xref: /wlan-driver/qca-wifi-host-cmn/hif/src/hif_napi.c (revision 5113495b16420b49004c444715d2daae2066e7dc) !
1 /*
2  * Copyright (c) 2015-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: hif_napi.c
22  *
23  * HIF NAPI interface implementation
24  */
25 
26 #include <linux/string.h> /* memset */
27 
28 /* Linux headers */
29 #include <linux/cpumask.h>
30 #include <linux/cpufreq.h>
31 #include <linux/cpu.h>
32 #include <linux/topology.h>
33 #include <linux/interrupt.h>
34 #ifdef CONFIG_SCHED_CORE_CTL
35 #include <linux/sched/core_ctl.h>
36 #endif
37 #include <pld_common.h>
38 #include <linux/pm.h>
39 
40 /* Driver headers */
41 #include <hif_napi.h>
42 #include <hif_debug.h>
43 #include <hif_io32.h>
44 #include <ce_api.h>
45 #include <ce_internal.h>
46 #include <hif_irq_affinity.h>
47 #include "qdf_cpuhp.h"
48 #include "qdf_module.h"
49 #include "qdf_net_if.h"
50 #include "qdf_dev.h"
51 #include "qdf_irq.h"
52 
53 enum napi_decision_vector {
54 	HIF_NAPI_NOEVENT = 0,
55 	HIF_NAPI_INITED  = 1,
56 	HIF_NAPI_CONF_UP = 2
57 };
58 #define ENABLE_NAPI_MASK (HIF_NAPI_INITED | HIF_NAPI_CONF_UP)
59 
60 #ifdef RECEIVE_OFFLOAD
61 /**
62  * hif_rxthread_napi_poll() - dummy napi poll for rx_thread NAPI
63  * @napi: Rx_thread NAPI
64  * @budget: NAPI BUDGET
65  *
66  * Return: 0 as it is not supposed to be polled at all as it is not scheduled.
67  */
hif_rxthread_napi_poll(struct napi_struct * napi,int budget)68 static int hif_rxthread_napi_poll(struct napi_struct *napi, int budget)
69 {
70 	hif_err("This napi_poll should not be polled as we don't schedule it");
71 	QDF_ASSERT(0);
72 	return 0;
73 }
74 
75 /**
76  * hif_init_rx_thread_napi() - Initialize dummy Rx_thread NAPI
77  * @napii: Handle to napi_info holding rx_thread napi
78  *
79  * Return: None
80  */
hif_init_rx_thread_napi(struct qca_napi_info * napii)81 static void hif_init_rx_thread_napi(struct qca_napi_info *napii)
82 {
83 	struct qdf_net_if *nd = (struct qdf_net_if *)&napii->rx_thread_netdev;
84 
85 	qdf_net_if_create_dummy_if(nd);
86 	qdf_netif_napi_add(&napii->rx_thread_netdev, &napii->rx_thread_napi,
87 			   hif_rxthread_napi_poll, 64);
88 	qdf_napi_enable(&napii->rx_thread_napi);
89 }
90 
91 /**
92  * hif_deinit_rx_thread_napi() - Deinitialize dummy Rx_thread NAPI
93  * @napii: Handle to napi_info holding rx_thread napi
94  *
95  * Return: None
96  */
hif_deinit_rx_thread_napi(struct qca_napi_info * napii)97 static void hif_deinit_rx_thread_napi(struct qca_napi_info *napii)
98 {
99 	qdf_netif_napi_del(&napii->rx_thread_napi);
100 }
101 #else /* RECEIVE_OFFLOAD */
hif_init_rx_thread_napi(struct qca_napi_info * napii)102 static void hif_init_rx_thread_napi(struct qca_napi_info *napii)
103 {
104 }
105 
hif_deinit_rx_thread_napi(struct qca_napi_info * napii)106 static void hif_deinit_rx_thread_napi(struct qca_napi_info *napii)
107 {
108 }
109 #endif
110 
111 /**
112  * hif_napi_create() - creates the NAPI structures for a given CE
113  * @hif_ctx: pointer to hif context
114  * @poll: poll function to be used for this NAPI instance
115  * @budget: budget to be registered with the NAPI instance
116  * @scale: scale factor on the weight (to scaler budget to 1000)
117  * @flags: feature flags
118  *
119  * Description:
120  *    Creates NAPI instances. This function is called
121  *    unconditionally during initialization. It creates
122  *    napi structures through the proper HTC/HIF calls.
123  *    The structures are disabled on creation.
124  *    Note that for each NAPI instance a separate dummy netdev is used
125  *
126  * Return:
127  * < 0: error
128  * = 0: <should never happen>
129  * > 0: id of the created object (for multi-NAPI, number of objects created)
130  */
hif_napi_create(struct hif_opaque_softc * hif_ctx,int (* poll)(struct napi_struct *,int),int budget,int scale,uint8_t flags)131 int hif_napi_create(struct hif_opaque_softc   *hif_ctx,
132 		    int (*poll)(struct napi_struct *, int),
133 		    int                budget,
134 		    int                scale,
135 		    uint8_t            flags)
136 {
137 	int i;
138 	struct qca_napi_data *napid;
139 	struct qca_napi_info *napii;
140 	struct CE_state      *ce_state;
141 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
142 	int    rc = 0;
143 
144 	NAPI_DEBUG("-->(budget=%d, scale=%d)",
145 		   budget, scale);
146 	NAPI_DEBUG("hif->napi_data.state = 0x%08x",
147 		   hif->napi_data.state);
148 	NAPI_DEBUG("hif->napi_data.ce_map = 0x%08x",
149 		   hif->napi_data.ce_map);
150 
151 	napid = &(hif->napi_data);
152 	if (0 == (napid->state &  HIF_NAPI_INITED)) {
153 		memset(napid, 0, sizeof(struct qca_napi_data));
154 		qdf_spinlock_create(&(napid->lock));
155 
156 		napid->state |= HIF_NAPI_INITED;
157 		napid->flags = flags;
158 
159 		rc = hif_napi_cpu_init(hif_ctx);
160 		if (rc != 0 && rc != -EALREADY) {
161 			hif_err("NAPI_initialization failed(rc=%d)", rc);
162 			rc = napid->ce_map;
163 			goto hnc_err;
164 		} else
165 			rc = 0;
166 
167 		hif_debug("NAPI structures initialized, rc=%d", rc);
168 	}
169 	for (i = 0; i < hif->ce_count; i++) {
170 		ce_state = hif->ce_id_to_state[i];
171 		NAPI_DEBUG("ce %d: htt_rx=%d htt_tx=%d",
172 			   i, ce_state->htt_rx_data,
173 			   ce_state->htt_tx_data);
174 		if (ce_srng_based(hif))
175 			continue;
176 
177 		if (!ce_state->htt_rx_data)
178 			continue;
179 
180 		/* Now this is a CE where we need NAPI on */
181 		NAPI_DEBUG("Creating NAPI on pipe %d", i);
182 		napii = qdf_mem_malloc(sizeof(*napii));
183 		napid->napis[i] = napii;
184 		if (!napii) {
185 			rc = -ENOMEM;
186 			goto napii_free;
187 		}
188 	}
189 
190 	for (i = 0; i < hif->ce_count; i++) {
191 		napii = napid->napis[i];
192 		if (!napii)
193 			continue;
194 
195 		NAPI_DEBUG("initializing NAPI for pipe %d", i);
196 		memset(napii, 0, sizeof(struct qca_napi_info));
197 		napii->scale = scale;
198 		napii->id    = NAPI_PIPE2ID(i);
199 		napii->hif_ctx = hif_ctx;
200 		napii->irq   = pld_get_irq(hif->qdf_dev->dev, i);
201 
202 		if (napii->irq < 0)
203 			hif_warn("bad IRQ value for CE %d: %d", i, napii->irq);
204 
205 		qdf_net_if_create_dummy_if((struct qdf_net_if *)&napii->netdev);
206 
207 		NAPI_DEBUG("adding napi=%pK to netdev=%pK (poll=%pK, bdgt=%d)",
208 			   &(napii->napi), &(napii->netdev), poll, budget);
209 		qdf_netif_napi_add(&(napii->netdev), &(napii->napi),
210 				   poll, budget);
211 
212 		NAPI_DEBUG("after napi_add");
213 		NAPI_DEBUG("napi=0x%pK, netdev=0x%pK",
214 			   &(napii->napi), &(napii->netdev));
215 		NAPI_DEBUG("napi.dev_list.prev=0x%pK, next=0x%pK",
216 			   napii->napi.dev_list.prev,
217 			   napii->napi.dev_list.next);
218 		NAPI_DEBUG("dev.napi_list.prev=0x%pK, next=0x%pK",
219 			   napii->netdev.napi_list.prev,
220 			   napii->netdev.napi_list.next);
221 
222 		hif_init_rx_thread_napi(napii);
223 		napii->lro_ctx = qdf_lro_init();
224 		NAPI_DEBUG("Registering LRO for ce_id %d NAPI callback for %d lro_ctx %pK\n",
225 				i, napii->id, napii->lro_ctx);
226 
227 		/* It is OK to change the state variable below without
228 		 * protection as there should be no-one around yet
229 		 */
230 		napid->ce_map |= (0x01 << i);
231 		hif_debug("NAPI id %d created for pipe %d", napii->id, i);
232 	}
233 
234 	/* no ces registered with the napi */
235 	if (!ce_srng_based(hif) && napid->ce_map == 0) {
236 		hif_warn("no napis created for copy engines");
237 		rc = -EFAULT;
238 		goto napii_free;
239 	}
240 
241 	NAPI_DEBUG("napi map = %x", napid->ce_map);
242 	NAPI_DEBUG("NAPI ids created for all applicable pipes");
243 	return napid->ce_map;
244 
245 napii_free:
246 	for (i = 0; i < hif->ce_count; i++) {
247 		napii = napid->napis[i];
248 		napid->napis[i] = NULL;
249 		if (napii)
250 			qdf_mem_free(napii);
251 	}
252 
253 hnc_err:
254 	NAPI_DEBUG("<--napi_instances_map=%x]", napid->ce_map);
255 	return rc;
256 }
257 qdf_export_symbol(hif_napi_create);
258 
259 #ifdef RECEIVE_OFFLOAD
hif_napi_rx_offld_flush_cb_register(struct hif_opaque_softc * hif_hdl,void (offld_flush_handler)(void *))260 void hif_napi_rx_offld_flush_cb_register(struct hif_opaque_softc *hif_hdl,
261 					 void (offld_flush_handler)(void *))
262 {
263 	int i;
264 	struct CE_state *ce_state;
265 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
266 	struct qca_napi_data *napid;
267 	struct qca_napi_info *napii;
268 
269 	if (!scn) {
270 		hif_err("hif_state NULL!");
271 		QDF_ASSERT(0);
272 		return;
273 	}
274 
275 	napid = hif_napi_get_all(hif_hdl);
276 	for (i = 0; i < scn->ce_count; i++) {
277 		ce_state = scn->ce_id_to_state[i];
278 		if (ce_state && (ce_state->htt_rx_data)) {
279 			napii = napid->napis[i];
280 			napii->offld_flush_cb = offld_flush_handler;
281 			hif_debug("Registering offload for ce_id %d NAPI callback for %d flush_cb %pK",
282 				i, napii->id, napii->offld_flush_cb);
283 		}
284 	}
285 }
286 
hif_napi_rx_offld_flush_cb_deregister(struct hif_opaque_softc * hif_hdl)287 void hif_napi_rx_offld_flush_cb_deregister(struct hif_opaque_softc *hif_hdl)
288 {
289 	int i;
290 	struct CE_state *ce_state;
291 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
292 	struct qca_napi_data *napid;
293 	struct qca_napi_info *napii;
294 
295 	if (!scn) {
296 		hif_err("hif_state NULL!");
297 		QDF_ASSERT(0);
298 		return;
299 	}
300 
301 	napid = hif_napi_get_all(hif_hdl);
302 	for (i = 0; i < scn->ce_count; i++) {
303 		ce_state = scn->ce_id_to_state[i];
304 		if (ce_state && (ce_state->htt_rx_data)) {
305 			napii = napid->napis[i];
306 			hif_debug("deRegistering offld for ce_id %d NAPI callback for %d flush_cb %pK",
307 				 i, napii->id, napii->offld_flush_cb);
308 			/* Not required */
309 			napii->offld_flush_cb = NULL;
310 		}
311 	}
312 }
313 #endif /* RECEIVE_OFFLOAD */
314 
315 /**
316  * hif_napi_destroy() - destroys the NAPI structures for a given instance
317  * @hif_ctx: pointer to hif context
318  * @id: the CE id whose napi instance will be destroyed
319  * @force: if set, will destroy even if entry is active (de-activates)
320  *
321  * Description:
322  *    Destroy a given NAPI instance. This function is called
323  *    unconditionally during cleanup.
324  *    Refuses to destroy an entry of it is still enabled (unless force=1)
325  *    Marks the whole napi_data invalid if all instances are destroyed.
326  *
327  * Return:
328  * -EINVAL: specific entry has not been created
329  * -EPERM : specific entry is still active
330  * 0 <    : error
331  * 0 =    : success
332  */
hif_napi_destroy(struct hif_opaque_softc * hif_ctx,uint8_t id,int force)333 int hif_napi_destroy(struct hif_opaque_softc *hif_ctx,
334 		     uint8_t          id,
335 		     int              force)
336 {
337 	uint8_t ce = NAPI_ID2PIPE(id);
338 	int rc = 0;
339 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
340 
341 	NAPI_DEBUG("-->(id=%d, force=%d)", id, force);
342 
343 	if (0 == (hif->napi_data.state & HIF_NAPI_INITED)) {
344 		hif_err("NAPI not initialized or entry %d not created", id);
345 		rc = -EINVAL;
346 	} else if (0 == (hif->napi_data.ce_map & (0x01 << ce))) {
347 		hif_err("NAPI instance %d (pipe %d) not created", id, ce);
348 		if (hif->napi_data.napis[ce])
349 			hif_err("memory allocated but ce_map not set %d (pipe %d)",
350 				id, ce);
351 		rc = -EINVAL;
352 	} else {
353 		struct qca_napi_data *napid;
354 		struct qca_napi_info *napii;
355 
356 		napid = &(hif->napi_data);
357 		napii = napid->napis[ce];
358 		if (!napii) {
359 			if (napid->ce_map & (0x01 << ce))
360 				hif_err("napii & ce_map out of sync(ce %d)", ce);
361 			return -EINVAL;
362 		}
363 
364 
365 		if (hif->napi_data.state == HIF_NAPI_CONF_UP) {
366 			if (force) {
367 				qdf_napi_disable(&(napii->napi));
368 				hif_debug("NAPI entry %d force disabled", id);
369 				NAPI_DEBUG("NAPI %d force disabled", id);
370 			} else {
371 				hif_err("Cannot destroy active NAPI %d", id);
372 				rc = -EPERM;
373 			}
374 		}
375 		if (0 == rc) {
376 			NAPI_DEBUG("before napi_del");
377 			NAPI_DEBUG("napi.dlist.prv=0x%pK, next=0x%pK",
378 				  napii->napi.dev_list.prev,
379 				  napii->napi.dev_list.next);
380 			NAPI_DEBUG("dev.napi_l.prv=0x%pK, next=0x%pK",
381 				   napii->netdev.napi_list.prev,
382 				   napii->netdev.napi_list.next);
383 
384 			qdf_lro_deinit(napii->lro_ctx);
385 			qdf_netif_napi_del(&(napii->napi));
386 			hif_deinit_rx_thread_napi(napii);
387 
388 			napid->ce_map &= ~(0x01 << ce);
389 			napid->napis[ce] = NULL;
390 			napii->scale  = 0;
391 			qdf_mem_free(napii);
392 			hif_debug("NAPI %d destroyed", id);
393 
394 			/* if there are no active instances and
395 			 * if they are all destroyed,
396 			 * set the whole structure to uninitialized state
397 			 */
398 			if (napid->ce_map == 0) {
399 				rc = hif_napi_cpu_deinit(hif_ctx);
400 				/* caller is tolerant to receiving !=0 rc */
401 
402 				qdf_spinlock_destroy(&(napid->lock));
403 				memset(napid,
404 				       0, sizeof(struct qca_napi_data));
405 				hif_debug("no NAPI instances. Zapped");
406 			}
407 		}
408 	}
409 
410 	return rc;
411 }
412 qdf_export_symbol(hif_napi_destroy);
413 
414 #ifdef FEATURE_LRO
hif_napi_get_lro_info(struct hif_opaque_softc * hif_hdl,int napi_id)415 void *hif_napi_get_lro_info(struct hif_opaque_softc *hif_hdl, int napi_id)
416 {
417 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
418 	struct qca_napi_data *napid;
419 	struct qca_napi_info *napii;
420 
421 	napid = &(scn->napi_data);
422 	napii = napid->napis[NAPI_ID2PIPE(napi_id)];
423 
424 	if (napii)
425 		return napii->lro_ctx;
426 	return 0;
427 }
428 #endif
429 
430 /**
431  * hif_napi_get_all() - returns the address of the whole HIF NAPI structure
432  * @hif_ctx: pointer to hif context
433  *
434  * Description:
435  *    Returns the address of the whole structure
436  *
437  * Return:
438  *  <addr>: address of the whole HIF NAPI structure
439  */
hif_napi_get_all(struct hif_opaque_softc * hif_ctx)440 inline struct qca_napi_data *hif_napi_get_all(struct hif_opaque_softc *hif_ctx)
441 {
442 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
443 
444 	return &(hif->napi_data);
445 }
446 
hif_get_napi(int napi_id,struct qca_napi_data * napid)447 struct qca_napi_info *hif_get_napi(int napi_id, struct qca_napi_data *napid)
448 {
449 	int id = NAPI_ID2PIPE(napi_id);
450 
451 	return napid->napis[id];
452 }
453 
454 /**
455  * hif_napi_event() - reacts to events that impact NAPI
456  * @hif_ctx: pointer to hif context
457  * @event: event that has been detected
458  * @data: more data regarding the event
459  *
460  * Description:
461  *   This function handles two types of events:
462  *   1- Events that change the state of NAPI (enabled/disabled):
463  *      {NAPI_EVT_INI_FILE, NAPI_EVT_CMD_STATE}
464  *      The state is retrievable by "hdd_napi_enabled(-1)"
465  *    - NAPI will be on if either INI file is on and it has not been disabled
466  *                                by a subsequent vendor CMD,
467  *                         or     it has been enabled by a vendor CMD.
468  *   2- Events that change the CPU affinity of a NAPI instance/IRQ:
469  *      {NAPI_EVT_TPUT_STATE, NAPI_EVT_CPU_STATE}
470  *    - NAPI will support a throughput mode (HI/LO), kept at napid->napi_mode
471  *    - NAPI will switch throughput mode based on hdd_napi_throughput_policy()
472  *    - In LO tput mode, NAPI will yield control if its interrupts to the system
473  *      management functions. However in HI throughput mode, NAPI will actively
474  *      manage its interrupts/instances (by trying to disperse them out to
475  *      separate performance cores).
476  *    - CPU eligibility is kept up-to-date by NAPI_EVT_CPU_STATE events.
477  *
478  *    + In some cases (roaming peer management is the only case so far), a
479  *      a client can trigger a "SERIALIZE" event. Basically, this means that the
480  *      users is asking NAPI to go into a truly single execution context state.
481  *      So, NAPI indicates to msm-irqbalancer that it wants to be denylisted,
482  *      (if called for the first time) and then moves all IRQs (for NAPI
483  *      instances) to be collapsed to a single core. If called multiple times,
484  *      it will just re-collapse the CPUs. This is because denylist-on() API
485  *      is reference-counted, and because the API has already been called.
486  *
487  *      Such a user, should call "DESERIALIZE" (NORMAL) event, to set NAPI to go
488  *      to its "normal" operation. Optionally, they can give a timeout value (in
489  *      multiples of BusBandwidthCheckPeriod -- 100 msecs by default). In this
490  *      case, NAPI will just set the current throughput state to uninitialized
491  *      and set the delay period. Once policy handler is called, it would skip
492  *      applying the policy delay period times, and otherwise apply the policy.
493  *
494  * Return:
495  *  < 0: some error
496  *  = 0: event handled successfully
497  */
hif_napi_event(struct hif_opaque_softc * hif_ctx,enum qca_napi_event event,void * data)498 int hif_napi_event(struct hif_opaque_softc *hif_ctx, enum qca_napi_event event,
499 		   void *data)
500 {
501 	int      rc = 0;
502 	uint32_t prev_state;
503 	int      i;
504 	bool state_changed;
505 	struct napi_struct *napi;
506 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
507 	struct qca_napi_data *napid = &(hif->napi_data);
508 	enum qca_napi_tput_state tput_mode = QCA_NAPI_TPUT_UNINITIALIZED;
509 	enum {
510 		DENYLIST_NOT_PENDING,
511 		DENYLIST_ON_PENDING,
512 		DENYLIST_OFF_PENDING
513 	     } denylist_pending = DENYLIST_NOT_PENDING;
514 
515 	NAPI_DEBUG("%s: -->(event=%d, aux=%pK)", __func__, event, data);
516 
517 	if (ce_srng_based(hif))
518 		return hif_exec_event(hif_ctx, event, data);
519 
520 	if ((napid->state & HIF_NAPI_INITED) == 0) {
521 		NAPI_DEBUG("%s: got event when NAPI not initialized",
522 			   __func__);
523 		return -EINVAL;
524 	}
525 	qdf_spin_lock_bh(&(napid->lock));
526 	prev_state = napid->state;
527 	switch (event) {
528 	case NAPI_EVT_INI_FILE:
529 	case NAPI_EVT_CMD_STATE:
530 	case NAPI_EVT_INT_STATE: {
531 		int on = (data != ((void *)0));
532 
533 		hif_debug("recved evnt: STATE_CMD %d; v = %d (state=0x%0x)",
534 			 event, on, prev_state);
535 		if (on)
536 			if (prev_state & HIF_NAPI_CONF_UP) {
537 				hif_debug("Duplicate NAPI conf ON msg");
538 			} else {
539 				hif_debug("Setting state to ON");
540 				napid->state |= HIF_NAPI_CONF_UP;
541 			}
542 		else /* off request */
543 			if (prev_state & HIF_NAPI_CONF_UP) {
544 				hif_debug("Setting state to OFF");
545 				napid->state &= ~HIF_NAPI_CONF_UP;
546 			} else {
547 				hif_debug("Duplicate NAPI conf OFF msg");
548 			}
549 		break;
550 	}
551 	/* case NAPI_INIT_FILE/CMD_STATE */
552 
553 	case NAPI_EVT_CPU_STATE: {
554 		int cpu = ((unsigned long int)data >> 16);
555 		int val = ((unsigned long int)data & 0x0ff);
556 
557 		NAPI_DEBUG("%s: evt=CPU_STATE on CPU %d value=%d",
558 			   __func__, cpu, val);
559 
560 		/* state has already been set by hnc_cpu_notify_cb */
561 		if ((val == QCA_NAPI_CPU_DOWN) &&
562 		    (napid->napi_mode == QCA_NAPI_TPUT_HI) && /* we manage */
563 		    (napid->napi_cpu[cpu].napis != 0)) {
564 			NAPI_DEBUG("%s: Migrating NAPIs out of cpu %d",
565 				   __func__, cpu);
566 			rc = hif_napi_cpu_migrate(napid,
567 						  cpu,
568 						  HNC_ACT_RELOCATE);
569 			napid->napi_cpu[cpu].napis = 0;
570 		}
571 		/* in QCA_NAPI_TPUT_LO case, napis MUST == 0 */
572 		break;
573 	}
574 
575 	case NAPI_EVT_TPUT_STATE: {
576 		tput_mode = (enum qca_napi_tput_state)data;
577 		if (tput_mode == QCA_NAPI_TPUT_LO) {
578 			/* from TPUT_HI -> TPUT_LO */
579 			NAPI_DEBUG("%s: Moving to napi_tput_LO state",
580 				   __func__);
581 			denylist_pending = DENYLIST_OFF_PENDING;
582 			/*
583 			 * Ideally we should "collapse" interrupts here, since
584 			 * we are "dispersing" interrupts in the "else" case.
585 			 * This allows the possibility that our interrupts may
586 			 * still be on the perf cluster the next time we enter
587 			 * high tput mode. However, the irq_balancer is free
588 			 * to move our interrupts to power cluster once
589 			 * denylisting has been turned off in the "else" case.
590 			 */
591 		} else {
592 			/* from TPUT_LO -> TPUT->HI */
593 			NAPI_DEBUG("%s: Moving to napi_tput_HI state",
594 				   __func__);
595 			rc = hif_napi_cpu_migrate(napid,
596 						  HNC_ANY_CPU,
597 						  HNC_ACT_DISPERSE);
598 
599 			denylist_pending = DENYLIST_ON_PENDING;
600 		}
601 		napid->napi_mode = tput_mode;
602 		break;
603 	}
604 
605 	case NAPI_EVT_USR_SERIAL: {
606 		unsigned long users = (unsigned long)data;
607 
608 		NAPI_DEBUG("%s: User forced SERIALIZATION; users=%ld",
609 			   __func__, users);
610 
611 		rc = hif_napi_cpu_migrate(napid,
612 					  HNC_ANY_CPU,
613 					  HNC_ACT_COLLAPSE);
614 		if ((users == 0) && (rc == 0))
615 			denylist_pending = DENYLIST_ON_PENDING;
616 		break;
617 	}
618 	case NAPI_EVT_USR_NORMAL: {
619 		NAPI_DEBUG("%s: User forced DE-SERIALIZATION", __func__);
620 		if (!napid->user_cpu_affin_mask)
621 			denylist_pending = DENYLIST_OFF_PENDING;
622 		/*
623 		 * Deserialization timeout is handled at hdd layer;
624 		 * just mark current mode to uninitialized to ensure
625 		 * it will be set when the delay is over
626 		 */
627 		napid->napi_mode = QCA_NAPI_TPUT_UNINITIALIZED;
628 		break;
629 	}
630 	default: {
631 		hif_err("Unknown event: %d (data=0x%0lx)",
632 			event, (unsigned long) data);
633 		break;
634 	} /* default */
635 	}; /* switch */
636 
637 
638 	switch (denylist_pending) {
639 	case DENYLIST_ON_PENDING:
640 		/* assume the control of WLAN IRQs */
641 		hif_napi_cpu_denylist(napid, DENYLIST_ON);
642 		break;
643 	case DENYLIST_OFF_PENDING:
644 		/* yield the control of WLAN IRQs */
645 		hif_napi_cpu_denylist(napid, DENYLIST_OFF);
646 		break;
647 	default: /* nothing to do */
648 		break;
649 	} /* switch denylist_pending */
650 
651 	/* we want to perform the comparison in lock:
652 	 * there is a possibility of hif_napi_event get called
653 	 * from two different contexts (driver unload and cpu hotplug
654 	 * notification) and napid->state get changed
655 	 * in driver unload context and can lead to race condition
656 	 * in cpu hotplug context. Therefore, perform the napid->state
657 	 * comparison before releasing lock.
658 	 */
659 	state_changed = (prev_state != napid->state);
660 	qdf_spin_unlock_bh(&(napid->lock));
661 
662 	if (state_changed) {
663 		if (napid->state == ENABLE_NAPI_MASK) {
664 			rc = 1;
665 			for (i = 0; i < CE_COUNT_MAX; i++) {
666 				struct qca_napi_info *napii = napid->napis[i];
667 				if (napii) {
668 					napi = &(napii->napi);
669 					NAPI_DEBUG("%s: enabling NAPI %d",
670 						   __func__, i);
671 					qdf_napi_enable(napi);
672 				}
673 			}
674 		} else {
675 			rc = 0;
676 			for (i = 0; i < CE_COUNT_MAX; i++) {
677 				struct qca_napi_info *napii = napid->napis[i];
678 				if (napii) {
679 					napi = &(napii->napi);
680 					NAPI_DEBUG("%s: disabling NAPI %d",
681 						   __func__, i);
682 					qdf_napi_disable(napi);
683 					/* in case it is affined, remove it */
684 					qdf_dev_set_irq_affinity(napii->irq,
685 								 NULL);
686 				}
687 			}
688 		}
689 	} else {
690 		hif_debug("no change in hif napi state (still %d)", prev_state);
691 	}
692 
693 	NAPI_DEBUG("<--[rc=%d]", rc);
694 	return rc;
695 }
696 qdf_export_symbol(hif_napi_event);
697 
698 /**
699  * hif_napi_enabled() - checks whether NAPI is enabled for given ce or not
700  * @hif_ctx: hif context
701  * @ce: CE instance (or -1, to check if any CEs are enabled)
702  *
703  * Return: bool
704  */
hif_napi_enabled(struct hif_opaque_softc * hif_ctx,int ce)705 int hif_napi_enabled(struct hif_opaque_softc *hif_ctx, int ce)
706 {
707 	int rc;
708 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
709 
710 	if (-1 == ce)
711 		rc = ((hif->napi_data.state == ENABLE_NAPI_MASK));
712 	else
713 		rc = ((hif->napi_data.state == ENABLE_NAPI_MASK) &&
714 		      (hif->napi_data.ce_map & (0x01 << ce)));
715 	return rc;
716 }
717 qdf_export_symbol(hif_napi_enabled);
718 
719 /**
720  * hif_napi_created() - checks whether NAPI is created for given ce or not
721  * @hif_ctx: hif context
722  * @ce: CE instance
723  *
724  * Return: bool
725  */
hif_napi_created(struct hif_opaque_softc * hif_ctx,int ce)726 bool hif_napi_created(struct hif_opaque_softc *hif_ctx, int ce)
727 {
728 	int rc;
729 	struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
730 
731 	rc = (hif->napi_data.ce_map & (0x01 << ce));
732 
733 	return !!rc;
734 }
735 qdf_export_symbol(hif_napi_created);
736 
737 /**
738  * hif_napi_enable_irq() - enables bus interrupts after napi_complete
739  *
740  * @hif: hif context
741  * @id: id of NAPI instance calling this (used to determine the CE)
742  *
743  * Return: void
744  */
hif_napi_enable_irq(struct hif_opaque_softc * hif,int id)745 inline void hif_napi_enable_irq(struct hif_opaque_softc *hif, int id)
746 {
747 	struct hif_softc *scn = HIF_GET_SOFTC(hif);
748 
749 	hif_irq_enable(scn, NAPI_ID2PIPE(id));
750 }
751 
752 #if defined(QCA_WIFI_WCN6450) && defined(HIF_LATENCY_PROFILE_ENABLE)
753 /*
754  * hif_napi_latency_profile_start() - update the schedule start timestamp
755  *
756  * @scn: HIF context
757  * ce_id: Copyengine id
758  *
759  * Return: None
760  */
hif_napi_latency_profile_start(struct hif_softc * scn,int ce_id)761 static inline void hif_napi_latency_profile_start(struct hif_softc *scn,
762 						  int ce_id)
763 {
764 	struct qca_napi_info *napii;
765 
766 	napii = scn->napi_data.napis[ce_id];
767 	if (napii)
768 		napii->tstamp = qdf_ktime_to_ms(qdf_ktime_get());
769 }
770 
771 /*
772  * hif_napi_latency_profile_measure() - calculate the NAPI schedule latency
773  * and update histogram
774  *
775  * @napi_info: pointer to qca_napi_info for the napi instance
776  *
777  * Return: None
778  */
hif_napi_latency_profile_measure(struct qca_napi_info * napi_info)779 static void hif_napi_latency_profile_measure(struct qca_napi_info *napi_info)
780 {
781 	int64_t cur_tstamp;
782 	int64_t time_elapsed;
783 
784 	cur_tstamp = qdf_ktime_to_ms(qdf_ktime_get());
785 
786 	if (cur_tstamp > napi_info->tstamp)
787 		time_elapsed = (cur_tstamp - napi_info->tstamp);
788 	else
789 		time_elapsed = ~0x0 - (napi_info->tstamp - cur_tstamp);
790 
791 	napi_info->tstamp = cur_tstamp;
792 
793 	if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_0_2)
794 		napi_info->sched_latency_stats[0]++;
795 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_3_10)
796 		napi_info->sched_latency_stats[1]++;
797 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_11_20)
798 		napi_info->sched_latency_stats[2]++;
799 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_21_50)
800 		napi_info->sched_latency_stats[3]++;
801 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_51_100)
802 		napi_info->sched_latency_stats[4]++;
803 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_101_250)
804 		napi_info->sched_latency_stats[5]++;
805 	else if (time_elapsed <= HIF_SCHED_LATENCY_BUCKET_251_500)
806 		napi_info->sched_latency_stats[6]++;
807 	else
808 		napi_info->sched_latency_stats[7]++;
809 }
810 
hif_print_napi_latency_stats(struct qca_napi_info * napii,int ce_id)811 static void hif_print_napi_latency_stats(struct qca_napi_info *napii, int ce_id)
812 {
813 	int i;
814 	int64_t cur_tstamp;
815 
816 	const char time_str[HIF_SCHED_LATENCY_BUCKETS][15] =  {
817 		"0-2   ms",
818 		"3-10  ms",
819 		"11-20 ms",
820 		"21-50 ms",
821 		"51-100 ms",
822 		"101-250 ms",
823 		"251-500 ms",
824 		"> 500 ms"
825 	};
826 
827 	cur_tstamp = qdf_ktime_to_ms(qdf_ktime_get());
828 
829 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_INFO_HIGH,
830 		  "Current timestamp: %lld", cur_tstamp);
831 
832 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_INFO_HIGH,
833 		  "ce id %d Last serviced timestamp: %lld",
834 		  ce_id, napii->tstamp);
835 
836 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_INFO_HIGH,
837 		  "Latency Bucket     | Time elapsed");
838 
839 	for (i = 0; i < HIF_SCHED_LATENCY_BUCKETS; i++)
840 		QDF_TRACE(QDF_MODULE_ID_HIF,
841 			  QDF_TRACE_LEVEL_INFO_HIGH,
842 			  "%s     |    %lld",
843 			  time_str[i],
844 			  napii->sched_latency_stats[i]);
845 }
846 #else
847 static inline void
hif_napi_latency_profile_start(struct hif_softc * scn,int ce_id)848 hif_napi_latency_profile_start(struct hif_softc *scn, int ce_id)
849 {
850 }
851 
852 static inline void
hif_napi_latency_profile_measure(struct qca_napi_info * napi_info)853 hif_napi_latency_profile_measure(struct qca_napi_info *napi_info)
854 {
855 }
856 
857 static inline void
hif_print_napi_latency_stats(struct qca_napi_info * napii,int ce_id)858 hif_print_napi_latency_stats(struct qca_napi_info *napii, int ce_id)
859 {
860 }
861 #endif
862 
863 #ifdef QCA_WIFI_WCN6450
864 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
865 /**
866  * hif_napi_update_service_start_time() - Update NAPI poll start time
867  *
868  * @napi_info: per NAPI instance data structure
869  *
870  * The function is called at the beginning of a NAPI poll to record the poll
871  * start time.
872  *
873  * Return: None
874  */
875 static inline void
hif_napi_update_service_start_time(struct qca_napi_info * napi_info)876 hif_napi_update_service_start_time(struct qca_napi_info *napi_info)
877 {
878 	napi_info->poll_start_time = qdf_time_sched_clock();
879 }
880 
881 /**
882  * hif_napi_fill_poll_time_histogram() - fills poll time histogram for a NAPI
883  *
884  * @napi_info: per NAPI instance data structure
885  *
886  * The function is called at the end of a NAPI poll to calculate poll time
887  * buckets.
888  *
889  * Return: void
890  */
hif_napi_fill_poll_time_histogram(struct qca_napi_info * napi_info)891 static void hif_napi_fill_poll_time_histogram(struct qca_napi_info *napi_info)
892 {
893 	struct qca_napi_stat *napi_stat;
894 	unsigned long long poll_time_ns;
895 	uint32_t poll_time_us;
896 	uint32_t bucket_size_us = 500;
897 	uint32_t bucket;
898 	uint32_t cpu_id = qdf_get_cpu();
899 
900 	poll_time_ns = qdf_time_sched_clock() - napi_info->poll_start_time;
901 	poll_time_us = qdf_do_div(poll_time_ns, 1000);
902 
903 	napi_stat = &napi_info->stats[cpu_id];
904 	if (poll_time_ns > napi_info->stats[cpu_id].napi_max_poll_time)
905 		napi_info->stats[cpu_id].napi_max_poll_time = poll_time_ns;
906 
907 	bucket = poll_time_us / bucket_size_us;
908 	if (bucket >= QCA_NAPI_NUM_BUCKETS)
909 		bucket = QCA_NAPI_NUM_BUCKETS - 1;
910 
911 	++napi_stat->poll_time_buckets[bucket];
912 }
913 
914 /*
915  * hif_get_poll_times_hist_str() - Get HIF poll times histogram string
916  * @stats: NAPI stats to get poll time buckets
917  * @buf: buffer to fill histogram string
918  * @buf_len: length of the buffer
919  *
920  * Return: void
921  */
hif_get_poll_times_hist_str(struct qca_napi_stat * stats,char * buf,uint8_t buf_len)922 static void hif_get_poll_times_hist_str(struct qca_napi_stat *stats, char *buf,
923 					uint8_t buf_len)
924 {
925 	int i;
926 	int str_index = 0;
927 
928 	for (i = 0; i < QCA_NAPI_NUM_BUCKETS; i++)
929 		str_index += qdf_scnprintf(buf + str_index, buf_len - str_index,
930 					   "%u|", stats->poll_time_buckets[i]);
931 }
932 
hif_print_napi_stats(struct hif_opaque_softc * hif_ctx)933 void hif_print_napi_stats(struct hif_opaque_softc *hif_ctx)
934 {
935 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
936 	struct qca_napi_info *napii;
937 	struct qca_napi_stat *napi_stats;
938 	int ce_id, cpu;
939 
940 	/*
941 	 * Max value of uint_32 (poll_time_bucket) = 4294967295
942 	 * Thus we need 10 chars + 1 space =11 chars for each bucket value.
943 	 * +1 space for '\0'.
944 	 */
945 	char hist_str[(QCA_NAPI_NUM_BUCKETS * 11) + 1] = {'\0'};
946 
947 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_INFO_HIGH,
948 		  "NAPI[#]CPU[#] |scheds |polls  |comps  |dones  |t-lim  |max(us)|hist(500us buckets)");
949 
950 	for (ce_id = 0; ce_id < CE_COUNT_MAX; ce_id++) {
951 		if (!hif_napi_enabled(hif_ctx, ce_id))
952 			continue;
953 
954 		napii = scn->napi_data.napis[ce_id];
955 		if (napii) {
956 			for (cpu = 0; cpu < num_possible_cpus(); cpu++) {
957 				napi_stats = &napii->stats[cpu];
958 
959 				 hif_get_poll_times_hist_str(napi_stats,
960 							     hist_str,
961 							     sizeof(hist_str));
962 
963 				if (napi_stats->napi_schedules != 0)
964 					QDF_TRACE(QDF_MODULE_ID_HIF,
965 						  QDF_TRACE_LEVEL_INFO_HIGH,
966 						  "NAPI[%d]CPU[%d]: %7u %7u %7u %7u %7u %7llu %s",
967 						  ce_id, cpu,
968 						  napi_stats->napi_schedules,
969 						  napi_stats->napi_polls,
970 						  napi_stats->napi_completes,
971 						  napi_stats->napi_workdone,
972 						  napi_stats->time_limit_reached,
973 						  qdf_do_div(napi_stats->napi_max_poll_time, 1000),
974 						  hist_str);
975 			}
976 
977 			hif_print_napi_latency_stats(napii, ce_id);
978 		}
979 	}
980 }
981 #else
982 static inline void
hif_napi_update_service_start_time(struct qca_napi_info * napi_info)983 hif_napi_update_service_start_time(struct qca_napi_info *napi_info)
984 {
985 }
986 
987 static inline void
hif_napi_fill_poll_time_histogram(struct qca_napi_info * napi_info)988 hif_napi_fill_poll_time_histogram(struct qca_napi_info *napi_info)
989 {
990 }
991 
hif_print_napi_stats(struct hif_opaque_softc * hif_ctx)992 void hif_print_napi_stats(struct hif_opaque_softc *hif_ctx)
993 {
994 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
995 	struct qca_napi_info *napii;
996 	struct qca_napi_stat *napi_stats;
997 	int ce_id, cpu;
998 
999 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_FATAL,
1000 		  "NAPI[#ctx]CPU[#] |schedules |polls |completes |workdone");
1001 
1002 	for (ce_id = 0; ce_id < CE_COUNT_MAX; ce_id++) {
1003 		if (!hif_napi_enabled(hif_ctx, ce_id))
1004 			continue;
1005 
1006 		napii = scn->napi_data.napis[ce_id];
1007 		if (napii) {
1008 			for (cpu = 0; cpu < num_possible_cpus(); cpu++) {
1009 				napi_stats = &napii->stats[cpu];
1010 
1011 				if (napi_stats->napi_schedules != 0)
1012 					QDF_TRACE(QDF_MODULE_ID_HIF,
1013 						  QDF_TRACE_LEVEL_FATAL,
1014 						  "NAPI[%2d]CPU[%d]: "
1015 						  "%7d %7d %7d %7d ",
1016 						  ce_id, cpu,
1017 						  napi_stats->napi_schedules,
1018 						  napi_stats->napi_polls,
1019 						  napi_stats->napi_completes,
1020 						  napi_stats->napi_workdone);
1021 			}
1022 
1023 			hif_print_napi_latency_stats(napii, ce_id);
1024 		}
1025 	}
1026 }
1027 #endif
1028 
1029 #ifdef HIF_LATENCY_PROFILE_ENABLE
hif_clear_napi_stats(struct hif_opaque_softc * hif_ctx)1030 void hif_clear_napi_stats(struct hif_opaque_softc *hif_ctx)
1031 {
1032 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1033 	struct qca_napi_info *napii;
1034 	int ce_id;
1035 
1036 	for (ce_id = 0; ce_id < CE_COUNT_MAX; ce_id++) {
1037 		if (!hif_napi_enabled(hif_ctx, ce_id))
1038 			continue;
1039 
1040 		napii = scn->napi_data.napis[ce_id];
1041 		if (napii)
1042 			qdf_mem_set(napii->sched_latency_stats,
1043 				    sizeof(napii->sched_latency_stats), 0);
1044 	}
1045 }
1046 #else
hif_clear_napi_stats(struct hif_opaque_softc * hif_ctx)1047 inline void hif_clear_napi_stats(struct hif_opaque_softc *hif_ctx)
1048 {
1049 }
1050 #endif /* HIF_LATENCY_PROFILE_ENABLE */
1051 
1052 #else
1053 static inline void
hif_napi_update_service_start_time(struct qca_napi_info * napi_info)1054 hif_napi_update_service_start_time(struct qca_napi_info *napi_info)
1055 {
1056 }
1057 
1058 static inline void
hif_napi_fill_poll_time_histogram(struct qca_napi_info * napi_info)1059 hif_napi_fill_poll_time_histogram(struct qca_napi_info *napi_info)
1060 {
1061 }
1062 #endif
1063 
1064 /**
1065  * hif_napi_schedule() - schedules napi, updates stats
1066  * @hif_ctx:  hif context
1067  * @ce_id: index of napi instance
1068  *
1069  * Return: false if napi didn't enable or already scheduled, otherwise true
1070  */
hif_napi_schedule(struct hif_opaque_softc * hif_ctx,int ce_id)1071 bool hif_napi_schedule(struct hif_opaque_softc *hif_ctx, int ce_id)
1072 {
1073 	int cpu = smp_processor_id();
1074 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1075 	struct qca_napi_info *napii;
1076 
1077 	napii = scn->napi_data.napis[ce_id];
1078 	if (qdf_unlikely(!napii)) {
1079 		hif_err("scheduling unallocated napi (ce:%d)", ce_id);
1080 		qdf_atomic_dec(&scn->active_tasklet_cnt);
1081 		return false;
1082 	}
1083 
1084 	if (test_bit(NAPI_STATE_SCHED, &napii->napi.state)) {
1085 		NAPI_DEBUG("napi scheduled, return");
1086 		qdf_atomic_dec(&scn->active_tasklet_cnt);
1087 		return false;
1088 	}
1089 
1090 	hif_record_ce_desc_event(scn,  ce_id, NAPI_SCHEDULE,
1091 				 NULL, NULL, 0, 0);
1092 	napii->stats[cpu].napi_schedules++;
1093 	NAPI_DEBUG("scheduling napi %d (ce:%d)", napii->id, ce_id);
1094 	hif_napi_latency_profile_start(scn, ce_id);
1095 	napi_schedule(&(napii->napi));
1096 
1097 	return true;
1098 }
1099 qdf_export_symbol(hif_napi_schedule);
1100 
1101 /**
1102  * hif_napi_correct_cpu() - correct the interrupt affinity for napi if needed
1103  * @napi_info: pointer to qca_napi_info for the napi instance
1104  *
1105  * Return: true  => interrupt already on correct cpu, no correction needed
1106  *         false => interrupt on wrong cpu, correction done for cpu affinity
1107  *                   of the interrupt
1108  */
1109 static inline
hif_napi_correct_cpu(struct qca_napi_info * napi_info)1110 bool hif_napi_correct_cpu(struct qca_napi_info *napi_info)
1111 {
1112 	bool right_cpu = true;
1113 	int rc = 0;
1114 	int cpu;
1115 	struct qca_napi_data *napid;
1116 	QDF_STATUS ret;
1117 
1118 	napid = hif_napi_get_all(GET_HIF_OPAQUE_HDL(napi_info->hif_ctx));
1119 
1120 	if (napid->flags & QCA_NAPI_FEATURE_CPU_CORRECTION) {
1121 
1122 		cpu = qdf_get_cpu();
1123 		if (unlikely((hif_napi_cpu_denylist(napid,
1124 						    DENYLIST_QUERY) > 0) &&
1125 						    cpu != napi_info->cpu)) {
1126 			right_cpu = false;
1127 
1128 			NAPI_DEBUG("interrupt on wrong CPU, correcting");
1129 			napi_info->cpumask.bits[0] = (0x01 << napi_info->cpu);
1130 
1131 			qdf_dev_modify_irq_status(napi_info->irq,
1132 						  QDF_IRQ_NO_BALANCING, 0);
1133 			ret = qdf_dev_set_irq_affinity(napi_info->irq,
1134 						       (struct qdf_cpu_mask *)
1135 						       &napi_info->cpumask);
1136 			rc = qdf_status_to_os_return(ret);
1137 			qdf_dev_modify_irq_status(napi_info->irq, 0,
1138 						  QDF_IRQ_NO_BALANCING);
1139 
1140 			if (rc)
1141 				hif_err("Setting irq affinity hint: %d", rc);
1142 			else
1143 				napi_info->stats[cpu].cpu_corrected++;
1144 		}
1145 	}
1146 	return right_cpu;
1147 }
1148 
1149 #ifdef RECEIVE_OFFLOAD
1150 /**
1151  * hif_napi_offld_flush_cb() - Call upper layer flush callback
1152  * @napi_info: Handle to hif_napi_info
1153  *
1154  * Return: None
1155  */
hif_napi_offld_flush_cb(struct qca_napi_info * napi_info)1156 static void hif_napi_offld_flush_cb(struct qca_napi_info *napi_info)
1157 {
1158 	if (napi_info->offld_flush_cb)
1159 		napi_info->offld_flush_cb(napi_info);
1160 }
1161 #else
hif_napi_offld_flush_cb(struct qca_napi_info * napi_info)1162 static void hif_napi_offld_flush_cb(struct qca_napi_info *napi_info)
1163 {
1164 }
1165 #endif
1166 
1167 /**
1168  * hif_napi_poll() - NAPI poll routine
1169  * @hif_ctx: HIF context
1170  * @napi: pointer to NAPI struct as kernel holds it
1171  * @budget:
1172  *
1173  * This is the body of the poll function.
1174  * The poll function is called by kernel. So, there is a wrapper
1175  * function in HDD, which in turn calls this function.
1176  * Two main reasons why the whole thing is not implemented in HDD:
1177  * a) references to things like ce_service that HDD is not aware of
1178  * b) proximity to the implementation of ce_tasklet, which the body
1179  *    of this function should be very close to.
1180  *
1181  * NOTE TO THE MAINTAINER:
1182  *  Consider this function and ce_tasklet very tightly coupled pairs.
1183  *  Any changes to ce_tasklet or this function may likely need to be
1184  *  reflected in the counterpart.
1185  *
1186  * Returns:
1187  *  int: the amount of work done in this poll (<= budget)
1188  */
hif_napi_poll(struct hif_opaque_softc * hif_ctx,struct napi_struct * napi,int budget)1189 int hif_napi_poll(struct hif_opaque_softc *hif_ctx,
1190 		  struct napi_struct *napi,
1191 		  int budget)
1192 {
1193 	int    rc = 0; /* default: no work done, also takes care of error */
1194 	int    normalized = 0;
1195 	int    bucket;
1196 	int    cpu = smp_processor_id();
1197 	bool poll_on_right_cpu;
1198 	struct hif_softc      *hif = HIF_GET_SOFTC(hif_ctx);
1199 	struct qca_napi_info *napi_info;
1200 	struct CE_state *ce_state = NULL;
1201 
1202 	if (unlikely(!hif)) {
1203 		hif_err("hif context is NULL");
1204 		QDF_ASSERT(0);
1205 		goto out;
1206 	}
1207 
1208 	napi_info = (struct qca_napi_info *)
1209 		container_of(napi, struct qca_napi_info, napi);
1210 
1211 	hif_napi_update_service_start_time(napi_info);
1212 	hif_napi_latency_profile_measure(napi_info);
1213 
1214 	NAPI_DEBUG("%s -->(napi(%d, irq=%d), budget=%d)",
1215 		   __func__, napi_info->id, napi_info->irq, budget);
1216 
1217 	napi_info->stats[cpu].napi_polls++;
1218 
1219 	hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id),
1220 				 NAPI_POLL_ENTER, NULL, NULL, cpu, 0);
1221 
1222 	rc = ce_per_engine_service(hif, NAPI_ID2PIPE(napi_info->id));
1223 	NAPI_DEBUG("%s: ce_per_engine_service processed %d msgs",
1224 		    __func__, rc);
1225 
1226 	hif_napi_offld_flush_cb(napi_info);
1227 
1228 	/* do not return 0, if there was some work done,
1229 	 * even if it is below the scale
1230 	 */
1231 	if (rc) {
1232 		napi_info->stats[cpu].napi_workdone += rc;
1233 		normalized = (rc / napi_info->scale);
1234 		if (normalized == 0)
1235 			normalized++;
1236 		bucket = (normalized - 1) /
1237 				(QCA_NAPI_BUDGET / QCA_NAPI_NUM_BUCKETS);
1238 		if (bucket >= QCA_NAPI_NUM_BUCKETS) {
1239 			bucket = QCA_NAPI_NUM_BUCKETS - 1;
1240 			hif_err("Bad bucket#(%d) > QCA_NAPI_NUM_BUCKETS(%d)"
1241 				" normalized %d, napi budget %d",
1242 				bucket, QCA_NAPI_NUM_BUCKETS,
1243 				normalized, QCA_NAPI_BUDGET);
1244 		}
1245 		napi_info->stats[cpu].napi_budget_uses[bucket]++;
1246 	} else {
1247 	/* if ce_per engine reports 0, then poll should be terminated */
1248 		NAPI_DEBUG("%s:%d: nothing processed by CE. Completing NAPI",
1249 			   __func__, __LINE__);
1250 	}
1251 
1252 	ce_state = hif->ce_id_to_state[NAPI_ID2PIPE(napi_info->id)];
1253 
1254 	/*
1255 	 * Not using the API hif_napi_correct_cpu directly in the if statement
1256 	 * below since the API may not get evaluated if put at the end if any
1257 	 * prior condition would evaluate to be true. The CPU correction
1258 	 * check should kick in every poll.
1259 	 */
1260 #ifdef NAPI_YIELD_BUDGET_BASED
1261 	if (ce_state && (ce_state->force_break || 0 == rc)) {
1262 #else
1263 	poll_on_right_cpu = hif_napi_correct_cpu(napi_info);
1264 	if ((ce_state) &&
1265 	    (!ce_check_rx_pending(ce_state) || (0 == rc) ||
1266 	     !poll_on_right_cpu)) {
1267 #endif
1268 		napi_info->stats[cpu].napi_completes++;
1269 #ifdef NAPI_YIELD_BUDGET_BASED
1270 		ce_state->force_break = 0;
1271 #endif
1272 
1273 		hif_record_ce_desc_event(hif, ce_state->id, NAPI_COMPLETE,
1274 					 NULL, NULL, 0, 0);
1275 		if (normalized >= budget)
1276 			normalized = budget - 1;
1277 
1278 		napi_complete(napi);
1279 		/* enable interrupts */
1280 		hif_napi_enable_irq(hif_ctx, napi_info->id);
1281 		/* support suspend/resume */
1282 		qdf_atomic_dec(&(hif->active_tasklet_cnt));
1283 
1284 		NAPI_DEBUG("%s:%d: napi_complete + enabling the interrupts",
1285 			   __func__, __LINE__);
1286 	} else {
1287 		/* 4.4 kernel NAPI implementation requires drivers to
1288 		 * return full work when they ask to be re-scheduled,
1289 		 * or napi_complete and re-start with a fresh interrupt
1290 		 */
1291 		normalized = budget;
1292 	}
1293 
1294 	hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id),
1295 				 NAPI_POLL_EXIT, NULL, NULL, normalized, 0);
1296 
1297 	hif_napi_fill_poll_time_histogram(napi_info);
1298 
1299 	NAPI_DEBUG("%s <--[normalized=%d]", __func__, normalized);
1300 	return normalized;
1301 out:
1302 	return rc;
1303 }
1304 qdf_export_symbol(hif_napi_poll);
1305 
1306 void hif_update_napi_max_poll_time(struct CE_state *ce_state,
1307 				   int ce_id,
1308 				   int cpu_id)
1309 {
1310 	struct hif_softc *hif;
1311 	struct qca_napi_info *napi_info;
1312 	unsigned long long napi_poll_time = qdf_time_sched_clock() -
1313 					ce_state->ce_service_start_time;
1314 
1315 	hif = ce_state->scn;
1316 	napi_info = hif->napi_data.napis[ce_id];
1317 	if (napi_poll_time >
1318 			napi_info->stats[cpu_id].napi_max_poll_time)
1319 		napi_info->stats[cpu_id].napi_max_poll_time = napi_poll_time;
1320 }
1321 qdf_export_symbol(hif_update_napi_max_poll_time);
1322 
1323 #ifdef HIF_IRQ_AFFINITY
1324 /**
1325  * hif_napi_update_yield_stats() - update NAPI yield related stats
1326  * @ce_state: CE state structure
1327  * @time_limit_reached: indicates whether the time limit was reached
1328  * @rxpkt_thresh_reached: indicates whether rx packet threshold was reached
1329  *
1330  * Return: None
1331  */
1332 void hif_napi_update_yield_stats(struct CE_state *ce_state,
1333 				 bool time_limit_reached,
1334 				 bool rxpkt_thresh_reached)
1335 {
1336 	struct hif_softc *hif;
1337 	struct qca_napi_data *napi_data = NULL;
1338 	int ce_id = 0;
1339 	int cpu_id = 0;
1340 
1341 	if (unlikely(!ce_state)) {
1342 		QDF_ASSERT(ce_state);
1343 		return;
1344 	}
1345 
1346 	hif = ce_state->scn;
1347 
1348 	if (unlikely(!hif)) {
1349 		QDF_ASSERT(hif);
1350 		return;
1351 	}
1352 	napi_data = &(hif->napi_data);
1353 	if (unlikely(!napi_data)) {
1354 		QDF_ASSERT(napi_data);
1355 		return;
1356 	}
1357 
1358 	ce_id = ce_state->id;
1359 	cpu_id = qdf_get_cpu();
1360 
1361 	if (unlikely(!napi_data->napis[ce_id])) {
1362 		return;
1363 	}
1364 
1365 	if (time_limit_reached)
1366 		napi_data->napis[ce_id]->stats[cpu_id].time_limit_reached++;
1367 	else
1368 		napi_data->napis[ce_id]->stats[cpu_id].rxpkt_thresh_reached++;
1369 
1370 	hif_update_napi_max_poll_time(ce_state, ce_id,
1371 				      cpu_id);
1372 }
1373 
1374 /**
1375  * hif_napi_stats() - display NAPI CPU statistics
1376  * @napid: pointer to qca_napi_data
1377  *
1378  * Description:
1379  *    Prints the various CPU cores on which the NAPI instances /CEs interrupts
1380  *    are being executed. Can be called from outside NAPI layer.
1381  *
1382  * Return: None
1383  */
1384 void hif_napi_stats(struct qca_napi_data *napid)
1385 {
1386 	int i;
1387 	struct qca_napi_cpu *cpu;
1388 
1389 	if (!napid) {
1390 		qdf_debug("%s: napiid struct is null", __func__);
1391 		return;
1392 	}
1393 
1394 	cpu = napid->napi_cpu;
1395 	qdf_debug("NAPI CPU TABLE");
1396 	qdf_debug("lilclhead=%d, bigclhead=%d",
1397 		  napid->lilcl_head, napid->bigcl_head);
1398 	for (i = 0; i < NR_CPUS; i++) {
1399 		qdf_debug("CPU[%02d]: state:%d crid=%02d clid=%02d crmk:0x%0lx thmk:0x%0lx frq:%d napi = 0x%08x lnk:%d",
1400 			  i,
1401 			  cpu[i].state, cpu[i].core_id, cpu[i].cluster_id,
1402 			  cpu[i].core_mask.bits[0],
1403 			  cpu[i].thread_mask.bits[0],
1404 			  cpu[i].max_freq, cpu[i].napis,
1405 			  cpu[i].cluster_nxt);
1406 	}
1407 }
1408 
1409 #ifdef FEATURE_NAPI_DEBUG
1410 /*
1411  * Local functions
1412  * - no argument checks, all internal/trusted callers
1413  */
1414 static void hnc_dump_cpus(struct qca_napi_data *napid)
1415 {
1416 	hif_napi_stats(napid);
1417 }
1418 #else
1419 static void hnc_dump_cpus(struct qca_napi_data *napid) { /* no-op */ };
1420 #endif /* FEATURE_NAPI_DEBUG */
1421 
1422 #define HNC_MIN_CLUSTER 0
1423 #define HNC_MAX_CLUSTER 1
1424 
1425 /**
1426  * hnc_link_clusters() - partitions to cpu table into clusters
1427  * @napid: pointer to NAPI data
1428  *
1429  * Takes in a CPU topology table and builds two linked lists
1430  * (big cluster cores, list-head at bigcl_head, and little cluster
1431  * cores, list-head at lilcl_head) out of it.
1432  *
1433  * If there are more than two clusters:
1434  * - bigcl_head and lilcl_head will be different,
1435  * - the cluster with highest cpufreq will be considered the "big" cluster.
1436  *   If there are more than one with the highest frequency, the *last* of such
1437  *   clusters will be designated as the "big cluster"
1438  * - the cluster with lowest cpufreq will be considered the "li'l" cluster.
1439  *   If there are more than one clusters with the lowest cpu freq, the *first*
1440  *   of such clusters will be designated as the "little cluster"
1441  * - We only support up to 32 clusters
1442  * Return: 0 : OK
1443  *         !0: error (at least one of lil/big clusters could not be found)
1444  */
1445 static int hnc_link_clusters(struct qca_napi_data *napid)
1446 {
1447 	int rc = 0;
1448 
1449 	int i;
1450 	int it = 0;
1451 	uint32_t cl_done = 0x0;
1452 	int cl, curcl, curclhead = 0;
1453 	int more;
1454 	unsigned int lilfrq = INT_MAX;
1455 	unsigned int bigfrq = 0;
1456 	unsigned int clfrq = 0;
1457 	int prev = 0;
1458 	struct qca_napi_cpu *cpus = napid->napi_cpu;
1459 
1460 	napid->lilcl_head = napid->bigcl_head = -1;
1461 
1462 	do {
1463 		more = 0;
1464 		it++; curcl = -1;
1465 		for (i = 0; i < NR_CPUS; i++) {
1466 			cl = cpus[i].cluster_id;
1467 			NAPI_DEBUG("Processing cpu[%d], cluster=%d\n",
1468 				   i, cl);
1469 			if ((cl < HNC_MIN_CLUSTER) || (cl > HNC_MAX_CLUSTER)) {
1470 				NAPI_DEBUG("Bad cluster (%d). SKIPPED\n", cl);
1471 				/* continue if ASSERTs are disabled */
1472 				continue;
1473 			};
1474 			if (cpumask_weight(&(cpus[i].core_mask)) == 0) {
1475 				NAPI_DEBUG("Core mask 0. SKIPPED\n");
1476 				continue;
1477 			}
1478 			if (cl_done & (0x01 << cl)) {
1479 				NAPI_DEBUG("Cluster already processed. SKIPPED\n");
1480 				continue;
1481 			} else {
1482 				if (more == 0) {
1483 					more = 1;
1484 					curcl = cl;
1485 					curclhead = i; /* row */
1486 					clfrq = cpus[i].max_freq;
1487 					prev = -1;
1488 				};
1489 				if ((curcl >= 0) && (curcl != cl)) {
1490 					NAPI_DEBUG("Entry cl(%d) != curcl(%d). SKIPPED\n",
1491 						   cl, curcl);
1492 					continue;
1493 				}
1494 				if (cpus[i].max_freq != clfrq)
1495 					NAPI_DEBUG("WARN: frq(%d)!=clfrq(%d)\n",
1496 						   cpus[i].max_freq, clfrq);
1497 				if (clfrq >= bigfrq) {
1498 					bigfrq = clfrq;
1499 					napid->bigcl_head  = curclhead;
1500 					NAPI_DEBUG("bigcl=%d\n", curclhead);
1501 				}
1502 				if (clfrq < lilfrq) {
1503 					lilfrq = clfrq;
1504 					napid->lilcl_head = curclhead;
1505 					NAPI_DEBUG("lilcl=%d\n", curclhead);
1506 				}
1507 				if (prev != -1)
1508 					cpus[prev].cluster_nxt = i;
1509 
1510 				prev = i;
1511 			}
1512 		}
1513 		if (curcl >= 0)
1514 			cl_done |= (0x01 << curcl);
1515 
1516 	} while (more);
1517 
1518 	if (qdf_unlikely((napid->lilcl_head < 0) && (napid->bigcl_head < 0)))
1519 		rc = -EFAULT;
1520 
1521 	hnc_dump_cpus(napid); /* if NAPI_DEBUG */
1522 	return rc;
1523 }
1524 #undef HNC_MIN_CLUSTER
1525 #undef HNC_MAX_CLUSTER
1526 
1527 /*
1528  * hotplug function group
1529  */
1530 
1531 /**
1532  * hnc_cpu_online_cb() - handles CPU hotplug "up" events
1533  * @context: the associated HIF context
1534  * @cpu: the CPU Id of the CPU the event happened on
1535  *
1536  * Return: None
1537  */
1538 static void hnc_cpu_online_cb(void *context, uint32_t cpu)
1539 {
1540 	struct hif_softc *hif = context;
1541 	struct qca_napi_data *napid = &hif->napi_data;
1542 
1543 	if (cpu >= NR_CPUS)
1544 		return;
1545 
1546 	NAPI_DEBUG("-->%s(act=online, cpu=%u)", __func__, cpu);
1547 
1548 	napid->napi_cpu[cpu].state = QCA_NAPI_CPU_UP;
1549 	NAPI_DEBUG("%s: CPU %u marked %d",
1550 		   __func__, cpu, napid->napi_cpu[cpu].state);
1551 
1552 	NAPI_DEBUG("<--%s", __func__);
1553 }
1554 
1555 /**
1556  * hnc_cpu_before_offline_cb() - handles CPU hotplug "prepare down" events
1557  * @context: the associated HIF context
1558  * @cpu: the CPU Id of the CPU the event happened on
1559  *
1560  * On transition to offline, we act on PREP events, because we may need to move
1561  * the irqs/NAPIs to another CPU before it is actually off-lined.
1562  *
1563  * Return: None
1564  */
1565 static void hnc_cpu_before_offline_cb(void *context, uint32_t cpu)
1566 {
1567 	struct hif_softc *hif = context;
1568 	struct qca_napi_data *napid = &hif->napi_data;
1569 
1570 	if (cpu >= NR_CPUS)
1571 		return;
1572 
1573 	NAPI_DEBUG("-->%s(act=before_offline, cpu=%u)", __func__, cpu);
1574 
1575 	napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN;
1576 
1577 	NAPI_DEBUG("%s: CPU %u marked %d; updating affinity",
1578 		   __func__, cpu, napid->napi_cpu[cpu].state);
1579 
1580 	/**
1581 	 * we need to move any NAPIs on this CPU out.
1582 	 * if we are in LO throughput mode, then this is valid
1583 	 * if the CPU is the the low designated CPU.
1584 	 */
1585 	hif_napi_event(GET_HIF_OPAQUE_HDL(hif),
1586 		       NAPI_EVT_CPU_STATE,
1587 		       (void *)
1588 		       ((size_t)cpu << 16 | napid->napi_cpu[cpu].state));
1589 
1590 	NAPI_DEBUG("<--%s", __func__);
1591 }
1592 
1593 static int hnc_hotplug_register(struct hif_softc *hif_sc)
1594 {
1595 	QDF_STATUS status;
1596 
1597 	NAPI_DEBUG("-->%s", __func__);
1598 
1599 	status = qdf_cpuhp_register(&hif_sc->napi_data.cpuhp_handler,
1600 				    hif_sc,
1601 				    hnc_cpu_online_cb,
1602 				    hnc_cpu_before_offline_cb);
1603 
1604 	NAPI_DEBUG("<--%s [%d]", __func__, status);
1605 
1606 	return qdf_status_to_os_return(status);
1607 }
1608 
1609 static void hnc_hotplug_unregister(struct hif_softc *hif_sc)
1610 {
1611 	NAPI_DEBUG("-->%s", __func__);
1612 
1613 	if (hif_sc->napi_data.cpuhp_handler)
1614 		qdf_cpuhp_unregister(&hif_sc->napi_data.cpuhp_handler);
1615 
1616 	NAPI_DEBUG("<--%s", __func__);
1617 }
1618 
1619 /**
1620  * hnc_tput_hook() - installs a callback in the throughput detector
1621  * @install: !0 => install; =0: uninstall
1622  *
1623  * installs a callback to be called when wifi driver throughput (tx+rx)
1624  * crosses a threshold. Currently, we are using the same criteria as
1625  * TCP ack suppression (500 packets/100ms by default).
1626  *
1627  * Return: 0 : success
1628  *         <0: failure
1629  */
1630 
1631 static int hnc_tput_hook(int install)
1632 {
1633 	int rc = 0;
1634 
1635 	/*
1636 	 * Nothing, until the bw_calculation accepts registration
1637 	 * it is now hardcoded in the wlan_hdd_main.c::hdd_bus_bw_compute_cbk
1638 	 *   hdd_napi_throughput_policy(...)
1639 	 */
1640 	return rc;
1641 }
1642 
1643 /*
1644  * Implementation of hif_napi_cpu API
1645  */
1646 
1647 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
1648 static inline void record_sibling_cpumask(struct qca_napi_cpu *cpus, int i)
1649 {
1650 	cpumask_copy(&(cpus[i].thread_mask),
1651 			     topology_sibling_cpumask(i));
1652 }
1653 #else
1654 static inline void record_sibling_cpumask(struct qca_napi_cpu *cpus, int i)
1655 {
1656 }
1657 #endif
1658 
1659 
1660 /**
1661  * hif_napi_cpu_init() - initialization of irq affinity block
1662  * @hif: HIF context
1663  *
1664  * called by hif_napi_create, after the first instance is called
1665  * - builds napi_rss_cpus table from cpu topology
1666  * - links cores of the same clusters together
1667  * - installs hot-plug notifier
1668  * - installs throughput trigger notifier (when such mechanism exists)
1669  *
1670  * Return: 0: OK
1671  *         <0: error code
1672  */
1673 int hif_napi_cpu_init(struct hif_opaque_softc *hif)
1674 {
1675 	int rc = 0;
1676 	int i;
1677 	struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data;
1678 	struct qca_napi_cpu *cpus = napid->napi_cpu;
1679 
1680 	NAPI_DEBUG("--> ");
1681 
1682 	if (cpus[0].state != QCA_NAPI_CPU_UNINITIALIZED) {
1683 		NAPI_DEBUG("NAPI RSS table already initialized.\n");
1684 		rc = -EALREADY;
1685 		goto lab_rss_init;
1686 	}
1687 
1688 	/* build CPU topology table */
1689 	for_each_possible_cpu(i) {
1690 		cpus[i].state       = ((cpumask_test_cpu(i, cpu_online_mask)
1691 					? QCA_NAPI_CPU_UP
1692 					: QCA_NAPI_CPU_DOWN));
1693 		cpus[i].core_id     = topology_core_id(i);
1694 		cpus[i].cluster_id  = topology_physical_package_id(i);
1695 		cpumask_copy(&(cpus[i].core_mask),
1696 			     topology_core_cpumask(i));
1697 		record_sibling_cpumask(cpus, i);
1698 		cpus[i].max_freq    = cpufreq_quick_get_max(i);
1699 		cpus[i].napis       = 0x0;
1700 		cpus[i].cluster_nxt = -1; /* invalid */
1701 	}
1702 
1703 	/* link clusters together */
1704 	rc = hnc_link_clusters(napid);
1705 	if (0 != rc)
1706 		goto lab_err_topology;
1707 
1708 	/* install hotplug notifier */
1709 	rc = hnc_hotplug_register(HIF_GET_SOFTC(hif));
1710 	if (0 != rc)
1711 		goto lab_err_hotplug;
1712 
1713 	/* install throughput notifier */
1714 	rc = hnc_tput_hook(1);
1715 	if (0 == rc)
1716 		goto lab_rss_init;
1717 
1718 lab_err_hotplug:
1719 	hnc_tput_hook(0);
1720 	hnc_hotplug_unregister(HIF_GET_SOFTC(hif));
1721 lab_err_topology:
1722 	memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS);
1723 lab_rss_init:
1724 	NAPI_DEBUG("<-- [rc=%d]", rc);
1725 	return rc;
1726 }
1727 
1728 /**
1729  * hif_napi_cpu_deinit() - clean-up of irq affinity block
1730  * @hif: HIF context
1731  *
1732  * called by hif_napi_destroy, when the last instance is removed
1733  * - uninstalls throughput and hotplug notifiers
1734  * - clears cpu topology table
1735  * Return: 0: OK
1736  */
1737 int hif_napi_cpu_deinit(struct hif_opaque_softc *hif)
1738 {
1739 	int rc = 0;
1740 	struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data;
1741 
1742 	NAPI_DEBUG("-->%s(...)", __func__);
1743 
1744 	/* uninstall tput notifier */
1745 	rc = hnc_tput_hook(0);
1746 
1747 	/* uninstall hotplug notifier */
1748 	hnc_hotplug_unregister(HIF_GET_SOFTC(hif));
1749 
1750 	/* clear the topology table */
1751 	memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS);
1752 
1753 	NAPI_DEBUG("<--%s[rc=%d]", __func__, rc);
1754 
1755 	return rc;
1756 }
1757 
1758 /**
1759  * hncm_migrate_to() - migrates a NAPI to a CPU
1760  * @napid: pointer to NAPI block
1761  * @napi_ce: CE_id of the NAPI instance
1762  * @didx: index in the CPU topology table for the CPU to migrate to
1763  *
1764  * Migrates NAPI (identified by the CE_id) to the destination core
1765  * Updates the napi_map of the destination entry
1766  *
1767  * Return:
1768  *  =0 : success
1769  *  <0 : error
1770  */
1771 static int hncm_migrate_to(struct qca_napi_data *napid,
1772 			   int                   napi_ce,
1773 			   int                   didx)
1774 {
1775 	int rc = 0;
1776 	QDF_STATUS status;
1777 
1778 	NAPI_DEBUG("-->%s(napi_cd=%d, didx=%d)", __func__, napi_ce, didx);
1779 
1780 	if (!napid->napis[napi_ce])
1781 		return -EINVAL;
1782 
1783 	napid->napis[napi_ce]->cpumask.bits[0] = (1 << didx);
1784 
1785 	qdf_dev_modify_irq_status(napid->napis[napi_ce]->irq,
1786 				  QDF_IRQ_NO_BALANCING, 0);
1787 	status = qdf_dev_set_irq_affinity(napid->napis[napi_ce]->irq,
1788 					  (struct qdf_cpu_mask *)
1789 					  &napid->napis[napi_ce]->cpumask);
1790 	rc = qdf_status_to_os_return(status);
1791 
1792 	/* unmark the napis bitmap in the cpu table */
1793 	napid->napi_cpu[napid->napis[napi_ce]->cpu].napis &= ~(0x01 << napi_ce);
1794 	/* mark the napis bitmap for the new designated cpu */
1795 	napid->napi_cpu[didx].napis |= (0x01 << napi_ce);
1796 	napid->napis[napi_ce]->cpu = didx;
1797 
1798 	NAPI_DEBUG("<--%s[%d]", __func__, rc);
1799 	return rc;
1800 }
1801 /**
1802  * hncm_dest_cpu() - finds a destination CPU for NAPI
1803  * @napid: pointer to NAPI block
1804  * @act: RELOCATE | COLLAPSE | DISPERSE
1805  *
1806  * Finds the designated destination for the next IRQ.
1807  * RELOCATE: translated to either COLLAPSE or DISPERSE based
1808  *           on napid->napi_mode (throughput state)
1809  * COLLAPSE: All have the same destination: the first online CPU in lilcl
1810  * DISPERSE: One of the CPU in bigcl, which has the smallest number of
1811  *           NAPIs on it
1812  *
1813  * Return: >=0 : index in the cpu topology table
1814  *       : < 0 : error
1815  */
1816 static int hncm_dest_cpu(struct qca_napi_data *napid, int act)
1817 {
1818 	int destidx = -1;
1819 	int head, i;
1820 
1821 	NAPI_DEBUG("-->%s(act=%d)", __func__, act);
1822 	if (act == HNC_ACT_RELOCATE) {
1823 		if (napid->napi_mode == QCA_NAPI_TPUT_LO)
1824 			act = HNC_ACT_COLLAPSE;
1825 		else
1826 			act = HNC_ACT_DISPERSE;
1827 		NAPI_DEBUG("%s: act changed from HNC_ACT_RELOCATE to %d",
1828 			   __func__, act);
1829 	}
1830 	if (act == HNC_ACT_COLLAPSE) {
1831 		head = i = napid->lilcl_head;
1832 retry_collapse:
1833 		while (i >= 0) {
1834 			if (napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) {
1835 				destidx = i;
1836 				break;
1837 			}
1838 			i = napid->napi_cpu[i].cluster_nxt;
1839 		}
1840 		if ((destidx < 0) && (head == napid->lilcl_head)) {
1841 			NAPI_DEBUG("%s: COLLAPSE: no lilcl dest, try bigcl",
1842 				__func__);
1843 			head = i = napid->bigcl_head;
1844 			goto retry_collapse;
1845 		}
1846 	} else { /* HNC_ACT_DISPERSE */
1847 		int smallest = 99; /* all 32 bits full */
1848 		int smallidx = -1;
1849 
1850 		head = i = napid->bigcl_head;
1851 retry_disperse:
1852 		while (i >= 0) {
1853 			if ((napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) &&
1854 			    (hweight32(napid->napi_cpu[i].napis) <= smallest)) {
1855 				smallest = napid->napi_cpu[i].napis;
1856 				smallidx = i;
1857 			}
1858 			i = napid->napi_cpu[i].cluster_nxt;
1859 		}
1860 		/* Check if matches with user specified CPU mask */
1861 		smallidx = ((1 << smallidx) & napid->user_cpu_affin_mask) ?
1862 								smallidx : -1;
1863 
1864 		if ((smallidx < 0) && (head == napid->bigcl_head)) {
1865 			NAPI_DEBUG("%s: DISPERSE: no bigcl dest, try lilcl",
1866 				__func__);
1867 			head = i = napid->lilcl_head;
1868 			goto retry_disperse;
1869 		}
1870 		destidx = smallidx;
1871 	}
1872 	NAPI_DEBUG("<--%s[dest=%d]", __func__, destidx);
1873 	return destidx;
1874 }
1875 /**
1876  * hif_napi_cpu_migrate() - migrate IRQs away
1877  * @napid: pointer to NAPI block
1878  * @cpu: -1: all CPUs <n> specific CPU
1879  * @action: COLLAPSE | DISPERSE
1880  *
1881  * Moves IRQs/NAPIs from specific or all CPUs (specified by @cpu) to eligible
1882  * cores. Eligible cores are:
1883  * act=COLLAPSE -> the first online core of the little cluster
1884  * act=DISPERSE -> separate cores of the big cluster, so that each core will
1885  *                 host minimum number of NAPIs/IRQs (napid->cpus[cpu].napis)
1886  *
1887  * Note that this function is called with a spinlock acquired already.
1888  *
1889  * Return: =0: success
1890  *         <0: error
1891  */
1892 
1893 int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu, int action)
1894 {
1895 	int      rc = 0;
1896 	struct qca_napi_cpu *cpup;
1897 	int      i, dind;
1898 	uint32_t napis;
1899 
1900 	NAPI_DEBUG("-->%s(.., cpu=%d, act=%d)",
1901 		   __func__, cpu, action);
1902 	/* the following is really: hif_napi_enabled() with less overhead */
1903 	if (napid->ce_map == 0) {
1904 		NAPI_DEBUG("%s: NAPI disabled. Not migrating.", __func__);
1905 		goto hncm_return;
1906 	}
1907 
1908 	cpup = napid->napi_cpu;
1909 
1910 	switch (action) {
1911 	case HNC_ACT_RELOCATE:
1912 	case HNC_ACT_DISPERSE:
1913 	case HNC_ACT_COLLAPSE: {
1914 		/* first find the src napi set */
1915 		if (cpu == HNC_ANY_CPU)
1916 			napis = napid->ce_map;
1917 		else
1918 			napis = cpup[cpu].napis;
1919 		/* then clear the napi bitmap on each CPU */
1920 		for (i = 0; i < NR_CPUS; i++)
1921 			cpup[i].napis = 0;
1922 		/* then for each of the NAPIs to disperse: */
1923 		for (i = 0; i < CE_COUNT_MAX; i++)
1924 			if (napis & (1 << i)) {
1925 				/* find a destination CPU */
1926 				dind = hncm_dest_cpu(napid, action);
1927 				if (dind >= 0) {
1928 					NAPI_DEBUG("Migrating NAPI ce%d to %d",
1929 						   i, dind);
1930 					rc = hncm_migrate_to(napid, i, dind);
1931 				} else {
1932 					NAPI_DEBUG("No dest for NAPI ce%d", i);
1933 					hnc_dump_cpus(napid);
1934 					rc = -1;
1935 				}
1936 			}
1937 		break;
1938 	}
1939 	default: {
1940 		NAPI_DEBUG("%s: bad action: %d\n", __func__, action);
1941 		QDF_BUG(0);
1942 		break;
1943 	}
1944 	} /* switch action */
1945 
1946 hncm_return:
1947 	hnc_dump_cpus(napid);
1948 	return rc;
1949 }
1950 
1951 
1952 /**
1953  * hif_napi_dl_irq() - calls irq_modify_status to enable/disable denylisting
1954  * @napid: pointer to qca_napi_data structure
1955  * @dl_flag: denylist flag to enable/disable denylisting
1956  *
1957  * The function enables/disables denylisting for all the copy engine
1958  * interrupts on which NAPI is enabled.
1959  *
1960  * Return: None
1961  */
1962 static inline void hif_napi_dl_irq(struct qca_napi_data *napid, bool dl_flag)
1963 {
1964 	int i;
1965 	struct qca_napi_info *napii;
1966 
1967 	for (i = 0; i < CE_COUNT_MAX; i++) {
1968 		/* check if NAPI is enabled on the CE */
1969 		if (!(napid->ce_map & (0x01 << i)))
1970 			continue;
1971 
1972 		/*double check that NAPI is allocated for the CE */
1973 		napii = napid->napis[i];
1974 		if (!(napii))
1975 			continue;
1976 
1977 		if (dl_flag == true)
1978 			qdf_dev_modify_irq_status(napii->irq,
1979 						  0, QDF_IRQ_NO_BALANCING);
1980 		else
1981 			qdf_dev_modify_irq_status(napii->irq,
1982 						  QDF_IRQ_NO_BALANCING, 0);
1983 		hif_debug("dl_flag %d CE %d", dl_flag, i);
1984 	}
1985 }
1986 
1987 /**
1988  * hif_napi_cpu_denylist() - en(dis)ables denylisting for NAPI RX interrupts.
1989  * @napid: pointer to qca_napi_data structure
1990  * @op: denylist operation to perform
1991  *
1992  * The function enables/disables/queries denylisting for all CE RX
1993  * interrupts with NAPI enabled. Besides denylisting, it also enables/disables
1994  * core_ctl_set_boost.
1995  * Once denylisting is enabled, the interrupts will not be managed by the IRQ
1996  * balancer.
1997  *
1998  * Return: -EINVAL, in case IRQ_DENYLISTING and CORE_CTL_BOOST is not enabled
1999  *         for DENYLIST_QUERY op - denylist refcount
2000  *         for DENYLIST_ON op    - return value from core_ctl_set_boost API
2001  *         for DENYLIST_OFF op   - return value from core_ctl_set_boost API
2002  */
2003 int hif_napi_cpu_denylist(struct qca_napi_data *napid,
2004 			  enum qca_denylist_op op)
2005 {
2006 	int rc = 0;
2007 	static int ref_count; /* = 0 by the compiler */
2008 	uint8_t flags = napid->flags;
2009 	bool dl_en = flags & QCA_NAPI_FEATURE_IRQ_BLACKLISTING;
2010 	bool ccb_en = flags & QCA_NAPI_FEATURE_CORE_CTL_BOOST;
2011 
2012 	NAPI_DEBUG("-->%s(%d %d)", __func__, flags, op);
2013 
2014 	if (!(dl_en && ccb_en)) {
2015 		rc = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	switch (op) {
2020 	case DENYLIST_QUERY:
2021 		rc = ref_count;
2022 		break;
2023 	case DENYLIST_ON:
2024 		ref_count++;
2025 		rc = 0;
2026 		if (ref_count == 1) {
2027 			rc = hif_napi_core_ctl_set_boost(true);
2028 			NAPI_DEBUG("boost_on() returns %d - refcnt=%d",
2029 				rc, ref_count);
2030 			hif_napi_dl_irq(napid, true);
2031 		}
2032 		break;
2033 	case DENYLIST_OFF:
2034 		if (ref_count) {
2035 			ref_count--;
2036 			rc = 0;
2037 			if (ref_count == 0) {
2038 				rc = hif_napi_core_ctl_set_boost(false);
2039 				NAPI_DEBUG("boost_off() returns %d - refcnt=%d",
2040 					   rc, ref_count);
2041 				hif_napi_dl_irq(napid, false);
2042 			}
2043 		}
2044 		break;
2045 	default:
2046 		NAPI_DEBUG("Invalid denylist op: %d", op);
2047 		rc = -EINVAL;
2048 	} /* switch */
2049 out:
2050 	NAPI_DEBUG("<--%s[%d]", __func__, rc);
2051 	return rc;
2052 }
2053 
2054 static unsigned long napi_serialize_reqs;
2055 /**
2056  * hif_napi_serialize() - [de-]serialize NAPI operations
2057  * @hif:   context
2058  * @is_on: 1: serialize, 0: deserialize
2059  *
2060  * hif_napi_serialize(hif, 1) can be called multiple times. It will perform the
2061  * following steps (see hif_napi_event for code):
2062  * - put irqs of all NAPI instances on the same CPU
2063  * - only for the first serialize call: denylist
2064  *
2065  * hif_napi_serialize(hif, 0):
2066  * - start a timer (multiple of BusBandwidthTimer -- default: 100 msec)
2067  * - at the end of the timer, check the current throughput state and
2068  *   implement it.
2069  */
2070 int hif_napi_serialize(struct hif_opaque_softc *hif, int is_on)
2071 {
2072 	int rc = -EINVAL;
2073 
2074 	if (hif)
2075 		switch (is_on) {
2076 		case 0: { /* de-serialize */
2077 			rc = hif_napi_event(hif, NAPI_EVT_USR_NORMAL,
2078 					    (void *) 0);
2079 			napi_serialize_reqs = 0;
2080 			break;
2081 		} /* end de-serialize */
2082 		case 1: { /* serialize */
2083 			rc = hif_napi_event(hif, NAPI_EVT_USR_SERIAL,
2084 					    (void *)napi_serialize_reqs++);
2085 			break;
2086 		} /* end serialize */
2087 		default:
2088 			break; /* no-op */
2089 		} /* switch */
2090 	return rc;
2091 }
2092 
2093 #endif /* ifdef HIF_IRQ_AFFINITY */
2094