1 /*
2 * VGIC MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_arch_timer.h>
20 #include <kvm/arm_vgic.h>
21
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)25 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
27 {
28 return 0;
29 }
30
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)31 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
32 gpa_t addr, unsigned int len)
33 {
34 return -1UL;
35 }
36
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)37 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 unsigned int len, unsigned long val)
39 {
40 /* Ignore */
41 }
42
vgic_mmio_uaccess_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)43 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
44 unsigned int len, unsigned long val)
45 {
46 /* Ignore */
47 return 0;
48 }
49
vgic_mmio_read_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)50 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
51 gpa_t addr, unsigned int len)
52 {
53 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
54 u32 value = 0;
55 int i;
56
57 /* Loop over all IRQs affected by this read */
58 for (i = 0; i < len * 8; i++) {
59 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
60
61 if (irq->group)
62 value |= BIT(i);
63
64 vgic_put_irq(vcpu->kvm, irq);
65 }
66
67 return value;
68 }
69
vgic_mmio_write_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)70 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
71 unsigned int len, unsigned long val)
72 {
73 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
74 int i;
75 unsigned long flags;
76
77 for (i = 0; i < len * 8; i++) {
78 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
79
80 spin_lock_irqsave(&irq->irq_lock, flags);
81 irq->group = !!(val & BIT(i));
82 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
83
84 vgic_put_irq(vcpu->kvm, irq);
85 }
86 }
87
88 /*
89 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
90 * of the enabled bit, so there is only one function for both here.
91 */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)92 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
93 gpa_t addr, unsigned int len)
94 {
95 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
96 u32 value = 0;
97 int i;
98
99 /* Loop over all IRQs affected by this read */
100 for (i = 0; i < len * 8; i++) {
101 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
102
103 if (irq->enabled)
104 value |= (1U << i);
105
106 vgic_put_irq(vcpu->kvm, irq);
107 }
108
109 return value;
110 }
111
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)112 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
113 gpa_t addr, unsigned int len,
114 unsigned long val)
115 {
116 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
117 int i;
118 unsigned long flags;
119
120 for_each_set_bit(i, &val, len * 8) {
121 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
122
123 spin_lock_irqsave(&irq->irq_lock, flags);
124 irq->enabled = true;
125 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
126
127 vgic_put_irq(vcpu->kvm, irq);
128 }
129 }
130
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)131 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
132 gpa_t addr, unsigned int len,
133 unsigned long val)
134 {
135 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
136 int i;
137 unsigned long flags;
138
139 for_each_set_bit(i, &val, len * 8) {
140 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
141
142 spin_lock_irqsave(&irq->irq_lock, flags);
143
144 irq->enabled = false;
145
146 spin_unlock_irqrestore(&irq->irq_lock, flags);
147 vgic_put_irq(vcpu->kvm, irq);
148 }
149 }
150
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)151 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
152 gpa_t addr, unsigned int len)
153 {
154 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
155 u32 value = 0;
156 int i;
157
158 /* Loop over all IRQs affected by this read */
159 for (i = 0; i < len * 8; i++) {
160 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
161 unsigned long flags;
162
163 spin_lock_irqsave(&irq->irq_lock, flags);
164 if (irq_is_pending(irq))
165 value |= (1U << i);
166 spin_unlock_irqrestore(&irq->irq_lock, flags);
167
168 vgic_put_irq(vcpu->kvm, irq);
169 }
170
171 return value;
172 }
173
174 /*
175 * This function will return the VCPU that performed the MMIO access and
176 * trapped from within the VM, and will return NULL if this is a userspace
177 * access.
178 *
179 * We can disable preemption locally around accessing the per-CPU variable,
180 * and use the resolved vcpu pointer after enabling preemption again, because
181 * even if the current thread is migrated to another CPU, reading the per-CPU
182 * value later will give us the same value as we update the per-CPU variable
183 * in the preempt notifier handlers.
184 */
vgic_get_mmio_requester_vcpu(void)185 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
186 {
187 struct kvm_vcpu *vcpu;
188
189 preempt_disable();
190 vcpu = kvm_arm_get_running_vcpu();
191 preempt_enable();
192 return vcpu;
193 }
194
195 /* Must be called with irq->irq_lock held */
vgic_hw_irq_spending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)196 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
197 bool is_uaccess)
198 {
199 if (is_uaccess)
200 return;
201
202 irq->pending_latch = true;
203 vgic_irq_set_phys_active(irq, true);
204 }
205
is_vgic_v2_sgi(struct kvm_vcpu * vcpu,struct vgic_irq * irq)206 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
207 {
208 return (vgic_irq_is_sgi(irq->intid) &&
209 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
210 }
211
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)212 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
213 gpa_t addr, unsigned int len,
214 unsigned long val)
215 {
216 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
217 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
218 int i;
219 unsigned long flags;
220
221 for_each_set_bit(i, &val, len * 8) {
222 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
223
224 /* GICD_ISPENDR0 SGI bits are WI */
225 if (is_vgic_v2_sgi(vcpu, irq)) {
226 vgic_put_irq(vcpu->kvm, irq);
227 continue;
228 }
229
230 spin_lock_irqsave(&irq->irq_lock, flags);
231 if (irq->hw)
232 vgic_hw_irq_spending(vcpu, irq, is_uaccess);
233 else
234 irq->pending_latch = true;
235 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
236 vgic_put_irq(vcpu->kvm, irq);
237 }
238 }
239
240 /* Must be called with irq->irq_lock held */
vgic_hw_irq_cpending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)241 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
242 bool is_uaccess)
243 {
244 if (is_uaccess)
245 return;
246
247 irq->pending_latch = false;
248
249 /*
250 * We don't want the guest to effectively mask the physical
251 * interrupt by doing a write to SPENDR followed by a write to
252 * CPENDR for HW interrupts, so we clear the active state on
253 * the physical side if the virtual interrupt is not active.
254 * This may lead to taking an additional interrupt on the
255 * host, but that should not be a problem as the worst that
256 * can happen is an additional vgic injection. We also clear
257 * the pending state to maintain proper semantics for edge HW
258 * interrupts.
259 */
260 vgic_irq_set_phys_pending(irq, false);
261 if (!irq->active)
262 vgic_irq_set_phys_active(irq, false);
263 }
264
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)265 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
266 gpa_t addr, unsigned int len,
267 unsigned long val)
268 {
269 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
270 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
271 int i;
272 unsigned long flags;
273
274 for_each_set_bit(i, &val, len * 8) {
275 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
276
277 /* GICD_ICPENDR0 SGI bits are WI */
278 if (is_vgic_v2_sgi(vcpu, irq)) {
279 vgic_put_irq(vcpu->kvm, irq);
280 continue;
281 }
282
283 spin_lock_irqsave(&irq->irq_lock, flags);
284
285 if (irq->hw)
286 vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
287 else
288 irq->pending_latch = false;
289
290 spin_unlock_irqrestore(&irq->irq_lock, flags);
291 vgic_put_irq(vcpu->kvm, irq);
292 }
293 }
294
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)295 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
296 gpa_t addr, unsigned int len)
297 {
298 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
299 u32 value = 0;
300 int i;
301
302 /* Loop over all IRQs affected by this read */
303 for (i = 0; i < len * 8; i++) {
304 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
305
306 if (irq->active)
307 value |= (1U << i);
308
309 vgic_put_irq(vcpu->kvm, irq);
310 }
311
312 return value;
313 }
314
315 /* Must be called with irq->irq_lock held */
vgic_hw_irq_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active,bool is_uaccess)316 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
317 bool active, bool is_uaccess)
318 {
319 if (is_uaccess)
320 return;
321
322 irq->active = active;
323 vgic_irq_set_phys_active(irq, active);
324 }
325
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active)326 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
327 bool active)
328 {
329 unsigned long flags;
330 struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
331
332 spin_lock_irqsave(&irq->irq_lock, flags);
333
334 if (irq->hw) {
335 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
336 } else {
337 u32 model = vcpu->kvm->arch.vgic.vgic_model;
338 u8 active_source;
339
340 irq->active = active;
341
342 /*
343 * The GICv2 architecture indicates that the source CPUID for
344 * an SGI should be provided during an EOI which implies that
345 * the active state is stored somewhere, but at the same time
346 * this state is not architecturally exposed anywhere and we
347 * have no way of knowing the right source.
348 *
349 * This may lead to a VCPU not being able to receive
350 * additional instances of a particular SGI after migration
351 * for a GICv2 VM on some GIC implementations. Oh well.
352 */
353 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
354
355 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
356 active && vgic_irq_is_sgi(irq->intid))
357 irq->active_source = active_source;
358 }
359
360 if (irq->active)
361 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
362 else
363 spin_unlock_irqrestore(&irq->irq_lock, flags);
364 }
365
366 /*
367 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
368 * is not queued on some running VCPU's LRs, because then the change to the
369 * active state can be overwritten when the VCPU's state is synced coming back
370 * from the guest.
371 *
372 * For shared interrupts, we have to stop all the VCPUs because interrupts can
373 * be migrated while we don't hold the IRQ locks and we don't want to be
374 * chasing moving targets.
375 *
376 * For private interrupts we don't have to do anything because userspace
377 * accesses to the VGIC state already require all VCPUs to be stopped, and
378 * only the VCPU itself can modify its private interrupts active state, which
379 * guarantees that the VCPU is not running.
380 */
vgic_change_active_prepare(struct kvm_vcpu * vcpu,u32 intid)381 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
382 {
383 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
384 intid >= VGIC_NR_PRIVATE_IRQS)
385 kvm_arm_halt_guest(vcpu->kvm);
386 }
387
388 /* See vgic_change_active_prepare */
vgic_change_active_finish(struct kvm_vcpu * vcpu,u32 intid)389 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
390 {
391 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
392 intid >= VGIC_NR_PRIVATE_IRQS)
393 kvm_arm_resume_guest(vcpu->kvm);
394 }
395
__vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)396 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
397 gpa_t addr, unsigned int len,
398 unsigned long val)
399 {
400 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
401 int i;
402
403 for_each_set_bit(i, &val, len * 8) {
404 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
405 vgic_mmio_change_active(vcpu, irq, false);
406 vgic_put_irq(vcpu->kvm, irq);
407 }
408 }
409
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)410 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
411 gpa_t addr, unsigned int len,
412 unsigned long val)
413 {
414 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
415
416 mutex_lock(&vcpu->kvm->lock);
417 vgic_change_active_prepare(vcpu, intid);
418
419 __vgic_mmio_write_cactive(vcpu, addr, len, val);
420
421 vgic_change_active_finish(vcpu, intid);
422 mutex_unlock(&vcpu->kvm->lock);
423 }
424
vgic_mmio_uaccess_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)425 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
426 gpa_t addr, unsigned int len,
427 unsigned long val)
428 {
429 __vgic_mmio_write_cactive(vcpu, addr, len, val);
430 return 0;
431 }
432
__vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)433 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
434 gpa_t addr, unsigned int len,
435 unsigned long val)
436 {
437 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
438 int i;
439
440 for_each_set_bit(i, &val, len * 8) {
441 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
442 vgic_mmio_change_active(vcpu, irq, true);
443 vgic_put_irq(vcpu->kvm, irq);
444 }
445 }
446
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)447 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
448 gpa_t addr, unsigned int len,
449 unsigned long val)
450 {
451 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
452
453 mutex_lock(&vcpu->kvm->lock);
454 vgic_change_active_prepare(vcpu, intid);
455
456 __vgic_mmio_write_sactive(vcpu, addr, len, val);
457
458 vgic_change_active_finish(vcpu, intid);
459 mutex_unlock(&vcpu->kvm->lock);
460 }
461
vgic_mmio_uaccess_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)462 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
463 gpa_t addr, unsigned int len,
464 unsigned long val)
465 {
466 __vgic_mmio_write_sactive(vcpu, addr, len, val);
467 return 0;
468 }
469
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)470 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
471 gpa_t addr, unsigned int len)
472 {
473 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
474 int i;
475 u64 val = 0;
476
477 for (i = 0; i < len; i++) {
478 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
479
480 val |= (u64)irq->priority << (i * 8);
481
482 vgic_put_irq(vcpu->kvm, irq);
483 }
484
485 return val;
486 }
487
488 /*
489 * We currently don't handle changing the priority of an interrupt that
490 * is already pending on a VCPU. If there is a need for this, we would
491 * need to make this VCPU exit and re-evaluate the priorities, potentially
492 * leading to this interrupt getting presented now to the guest (if it has
493 * been masked by the priority mask before).
494 */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)495 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
496 gpa_t addr, unsigned int len,
497 unsigned long val)
498 {
499 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
500 int i;
501 unsigned long flags;
502
503 for (i = 0; i < len; i++) {
504 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
505
506 spin_lock_irqsave(&irq->irq_lock, flags);
507 /* Narrow the priority range to what we actually support */
508 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
509 spin_unlock_irqrestore(&irq->irq_lock, flags);
510
511 vgic_put_irq(vcpu->kvm, irq);
512 }
513 }
514
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)515 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
516 gpa_t addr, unsigned int len)
517 {
518 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
519 u32 value = 0;
520 int i;
521
522 for (i = 0; i < len * 4; i++) {
523 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
524
525 if (irq->config == VGIC_CONFIG_EDGE)
526 value |= (2U << (i * 2));
527
528 vgic_put_irq(vcpu->kvm, irq);
529 }
530
531 return value;
532 }
533
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)534 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
535 gpa_t addr, unsigned int len,
536 unsigned long val)
537 {
538 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
539 int i;
540 unsigned long flags;
541
542 for (i = 0; i < len * 4; i++) {
543 struct vgic_irq *irq;
544
545 /*
546 * The configuration cannot be changed for SGIs in general,
547 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
548 * code relies on PPIs being level triggered, so we also
549 * make them read-only here.
550 */
551 if (intid + i < VGIC_NR_PRIVATE_IRQS)
552 continue;
553
554 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
555 spin_lock_irqsave(&irq->irq_lock, flags);
556
557 if (test_bit(i * 2 + 1, &val))
558 irq->config = VGIC_CONFIG_EDGE;
559 else
560 irq->config = VGIC_CONFIG_LEVEL;
561
562 spin_unlock_irqrestore(&irq->irq_lock, flags);
563 vgic_put_irq(vcpu->kvm, irq);
564 }
565 }
566
vgic_read_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid)567 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
568 {
569 int i;
570 u64 val = 0;
571 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
572
573 for (i = 0; i < 32; i++) {
574 struct vgic_irq *irq;
575
576 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
577 continue;
578
579 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
580 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
581 val |= (1U << i);
582
583 vgic_put_irq(vcpu->kvm, irq);
584 }
585
586 return val;
587 }
588
vgic_write_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid,const u64 val)589 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
590 const u64 val)
591 {
592 int i;
593 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
594 unsigned long flags;
595
596 for (i = 0; i < 32; i++) {
597 struct vgic_irq *irq;
598 bool new_level;
599
600 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
601 continue;
602
603 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
604
605 /*
606 * Line level is set irrespective of irq type
607 * (level or edge) to avoid dependency that VM should
608 * restore irq config before line level.
609 */
610 new_level = !!(val & (1U << i));
611 spin_lock_irqsave(&irq->irq_lock, flags);
612 irq->line_level = new_level;
613 if (new_level)
614 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
615 else
616 spin_unlock_irqrestore(&irq->irq_lock, flags);
617
618 vgic_put_irq(vcpu->kvm, irq);
619 }
620 }
621
match_region(const void * key,const void * elt)622 static int match_region(const void *key, const void *elt)
623 {
624 const unsigned int offset = (unsigned long)key;
625 const struct vgic_register_region *region = elt;
626
627 if (offset < region->reg_offset)
628 return -1;
629
630 if (offset >= region->reg_offset + region->len)
631 return 1;
632
633 return 0;
634 }
635
636 const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * regions,int nr_regions,unsigned int offset)637 vgic_find_mmio_region(const struct vgic_register_region *regions,
638 int nr_regions, unsigned int offset)
639 {
640 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
641 sizeof(regions[0]), match_region);
642 }
643
vgic_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)644 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
645 {
646 if (kvm_vgic_global_state.type == VGIC_V2)
647 vgic_v2_set_vmcr(vcpu, vmcr);
648 else
649 vgic_v3_set_vmcr(vcpu, vmcr);
650 }
651
vgic_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)652 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
653 {
654 if (kvm_vgic_global_state.type == VGIC_V2)
655 vgic_v2_get_vmcr(vcpu, vmcr);
656 else
657 vgic_v3_get_vmcr(vcpu, vmcr);
658 }
659
660 /*
661 * kvm_mmio_read_buf() returns a value in a format where it can be converted
662 * to a byte array and be directly observed as the guest wanted it to appear
663 * in memory if it had done the store itself, which is LE for the GIC, as the
664 * guest knows the GIC is always LE.
665 *
666 * We convert this value to the CPUs native format to deal with it as a data
667 * value.
668 */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)669 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
670 {
671 unsigned long data = kvm_mmio_read_buf(val, len);
672
673 switch (len) {
674 case 1:
675 return data;
676 case 2:
677 return le16_to_cpu(data);
678 case 4:
679 return le32_to_cpu(data);
680 default:
681 return le64_to_cpu(data);
682 }
683 }
684
685 /*
686 * kvm_mmio_write_buf() expects a value in a format such that if converted to
687 * a byte array it is observed as the guest would see it if it could perform
688 * the load directly. Since the GIC is LE, and the guest knows this, the
689 * guest expects a value in little endian format.
690 *
691 * We convert the data value from the CPUs native format to LE so that the
692 * value is returned in the proper format.
693 */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)694 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
695 unsigned long data)
696 {
697 switch (len) {
698 case 1:
699 break;
700 case 2:
701 data = cpu_to_le16(data);
702 break;
703 case 4:
704 data = cpu_to_le32(data);
705 break;
706 default:
707 data = cpu_to_le64(data);
708 }
709
710 kvm_mmio_write_buf(buf, len, data);
711 }
712
713 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)714 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
715 {
716 return container_of(dev, struct vgic_io_device, dev);
717 }
718
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)719 static bool check_region(const struct kvm *kvm,
720 const struct vgic_register_region *region,
721 gpa_t addr, int len)
722 {
723 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
724
725 switch (len) {
726 case sizeof(u8):
727 flags = VGIC_ACCESS_8bit;
728 break;
729 case sizeof(u32):
730 flags = VGIC_ACCESS_32bit;
731 break;
732 case sizeof(u64):
733 flags = VGIC_ACCESS_64bit;
734 break;
735 default:
736 return false;
737 }
738
739 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
740 if (!region->bits_per_irq)
741 return true;
742
743 /* Do we access a non-allocated IRQ? */
744 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
745 }
746
747 return false;
748 }
749
750 const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,int len)751 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
752 gpa_t addr, int len)
753 {
754 const struct vgic_register_region *region;
755
756 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
757 addr - iodev->base_addr);
758 if (!region || !check_region(vcpu->kvm, region, addr, len))
759 return NULL;
760
761 return region;
762 }
763
vgic_uaccess_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,u32 * val)764 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
765 gpa_t addr, u32 *val)
766 {
767 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
768 const struct vgic_register_region *region;
769 struct kvm_vcpu *r_vcpu;
770
771 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
772 if (!region) {
773 *val = 0;
774 return 0;
775 }
776
777 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
778 if (region->uaccess_read)
779 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
780 else
781 *val = region->read(r_vcpu, addr, sizeof(u32));
782
783 return 0;
784 }
785
vgic_uaccess_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,const u32 * val)786 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
787 gpa_t addr, const u32 *val)
788 {
789 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
790 const struct vgic_register_region *region;
791 struct kvm_vcpu *r_vcpu;
792
793 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
794 if (!region)
795 return 0;
796
797 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
798 if (region->uaccess_write)
799 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
800
801 region->write(r_vcpu, addr, sizeof(u32), *val);
802 return 0;
803 }
804
805 /*
806 * Userland access to VGIC registers.
807 */
vgic_uaccess(struct kvm_vcpu * vcpu,struct vgic_io_device * dev,bool is_write,int offset,u32 * val)808 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
809 bool is_write, int offset, u32 *val)
810 {
811 if (is_write)
812 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
813 else
814 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
815 }
816
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)817 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
818 gpa_t addr, int len, void *val)
819 {
820 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
821 const struct vgic_register_region *region;
822 unsigned long data = 0;
823
824 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
825 if (!region) {
826 memset(val, 0, len);
827 return 0;
828 }
829
830 switch (iodev->iodev_type) {
831 case IODEV_CPUIF:
832 data = region->read(vcpu, addr, len);
833 break;
834 case IODEV_DIST:
835 data = region->read(vcpu, addr, len);
836 break;
837 case IODEV_REDIST:
838 data = region->read(iodev->redist_vcpu, addr, len);
839 break;
840 case IODEV_ITS:
841 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
842 break;
843 }
844
845 vgic_data_host_to_mmio_bus(val, len, data);
846 return 0;
847 }
848
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)849 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
850 gpa_t addr, int len, const void *val)
851 {
852 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
853 const struct vgic_register_region *region;
854 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
855
856 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
857 if (!region)
858 return 0;
859
860 switch (iodev->iodev_type) {
861 case IODEV_CPUIF:
862 region->write(vcpu, addr, len, data);
863 break;
864 case IODEV_DIST:
865 region->write(vcpu, addr, len, data);
866 break;
867 case IODEV_REDIST:
868 region->write(iodev->redist_vcpu, addr, len, data);
869 break;
870 case IODEV_ITS:
871 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
872 break;
873 }
874
875 return 0;
876 }
877
878 struct kvm_io_device_ops kvm_io_gic_ops = {
879 .read = dispatch_mmio_read,
880 .write = dispatch_mmio_write,
881 };
882
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)883 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
884 enum vgic_type type)
885 {
886 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
887 int ret = 0;
888 unsigned int len;
889
890 switch (type) {
891 case VGIC_V2:
892 len = vgic_v2_init_dist_iodev(io_device);
893 break;
894 case VGIC_V3:
895 len = vgic_v3_init_dist_iodev(io_device);
896 break;
897 default:
898 BUG_ON(1);
899 }
900
901 io_device->base_addr = dist_base_address;
902 io_device->iodev_type = IODEV_DIST;
903 io_device->redist_vcpu = NULL;
904
905 mutex_lock(&kvm->slots_lock);
906 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
907 len, &io_device->dev);
908 mutex_unlock(&kvm->slots_lock);
909
910 return ret;
911 }
912