1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * Performance events: 4 * 5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 8 * 9 * Data type definitions, declarations, prototypes. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * For licencing details see kernel-base/COPYING 14 */ 15 #ifndef _UAPI_LINUX_PERF_EVENT_H 16 #define _UAPI_LINUX_PERF_EVENT_H 17 18 #include <linux/types.h> 19 #include <linux/ioctl.h> 20 #include <asm/byteorder.h> 21 22 /* 23 * User-space ABI bits: 24 */ 25 26 /* 27 * attr.type 28 */ 29 enum perf_type_id { 30 PERF_TYPE_HARDWARE = 0, 31 PERF_TYPE_SOFTWARE = 1, 32 PERF_TYPE_TRACEPOINT = 2, 33 PERF_TYPE_HW_CACHE = 3, 34 PERF_TYPE_RAW = 4, 35 PERF_TYPE_BREAKPOINT = 5, 36 37 PERF_TYPE_MAX, /* non-ABI */ 38 }; 39 40 /* 41 * Generalized performance event event_id types, used by the 42 * attr.event_id parameter of the sys_perf_event_open() 43 * syscall: 44 */ 45 enum perf_hw_id { 46 /* 47 * Common hardware events, generalized by the kernel: 48 */ 49 PERF_COUNT_HW_CPU_CYCLES = 0, 50 PERF_COUNT_HW_INSTRUCTIONS = 1, 51 PERF_COUNT_HW_CACHE_REFERENCES = 2, 52 PERF_COUNT_HW_CACHE_MISSES = 3, 53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 54 PERF_COUNT_HW_BRANCH_MISSES = 5, 55 PERF_COUNT_HW_BUS_CYCLES = 6, 56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 58 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 59 60 PERF_COUNT_HW_MAX, /* non-ABI */ 61 }; 62 63 /* 64 * Generalized hardware cache events: 65 * 66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 67 * { read, write, prefetch } x 68 * { accesses, misses } 69 */ 70 enum perf_hw_cache_id { 71 PERF_COUNT_HW_CACHE_L1D = 0, 72 PERF_COUNT_HW_CACHE_L1I = 1, 73 PERF_COUNT_HW_CACHE_LL = 2, 74 PERF_COUNT_HW_CACHE_DTLB = 3, 75 PERF_COUNT_HW_CACHE_ITLB = 4, 76 PERF_COUNT_HW_CACHE_BPU = 5, 77 PERF_COUNT_HW_CACHE_NODE = 6, 78 79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 80 }; 81 82 enum perf_hw_cache_op_id { 83 PERF_COUNT_HW_CACHE_OP_READ = 0, 84 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 86 87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 88 }; 89 90 enum perf_hw_cache_op_result_id { 91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 93 94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 95 }; 96 97 /* 98 * Special "software" events provided by the kernel, even if the hardware 99 * does not support performance events. These events measure various 100 * physical and sw events of the kernel (and allow the profiling of them as 101 * well): 102 */ 103 enum perf_sw_ids { 104 PERF_COUNT_SW_CPU_CLOCK = 0, 105 PERF_COUNT_SW_TASK_CLOCK = 1, 106 PERF_COUNT_SW_PAGE_FAULTS = 2, 107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 108 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 112 PERF_COUNT_SW_EMULATION_FAULTS = 8, 113 PERF_COUNT_SW_DUMMY = 9, 114 PERF_COUNT_SW_BPF_OUTPUT = 10, 115 116 PERF_COUNT_SW_MAX, /* non-ABI */ 117 }; 118 119 /* 120 * Bits that can be set in attr.sample_type to request information 121 * in the overflow packets. 122 */ 123 enum perf_event_sample_format { 124 PERF_SAMPLE_IP = 1U << 0, 125 PERF_SAMPLE_TID = 1U << 1, 126 PERF_SAMPLE_TIME = 1U << 2, 127 PERF_SAMPLE_ADDR = 1U << 3, 128 PERF_SAMPLE_READ = 1U << 4, 129 PERF_SAMPLE_CALLCHAIN = 1U << 5, 130 PERF_SAMPLE_ID = 1U << 6, 131 PERF_SAMPLE_CPU = 1U << 7, 132 PERF_SAMPLE_PERIOD = 1U << 8, 133 PERF_SAMPLE_STREAM_ID = 1U << 9, 134 PERF_SAMPLE_RAW = 1U << 10, 135 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 136 PERF_SAMPLE_REGS_USER = 1U << 12, 137 PERF_SAMPLE_STACK_USER = 1U << 13, 138 PERF_SAMPLE_WEIGHT = 1U << 14, 139 PERF_SAMPLE_DATA_SRC = 1U << 15, 140 PERF_SAMPLE_IDENTIFIER = 1U << 16, 141 PERF_SAMPLE_TRANSACTION = 1U << 17, 142 PERF_SAMPLE_REGS_INTR = 1U << 18, 143 PERF_SAMPLE_PHYS_ADDR = 1U << 19, 144 145 PERF_SAMPLE_MAX = 1U << 20, /* non-ABI */ 146 147 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */ 148 }; 149 150 /* 151 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 152 * 153 * If the user does not pass priv level information via branch_sample_type, 154 * the kernel uses the event's priv level. Branch and event priv levels do 155 * not have to match. Branch priv level is checked for permissions. 156 * 157 * The branch types can be combined, however BRANCH_ANY covers all types 158 * of branches and therefore it supersedes all the other types. 159 */ 160 enum perf_branch_sample_type_shift { 161 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ 162 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ 163 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ 164 165 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ 166 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ 167 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ 168 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ 169 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ 170 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ 171 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ 172 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ 173 174 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ 175 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ 176 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ 177 178 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ 179 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ 180 181 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */ 182 183 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ 184 }; 185 186 enum perf_branch_sample_type { 187 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, 188 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, 189 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, 190 191 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, 192 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, 193 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, 194 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, 195 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, 196 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, 197 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, 198 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, 199 200 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, 201 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, 202 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, 203 204 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, 205 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, 206 207 PERF_SAMPLE_BRANCH_TYPE_SAVE = 208 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT, 209 210 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, 211 }; 212 213 /* 214 * Common flow change classification 215 */ 216 enum { 217 PERF_BR_UNKNOWN = 0, /* unknown */ 218 PERF_BR_COND = 1, /* conditional */ 219 PERF_BR_UNCOND = 2, /* unconditional */ 220 PERF_BR_IND = 3, /* indirect */ 221 PERF_BR_CALL = 4, /* function call */ 222 PERF_BR_IND_CALL = 5, /* indirect function call */ 223 PERF_BR_RET = 6, /* function return */ 224 PERF_BR_SYSCALL = 7, /* syscall */ 225 PERF_BR_SYSRET = 8, /* syscall return */ 226 PERF_BR_COND_CALL = 9, /* conditional function call */ 227 PERF_BR_COND_RET = 10, /* conditional function return */ 228 PERF_BR_MAX, 229 }; 230 231 #define PERF_SAMPLE_BRANCH_PLM_ALL \ 232 (PERF_SAMPLE_BRANCH_USER|\ 233 PERF_SAMPLE_BRANCH_KERNEL|\ 234 PERF_SAMPLE_BRANCH_HV) 235 236 /* 237 * Values to determine ABI of the registers dump. 238 */ 239 enum perf_sample_regs_abi { 240 PERF_SAMPLE_REGS_ABI_NONE = 0, 241 PERF_SAMPLE_REGS_ABI_32 = 1, 242 PERF_SAMPLE_REGS_ABI_64 = 2, 243 }; 244 245 /* 246 * Values for the memory transaction event qualifier, mostly for 247 * abort events. Multiple bits can be set. 248 */ 249 enum { 250 PERF_TXN_ELISION = (1 << 0), /* From elision */ 251 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 252 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 253 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 254 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 255 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 256 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 257 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 258 259 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 260 261 /* bits 32..63 are reserved for the abort code */ 262 263 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 264 PERF_TXN_ABORT_SHIFT = 32, 265 }; 266 267 /* 268 * The format of the data returned by read() on a perf event fd, 269 * as specified by attr.read_format: 270 * 271 * struct read_format { 272 * { u64 value; 273 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 274 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 275 * { u64 id; } && PERF_FORMAT_ID 276 * } && !PERF_FORMAT_GROUP 277 * 278 * { u64 nr; 279 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 280 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 281 * { u64 value; 282 * { u64 id; } && PERF_FORMAT_ID 283 * } cntr[nr]; 284 * } && PERF_FORMAT_GROUP 285 * }; 286 */ 287 enum perf_event_read_format { 288 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 289 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 290 PERF_FORMAT_ID = 1U << 2, 291 PERF_FORMAT_GROUP = 1U << 3, 292 293 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 294 }; 295 296 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 297 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 298 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 299 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 300 /* add: sample_stack_user */ 301 #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ 302 #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ 303 304 /* 305 * Hardware event_id to monitor via a performance monitoring event: 306 * 307 * @sample_max_stack: Max number of frame pointers in a callchain, 308 * should be < /proc/sys/kernel/perf_event_max_stack 309 */ 310 struct perf_event_attr { 311 312 /* 313 * Major type: hardware/software/tracepoint/etc. 314 */ 315 __u32 type; 316 317 /* 318 * Size of the attr structure, for fwd/bwd compat. 319 */ 320 __u32 size; 321 322 /* 323 * Type specific configuration information. 324 */ 325 __u64 config; 326 327 union { 328 __u64 sample_period; 329 __u64 sample_freq; 330 }; 331 332 __u64 sample_type; 333 __u64 read_format; 334 335 __u64 disabled : 1, /* off by default */ 336 inherit : 1, /* children inherit it */ 337 pinned : 1, /* must always be on PMU */ 338 exclusive : 1, /* only group on PMU */ 339 exclude_user : 1, /* don't count user */ 340 exclude_kernel : 1, /* ditto kernel */ 341 exclude_hv : 1, /* ditto hypervisor */ 342 exclude_idle : 1, /* don't count when idle */ 343 mmap : 1, /* include mmap data */ 344 comm : 1, /* include comm data */ 345 freq : 1, /* use freq, not period */ 346 inherit_stat : 1, /* per task counts */ 347 enable_on_exec : 1, /* next exec enables */ 348 task : 1, /* trace fork/exit */ 349 watermark : 1, /* wakeup_watermark */ 350 /* 351 * precise_ip: 352 * 353 * 0 - SAMPLE_IP can have arbitrary skid 354 * 1 - SAMPLE_IP must have constant skid 355 * 2 - SAMPLE_IP requested to have 0 skid 356 * 3 - SAMPLE_IP must have 0 skid 357 * 358 * See also PERF_RECORD_MISC_EXACT_IP 359 */ 360 precise_ip : 2, /* skid constraint */ 361 mmap_data : 1, /* non-exec mmap data */ 362 sample_id_all : 1, /* sample_type all events */ 363 364 exclude_host : 1, /* don't count in host */ 365 exclude_guest : 1, /* don't count in guest */ 366 367 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 368 exclude_callchain_user : 1, /* exclude user callchains */ 369 mmap2 : 1, /* include mmap with inode data */ 370 comm_exec : 1, /* flag comm events that are due to an exec */ 371 use_clockid : 1, /* use @clockid for time fields */ 372 context_switch : 1, /* context switch data */ 373 write_backward : 1, /* Write ring buffer from end to beginning */ 374 namespaces : 1, /* include namespaces data */ 375 __reserved_1 : 35; 376 377 union { 378 __u32 wakeup_events; /* wakeup every n events */ 379 __u32 wakeup_watermark; /* bytes before wakeup */ 380 }; 381 382 __u32 bp_type; 383 union { 384 __u64 bp_addr; 385 __u64 kprobe_func; /* for perf_kprobe */ 386 __u64 uprobe_path; /* for perf_uprobe */ 387 __u64 config1; /* extension of config */ 388 }; 389 union { 390 __u64 bp_len; 391 __u64 kprobe_addr; /* when kprobe_func == NULL */ 392 __u64 probe_offset; /* for perf_[k,u]probe */ 393 __u64 config2; /* extension of config1 */ 394 }; 395 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 396 397 /* 398 * Defines set of user regs to dump on samples. 399 * See asm/perf_regs.h for details. 400 */ 401 __u64 sample_regs_user; 402 403 /* 404 * Defines size of the user stack to dump on samples. 405 */ 406 __u32 sample_stack_user; 407 408 __s32 clockid; 409 /* 410 * Defines set of regs to dump for each sample 411 * state captured on: 412 * - precise = 0: PMU interrupt 413 * - precise > 0: sampled instruction 414 * 415 * See asm/perf_regs.h for details. 416 */ 417 __u64 sample_regs_intr; 418 419 /* 420 * Wakeup watermark for AUX area 421 */ 422 __u32 aux_watermark; 423 __u16 sample_max_stack; 424 __u16 __reserved_2; /* align to __u64 */ 425 }; 426 427 /* 428 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command 429 * to query bpf programs attached to the same perf tracepoint 430 * as the given perf event. 431 */ 432 struct perf_event_query_bpf { 433 /* 434 * The below ids array length 435 */ 436 __u32 ids_len; 437 /* 438 * Set by the kernel to indicate the number of 439 * available programs 440 */ 441 __u32 prog_cnt; 442 /* 443 * User provided buffer to store program ids 444 */ 445 __u32 ids[0]; 446 }; 447 448 #define perf_flags(attr) (*(&(attr)->read_format + 1)) 449 450 /* 451 * Ioctls that can be done on a perf event fd: 452 */ 453 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 454 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 455 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 456 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 457 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 458 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 459 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 460 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 461 #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) 462 #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32) 463 #define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *) 464 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *) 465 466 enum perf_event_ioc_flags { 467 PERF_IOC_FLAG_GROUP = 1U << 0, 468 }; 469 470 /* 471 * Structure of the page that can be mapped via mmap 472 */ 473 struct perf_event_mmap_page { 474 __u32 version; /* version number of this structure */ 475 __u32 compat_version; /* lowest version this is compat with */ 476 477 /* 478 * Bits needed to read the hw events in user-space. 479 * 480 * u32 seq, time_mult, time_shift, index, width; 481 * u64 count, enabled, running; 482 * u64 cyc, time_offset; 483 * s64 pmc = 0; 484 * 485 * do { 486 * seq = pc->lock; 487 * barrier() 488 * 489 * enabled = pc->time_enabled; 490 * running = pc->time_running; 491 * 492 * if (pc->cap_usr_time && enabled != running) { 493 * cyc = rdtsc(); 494 * time_offset = pc->time_offset; 495 * time_mult = pc->time_mult; 496 * time_shift = pc->time_shift; 497 * } 498 * 499 * index = pc->index; 500 * count = pc->offset; 501 * if (pc->cap_user_rdpmc && index) { 502 * width = pc->pmc_width; 503 * pmc = rdpmc(index - 1); 504 * } 505 * 506 * barrier(); 507 * } while (pc->lock != seq); 508 * 509 * NOTE: for obvious reason this only works on self-monitoring 510 * processes. 511 */ 512 __u32 lock; /* seqlock for synchronization */ 513 __u32 index; /* hardware event identifier */ 514 __s64 offset; /* add to hardware event value */ 515 __u64 time_enabled; /* time event active */ 516 __u64 time_running; /* time event on cpu */ 517 union { 518 __u64 capabilities; 519 struct { 520 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 521 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 522 523 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ 524 cap_user_time : 1, /* The time_* fields are used */ 525 cap_user_time_zero : 1, /* The time_zero field is used */ 526 cap_____res : 59; 527 }; 528 }; 529 530 /* 531 * If cap_user_rdpmc this field provides the bit-width of the value 532 * read using the rdpmc() or equivalent instruction. This can be used 533 * to sign extend the result like: 534 * 535 * pmc <<= 64 - width; 536 * pmc >>= 64 - width; // signed shift right 537 * count += pmc; 538 */ 539 __u16 pmc_width; 540 541 /* 542 * If cap_usr_time the below fields can be used to compute the time 543 * delta since time_enabled (in ns) using rdtsc or similar. 544 * 545 * u64 quot, rem; 546 * u64 delta; 547 * 548 * quot = (cyc >> time_shift); 549 * rem = cyc & (((u64)1 << time_shift) - 1); 550 * delta = time_offset + quot * time_mult + 551 * ((rem * time_mult) >> time_shift); 552 * 553 * Where time_offset,time_mult,time_shift and cyc are read in the 554 * seqcount loop described above. This delta can then be added to 555 * enabled and possible running (if index), improving the scaling: 556 * 557 * enabled += delta; 558 * if (index) 559 * running += delta; 560 * 561 * quot = count / running; 562 * rem = count % running; 563 * count = quot * enabled + (rem * enabled) / running; 564 */ 565 __u16 time_shift; 566 __u32 time_mult; 567 __u64 time_offset; 568 /* 569 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 570 * from sample timestamps. 571 * 572 * time = timestamp - time_zero; 573 * quot = time / time_mult; 574 * rem = time % time_mult; 575 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 576 * 577 * And vice versa: 578 * 579 * quot = cyc >> time_shift; 580 * rem = cyc & (((u64)1 << time_shift) - 1); 581 * timestamp = time_zero + quot * time_mult + 582 * ((rem * time_mult) >> time_shift); 583 */ 584 __u64 time_zero; 585 __u32 size; /* Header size up to __reserved[] fields. */ 586 587 /* 588 * Hole for extension of the self monitor capabilities 589 */ 590 591 __u8 __reserved[118*8+4]; /* align to 1k. */ 592 593 /* 594 * Control data for the mmap() data buffer. 595 * 596 * User-space reading the @data_head value should issue an smp_rmb(), 597 * after reading this value. 598 * 599 * When the mapping is PROT_WRITE the @data_tail value should be 600 * written by userspace to reflect the last read data, after issueing 601 * an smp_mb() to separate the data read from the ->data_tail store. 602 * In this case the kernel will not over-write unread data. 603 * 604 * See perf_output_put_handle() for the data ordering. 605 * 606 * data_{offset,size} indicate the location and size of the perf record 607 * buffer within the mmapped area. 608 */ 609 __u64 data_head; /* head in the data section */ 610 __u64 data_tail; /* user-space written tail */ 611 __u64 data_offset; /* where the buffer starts */ 612 __u64 data_size; /* data buffer size */ 613 614 /* 615 * AUX area is defined by aux_{offset,size} fields that should be set 616 * by the userspace, so that 617 * 618 * aux_offset >= data_offset + data_size 619 * 620 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. 621 * 622 * Ring buffer pointers aux_{head,tail} have the same semantics as 623 * data_{head,tail} and same ordering rules apply. 624 */ 625 __u64 aux_head; 626 __u64 aux_tail; 627 __u64 aux_offset; 628 __u64 aux_size; 629 }; 630 631 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 632 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 633 #define PERF_RECORD_MISC_KERNEL (1 << 0) 634 #define PERF_RECORD_MISC_USER (2 << 0) 635 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 636 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 637 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 638 639 /* 640 * Indicates that /proc/PID/maps parsing are truncated by time out. 641 */ 642 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) 643 /* 644 * Following PERF_RECORD_MISC_* are used on different 645 * events, so can reuse the same bit position: 646 * 647 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events 648 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event 649 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events 650 */ 651 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 652 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 653 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) 654 /* 655 * These PERF_RECORD_MISC_* flags below are safely reused 656 * for the following events: 657 * 658 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events 659 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events 660 * 661 * 662 * PERF_RECORD_MISC_EXACT_IP: 663 * Indicates that the content of PERF_SAMPLE_IP points to 664 * the actual instruction that triggered the event. See also 665 * perf_event_attr::precise_ip. 666 * 667 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT: 668 * Indicates that thread was preempted in TASK_RUNNING state. 669 */ 670 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 671 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14) 672 /* 673 * Reserve the last bit to indicate some extended misc field 674 */ 675 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 676 677 struct perf_event_header { 678 __u32 type; 679 __u16 misc; 680 __u16 size; 681 }; 682 683 struct perf_ns_link_info { 684 __u64 dev; 685 __u64 ino; 686 }; 687 688 enum { 689 NET_NS_INDEX = 0, 690 UTS_NS_INDEX = 1, 691 IPC_NS_INDEX = 2, 692 PID_NS_INDEX = 3, 693 USER_NS_INDEX = 4, 694 MNT_NS_INDEX = 5, 695 CGROUP_NS_INDEX = 6, 696 697 NR_NAMESPACES, /* number of available namespaces */ 698 }; 699 700 enum perf_event_type { 701 702 /* 703 * If perf_event_attr.sample_id_all is set then all event types will 704 * have the sample_type selected fields related to where/when 705 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 706 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 707 * just after the perf_event_header and the fields already present for 708 * the existing fields, i.e. at the end of the payload. That way a newer 709 * perf.data file will be supported by older perf tools, with these new 710 * optional fields being ignored. 711 * 712 * struct sample_id { 713 * { u32 pid, tid; } && PERF_SAMPLE_TID 714 * { u64 time; } && PERF_SAMPLE_TIME 715 * { u64 id; } && PERF_SAMPLE_ID 716 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 717 * { u32 cpu, res; } && PERF_SAMPLE_CPU 718 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 719 * } && perf_event_attr::sample_id_all 720 * 721 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 722 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 723 * relative to header.size. 724 */ 725 726 /* 727 * The MMAP events record the PROT_EXEC mappings so that we can 728 * correlate userspace IPs to code. They have the following structure: 729 * 730 * struct { 731 * struct perf_event_header header; 732 * 733 * u32 pid, tid; 734 * u64 addr; 735 * u64 len; 736 * u64 pgoff; 737 * char filename[]; 738 * struct sample_id sample_id; 739 * }; 740 */ 741 PERF_RECORD_MMAP = 1, 742 743 /* 744 * struct { 745 * struct perf_event_header header; 746 * u64 id; 747 * u64 lost; 748 * struct sample_id sample_id; 749 * }; 750 */ 751 PERF_RECORD_LOST = 2, 752 753 /* 754 * struct { 755 * struct perf_event_header header; 756 * 757 * u32 pid, tid; 758 * char comm[]; 759 * struct sample_id sample_id; 760 * }; 761 */ 762 PERF_RECORD_COMM = 3, 763 764 /* 765 * struct { 766 * struct perf_event_header header; 767 * u32 pid, ppid; 768 * u32 tid, ptid; 769 * u64 time; 770 * struct sample_id sample_id; 771 * }; 772 */ 773 PERF_RECORD_EXIT = 4, 774 775 /* 776 * struct { 777 * struct perf_event_header header; 778 * u64 time; 779 * u64 id; 780 * u64 stream_id; 781 * struct sample_id sample_id; 782 * }; 783 */ 784 PERF_RECORD_THROTTLE = 5, 785 PERF_RECORD_UNTHROTTLE = 6, 786 787 /* 788 * struct { 789 * struct perf_event_header header; 790 * u32 pid, ppid; 791 * u32 tid, ptid; 792 * u64 time; 793 * struct sample_id sample_id; 794 * }; 795 */ 796 PERF_RECORD_FORK = 7, 797 798 /* 799 * struct { 800 * struct perf_event_header header; 801 * u32 pid, tid; 802 * 803 * struct read_format values; 804 * struct sample_id sample_id; 805 * }; 806 */ 807 PERF_RECORD_READ = 8, 808 809 /* 810 * struct { 811 * struct perf_event_header header; 812 * 813 * # 814 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 815 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 816 * # is fixed relative to header. 817 * # 818 * 819 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 820 * { u64 ip; } && PERF_SAMPLE_IP 821 * { u32 pid, tid; } && PERF_SAMPLE_TID 822 * { u64 time; } && PERF_SAMPLE_TIME 823 * { u64 addr; } && PERF_SAMPLE_ADDR 824 * { u64 id; } && PERF_SAMPLE_ID 825 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 826 * { u32 cpu, res; } && PERF_SAMPLE_CPU 827 * { u64 period; } && PERF_SAMPLE_PERIOD 828 * 829 * { struct read_format values; } && PERF_SAMPLE_READ 830 * 831 * { u64 nr, 832 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 833 * 834 * # 835 * # The RAW record below is opaque data wrt the ABI 836 * # 837 * # That is, the ABI doesn't make any promises wrt to 838 * # the stability of its content, it may vary depending 839 * # on event, hardware, kernel version and phase of 840 * # the moon. 841 * # 842 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 843 * # 844 * 845 * { u32 size; 846 * char data[size];}&& PERF_SAMPLE_RAW 847 * 848 * { u64 nr; 849 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 850 * 851 * { u64 abi; # enum perf_sample_regs_abi 852 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 853 * 854 * { u64 size; 855 * char data[size]; 856 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 857 * 858 * { u64 weight; } && PERF_SAMPLE_WEIGHT 859 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 860 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 861 * { u64 abi; # enum perf_sample_regs_abi 862 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR 863 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR 864 * }; 865 */ 866 PERF_RECORD_SAMPLE = 9, 867 868 /* 869 * The MMAP2 records are an augmented version of MMAP, they add 870 * maj, min, ino numbers to be used to uniquely identify each mapping 871 * 872 * struct { 873 * struct perf_event_header header; 874 * 875 * u32 pid, tid; 876 * u64 addr; 877 * u64 len; 878 * u64 pgoff; 879 * u32 maj; 880 * u32 min; 881 * u64 ino; 882 * u64 ino_generation; 883 * u32 prot, flags; 884 * char filename[]; 885 * struct sample_id sample_id; 886 * }; 887 */ 888 PERF_RECORD_MMAP2 = 10, 889 890 /* 891 * Records that new data landed in the AUX buffer part. 892 * 893 * struct { 894 * struct perf_event_header header; 895 * 896 * u64 aux_offset; 897 * u64 aux_size; 898 * u64 flags; 899 * struct sample_id sample_id; 900 * }; 901 */ 902 PERF_RECORD_AUX = 11, 903 904 /* 905 * Indicates that instruction trace has started 906 * 907 * struct { 908 * struct perf_event_header header; 909 * u32 pid; 910 * u32 tid; 911 * struct sample_id sample_id; 912 * }; 913 */ 914 PERF_RECORD_ITRACE_START = 12, 915 916 /* 917 * Records the dropped/lost sample number. 918 * 919 * struct { 920 * struct perf_event_header header; 921 * 922 * u64 lost; 923 * struct sample_id sample_id; 924 * }; 925 */ 926 PERF_RECORD_LOST_SAMPLES = 13, 927 928 /* 929 * Records a context switch in or out (flagged by 930 * PERF_RECORD_MISC_SWITCH_OUT). See also 931 * PERF_RECORD_SWITCH_CPU_WIDE. 932 * 933 * struct { 934 * struct perf_event_header header; 935 * struct sample_id sample_id; 936 * }; 937 */ 938 PERF_RECORD_SWITCH = 14, 939 940 /* 941 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 942 * next_prev_tid that are the next (switching out) or previous 943 * (switching in) pid/tid. 944 * 945 * struct { 946 * struct perf_event_header header; 947 * u32 next_prev_pid; 948 * u32 next_prev_tid; 949 * struct sample_id sample_id; 950 * }; 951 */ 952 PERF_RECORD_SWITCH_CPU_WIDE = 15, 953 954 /* 955 * struct { 956 * struct perf_event_header header; 957 * u32 pid; 958 * u32 tid; 959 * u64 nr_namespaces; 960 * { u64 dev, inode; } [nr_namespaces]; 961 * struct sample_id sample_id; 962 * }; 963 */ 964 PERF_RECORD_NAMESPACES = 16, 965 966 PERF_RECORD_MAX, /* non-ABI */ 967 }; 968 969 #define PERF_MAX_STACK_DEPTH 127 970 #define PERF_MAX_CONTEXTS_PER_STACK 8 971 972 enum perf_callchain_context { 973 PERF_CONTEXT_HV = (__u64)-32, 974 PERF_CONTEXT_KERNEL = (__u64)-128, 975 PERF_CONTEXT_USER = (__u64)-512, 976 977 PERF_CONTEXT_GUEST = (__u64)-2048, 978 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 979 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 980 981 PERF_CONTEXT_MAX = (__u64)-4095, 982 }; 983 984 /** 985 * PERF_RECORD_AUX::flags bits 986 */ 987 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 988 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 989 #define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */ 990 #define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */ 991 992 #define PERF_FLAG_FD_NO_GROUP (1UL << 0) 993 #define PERF_FLAG_FD_OUTPUT (1UL << 1) 994 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 995 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 996 997 #if defined(__LITTLE_ENDIAN_BITFIELD) 998 union perf_mem_data_src { 999 __u64 val; 1000 struct { 1001 __u64 mem_op:5, /* type of opcode */ 1002 mem_lvl:14, /* memory hierarchy level */ 1003 mem_snoop:5, /* snoop mode */ 1004 mem_lock:2, /* lock instr */ 1005 mem_dtlb:7, /* tlb access */ 1006 mem_lvl_num:4, /* memory hierarchy level number */ 1007 mem_remote:1, /* remote */ 1008 mem_snoopx:2, /* snoop mode, ext */ 1009 mem_rsvd:24; 1010 }; 1011 }; 1012 #elif defined(__BIG_ENDIAN_BITFIELD) 1013 union perf_mem_data_src { 1014 __u64 val; 1015 struct { 1016 __u64 mem_rsvd:24, 1017 mem_snoopx:2, /* snoop mode, ext */ 1018 mem_remote:1, /* remote */ 1019 mem_lvl_num:4, /* memory hierarchy level number */ 1020 mem_dtlb:7, /* tlb access */ 1021 mem_lock:2, /* lock instr */ 1022 mem_snoop:5, /* snoop mode */ 1023 mem_lvl:14, /* memory hierarchy level */ 1024 mem_op:5; /* type of opcode */ 1025 }; 1026 }; 1027 #else 1028 #error "Unknown endianness" 1029 #endif 1030 1031 /* type of opcode (load/store/prefetch,code) */ 1032 #define PERF_MEM_OP_NA 0x01 /* not available */ 1033 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 1034 #define PERF_MEM_OP_STORE 0x04 /* store instruction */ 1035 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 1036 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 1037 #define PERF_MEM_OP_SHIFT 0 1038 1039 /* memory hierarchy (memory level, hit or miss) */ 1040 #define PERF_MEM_LVL_NA 0x01 /* not available */ 1041 #define PERF_MEM_LVL_HIT 0x02 /* hit level */ 1042 #define PERF_MEM_LVL_MISS 0x04 /* miss level */ 1043 #define PERF_MEM_LVL_L1 0x08 /* L1 */ 1044 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 1045 #define PERF_MEM_LVL_L2 0x20 /* L2 */ 1046 #define PERF_MEM_LVL_L3 0x40 /* L3 */ 1047 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 1048 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 1049 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 1050 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 1051 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 1052 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 1053 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 1054 #define PERF_MEM_LVL_SHIFT 5 1055 1056 #define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */ 1057 #define PERF_MEM_REMOTE_SHIFT 37 1058 1059 #define PERF_MEM_LVLNUM_L1 0x01 /* L1 */ 1060 #define PERF_MEM_LVLNUM_L2 0x02 /* L2 */ 1061 #define PERF_MEM_LVLNUM_L3 0x03 /* L3 */ 1062 #define PERF_MEM_LVLNUM_L4 0x04 /* L4 */ 1063 /* 5-0xa available */ 1064 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */ 1065 #define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */ 1066 #define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */ 1067 #define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */ 1068 #define PERF_MEM_LVLNUM_NA 0x0f /* N/A */ 1069 1070 #define PERF_MEM_LVLNUM_SHIFT 33 1071 1072 /* snoop mode */ 1073 #define PERF_MEM_SNOOP_NA 0x01 /* not available */ 1074 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 1075 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 1076 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 1077 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 1078 #define PERF_MEM_SNOOP_SHIFT 19 1079 1080 #define PERF_MEM_SNOOPX_FWD 0x01 /* forward */ 1081 /* 1 free */ 1082 #define PERF_MEM_SNOOPX_SHIFT 38 1083 1084 /* locked instruction */ 1085 #define PERF_MEM_LOCK_NA 0x01 /* not available */ 1086 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 1087 #define PERF_MEM_LOCK_SHIFT 24 1088 1089 /* TLB access */ 1090 #define PERF_MEM_TLB_NA 0x01 /* not available */ 1091 #define PERF_MEM_TLB_HIT 0x02 /* hit level */ 1092 #define PERF_MEM_TLB_MISS 0x04 /* miss level */ 1093 #define PERF_MEM_TLB_L1 0x08 /* L1 */ 1094 #define PERF_MEM_TLB_L2 0x10 /* L2 */ 1095 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 1096 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 1097 #define PERF_MEM_TLB_SHIFT 26 1098 1099 #define PERF_MEM_S(a, s) \ 1100 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 1101 1102 /* 1103 * single taken branch record layout: 1104 * 1105 * from: source instruction (may not always be a branch insn) 1106 * to: branch target 1107 * mispred: branch target was mispredicted 1108 * predicted: branch target was predicted 1109 * 1110 * support for mispred, predicted is optional. In case it 1111 * is not supported mispred = predicted = 0. 1112 * 1113 * in_tx: running in a hardware transaction 1114 * abort: aborting a hardware transaction 1115 * cycles: cycles from last branch (or 0 if not supported) 1116 * type: branch type 1117 */ 1118 struct perf_branch_entry { 1119 __u64 from; 1120 __u64 to; 1121 __u64 mispred:1, /* target mispredicted */ 1122 predicted:1,/* target predicted */ 1123 in_tx:1, /* in transaction */ 1124 abort:1, /* transaction abort */ 1125 cycles:16, /* cycle count to last branch */ 1126 type:4, /* branch type */ 1127 reserved:40; 1128 }; 1129 1130 #endif /* _UAPI_LINUX_PERF_EVENT_H */ 1131