1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32
33 #include "trace.h"
34
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38
39 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
40
41 static const struct kvm_irq_level default_ptimer_irq = {
42 .irq = 30,
43 .level = 1,
44 };
45
46 static const struct kvm_irq_level default_vtimer_irq = {
47 .irq = 27,
48 .level = 1,
49 };
50
51 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
52 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
53 struct arch_timer_context *timer_ctx);
54 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
55
kvm_phys_timer_read(void)56 u64 kvm_phys_timer_read(void)
57 {
58 return timecounter->cc->read(timecounter->cc);
59 }
60
userspace_irqchip(struct kvm * kvm)61 static inline bool userspace_irqchip(struct kvm *kvm)
62 {
63 return static_branch_unlikely(&userspace_irqchip_in_use) &&
64 unlikely(!irqchip_in_kernel(kvm));
65 }
66
soft_timer_start(struct hrtimer * hrt,u64 ns)67 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
68 {
69 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
70 HRTIMER_MODE_ABS);
71 }
72
soft_timer_cancel(struct hrtimer * hrt,struct work_struct * work)73 static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
74 {
75 hrtimer_cancel(hrt);
76 if (work)
77 cancel_work_sync(work);
78 }
79
kvm_arch_timer_handler(int irq,void * dev_id)80 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
81 {
82 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
83 struct arch_timer_context *vtimer;
84
85 /*
86 * We may see a timer interrupt after vcpu_put() has been called which
87 * sets the CPU's vcpu pointer to NULL, because even though the timer
88 * has been disabled in vtimer_save_state(), the hardware interrupt
89 * signal may not have been retired from the interrupt controller yet.
90 */
91 if (!vcpu)
92 return IRQ_HANDLED;
93
94 vtimer = vcpu_vtimer(vcpu);
95 if (kvm_timer_should_fire(vtimer))
96 kvm_timer_update_irq(vcpu, true, vtimer);
97
98 if (userspace_irqchip(vcpu->kvm) &&
99 !static_branch_unlikely(&has_gic_active_state))
100 disable_percpu_irq(host_vtimer_irq);
101
102 return IRQ_HANDLED;
103 }
104
105 /*
106 * Work function for handling the backup timer that we schedule when a vcpu is
107 * no longer running, but had a timer programmed to fire in the future.
108 */
kvm_timer_inject_irq_work(struct work_struct * work)109 static void kvm_timer_inject_irq_work(struct work_struct *work)
110 {
111 struct kvm_vcpu *vcpu;
112
113 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
114
115 /*
116 * If the vcpu is blocked we want to wake it up so that it will see
117 * the timer has expired when entering the guest.
118 */
119 kvm_vcpu_wake_up(vcpu);
120 }
121
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)122 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
123 {
124 u64 cval, now;
125
126 cval = timer_ctx->cnt_cval;
127 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
128
129 if (now < cval) {
130 u64 ns;
131
132 ns = cyclecounter_cyc2ns(timecounter->cc,
133 cval - now,
134 timecounter->mask,
135 &timecounter->frac);
136 return ns;
137 }
138
139 return 0;
140 }
141
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)142 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
143 {
144 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
145 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
146 }
147
148 /*
149 * Returns the earliest expiration time in ns among guest timers.
150 * Note that it will return 0 if none of timers can fire.
151 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)152 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
153 {
154 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
155 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
156 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
157
158 if (kvm_timer_irq_can_fire(vtimer))
159 min_virt = kvm_timer_compute_delta(vtimer);
160
161 if (kvm_timer_irq_can_fire(ptimer))
162 min_phys = kvm_timer_compute_delta(ptimer);
163
164 /* If none of timers can fire, then return 0 */
165 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
166 return 0;
167
168 return min(min_virt, min_phys);
169 }
170
kvm_bg_timer_expire(struct hrtimer * hrt)171 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
172 {
173 struct arch_timer_cpu *timer;
174 struct kvm_vcpu *vcpu;
175 u64 ns;
176
177 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
178 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
179
180 /*
181 * Check that the timer has really expired from the guest's
182 * PoV (NTP on the host may have forced it to expire
183 * early). If we should have slept longer, restart it.
184 */
185 ns = kvm_timer_earliest_exp(vcpu);
186 if (unlikely(ns)) {
187 hrtimer_forward_now(hrt, ns_to_ktime(ns));
188 return HRTIMER_RESTART;
189 }
190
191 schedule_work(&timer->expired);
192 return HRTIMER_NORESTART;
193 }
194
kvm_phys_timer_expire(struct hrtimer * hrt)195 static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
196 {
197 struct arch_timer_context *ptimer;
198 struct arch_timer_cpu *timer;
199 struct kvm_vcpu *vcpu;
200 u64 ns;
201
202 timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
203 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
204 ptimer = vcpu_ptimer(vcpu);
205
206 /*
207 * Check that the timer has really expired from the guest's
208 * PoV (NTP on the host may have forced it to expire
209 * early). If not ready, schedule for a later time.
210 */
211 ns = kvm_timer_compute_delta(ptimer);
212 if (unlikely(ns)) {
213 hrtimer_forward_now(hrt, ns_to_ktime(ns));
214 return HRTIMER_RESTART;
215 }
216
217 kvm_timer_update_irq(vcpu, true, ptimer);
218 return HRTIMER_NORESTART;
219 }
220
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)221 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
222 {
223 u64 cval, now;
224
225 if (timer_ctx->loaded) {
226 u32 cnt_ctl;
227
228 /* Only the virtual timer can be loaded so far */
229 cnt_ctl = read_sysreg_el0(cntv_ctl);
230 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
231 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
232 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
233 }
234
235 if (!kvm_timer_irq_can_fire(timer_ctx))
236 return false;
237
238 cval = timer_ctx->cnt_cval;
239 now = kvm_phys_timer_read() - timer_ctx->cntvoff;
240
241 return cval <= now;
242 }
243
kvm_timer_is_pending(struct kvm_vcpu * vcpu)244 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
245 {
246 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
247 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
248
249 if (kvm_timer_should_fire(vtimer))
250 return true;
251
252 return kvm_timer_should_fire(ptimer);
253 }
254
255 /*
256 * Reflect the timer output level into the kvm_run structure
257 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)258 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
259 {
260 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
261 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
262 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
263
264 /* Populate the device bitmap with the timer states */
265 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
266 KVM_ARM_DEV_EL1_PTIMER);
267 if (kvm_timer_should_fire(vtimer))
268 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
269 if (kvm_timer_should_fire(ptimer))
270 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
271 }
272
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)273 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
274 struct arch_timer_context *timer_ctx)
275 {
276 int ret;
277
278 timer_ctx->irq.level = new_level;
279 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
280 timer_ctx->irq.level);
281
282 if (!userspace_irqchip(vcpu->kvm)) {
283 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
284 timer_ctx->irq.irq,
285 timer_ctx->irq.level,
286 timer_ctx);
287 WARN_ON(ret);
288 }
289 }
290
291 /* Schedule the background timer for the emulated timer. */
phys_timer_emulate(struct kvm_vcpu * vcpu)292 static void phys_timer_emulate(struct kvm_vcpu *vcpu)
293 {
294 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
295 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
296
297 /*
298 * If the timer can fire now, we don't need to have a soft timer
299 * scheduled for the future. If the timer cannot fire at all,
300 * then we also don't need a soft timer.
301 */
302 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
303 soft_timer_cancel(&timer->phys_timer, NULL);
304 return;
305 }
306
307 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
308 }
309
310 /*
311 * Check if there was a change in the timer state, so that we should either
312 * raise or lower the line level to the GIC or schedule a background timer to
313 * emulate the physical timer.
314 */
kvm_timer_update_state(struct kvm_vcpu * vcpu)315 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
316 {
317 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
318 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
319 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
320 bool level;
321
322 if (unlikely(!timer->enabled))
323 return;
324
325 /*
326 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
327 * of its lifecycle is offloaded to the hardware, and we therefore may
328 * not have lowered the irq.level value before having to signal a new
329 * interrupt, but have to signal an interrupt every time the level is
330 * asserted.
331 */
332 level = kvm_timer_should_fire(vtimer);
333 kvm_timer_update_irq(vcpu, level, vtimer);
334
335 phys_timer_emulate(vcpu);
336
337 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
338 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
339 }
340
vtimer_save_state(struct kvm_vcpu * vcpu)341 static void vtimer_save_state(struct kvm_vcpu *vcpu)
342 {
343 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
344 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
345 unsigned long flags;
346
347 local_irq_save(flags);
348
349 if (!vtimer->loaded)
350 goto out;
351
352 if (timer->enabled) {
353 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
354 vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
355 }
356
357 /* Disable the virtual timer */
358 write_sysreg_el0(0, cntv_ctl);
359 isb();
360
361 vtimer->loaded = false;
362 out:
363 local_irq_restore(flags);
364 }
365
366 /*
367 * Schedule the background timer before calling kvm_vcpu_block, so that this
368 * thread is removed from its waitqueue and made runnable when there's a timer
369 * interrupt to handle.
370 */
kvm_timer_schedule(struct kvm_vcpu * vcpu)371 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
372 {
373 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
374 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
375 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
376
377 vtimer_save_state(vcpu);
378
379 /*
380 * No need to schedule a background timer if any guest timer has
381 * already expired, because kvm_vcpu_block will return before putting
382 * the thread to sleep.
383 */
384 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
385 return;
386
387 /*
388 * If both timers are not capable of raising interrupts (disabled or
389 * masked), then there's no more work for us to do.
390 */
391 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
392 return;
393
394 /*
395 * The guest timers have not yet expired, schedule a background timer.
396 * Set the earliest expiration time among the guest timers.
397 */
398 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
399 }
400
vtimer_restore_state(struct kvm_vcpu * vcpu)401 static void vtimer_restore_state(struct kvm_vcpu *vcpu)
402 {
403 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
404 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
405 unsigned long flags;
406
407 local_irq_save(flags);
408
409 if (vtimer->loaded)
410 goto out;
411
412 if (timer->enabled) {
413 write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
414 isb();
415 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
416 }
417
418 vtimer->loaded = true;
419 out:
420 local_irq_restore(flags);
421 }
422
kvm_timer_unschedule(struct kvm_vcpu * vcpu)423 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
424 {
425 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
426
427 vtimer_restore_state(vcpu);
428
429 soft_timer_cancel(&timer->bg_timer, &timer->expired);
430 }
431
set_cntvoff(u64 cntvoff)432 static void set_cntvoff(u64 cntvoff)
433 {
434 u32 low = lower_32_bits(cntvoff);
435 u32 high = upper_32_bits(cntvoff);
436
437 /*
438 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
439 * 32-bit systems, but rather passes register by register shifted one
440 * place (we put the function address in r0/x0), we cannot simply pass
441 * a 64-bit value as an argument, but have to split the value in two
442 * 32-bit halves.
443 */
444 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
445 }
446
set_vtimer_irq_phys_active(struct kvm_vcpu * vcpu,bool active)447 static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active)
448 {
449 int r;
450 r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active);
451 WARN_ON(r);
452 }
453
kvm_timer_vcpu_load_gic(struct kvm_vcpu * vcpu)454 static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu)
455 {
456 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
457 bool phys_active;
458
459 if (irqchip_in_kernel(vcpu->kvm))
460 phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
461 else
462 phys_active = vtimer->irq.level;
463 set_vtimer_irq_phys_active(vcpu, phys_active);
464 }
465
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)466 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
467 {
468 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
469
470 /*
471 * When using a userspace irqchip with the architected timers and a
472 * host interrupt controller that doesn't support an active state, we
473 * must still prevent continuously exiting from the guest, and
474 * therefore mask the physical interrupt by disabling it on the host
475 * interrupt controller when the virtual level is high, such that the
476 * guest can make forward progress. Once we detect the output level
477 * being de-asserted, we unmask the interrupt again so that we exit
478 * from the guest when the timer fires.
479 */
480 if (vtimer->irq.level)
481 disable_percpu_irq(host_vtimer_irq);
482 else
483 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
484 }
485
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)486 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
487 {
488 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
489 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
490 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
491
492 if (unlikely(!timer->enabled))
493 return;
494
495 if (static_branch_likely(&has_gic_active_state))
496 kvm_timer_vcpu_load_gic(vcpu);
497 else
498 kvm_timer_vcpu_load_nogic(vcpu);
499
500 set_cntvoff(vtimer->cntvoff);
501
502 vtimer_restore_state(vcpu);
503
504 /* Set the background timer for the physical timer emulation. */
505 phys_timer_emulate(vcpu);
506
507 /* If the timer fired while we weren't running, inject it now */
508 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
509 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
510 }
511
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)512 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
513 {
514 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
515 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
516 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
517 bool vlevel, plevel;
518
519 if (likely(irqchip_in_kernel(vcpu->kvm)))
520 return false;
521
522 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
523 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
524
525 return kvm_timer_should_fire(vtimer) != vlevel ||
526 kvm_timer_should_fire(ptimer) != plevel;
527 }
528
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)529 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
530 {
531 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
532
533 if (unlikely(!timer->enabled))
534 return;
535
536 vtimer_save_state(vcpu);
537
538 /*
539 * Cancel the physical timer emulation, because the only case where we
540 * need it after a vcpu_put is in the context of a sleeping VCPU, and
541 * in that case we already factor in the deadline for the physical
542 * timer when scheduling the bg_timer.
543 *
544 * In any case, we re-schedule the hrtimer for the physical timer when
545 * coming back to the VCPU thread in kvm_timer_vcpu_load().
546 */
547 soft_timer_cancel(&timer->phys_timer, NULL);
548
549 /*
550 * The kernel may decide to run userspace after calling vcpu_put, so
551 * we reset cntvoff to 0 to ensure a consistent read between user
552 * accesses to the virtual counter and kernel access to the physical
553 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
554 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
555 */
556 if (!has_vhe())
557 set_cntvoff(0);
558 }
559
560 /*
561 * With a userspace irqchip we have to check if the guest de-asserted the
562 * timer and if so, unmask the timer irq signal on the host interrupt
563 * controller to ensure that we see future timer signals.
564 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)565 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
566 {
567 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
568
569 if (!kvm_timer_should_fire(vtimer)) {
570 kvm_timer_update_irq(vcpu, false, vtimer);
571 if (static_branch_likely(&has_gic_active_state))
572 set_vtimer_irq_phys_active(vcpu, false);
573 else
574 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
575 }
576 }
577
kvm_timer_sync_hwstate(struct kvm_vcpu * vcpu)578 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
579 {
580 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
581
582 if (unlikely(!timer->enabled))
583 return;
584
585 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
586 unmask_vtimer_irq_user(vcpu);
587 }
588
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)589 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
590 {
591 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
592 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
593 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
594
595 /*
596 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
597 * and to 0 for ARMv7. We provide an implementation that always
598 * resets the timer to be disabled and unmasked and is compliant with
599 * the ARMv7 architecture.
600 */
601 vtimer->cnt_ctl = 0;
602 ptimer->cnt_ctl = 0;
603 kvm_timer_update_state(vcpu);
604
605 if (timer->enabled && irqchip_in_kernel(vcpu->kvm))
606 kvm_vgic_reset_mapped_irq(vcpu, vtimer->irq.irq);
607
608 return 0;
609 }
610
611 /* Make the updates of cntvoff for all vtimer contexts atomic */
update_vtimer_cntvoff(struct kvm_vcpu * vcpu,u64 cntvoff)612 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
613 {
614 int i;
615 struct kvm *kvm = vcpu->kvm;
616 struct kvm_vcpu *tmp;
617
618 mutex_lock(&kvm->lock);
619 kvm_for_each_vcpu(i, tmp, kvm)
620 vcpu_vtimer(tmp)->cntvoff = cntvoff;
621
622 /*
623 * When called from the vcpu create path, the CPU being created is not
624 * included in the loop above, so we just set it here as well.
625 */
626 vcpu_vtimer(vcpu)->cntvoff = cntvoff;
627 mutex_unlock(&kvm->lock);
628 }
629
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)630 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
631 {
632 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
633 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
634 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
635
636 /* Synchronize cntvoff across all vtimers of a VM. */
637 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
638 vcpu_ptimer(vcpu)->cntvoff = 0;
639
640 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
641 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
642 timer->bg_timer.function = kvm_bg_timer_expire;
643
644 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
645 timer->phys_timer.function = kvm_phys_timer_expire;
646
647 vtimer->irq.irq = default_vtimer_irq.irq;
648 ptimer->irq.irq = default_ptimer_irq.irq;
649 }
650
kvm_timer_init_interrupt(void * info)651 static void kvm_timer_init_interrupt(void *info)
652 {
653 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
654 }
655
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)656 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
657 {
658 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
659 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
660
661 switch (regid) {
662 case KVM_REG_ARM_TIMER_CTL:
663 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
664 break;
665 case KVM_REG_ARM_TIMER_CNT:
666 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
667 break;
668 case KVM_REG_ARM_TIMER_CVAL:
669 vtimer->cnt_cval = value;
670 break;
671 case KVM_REG_ARM_PTIMER_CTL:
672 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
673 break;
674 case KVM_REG_ARM_PTIMER_CVAL:
675 ptimer->cnt_cval = value;
676 break;
677
678 default:
679 return -1;
680 }
681
682 kvm_timer_update_state(vcpu);
683 return 0;
684 }
685
read_timer_ctl(struct arch_timer_context * timer)686 static u64 read_timer_ctl(struct arch_timer_context *timer)
687 {
688 /*
689 * Set ISTATUS bit if it's expired.
690 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
691 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
692 * regardless of ENABLE bit for our implementation convenience.
693 */
694 if (!kvm_timer_compute_delta(timer))
695 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
696 else
697 return timer->cnt_ctl;
698 }
699
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)700 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
701 {
702 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
703 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
704
705 switch (regid) {
706 case KVM_REG_ARM_TIMER_CTL:
707 return read_timer_ctl(vtimer);
708 case KVM_REG_ARM_TIMER_CNT:
709 return kvm_phys_timer_read() - vtimer->cntvoff;
710 case KVM_REG_ARM_TIMER_CVAL:
711 return vtimer->cnt_cval;
712 case KVM_REG_ARM_PTIMER_CTL:
713 return read_timer_ctl(ptimer);
714 case KVM_REG_ARM_PTIMER_CVAL:
715 return ptimer->cnt_cval;
716 case KVM_REG_ARM_PTIMER_CNT:
717 return kvm_phys_timer_read();
718 }
719 return (u64)-1;
720 }
721
kvm_timer_starting_cpu(unsigned int cpu)722 static int kvm_timer_starting_cpu(unsigned int cpu)
723 {
724 kvm_timer_init_interrupt(NULL);
725 return 0;
726 }
727
kvm_timer_dying_cpu(unsigned int cpu)728 static int kvm_timer_dying_cpu(unsigned int cpu)
729 {
730 disable_percpu_irq(host_vtimer_irq);
731 return 0;
732 }
733
kvm_timer_hyp_init(bool has_gic)734 int kvm_timer_hyp_init(bool has_gic)
735 {
736 struct arch_timer_kvm_info *info;
737 int err;
738
739 info = arch_timer_get_kvm_info();
740 timecounter = &info->timecounter;
741
742 if (!timecounter->cc) {
743 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
744 return -ENODEV;
745 }
746
747 if (info->virtual_irq <= 0) {
748 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
749 info->virtual_irq);
750 return -ENODEV;
751 }
752 host_vtimer_irq = info->virtual_irq;
753
754 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
755 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
756 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
757 kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
758 host_vtimer_irq);
759 host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
760 }
761
762 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
763 "kvm guest timer", kvm_get_running_vcpus());
764 if (err) {
765 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
766 host_vtimer_irq, err);
767 return err;
768 }
769
770 if (has_gic) {
771 err = irq_set_vcpu_affinity(host_vtimer_irq,
772 kvm_get_running_vcpus());
773 if (err) {
774 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
775 goto out_free_irq;
776 }
777
778 static_branch_enable(&has_gic_active_state);
779 }
780
781 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
782
783 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
784 "kvm/arm/timer:starting", kvm_timer_starting_cpu,
785 kvm_timer_dying_cpu);
786 return 0;
787 out_free_irq:
788 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
789 return err;
790 }
791
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)792 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
793 {
794 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
795 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
796
797 soft_timer_cancel(&timer->bg_timer, &timer->expired);
798 soft_timer_cancel(&timer->phys_timer, NULL);
799 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
800 }
801
timer_irqs_are_valid(struct kvm_vcpu * vcpu)802 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
803 {
804 int vtimer_irq, ptimer_irq;
805 int i, ret;
806
807 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
808 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
809 if (ret)
810 return false;
811
812 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
813 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
814 if (ret)
815 return false;
816
817 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
818 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
819 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
820 return false;
821 }
822
823 return true;
824 }
825
kvm_arch_timer_get_input_level(int vintid)826 bool kvm_arch_timer_get_input_level(int vintid)
827 {
828 struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
829 struct arch_timer_context *timer;
830
831 if (vintid == vcpu_vtimer(vcpu)->irq.irq)
832 timer = vcpu_vtimer(vcpu);
833 else
834 BUG(); /* We only map the vtimer so far */
835
836 return kvm_timer_should_fire(timer);
837 }
838
kvm_timer_enable(struct kvm_vcpu * vcpu)839 int kvm_timer_enable(struct kvm_vcpu *vcpu)
840 {
841 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
842 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
843 int ret;
844
845 if (timer->enabled)
846 return 0;
847
848 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
849 if (!irqchip_in_kernel(vcpu->kvm))
850 goto no_vgic;
851
852 if (!vgic_initialized(vcpu->kvm))
853 return -ENODEV;
854
855 if (!timer_irqs_are_valid(vcpu)) {
856 kvm_debug("incorrectly configured timer irqs\n");
857 return -EINVAL;
858 }
859
860 ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
861 kvm_arch_timer_get_input_level);
862 if (ret)
863 return ret;
864
865 no_vgic:
866 timer->enabled = 1;
867 return 0;
868 }
869
870 /*
871 * On VHE system, we only need to configure trap on physical timer and counter
872 * accesses in EL0 and EL1 once, not for every world switch.
873 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
874 * and this makes those bits have no effect for the host kernel execution.
875 */
kvm_timer_init_vhe(void)876 void kvm_timer_init_vhe(void)
877 {
878 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
879 u32 cnthctl_shift = 10;
880 u64 val;
881
882 /*
883 * Disallow physical timer access for the guest.
884 * Physical counter access is allowed.
885 */
886 val = read_sysreg(cnthctl_el2);
887 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
888 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
889 write_sysreg(val, cnthctl_el2);
890 }
891
set_timer_irqs(struct kvm * kvm,int vtimer_irq,int ptimer_irq)892 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
893 {
894 struct kvm_vcpu *vcpu;
895 int i;
896
897 kvm_for_each_vcpu(i, vcpu, kvm) {
898 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
899 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
900 }
901 }
902
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)903 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
904 {
905 int __user *uaddr = (int __user *)(long)attr->addr;
906 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
907 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
908 int irq;
909
910 if (!irqchip_in_kernel(vcpu->kvm))
911 return -EINVAL;
912
913 if (get_user(irq, uaddr))
914 return -EFAULT;
915
916 if (!(irq_is_ppi(irq)))
917 return -EINVAL;
918
919 if (vcpu->arch.timer_cpu.enabled)
920 return -EBUSY;
921
922 switch (attr->attr) {
923 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
924 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
925 break;
926 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
927 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
928 break;
929 default:
930 return -ENXIO;
931 }
932
933 return 0;
934 }
935
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)936 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
937 {
938 int __user *uaddr = (int __user *)(long)attr->addr;
939 struct arch_timer_context *timer;
940 int irq;
941
942 switch (attr->attr) {
943 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
944 timer = vcpu_vtimer(vcpu);
945 break;
946 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
947 timer = vcpu_ptimer(vcpu);
948 break;
949 default:
950 return -ENXIO;
951 }
952
953 irq = timer->irq.irq;
954 return put_user(irq, uaddr);
955 }
956
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)957 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
958 {
959 switch (attr->attr) {
960 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
961 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
962 return 0;
963 }
964
965 return -ENXIO;
966 }
967