: OTG capabilities of this gadget.
339 * @sg_supported: true if we can handle scatter-gather
340 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
341 * gadget driver must provide a USB OTG descriptor.
342 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
343 * is in the Mini-AB jack, and HNP has been used to switch roles
344 * so that the "A" device currently acts as A-Peripheral, not A-Host.
345 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
346 * supports HNP at this port.
347 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
348 * only supports HNP on a different root port.
349 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
350 * enabled HNP support.
351 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
352 * in peripheral mode can support HNP polling.
353 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
354 * or B-Peripheral wants to take host role.
355 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
356 * MaxPacketSize.
357 * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
358 * @quirk_stall_not_supp: UDC controller doesn't support stalling.
359 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
360 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
361 * u_ether.c to improve performance.
362 * @is_selfpowered: if the gadget is self-powered.
363 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
364 * be connected.
365 * @connected: True if gadget is connected.
366 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
367 * indicates that it supports LPM as per the LPM ECN & errata.
368 *
369 * Gadgets have a mostly-portable "gadget driver" implementing device
370 * functions, handling all usb configurations and interfaces. Gadget
371 * drivers talk to hardware-specific code indirectly, through ops vectors.
372 * That insulates the gadget driver from hardware details, and packages
373 * the hardware endpoints through generic i/o queues. The "usb_gadget"
374 * and "usb_ep" interfaces provide that insulation from the hardware.
375 *
376 * Except for the driver data, all fields in this structure are
377 * read-only to the gadget driver. That driver data is part of the
378 * "driver model" infrastructure in 2.6 (and later) kernels, and for
379 * earlier systems is grouped in a similar structure that's not known
380 * to the rest of the kernel.
381 *
382 * Values of the three OTG device feature flags are updated before the
383 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
384 * driver suspend() calls. They are valid only when is_otg, and when the
385 * device is acting as a B-Peripheral (so is_a_peripheral is false).
386 */
387 struct usb_gadget {
388 struct work_struct work;
389 struct usb_udc *udc;
390 /* readonly to gadget driver */
391 const struct usb_gadget_ops *ops;
392 struct usb_ep *ep0;
393 struct list_head ep_list; /* of usb_ep */
394 enum usb_device_speed speed;
395 enum usb_device_speed max_speed;
396 enum usb_device_state state;
397 const char *name;
398 struct device dev;
399 unsigned isoch_delay;
400 unsigned out_epnum;
401 unsigned in_epnum;
402 unsigned mA;
403 struct usb_otg_caps *otg_caps;
404
405 unsigned sg_supported:1;
406 unsigned is_otg:1;
407 unsigned is_a_peripheral:1;
408 unsigned b_hnp_enable:1;
409 unsigned a_hnp_support:1;
410 unsigned a_alt_hnp_support:1;
411 unsigned hnp_polling_support:1;
412 unsigned host_request_flag:1;
413 unsigned quirk_ep_out_aligned_size:1;
414 unsigned quirk_altset_not_supp:1;
415 unsigned quirk_stall_not_supp:1;
416 unsigned quirk_zlp_not_supp:1;
417 unsigned quirk_avoids_skb_reserve:1;
418 unsigned is_selfpowered:1;
419 unsigned deactivated:1;
420 unsigned connected:1;
421 unsigned lpm_capable:1;
422 };
423 #define work_to_gadget(w) (container_of((w), struct usb_gadget, work))
424
set_gadget_data(struct usb_gadget * gadget,void * data)425 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
426 { dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)427 static inline void *get_gadget_data(struct usb_gadget *gadget)
428 { return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)429 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
430 {
431 return container_of(dev, struct usb_gadget, dev);
432 }
433
434 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
435 #define gadget_for_each_ep(tmp, gadget) \
436 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
437
438 /**
439 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
440 * @ep: the endpoint whose maxpacketsize is used to align @len
441 * @len: buffer size's length to align to @ep's maxpacketsize
442 *
443 * This helper is used to align buffer's size to an ep's maxpacketsize.
444 */
usb_ep_align(struct usb_ep * ep,size_t len)445 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
446 {
447 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
448
449 return round_up(len, max_packet_size);
450 }
451
452 /**
453 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
454 * requires quirk_ep_out_aligned_size, otherwise returns len.
455 * @g: controller to check for quirk
456 * @ep: the endpoint whose maxpacketsize is used to align @len
457 * @len: buffer size's length to align to @ep's maxpacketsize
458 *
459 * This helper is used in case it's required for any reason to check and maybe
460 * align buffer's size to an ep's maxpacketsize.
461 */
462 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)463 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
464 {
465 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
466 }
467
468 /**
469 * gadget_is_altset_supported - return true iff the hardware supports
470 * altsettings
471 * @g: controller to check for quirk
472 */
gadget_is_altset_supported(struct usb_gadget * g)473 static inline int gadget_is_altset_supported(struct usb_gadget *g)
474 {
475 return !g->quirk_altset_not_supp;
476 }
477
478 /**
479 * gadget_is_stall_supported - return true iff the hardware supports stalling
480 * @g: controller to check for quirk
481 */
gadget_is_stall_supported(struct usb_gadget * g)482 static inline int gadget_is_stall_supported(struct usb_gadget *g)
483 {
484 return !g->quirk_stall_not_supp;
485 }
486
487 /**
488 * gadget_is_zlp_supported - return true iff the hardware supports zlp
489 * @g: controller to check for quirk
490 */
gadget_is_zlp_supported(struct usb_gadget * g)491 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
492 {
493 return !g->quirk_zlp_not_supp;
494 }
495
496 /**
497 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
498 * skb_reserve to improve performance.
499 * @g: controller to check for quirk
500 */
gadget_avoids_skb_reserve(struct usb_gadget * g)501 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
502 {
503 return g->quirk_avoids_skb_reserve;
504 }
505
506 /**
507 * gadget_is_dualspeed - return true iff the hardware handles high speed
508 * @g: controller that might support both high and full speeds
509 */
gadget_is_dualspeed(struct usb_gadget * g)510 static inline int gadget_is_dualspeed(struct usb_gadget *g)
511 {
512 return g->max_speed >= USB_SPEED_HIGH;
513 }
514
515 /**
516 * gadget_is_superspeed() - return true if the hardware handles superspeed
517 * @g: controller that might support superspeed
518 */
gadget_is_superspeed(struct usb_gadget * g)519 static inline int gadget_is_superspeed(struct usb_gadget *g)
520 {
521 return g->max_speed >= USB_SPEED_SUPER;
522 }
523
524 /**
525 * gadget_is_superspeed_plus() - return true if the hardware handles
526 * superspeed plus
527 * @g: controller that might support superspeed plus
528 */
gadget_is_superspeed_plus(struct usb_gadget * g)529 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
530 {
531 return g->max_speed >= USB_SPEED_SUPER_PLUS;
532 }
533
534 /**
535 * gadget_is_otg - return true iff the hardware is OTG-ready
536 * @g: controller that might have a Mini-AB connector
537 *
538 * This is a runtime test, since kernels with a USB-OTG stack sometimes
539 * run on boards which only have a Mini-B (or Mini-A) connector.
540 */
gadget_is_otg(struct usb_gadget * g)541 static inline int gadget_is_otg(struct usb_gadget *g)
542 {
543 #ifdef CONFIG_USB_OTG
544 return g->is_otg;
545 #else
546 return 0;
547 #endif
548 }
549
550 /*-------------------------------------------------------------------------*/
551
552 #if IS_ENABLED(CONFIG_USB_GADGET)
553 int usb_gadget_frame_number(struct usb_gadget *gadget);
554 int usb_gadget_wakeup(struct usb_gadget *gadget);
555 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
556 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
557 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
558 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
559 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
560 int usb_gadget_connect(struct usb_gadget *gadget);
561 int usb_gadget_disconnect(struct usb_gadget *gadget);
562 int usb_gadget_deactivate(struct usb_gadget *gadget);
563 int usb_gadget_activate(struct usb_gadget *gadget);
564 #else
usb_gadget_frame_number(struct usb_gadget * gadget)565 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
566 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)567 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
568 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)569 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
570 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)571 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
572 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)573 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
574 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)575 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
576 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)577 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
578 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)579 static inline int usb_gadget_connect(struct usb_gadget *gadget)
580 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)581 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
582 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)583 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
584 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)585 static inline int usb_gadget_activate(struct usb_gadget *gadget)
586 { return 0; }
587 #endif /* CONFIG_USB_GADGET */
588
589 /*-------------------------------------------------------------------------*/
590
591 /**
592 * struct usb_gadget_driver - driver for usb 'slave' devices
593 * @function: String describing the gadget's function
594 * @max_speed: Highest speed the driver handles.
595 * @setup: Invoked for ep0 control requests that aren't handled by
596 * the hardware level driver. Most calls must be handled by
597 * the gadget driver, including descriptor and configuration
598 * management. The 16 bit members of the setup data are in
599 * USB byte order. Called in_interrupt; this may not sleep. Driver
600 * queues a response to ep0, or returns negative to stall.
601 * @disconnect: Invoked after all transfers have been stopped,
602 * when the host is disconnected. May be called in_interrupt; this
603 * may not sleep. Some devices can't detect disconnect, so this might
604 * not be called except as part of controller shutdown.
605 * @bind: the driver's bind callback
606 * @unbind: Invoked when the driver is unbound from a gadget,
607 * usually from rmmod (after a disconnect is reported).
608 * Called in a context that permits sleeping.
609 * @suspend: Invoked on USB suspend. May be called in_interrupt.
610 * @resume: Invoked on USB resume. May be called in_interrupt.
611 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
612 * and should be called in_interrupt.
613 * @driver: Driver model state for this driver.
614 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
615 * this driver will be bound to any available UDC.
616 * @pending: UDC core private data used for deferred probe of this driver.
617 * @match_existing_only: If udc is not found, return an error and don't add this
618 * gadget driver to list of pending driver
619 *
620 * Devices are disabled till a gadget driver successfully bind()s, which
621 * means the driver will handle setup() requests needed to enumerate (and
622 * meet "chapter 9" requirements) then do some useful work.
623 *
624 * If gadget->is_otg is true, the gadget driver must provide an OTG
625 * descriptor during enumeration, or else fail the bind() call. In such
626 * cases, no USB traffic may flow until both bind() returns without
627 * having called usb_gadget_disconnect(), and the USB host stack has
628 * initialized.
629 *
630 * Drivers use hardware-specific knowledge to configure the usb hardware.
631 * endpoint addressing is only one of several hardware characteristics that
632 * are in descriptors the ep0 implementation returns from setup() calls.
633 *
634 * Except for ep0 implementation, most driver code shouldn't need change to
635 * run on top of different usb controllers. It'll use endpoints set up by
636 * that ep0 implementation.
637 *
638 * The usb controller driver handles a few standard usb requests. Those
639 * include set_address, and feature flags for devices, interfaces, and
640 * endpoints (the get_status, set_feature, and clear_feature requests).
641 *
642 * Accordingly, the driver's setup() callback must always implement all
643 * get_descriptor requests, returning at least a device descriptor and
644 * a configuration descriptor. Drivers must make sure the endpoint
645 * descriptors match any hardware constraints. Some hardware also constrains
646 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
647 *
648 * The driver's setup() callback must also implement set_configuration,
649 * and should also implement set_interface, get_configuration, and
650 * get_interface. Setting a configuration (or interface) is where
651 * endpoints should be activated or (config 0) shut down.
652 *
653 * (Note that only the default control endpoint is supported. Neither
654 * hosts nor devices generally support control traffic except to ep0.)
655 *
656 * Most devices will ignore USB suspend/resume operations, and so will
657 * not provide those callbacks. However, some may need to change modes
658 * when the host is not longer directing those activities. For example,
659 * local controls (buttons, dials, etc) may need to be re-enabled since
660 * the (remote) host can't do that any longer; or an error state might
661 * be cleared, to make the device behave identically whether or not
662 * power is maintained.
663 */
664 struct usb_gadget_driver {
665 char *function;
666 enum usb_device_speed max_speed;
667 int (*bind)(struct usb_gadget *gadget,
668 struct usb_gadget_driver *driver);
669 void (*unbind)(struct usb_gadget *);
670 int (*setup)(struct usb_gadget *,
671 const struct usb_ctrlrequest *);
672 void (*disconnect)(struct usb_gadget *);
673 void (*suspend)(struct usb_gadget *);
674 void (*resume)(struct usb_gadget *);
675 void (*reset)(struct usb_gadget *);
676
677 /* FIXME support safe rmmod */
678 struct device_driver driver;
679
680 char *udc_name;
681 struct list_head pending;
682 unsigned match_existing_only:1;
683 };
684
685
686
687 /*-------------------------------------------------------------------------*/
688
689 /* driver modules register and unregister, as usual.
690 * these calls must be made in a context that can sleep.
691 *
692 * these will usually be implemented directly by the hardware-dependent
693 * usb bus interface driver, which will only support a single driver.
694 */
695
696 /**
697 * usb_gadget_probe_driver - probe a gadget driver
698 * @driver: the driver being registered
699 * Context: can sleep
700 *
701 * Call this in your gadget driver's module initialization function,
702 * to tell the underlying usb controller driver about your driver.
703 * The @bind() function will be called to bind it to a gadget before this
704 * registration call returns. It's expected that the @bind() function will
705 * be in init sections.
706 */
707 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
708
709 /**
710 * usb_gadget_unregister_driver - unregister a gadget driver
711 * @driver:the driver being unregistered
712 * Context: can sleep
713 *
714 * Call this in your gadget driver's module cleanup function,
715 * to tell the underlying usb controller that your driver is
716 * going away. If the controller is connected to a USB host,
717 * it will first disconnect(). The driver is also requested
718 * to unbind() and clean up any device state, before this procedure
719 * finally returns. It's expected that the unbind() functions
720 * will in in exit sections, so may not be linked in some kernels.
721 */
722 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
723
724 extern int usb_add_gadget_udc_release(struct device *parent,
725 struct usb_gadget *gadget, void (*release)(struct device *dev));
726 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
727 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
728 extern char *usb_get_gadget_udc_name(void);
729
730 /*-------------------------------------------------------------------------*/
731
732 /* utility to simplify dealing with string descriptors */
733
734 /**
735 * struct usb_string - wraps a C string and its USB id
736 * @id:the (nonzero) ID for this string
737 * @s:the string, in UTF-8 encoding
738 *
739 * If you're using usb_gadget_get_string(), use this to wrap a string
740 * together with its ID.
741 */
742 struct usb_string {
743 u8 id;
744 const char *s;
745 };
746
747 /**
748 * struct usb_gadget_strings - a set of USB strings in a given language
749 * @language:identifies the strings' language (0x0409 for en-us)
750 * @strings:array of strings with their ids
751 *
752 * If you're using usb_gadget_get_string(), use this to wrap all the
753 * strings for a given language.
754 */
755 struct usb_gadget_strings {
756 u16 language; /* 0x0409 for en-us */
757 struct usb_string *strings;
758 };
759
760 struct usb_gadget_string_container {
761 struct list_head list;
762 u8 *stash[0];
763 };
764
765 /* put descriptor for string with that id into buf (buflen >= 256) */
766 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
767
768 /*-------------------------------------------------------------------------*/
769
770 /* utility to simplify managing config descriptors */
771
772 /* write vector of descriptors into buffer */
773 int usb_descriptor_fillbuf(void *, unsigned,
774 const struct usb_descriptor_header **);
775
776 /* build config descriptor from single descriptor vector */
777 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
778 void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
779
780 /* copy a NULL-terminated vector of descriptors */
781 struct usb_descriptor_header **usb_copy_descriptors(
782 struct usb_descriptor_header **);
783
784 /**
785 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
786 * @v: vector of descriptors
787 */
usb_free_descriptors(struct usb_descriptor_header ** v)788 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
789 {
790 kfree(v);
791 }
792
793 struct usb_function;
794 int usb_assign_descriptors(struct usb_function *f,
795 struct usb_descriptor_header **fs,
796 struct usb_descriptor_header **hs,
797 struct usb_descriptor_header **ss,
798 struct usb_descriptor_header **ssp);
799 void usb_free_all_descriptors(struct usb_function *f);
800
801 struct usb_descriptor_header *usb_otg_descriptor_alloc(
802 struct usb_gadget *gadget);
803 int usb_otg_descriptor_init(struct usb_gadget *gadget,
804 struct usb_descriptor_header *otg_desc);
805 /*-------------------------------------------------------------------------*/
806
807 /* utility to simplify map/unmap of usb_requests to/from DMA */
808
809 #ifdef CONFIG_HAS_DMA
810 extern int usb_gadget_map_request_by_dev(struct device *dev,
811 struct usb_request *req, int is_in);
812 extern int usb_gadget_map_request(struct usb_gadget *gadget,
813 struct usb_request *req, int is_in);
814
815 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
816 struct usb_request *req, int is_in);
817 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
818 struct usb_request *req, int is_in);
819 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)820 static inline int usb_gadget_map_request_by_dev(struct device *dev,
821 struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)822 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
823 struct usb_request *req, int is_in) { return -ENOSYS; }
824
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)825 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
826 struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)827 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
828 struct usb_request *req, int is_in) { }
829 #endif /* !CONFIG_HAS_DMA */
830
831 /*-------------------------------------------------------------------------*/
832
833 /* utility to set gadget state properly */
834
835 extern void usb_gadget_set_state(struct usb_gadget *gadget,
836 enum usb_device_state state);
837
838 /*-------------------------------------------------------------------------*/
839
840 /* utility to tell udc core that the bus reset occurs */
841 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
842 struct usb_gadget_driver *driver);
843
844 /*-------------------------------------------------------------------------*/
845
846 /* utility to give requests back to the gadget layer */
847
848 extern void usb_gadget_giveback_request(struct usb_ep *ep,
849 struct usb_request *req);
850
851 /*-------------------------------------------------------------------------*/
852
853 /* utility to find endpoint by name */
854
855 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
856 const char *name);
857
858 /*-------------------------------------------------------------------------*/
859
860 /* utility to check if endpoint caps match descriptor needs */
861
862 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
863 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
864 struct usb_ss_ep_comp_descriptor *ep_comp);
865
866 /*-------------------------------------------------------------------------*/
867
868 /* utility to update vbus status for udc core, it may be scheduled */
869 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
870
871 /*-------------------------------------------------------------------------*/
872
873 /* utility wrapping a simple endpoint selection policy */
874
875 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
876 struct usb_endpoint_descriptor *);
877
878
879 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
880 struct usb_endpoint_descriptor *,
881 struct usb_ss_ep_comp_descriptor *);
882
883 extern void usb_ep_autoconfig_release(struct usb_ep *);
884
885 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
886
887 #endif /* __LINUX_USB_GADGET_H */
888